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Cosmic string lensing and closed timelike curves
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In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation
of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic
microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we
argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is
sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the
gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.
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I. INTRODUCTION

Although cosmic strings as the seed of structure forma-
tion [1] has been ruled out by observations, their presence
at a lower level is still possible. Indeed, cosmic strings are
generically present in brane inflation in superstring theory,
and their properties are close to, but within all observatio-
nal bounds [2–7]. This is exciting for many reasons since
current and near future cosmological experiments/obser-
vations will be able to confirm or rule out this explicit
stringy prediction. If detected, the rich properties of cosmic
strings as well as their inflationary signatures provide a
window to both the superstring theory and our preinfla-
tionary universe. The cosmic strings are expected to evolve
to a scaling string network with a spectrum of tensions.
Roughly speaking, the physics and the cosmological im-
plications are entirely dictated by the ground state cosmic
string tension �, or the dimensionless number G�, where
G is the Newton’s constant [1]. The present observational
bound is around G� & 6 � 10�7. Recently, it was shown
[7] that the cosmic string tension can easily saturate this
bound in the simplest scenario in string theory, namely, the
realistic D3 � �D3-brane inflationary scenario [4]. This
means gravitational lensing by such cosmic strings, pro-
viding image separation of order of an arc second or less, is
an excellent way to search for cosmic strings. Generic
features of cosmic strings include a conical ‘‘deficit angle’’
geometry, so a straight string provides the very distinct
signature of an undistorted double image. Cosmic string
lensing has been extensively studied [8–11].

In the string network, some segments of cosmic strings
will move at relativistic speeds. It is therefore reasonable to
consider the gravitational lensing by highly relativistic
cosmic strings. We also confront another interesting fea-
ture of cosmic strings, first realized by Gott [12]: the
possible appearance of closed timelike curves (CTCs)
from two parallel cosmic strings moving relativistically
past each other. As the strings approach each other fast
enough in Minkowski spacetime, the path encircling the
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strings in the sense opposite to their motion becomes a
CTC. This is sometimes called the Gott spacetime or Gott
time machine.

Although there is no proof that a time machine cannot
exist in our world [13], their puzzling causal nature leads
many physicists to believe that CTCs cannot be formed.
This skepticism has been encoded in Hawking’s chronol-
ogy protection conjecture (CPC) [14]. However, CPC as
proposed is not very precise; even if we assume CPC is
correct, it is not clear exactly what law of physics will
prevent the specific Gott spacetime. There are a number of
interesting and insightful studies attempting to apply CPC
against the Gott’s spacetime:
(a) R
-1
ecall that the original Chronology Protection
Conjecture [14] is motivated by two results. The
more general of the two is the semiclassical diver-
gence of the renormalized stress-energy tensor near
the ‘‘chronology horizon,’’ or Cauchy surface sepa-
rating the regions of spacetime containing CTCs
from those without. These (vacuum)‘‘polarized’’
hypersurfaces led Hawking to conjecture that any
classical spacetime containing a chronology horizon
will be excluded from the quantum theory of grav-
ity. However, a recent paper [15] found an example
where this chronology horizon is well defined in the
background of a string theory (to all orders in �0).
So, in superstring theory, the CPC is not generically
true: the Taub-NUT geometry receives corrections
that preserve the travsersibility of the chronology
horizon. Unlike classical Taub-NUT, stringy Taub-
Nut contains timelike singularities, although they
are far from the regions containing CTCs. The sec-
ond hint that CPC is true is the theorem proved by
Hawking and Tipler [14,16] that spacetimes obeying
the weak energy condition with regular initial data
and whose chronology horizon is compactly gener-
ated cannot exist. These theorem depends crucially
on the absence of a singularity, and so Hawking’s
claim that finite lengths of cosmic string cannot
produce CTCs is only true if one rejects the possi-
bility of a singularity being present somewhere on
the chronology horizon [17].
 2005 The American Physical Society
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(b) W
hen we consider possible formation of CTCs
coming from cosmic string loops (though this is
not necessary for our general argument), one may
make use of the null energy condition and smooth-
ness to argue against CTCs. The null energy condi-
tion can be satisfied even when one smooths out the
conical singularity (with a field theory model) at the
core of the cosmic strings. However, in superstring
theory, such a procedure is not permitted. The cos-
mic strings are either D1-strings or fundamental
strings. Classically, the core is a �-function with
no internal structure (e.g., energy distribution) in
the string cross-sections, so the string has only
transverse excitation modes. Suppose we smooth
out the �-function. Then one can rotate the string
around its axis and endow it with longitudinal
modes. The presence of such longitudinal modes
violate the unitarity property of the superstring the-
ory. (In fact, in the presence of such longitudinal
modes, general relativity is no longer assured in
superstring theory.) In this sense, the string geome-
try is not differentiable, and one must generalize the
appropriate theorems before they may be applied.
(c) C
utler [18] has shown that the Gott spacetime con-
tains regions free of CTCs, that the chronology
horizon is classically well defined, and that Gott
spacetime contains no closed (as opposed to just
self-intersecting) null geodesics. Hawking points
out that this last feature must be discarded for
bounded versions of Gott (and similar) spacetimes.
This means that Gott spacetime undergoes qualita-
tive changes when embedded in asymptotically flat
spacetime. Cutler found a global picture of the Gott
spacetime very much in agreement with general
arguments made by Hawking regarding the instabil-
ity of Cauchy horizons, specifically the blueshifting
of particles in CTCs. Here, we find a concrete
example of this phenomenon using a lensing
perspective.
(d) A
s parallel strings move relativistically past each
other to create CTCs, a black hole may be formed by
the strings before the CTC appears, thus preventing
CTCs. If this happens, one can consider the forma-
tion of a black hole as a realization of CPC.
However, it is easy to see that, using Thorne’s
hoop conjecture, there is a range of string speed
where the CTCs appear, but no black hole is formed.
The results of Tipler and Hawking suggest that the
strings are slowed to prevent CTCs, or a singularity
forms somewhere else in the geometry. This singu-
larity does not need to disrupt or isolate the region
containing CTCs.
(e) T
ipler [16] proved that whenever a CTC is produced
in a finite region of spacetime, a singularity must
necessarily accompany the CTC. This singularity
does not represent a no-go theorem, since the CTC
043532-2
and its sources need not encounter the singularity. In
fact Tipler’s physical argument against the creation
of CTCs is the unfeasibility of creating singularities.
However, it is well-known that singularities such as
orbifold fixed points and conifolds are perfectly fine
in superstring theory, where Einstein gravity is re-
covered as a low energy effective theory. Fur-
thermore, under the appropriate circumstances, to-
pology changes are perfectly sensible. This consis-
tency is due to the extended nature of string modes.
(f) O
ne may consider the Gott spacetime in 2 � 1
dimensions. The 2 � 1 dimensional gravity relevant
for the problem has been studied by Deser, Jackiw
and ’t Hooft [19]. For a closed universe, ’t Hooft
[20] argues that the universe will shrink to zero
volume before any CTCs can be formed. For an
open universe, Carroll, Farhi, Guth, and Olum
(CFGO) [17] show that it will take infinite energy
to reach Gott’s two-particle system from strings at
rest. Holonomy calculations show that this system
has spacelike total momentum, much like a tachyon.
For this reason one might consider Gott spacetime to
be unphysical, although there are differences be-
tween the global properties (including holonomy)
of tachyons and Gott’s cosmic strings. In 3+1 di-
mensions, the physicality of Gott spacetime is less
clear.
If none of the above arguments against CTCs are fully
applicable to the Gott 3 � 1 spacetime, does this mean
CPC fails and Gott spacetime can be realized in the real
universe? Or are there other mechanisms which prevent the
formation of CTCs?

In this paper, we use a lensing framework to demonstrate
the classical instability near the Cauchy horizon which we
argue will prevent the formation of cosmic string CTCs in
any realistic situation. To be specific, our argument goes as
follows:
(a) A
 particle or a photon gets a positive kick in its
momentum in the plane orthogonal to the strings
each time it goes around a CTC [17,21,22].
(b) O
nce inside the chronology horizon, such a particle
is generically attracted to a CTC; that is, a worldline
in the vicinity of the CTC will coalesce with the
CTC. This is our main observation.
(c) T
he particle will go through the CTC numerous
times (actually an arbitrarily large number of times)
instantaneously; that is, the particle will be instanta-
neously blueshifted by an amount unbounded from
above.
(d) I
t follows that the backreaction must be important;
conservation of angular momentum and energy im-
plies that the cosmic strings will slow down, or,
more likely, bend; this in turn prevents the formation
of CTCs. Note that this backreaction must disrupt
the closed timelike curve, otherwise the infinite
blueshift can not be prevented. So, a single particle,
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say a graviton or photon, no matter how soft, will
bend the cosmic strings so that CTC cannot be
formed. The following picture seems reasonable:
as the two segments of cosmic strings move toward
each other, they are bent and so radiate gravitation-
ally. This slows them down to below the critical
value for CTC formation. We expect no singular-
ity/divergence to appear.
(e) S
ince there is a cosmic microwave background ra-
diation in our universe, these photons preclude the
existence of CTCs. Of course, the cosmic micro-
wave background radiation is not the only wrench in
the machine. Gravitons or some other particles can
be emitted by the moving strings, either classically
or via quantum fluctuation. In particular, gravitons
must be present in spacetimes of dimensions 3 � 1
or greater. A single graviton, no matter how soft,
will lead to the above effect. We argue this is how
the chronology protection conjecture works in the
Gott spacetime.
This result is not too surprising in light of the likely
(blueshift) instability of Cauchy horizons discussed by
Hawking and others, although a counter example was
found by Li and Gott [23] while analyzing possible vacua
of Misner space, whose Cauchy horizon can be free of
instability. As in our example, a divergence occurs only in
the presence of particles, although we find that blueshifting
(and not particle number) is the cause.

The blushift instability is well studied in the literature
[24]. The strong cosmic censorship conjecture predicts that
a Cauchy horizon is, in general unstable (e.g. that of a
Reisner-Nordström black hole in asymptotically flat space-
time), and that this instability is the result of the infinite
blueshift of in falling perturbations. This must be similar to
the instability we describe, but our picture is resolved
differently. We find that the CTC never forms because
surrounding particles scatter off the cosmic strings, bend-
ing and slowing them. Hence no Cauchy horizon (stable or
not) ever forms.

’t Hooft [25] argues that, since the local equations of
motion for a cosmic string are well-defined, one should be
able to list the Cauchy data at any particular time, and
demand the Laws of Nature to be applied in a strictly
causal order. If one phrases the logic this way, there are
no CTCs by construction, in agreement with the chronol-
ogy protection conjecture and strong cosmic censorship.
So the question is: what is wrong with Gott spacetime? His
answer to this question is that the Cauchy planes become
unstable: in terms of these, the Universe shrinks to a line in
3 � 1 dimensions. The moment a disturbance from any
tiny particle is added somewhere in the past, it generates so
much curvature that the inhabitants of this universe are
killed by it. In our scenario, we give a specific mechanism
with more details: a single graviton or photon, even a very
soft one, will suffice. An infinitely blueshifted photon (or
any particle) will cause so much curvature that ’t Hooft’s
043532
collapsing scenario occurs. Here, we agree with the chro-
nology protection principle and ’t Hooft that a CTC is
not formed. However, we believe that, due to the energy-
momentum-angular momentum conservations, the back-
reaction will bend the cosmic strings and induce gravita-
tional radiation so that the CTC is never formed. Neither
the curvature nor the energy of the photon blows up. Note
that the bending of the strings can not happen in 2 � 1
dimensions.

In this paper, the motion of a photon/graviton around the
cosmic strings is a crucial ingredient of the analysis. We
shall start with a review of the gravitational lensing by a
straight moving cosmic string. Here we correct a mistake
lensing formula mistake in the literature (see Appendix A).
Next we review the Gott spacetime. Finally we show that
the CTCs encircling the two strings are attractors for
particles. Our analysis ends here. Supplemented with plau-
sible reasonings, we argue that the above mechanism is a
way to prevent CTCs in the real universe. Throughout, we
shall assume �0 � 8�G� to be very small (say, less than
10�5).
II. COSMIC STRING LENSING

One may calculate the observational signatures of rap-
idly moving cosmic strings (straight and loops), in particu-
lar, their lensing effects on distant galaxies and the CMB.
The simplest case of a straight, nearly static cosmic string
has the distinctive signature of producing two identical
images, each being undistorted and equidistant from the
observer.

In Fig. 1 below is pictured a cosmic string moving to the
right across a distant galaxy. We call the angular separation
of the images �’, and the photon deflection angle �, as in
Fig. 2 below. Although the double images on the left
picture of Fig. 1 may be due to two almost identical
galaxies (a rare but not impossible scenario), the picture
on the right will be a much cleaner signature of cosmic
string lensing. If one sees a double image candidate [26],
one expects to see other candidates nearby. Searching for
incomplete images will be important.

This leads to the well-known result �’ �
Ds;cs

Ds;O
�. The

spacetime around a static cosmic string is Minkowski
space with the identification of two semi-infinite hyper-
planes whose intersection is the cosmic string world sheet.
This is equivalent to identifying every event s in space time
with a dual s0 where the relation between s and s0 with a
static cosmic string located at rcs is

s0 � R�0
�s� rcs� � rcs: (1)

Where R�0
is a pure rotation (counter clockwise). (Notice

rcs can be any point on the cosmic string world sheet.) It
should be noted that s is visible only when it appears to the
right of the cosmic string, and s0 is visible only when to the
left.
-3



∆
t

n

δ

A B
∆

2
C

x

-0.04-0.03-0.02-0.01 0 0.01 0.02 0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.04-0.03-0.02-0.01 0 0.01 0.02 0.03

-0.02

-0.01

0

0.01

0.02

0.03

FIG. 1. Gravitational lensing by a straight cosmic string. The two images are identical. Note that they are not mirror reflections of
each other, but one is a translational displacement of the other. As the source moves to the left (or equivalently, the cosmic string moves
to the right), part of the right image is cut off, eventually leaving only a single image.

BENJAMIN SHLAER AND S.-H. HENRY TYE PHYSICAL REVIEW D 72, 043532 (2005)
The general case involves a cosmic string moving at
some four-velocity vcs. We will always take vcs to be
perpendicular to the cosmic string world sheet, since any
parallel component is unphysical (assuming a pure tension
string). Interestingly, this velocity is only well defined in
combination with a ‘‘branch cut.’’ This is related to the fact
that a passing cosmic string will induce a relative velocity
between originally static points in space, so a constant
velocity field will not be everywhere single valued. More
physically, parallel geodesics moving past a cosmic string
will be bent toward each other, provided they pass the
string on opposite sides. Specifying a branch cut enables
the conical geometry to be mapped to Minkowski space
(minus a wedge), where things are simpler. The pure
rotation identification is valid only in the center-of-mass
frame of the cosmic string, so in general

s0 � 
vcsR�0

�vcs�s� rcs� � rcs: (2)

Where 
vcs is a pure boost such that 
�vcsvcs �
�1; 0; 0; 0�. We have simply boosted into the strings refer-
ence frame and then performed the rotation-identification.
Then we boost back.

Here we investigate the lensing due to nearly straight
segments moving at arbitrarily relativistic speeds. We con-
sider the interaction of a photon with a cosmic string’s
deficit angle. In Fig. 3, a photon is crossing the deficit angle
Ds,cs

s’

s

Ds,O

*

*O

δϕ δcs

n

FIG. 2. A straight cosmic string introduces a deficit angle �.
Here, the sources s and s0 are to be identified.
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at a distance r from the string vertex. The photon is
redirected by an angle � and makes a spacial and temporal
jump. This jump (s0 � s) is found using the coordinate
identification in Eq. (2), where s � A is the photon striking
the deficit angle and s0 � B is its emergence from the
deficit angle. If we choose the deficit angle to be perpen-
dicular to vcs, the spacial jump is parallel to vcs, and is
given by


x � 2r tan��0=2��cs 
t � �2r tan��0=2��csvcs:

(3)

where �cs � 1=
����������������
1 � v2

cs

p
. In Fig. 3, events A and B are

identified, while events A and C are simultaneous. If the
photon strikes the leading edge of the deficit angle, the
jump is behind the cosmic string and backward in time. If
the photon strikes the trailing edge, the jump is in front of
the cosmic string and forward in time. For ultrarelativistic
cosmic strings, only photons traveling almost exactly par-
v

n

*

1

α

r

cs

FIG. 3. The path of a photon coming from the source at the
lower left and reaching the observer at the right. The straight
cosmic string is moving with speed vcs to the left. The photon’s
initial velocity n̂1 makes an angle � with respect to �vcs. At A
the photon strikes the leading edge of the deficit wedge (a
distance r from the position of the cosmic string).
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allel to the string’s velocity will strike the trailing edge of
the deficit angle.

We will calculate the change in momentum of a particle
interacting with the cosmic string. In the string rest frame,
we know that

kfinal � R�0
kinitial (4)

so we simply boost the above equation into the frame
043532
where the string is moving at velocity vcs. Then

kfinal � 
vcsR�0

�vcskinitial (5)

To calculate the directional change in a photon’s veloc-
ity, we take the above formula with k2 � �m2 � 0 and for
simplicity we take the photon to travel in a plane perpen-
dicular to the cosmic string. Then we find (dropping the cs
subscript)
cos��� �
��A� B� cos��� � sin����v sin��0� � cos��0� sin���=������������������������������������������������������������������������������������������������������������������������������������������������������

�sin��0��v� cos���� � cos��0� sin���=��2 � �B� A� sin��� sin��0��
2

p ; (6)
where

A � � cos����v2 � cos��0��;

B � ��v cos��0� � 1�:

The blueshift can be calculated as well, yielding

!final

!initial
� � sin��� sin��0� � �2�1 � v cos���

� v cos��� cos��0� � v2 cos��0��: (7)

Straight portions of a cosmic string moving at ultrarelativ-
istic speeds produce photon deflection of order � in con-
junction with severe blueshift. Slower moving cosmic
strings will obey the Kaiser-Stebbins formula [21] and
cause the sky behind the moving string to be blueshifted
relative to the sky in front of the string.

With the exception of loops, we expect cosmic strings to
move moderately relativistically, but with ��0 <<1. In
this limit, the above formula reduces to

� � �0��1 � v cos���� !

�’ �
Ds;cs

Ds;O
�

8�G���������������
1 � v2

p � �1 � n̂ 
 v�:
(8)

The first factor Ds;cs=Ds;O is a plane-geometric coefficient
for 8�G��, which is the relativistic energy of the string.
The third term is the result of the finite travel time of light,
and does not represent the coordinate locations of the
images in the observer’s frame. Notice that a moving string
(except one moving toward the observer) has a stronger
lensing effect. This result disagrees with that given in
Ref. [10], which has the � factor in the denominator. To
see this difference more clearly, we give in Appendix A the
simple derivation of Ref. [10] and point out where the error
occurs. Recall that the typical speed of the cosmic strings
in the network is rather large, v� 2=3 [27]. There will be
segments of strings that have � � 1 and they have the best
chance to be detected via lensing.
The above formula only applies to cosmic strings per-
pendicular to the line of sight. For the most general lensing
due to straight cosmic strings, see Ref. [28].
III. THE POSSIBILITY OF RAPID COSMIC
STRING FORMATION

Naively, ultrarelativistic straight strings are rather un-
likely, and two parallel ultrarelativistic straight strings
passing each other with such a large kinetic energy density
must take some arrangement. It is along this line of rea-
soning that CFGO [17] argues against the formation of
Gott spacetime in 2 � 1 dimensions. The situation is no
more likely in 3 � 1 dimensions, although one cannot rule
out the possibility of ultrarelativistic cosmic string forma-
tion. Recent brane inflation models have proposed having
the inflationary branes located in the tip of a Klebanov-
Strassler throat of a Calabi-Yau 3-fold [4]. In some scenar-
ios, the standard model branes are in a different throat. One
feature of this construction is that cosmic strings produced
after inflation are meta stable, and will not be able to decay
via open string interaction with the standard model branes
[5]. It should be pointed out that extra dimensions have no
effect on Gott’s construction of CTCs, provided that the
radii of the extra dimensions are small compared to the
radius of the CTC. This can be seen as follows. A cosmic
string in our universe is an object extended in one non-
compact direction, and zero or more compact directions.
The four dimensional effective theory will always have a
conical singularity on the location of the string, and any
corrections to this will be due to massive axion and (KK)
modes of the metric—particles whose range is limited to
sizes of order the radii of the extra dimensions. Thus as
long as we do not probe distances so near the string that
these corrections are significant, the conical geometry is
valid and Gott’s construction is meaningful. In fact, the
CTCs in Gott’s construction exist at large radii from the
cosmic strings, and so one never needs to probe the near-
string geometry.
-5
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IV. GOTT’S CONSTRUCTION OF CTCS

Here we give a brief review of Gott’s original construc-
tion. The key feature is the conical deficit angle (�0 �
8�G�) around a cosmic string. This results in a ‘‘cosmic
shortcut,’’ since two geodesics passing on opposite sides of
the string will differ in length. This shortcut, like a worm-
hole, leads to apparent superluminal travel. Under boost,
‘‘superluminal’’ travel becomes ‘‘instantaneous’’ travel.
Gott realized that this instantaneous travel could be per-
formed in one direction, and then back again when two
cosmic strings approach each other at very high speed. The
actual trajectory is timelike, i.e. performed by a massive
body, and resembles an orbit around the center-of-mass of
the cosmic string system (in a direction with opposite
angular momentum as the cosmic strings). Below we illus-
trate the geometry with two strings at rest.

In Fig. 4, there are three (geodesic) paths from A to B.
The central path is not necessarily the shortest, in fact it can
be seen that

w � x cos
�
�0

2

�
� d sin

�
�0

2

�
: (9)

Thus although A ! B is traversed by a particle on a time-
like trajectory above or below the cosmic strings, the
departure and arrival events may have spacelike separation
in the y � 0 hyperplane which extends between the two
strings. In this hyperplane, the average velocity of this
particle can be calculated as

v 

2x
2w

�
1

cos��0=2� � d
x sin��0=2�

: (10)
0

00

IDENTIFY

IDENTIFY

0

A B

w w

x

d

δ

δ

δ δ
2 2

x

FIG. 4. The Gott spacetime, before the strings are moving.
This spacetime will be severed at the y � 0 hyperplane (line
AB), boosted, and then smoothly glued together again. A and B
are separated by a distance of 2x, while the cosmic strings are
separated by a distance of 2d.
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(In our analysis, we focus on lightlike motion since time-
like motion is, in a sense bounded by this case.) For large
enough x, this velocity is greater than that of light and so
we may boost to a frame where the departure and arrival
events are simultaneous. This is true for any d. In the
above picture, we will sever the spacetime at the �y �
0�-hyperplane and boost such that the top string is moving
to the left at speed vcs > cos��0=2� and the bottom string is
moving to the right at the same speed. This means that we
can take A ! B on the upper path and B ! A on the lower
path, and in both directions the elapsed time is zero. This is
possible when

2 < 2� sin��0=2� � ��0: (11)

It is sufficient that the y � 0 hyperplane has vanishing
intrinsic and extrinsic curvature for us to consistently sew
the two halves together. Notice that the limiting case of
��0 � 2 corresponds to closed lightlike curves. (We will
assume that d

x ! 0 for simplicity.)
The (two-fold) boosted version of the above setup is

pictured in Fig. 5 below. The events are numbered in
‘‘proper’’ chronological order (that is, the order in which
they occur on the particle worldline), but the center-of-
mass coordinate frame chronological order needs to be
explained. Event 1 is the light ray initially traveling up to
meet the rapidly moving deficit angle, which happens at
event 2. This meeting is identified (under Eq. (2)) with
event 3, although in center-of-mass coordinates event 3
happens before the previous events occur. Events 1, 4, and
7 are cm-simultaneous at t � 0 while events 2 and 5 occur
1

2
3

4

7

6 5

v v

v v

FIG. 5. This is the critical case where ��0 � 2. The deflection
angle is calculated using Eq. (6) and the discontinuity in the
world line using Eq. (3). We have drawn d > 0 for clarity. The
particle travels along the path labeled 1 to 7 and back to 1,
arriving at the same point in space and time, i.e., a closed
timelike curve. In this case, the particle is neither blueshifted
nor redshifted.
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at tcm � �1, and events 3 and 6 at tcm � �1. Notice that
� � �.

We would like to apply our understanding of ultrarela-
tivistic cosmic strings to Gott spacetime. We can use the
jumps in location, time and direction (
t, 
x, and �) to
construct all photon paths around a cosmic string system
and determine the complete lensing behavior. Below is a
graph of � for several values of ��0, as given by Eq. (6).

Of importance is where the graphs take the value �.
Because the two cosmic string velocities differ in direction
by �, � � � is a fixed point of photon direction. As Cutler
showed, a crossing with positive slope is stable and blue-
shifted, while the one with negative slope is unstable and
redshifted. The stable blueshifted fixed point will always
exist for ��0 > 2 (supercritical case) and thus represents a
catastrophic divergence. This is because a particle in the
presence of this geometry will fall into a stable orbit with
exponentially diverging energy. The above graph is accu-
rate for massless particles, but massive particles (equiva-
lently: particles with nonzero momentum along the strings)
will behave similarly once they become blueshifted. In
total, we find
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article trajectories in the vicinity of a ��0 > 2 pair
of cosmic strings will be attracted to the stable
orientation ���� � �, �0���> 0 (see Fig. 6). This
is because the two cosmic strings velocities are
equal and opposite, that is, when a particle incident
at angle �n is deflected by an angle �n, �n�1 �
�n � �� �n. Thus not only is � � � a ‘‘fixed
point’’ of incidence angle, but it is a stable one if
�0���> 0, since then a slight increase in � will
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This plot derives entirely from Eq. (6). Here, ���� is
ection angle of the photon as a function of the angle �
n the photon direction and (minus) the cosmic string
y (see Fig. 3). ��0 � 2 is the critical case, when the
f ���� touches the value � (the solid horizontal line). A
2 curve crosses ���� � � at 2 points. Notable is where
rosses � (see e.g. the ��0 � 3 curve) with positive slope
A positive slope crossing implies a stable fixed point.
s with different initial � not far from �s will follow
timelike paths and approach � � �s. Photons are blue-
at all positive slope crossings. The amount of blueshift

me is given by Eq. (7).
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cause a slight increase in �. A slight increase in �
will then decrease the next �, and return the system
to equilibrium. (This assumes �0���< 1, which is
always the case.) Fig. 7 illustrates the attractor in
action.
(b) P
hoton momentum in the plane perpendicular to the
strings will be blueshifted as given by Eq. (7). This
formula applies to any relativistic particle. The blue-
shift occurs twice for each revolution, once from
each string;
(c) S
ince momenta along the string lengths are not
blueshifted, nonrelativistic particles and particles
with velocities along the length of the cosmic strings
will be attracted to relativistic trajectories perpen-
dicular to the string length;
(d) I
n the limit of small d the average distance to the
core of the CTC will not vary. This means that the
orbits will close, rather than shrink;
(e) T
he energy of each particle in the CTC will diverge
exponentially as a function of number of cycles
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The supercritical case. Cosmic string #1 is moving to
and cosmic string #2 is moving to the right. The particle
rom the bottom right and reaches cs1’s upper deficit angle
world line appears to jump to the right to 2, now directed

and slightly to the right. This process continues indef-
3, 4, . . .1, the world line spiraling clockwise outward as
into a stable orbit (the two long, outermost parallel

ts). The coordinate discontinuity seen here does not
any actual discontinuity. The numbers on the world line
2n� 1 � 2n� 2 where the equivalence is identification
. (2). The coordinate discontinuities plotted here are
ted with Eq. (3), and the trajectory angle is determined
(6). The initial conditions of the above trajectory are not
but rather generic. Approximately half of all initial
trajectories will end up in a CTC.
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taken; since it takes no time to travel any number of
cycles, unbounded blueshift takes place;
(f) T
herefore, ��0 > 2 implies a catastrophic diver-
gence in the presence of even a single particle.
It should be noted that the exponential divergence in
energy is kinematic, and has nothing to do with particle
number. Below is pictured the trajectory of a photon in a
supercritical Gott space. The photon enters from the lower
right, and then spirals clockwise outward into a stable,
blueshifted orbit. The upper and lower deficit angle wedges
are moving to the left and right, respectively.

We thus may conclude that although closed lightlike
curves may exist (��0 � 2), a purely classical divergence
destroys the Gott solution of closed timelike curves
(��0 > 2) in the presence of a dynamical field (e.g. grav-
itons or photons). Cosmic strings cannot produce closed
timelike curves. This is in agreement with Li and Gott [23]
which finds Misner space (and by implication Grant space
and Gott space) to suffer from a classical instability similar
to the one found here. It should be noted that the hoop
conjecture is not involved in this breakdown. Even the 2 �
1 dimensional Gott space, where the hoop conjecture is not
applicable, is unstable in the presence of dynamical fields.

V. COMMENTS

A. General discussions

Semiclassical gravity raises an objection to the existence
of CTCs, or at least to spacetimes that contain both regions
with CTCs and regions out of causal contact with them.
The boundary between such regions is called the ‘‘chro-
nology horizon,’’ and in known examples this horizon
coincides with a divergence of the renormalized energy-
momentum tensor. This led Hawking to pose the ‘‘chro-
nology protection conjecture,’’ in which he proposes that
any classical examples of spacetimes containing CTCs will
be excluded by a quantum theory of gravity. Thorne and
Kim disagreed [29] on the grounds that the divergence of
<T� >ren is so weak that a full quantum gravity will
remedy the semiclassical pathology. Grant found that the
divergence on a set of polarized hypersurfaces is much
larger than that on the chronology horizon. String theory
can directly address the conjectures made using semiclas-
sical arguments. Recent papers have evoked an Enhançon-
like mechanism as a stringy method to forbid the formation
of CTCs in some spacetimes [30]. On the other hand, a
recent paper by Svendsen and Johnson demonstrated the
existence of a fully string theoretic background (exact to all
orders in �0) containing CTCs and a chronology horizon,
namely, the Taub-NUT spacetime. It is not clear if gs
corrections destroy this result once matter is introduced,
but the empty background is an exact result. This seems to
provide a counterexample to the chronology protection
conjecture.

It is easy to see that a cosmic string with only the lowest
mode will start as a circle and collapse to a point. Before it
043532
reaches that limit, a black hole is formed. An elliptic or
rectangular loop can be made to collapse to parallel, rela-
tivistic segments without forming a black hole. Theorems
by Tippler and Hawking suggest that such a loop cannot
form CTCs without creating a singularity, although we
argue that potential CTCs will be disrupted by the presence
of photons (or any other mode). It is also possible that the
huge blueshift will cause the formation of a black hole,
resulting in a black hole with cosmic string loops protrud-
ing. In this case, the presence of CTCs inside the black hole
is acceptable, since they are not observable. More analysis
is needed to fully address this issue.

B. Specific discussions on 2� 1 dimensions

A simpler scenario with CTCs was found by van
Stockum [31] and Deser, Jackiw, and ’t Hooft (DJtH)
[19] whereby a single stationary cosmic string is given
angular momentum about its axis. The resulting back-
ground is given by

ds2 � ��dt� Jd$�2 � dz2 � dr2 � �1 � 4G��2r2d$2:

(12)

It seems unlikely for such a cosmic string to exist in string
theory (at least as fundamental objects[32]), since the
cosmic strings in superstring theory lack the internal de-
gree of freedom ‘‘spin.’’ DJtH noticed an unusual feature of
the Gott spacetime. They classified the energy momentum
of Gott’s solution in terms of the Lorentz transformations
encountered under parallel transport (PT) around the
strings (holonomy). It is well known that the PT trans-
formations around a single cosmic string is rotationlike, i.e.
can be expressed as

� � 
&R�0

�&; (13)

where 
& is a pure boost with rapidity & and R�0
is a pure

rotation about the angle �0. One may calculate the holon-
omy of a Gott pair via

� � 
&R�0

�&
�&R�0


& (14)

and it is found that � is boostlike, i.e. � � 
&
'
�(.
DJtH regarded the energy momentum of a Gott pair to be
unphysical on the grounds that its holonomy matches that
of a tachyon (boostlike). It is an unusual feature of space-
times that are not asymptotically flat that T� can be
spacelike (tachyonic) despite the fact that it is made up
of terms that are timelike.

Headrick and Gott [33] refuted this criticism by showing
that the Gott pair geometry was quite unlike the tachyon
geometry both because a tachyon does not yield CTCs and
because the holonomy definition of T� was incomplete.
Later, Carroll, Farhi, Guth, and Olum (CFGO) [17] and ’t
Hooft [20] gave more convincing arguments against CTCs.
CFGO, Gott, and Headrick found that the PT transforma-
tion of a spinor distinguished between tachyon and Gott
-8



COSMIC STRING LENSING AND CLOSED TIMELIKE CURVES PHYSICAL REVIEW D 72, 043532 (2005)
pair geometries. A more complete description of geometry
would include not just the PT transformation, but the
homotopy class of the PT transformation as well.
Equivalently, one should extend SO�2; 1� to its universal
covering group.

One may interpret the ‘‘boostlike’’ holonomy as boost
identification, as was done by Grant [34]. This makes the
Gott spacetime akin to a generalized Misner space. Grant
was able to show that the Gott/Misner spacetime suffers
from large quantum mechanical divergences on an infinite
family of polarized lightlike hypersurfaces. This diver-
gence is stronger than that at the chronology horizon [34].

Regardless of whether the Gott spacetime is physical or
not, it can be shown that the Gott spacetime in 2 � 1
dimensions cannot evolve from cosmic strings initially at
rest [17]. This is quite different from the 3 � 1 dimensional
case.

C. The instability in 3� 1 dimensions

Recent realization of the inflationary scenario in super-
string theory strongly suggests that cosmic superstrings
were indeed produced toward the end of the inflationary
epoch. With this possibility, the issue has renewed urgency.
In the above discussions, we argue that the reasoning
against the Gott spacetime in 2 � 1 dimensions does not
necessarily apply to the 3 � 1 dimensional case. In short,
the Gott spacetime is entirely possible in an ideal classical
situation. However, we argue that instability is manifest if
there is a quanta/particle nearby. The particle will be
attracted to the closed timelike curve and is arbitrarily
blueshifted instantly. Of course, backreaction takes place
before this happens. This backreaction must disrupt the
closed timelike curve, otherwise the infinite blueshift will
not be prevented. In an ideal situation where there is no
quanta nearby, one still expects particles like (very soft)
gravitons/photons can emerge due to quantum fluctuation.
In fact, quantum fluctuation of the cosmic strings them-
selves as they move rapidly toward each other will produce
graviton radiations. One graviton, no matter how soft, is
sufficient to cause the instability. So we believe that the
Gott spacetime is unstable under tiny perturbations and so
cannot be formed in any realistic situation.

VI. CONCLUSION

Recent implementation of the inflationary scenario into
superstring theory led to the possibility that cosmic strings
were produced toward the end of brane inflation in the
brane world. This possibility leads us to reexamine the Gott
spacetime, where closed timelike curves appear as two
cosmic strings move ultrarelativistically pass each other.
In an ideal situation, the Gott spacetime is an exact solution
to Einstein equation, with a well-defined chronology hori-
zon. It does not collapse into a black hole and can be
readily reached. So it seems perfectly sensible that such a
spacetime can be present in a universe that contains cosmic
043532
strings. In this paper, we find that nearby photons and
gravitons will be attracted to the closed timelike curves,
resulting in an instantaneous infinite blueshift. This implies
backreaction must be large enough to disrupt the formation
of such closed timelike curves. We interpret this as a
realization of the chronology protection conjecture in the
case of the Gott spacetime.
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APPENDIX A: LENSING BY A MOVING COSMIC
STRING

In the text, the lensing due to a moving cosmic string is
too general for normal application. Here we reproduce a
simple elegant argument due to Vilenkin [10] to calculate
the angular separation of images produced by a moving
cosmic string in the case when the cosmic string tension as
well as the lensing effect are small. We point out where the
(small) error in Ref. [10] is. Vilenkin argues that the
angular deflection of light by a cosmic string may be
calculated by appealing to Lorentz invariance. For a string
at rest, the angular separation is given by

�’ �
Ds;cs

DO;cs �Ds;cs
�0 sin�$� �

Ds;cs

Ds;O
�0; (A1)

where $ is the relative angle between the cosmic string and
the line of sight, and Dx;cs is the normal distance between x
and the cosmic string. We may consider two light waves,
one from each image, k and k0. Their scalar product is
given by

k�k0� � !!0�1 � cos��’�� �
1

2
!!0��’�2: (A2)

We may assume that the two light waves have the same
frequency: ! � !0. (This can be true in all reference
frames since we are expanding to first order in �0.) We
can then relate the angular separation in any two reference
frames by the frequency of the light waves:

!0�’0 � !�’ (A3)

i.e., the higher the observed frequency, the lower the
observed angular separation. The frequency in a reference
frame where the string moves at velocity v relative to the
observer is given by

! �
!0

��1 � n̂ 
 v�
; (A4)

where n̂ is the direction from the observer to the source
(and thus string), and hence
-9
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�’ � ��1 � n̂ 
 v��’0: (A5)

The roles of ! and !0 are erroneously swapped in
Ref. [10], which thus agrees with ours only for n̂ / v.
Physically, a traveler moving transverse to the light we
observe should measure a higher frequency than we do (i.e.
!<!0 for n̂ 
 v � 0). It should also be pointed out that a
string moving across the sky will blueshift the CMB behind
it by an amount

!back

!front
� 1 � jv� n̂j��0 (A6)

that is, the sky becomes hotter after a cosmic string passes.

APPENDIX B: BRANONIUM

The analysis of relativistic bound states of D-Branes has
been found to be quite simple in the probe brane approxi-
mation (no radiation) [35]. We extend this to the case of
codimension two branes (cosmic strings) using a similar
analysis. The action for a codimension two projectile is
written as a DBI-like term and a Wess-Zumino like term as
follows:

S � ��
Z ���

g
p

� q
Z
C2 (B1)

with

C2 � log�r=r0�dz ^ dt: (B2)

We can now write down the canonical momenta associated
to $ and r, as well as the conserved Hamiltonian. They are,
respectively

‘ �
r2 _$��������������

1 � v2
p ; pr �

_r��������������
1 � v2

p ;

H � �

��������������������������
1 � p2

r �
‘2

r2

s
� q log

�
r
r0

�
;

(B3)

where

v2 � _r2 � r2 _$2 )
1��������������

1 � v2
p �

�������������������������������
1 � p2

r � l2=r2
q

:

(B4)
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The effective potential energy is plotted below. Notable
features are the existence of stable orbits for generic initial
conditions, and exponentially long orbital periods as a
function of energy.

Notice that the total energy of the system contains an
arbitrary additive constant. This should be fixed by the
thickness of the strings, but it will have no effect on the
dynamics. We assume that the tension of the strings domi-
nates the potential energy of the long range interaction. In
this approximation, the geometry is flat except for a conical
singularity at the location of each string. For simplicity, we
define the additive constant using the perihelion distance
(making it trajectory dependent): r0 � d. Then we may
relate the energy with the angular momentum as follows.

0 �

��������������
1 �

‘2

d2

s
: (B5)

A closed form solution for any trajectory can be found by
making the following substitution.

u :� 1=r u0 :�
du
d$

! u0 � �
pr
�‘

�
1

‘

�������������������������������������������������������������
�
q
�

log�ud� � 0�2 � 1 � u2‘2

s
; (B6)

where we have used

dr
d$

�
r2pr
�‘

and

H � �
����������������������������������
1 � ‘2�u02 � u2�

q
� q log�ud� � �0:

Now we may solve for $ via

$ �
Z
d$ � ‘

Z 1=rf

1=ri

du������������������������������������������������������������
�q� log�ud� � 0�2 � 1 � u2‘2

q :

(27)
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