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Cosmic growth history and expansion history
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The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy
density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the
energy density. Precision comparison of the two histories can distinguish the nature of the physics
responsible for the accelerating cosmic expansion: an additional smooth component—dark energy—or a
modification of the gravitational field equations. With the aid of a new fitting formula for linear
perturbation growth accurate to 0.05%–0.2%, we separate out the growth dependence on the expansion
history and introduce a new growth index parameter � that quantifies the gravitational modification.
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I. INTRODUCTION

Acceleration of the cosmic expansion reveals fundamen-
tally new physics missing from our picture of the universe,
yet key for the understanding of the recent and present
history and the fate of the universe. Furthermore, this new
physics tells us that our standard models of gravitation and
particle physics may be woefully incomplete. The accel-
eration may lead us to insights about new high energy
physics and the nature of the quantum vacuum, or about
gravitation beyond Einstein’s general relativity. Perhaps
most exciting would be a signal that both are involved,
providing clues to a theory of quantum gravity.

The first scenario includes physical components such as
the cosmological constant, dynamical scalar field models,
or effective potentials from string theory. The second
scenario includes extensions of the Einstein-Hilbert action,
e.g. to higher derivative theories, scalar-tensor theories,
generalized functions of the Ricci scalar, theories of su-
pergravity or quantum gravity, and infrared modifications
of gravity such as from hidden spacetime dimensions. We
can say that searching for the nature of the accelerating
expansion is seeking to answer one or the other question:
‘‘Does nothing weigh something?’’ or ‘‘Is nowhere
somewhere?’’

To distinguish the many different theoretical possibil-
ities requires accurate observations of the cosmic expan-
sion history, but even this will leave some degeneracies
between explanations. Models with different physical ori-
gins but the same global expansion properties could not be
separated. Fortunately, the overall smooth characteristics
of the universe are not the only observables. The energy
density contents have evolved from the hot, dense, smooth
state of the early universe to a relatively cool, diffuse, and
in the case of matter, clustered state. While the first two
properties are purely due to the expansion of the zeroth
order, homogeneous universe, being qualitatively kine-
matical, the last property arises from the perturbed, inho-
mogeneous universe, being intrinsically dynamical [1].
The growth of large scale structure in the universe provides
an important companion test, and the cosmic expansion
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history and growth history together provide discernment of
the nature of the new accelerating physics.

In Sec. II we discuss the expansion history and the
effective equation of state entering the acceleration. The
growth of linear perturbations in the matter component in a
generalized cosmological model is reviewed in Sec. III.
The growth equation is extended in Sec. IV to allow other
theories of gravitation besides general relativity, and for-
mal solutions given. For practical use in constraining mod-
els by observational data we introduce a highly accurate
fitting formula in Sec. V and apply it to a braneworld
gravity model and models with coupling between the
matter and dark energy density. We present the conclusions
in Sec. VI.

II. EXPANSION HISTORY

The expansion history of the universe is a key quantity in
cosmology, appearing directly in the metric in the form
a�t�. Kinematically, this is all that is needed to define
distances and volumes (together with the spatial curvature
constant k, which we take to be zero, though this does not
affect the form of the following discussion). To evaluate
the distances for a specific cosmology, dynamics or equa-
tions of motion from the gravity theory are required,
together with information on the energy density contents.
The expansion history, together with the amount of cluster-
ing matter and any interactions of the matter with other
components, is the central ingredient as well as in the
growth of matter perturbations.

The Friedmann expansion equation in terms of the
Hubble parameter H � _a=a is

H2 � �8�G=3�
X
i


i; (1)

where we sum over all components of the energy density.
Since we are especially interested in the matter component,
e.g. since we are positive it exists and since we will later
examine its growth into large scale structure, it is conve-
nient to separate it out from the sum. Then in terms of
dimensionless energy density we can write
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H2=H2
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�1�wi0 �a

0��da0=a0 (2)

� �ma�3 � �H2=H2
0 ; (3)

where the set i0 does not include matter, �m �
P
i0�i0 � 1,

and w�a� is the equation of state of each component.
Without imposing any physical interpretation on �H2 as

actually being due to an energy density component as
opposed to a modification of the Friedmann expansion
equation, we can define an effective ‘‘acceleration phys-
ics’’ or ‘‘dark energy’’ equation of state [2] (cf. [3])

w�a� � �1�
1

3

d ln�H2

d lna
(4)

� �
1

3

d ln��m�a�
�1 � 1�

d lna
; (5)

writing �m�a� � �ma
�3=�H=H0�

2.
Volumes and distances are built up out of the conformal

distance

��a� �
Z 1

a
�da0=a0��a0H��1 �

Z z

0
dz0=H: (6)

Models with the same expansion history will have the same
distances and volumes. Note that formally we could obtain
the same expansion history for two models by keeping
their �m the same and matching their w�a�, or by allowing
different �m and compensating for this in w�a�. Since the
latter case corresponds to misestimating the matter density
rather than any new physics, we do not consider it further.

While the definition of an effective equation of state in
terms of the expansion history is powerful, allowing differ-
ent models to be talked about with a common language and
treated in a model independent parameter space, this fea-
ture is also a bug. Measurements of the expansion history,
through distances and volumes to arbitrary precision, will
not be able to distinguish different physical origins for the
same expansion behavior. This is where the growth history
comes in.

III. GROWTH OF MATTER DENSITY
PERTURBATIONS

The universe has not remained homogeneous on all
scales since its early, essentially smooth state. While the
largest volumes can still be treated as homogeneous and
isotropic Robertson-Walker universes, smaller scale evo-
lution must take into account perturbations to the metric in
the form of gravitational potentials.

Note that recent speculation [4,5] about the interaction
of these potentials to affect significantly even the global
expansion seems misplaced; investigation of a realistic
inhomogeneous universe metric by Jacobs, Linder, and
Wagoner [6,7] derived a Green function solution for the
potential. This ‘‘post-Newtonian’’ solution corrects the
043529
Newton-Poisson equation and shows that no infrared di-
vergences exist in the potential, rather a suppression as the
Hubble scale is approached. The Appendix summarizes the
effects.

Using the perturbed equations of motion for the gravity
theory, one can derive the growth of density perturbations.
Concentrating on perturbations in the matter density � �
�
m=
m, assuming all other components are smooth,
within general relativity the time evolution is


�� 2H _�� 4�G
m� � 0: (7)

The physical interpretation is very simple: the perturba-
tions grow according to a source term involving the amount
of matter able to cluster and are restricted by a friction
term, or Hubble drag, arising from the expansion of the
universe. General discussion of the physics dependence on
the expansion rate is in [2].

It is convenient to study the growth evolution in terms of
the expansion scale a or characteristic (e fold) scale lna,
rather than time t. Since the pure matter universe solution
has �	 a, it is also useful in studying the dark energy to
divide out this behavior and switch to the growth variable
g � �=a. Finally, since we will be interested in modifica-
tions of gravity, we hereafter normalize G by Newton’s
constant, i.e. where G appears in equations it stands for
G=GNewton.

Denoting derivatives with respect to lna as primes, we
have

g00 �
�
4�

1

2
�lnH2�0

�
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�

�
3�

1

2
�lnH2�0 �

3

2
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�
g � 0; (8)
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g00 �
�
5

2
�
3

2
w�a��w�a�

�
g0 �

3

2
�1�w�a��G�w�a�g�0;

(10)

g00 �
�
5

2
�

1

2
�ln�m�a��

0

�
g0

�

�
3

2
�

1

2
�ln�m�a��0 �

3

2
G�m�a�

�
g � 0: (11)

All these forms are equivalent. They clearly show that
the Hubble drag is increased, and hence growth is sup-
pressed, for an accelerating universe, as the deceleration
parameter q � �a 
a= _a2 or w become more negative. We
emphasize that they also demonstrate that within general
relativity the linear theory growth factor depends purely on
the expansion history, e.g. H�a� or w�a� or �m�a� or
�w�a� � 1��m�a�. So a discrepancy between the
growth observed and that predicted based on an observed
-2
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expansion history tests the theoretical framework and can
point up modifications to the theory of gravity.
IV. GENERALIZATION TO GRAVITATIONAL
MODIFICATIONS

To study other theories of gravity we can consider a
change to the effective Newton’s constant G entering the
above equations (remember the G in the equations really
means G=GNewton), or more generally some nonzero right-
hand side. First we examine this as a generic change, and
later treat a specific example within braneworld gravity.

The deviation in G from its Newtonian value caused by
some time variation in G can be viewed as a subset of a
nonzero right-hand side, since we may write a left-hand
side source term XG�a� as the usual XGNewton and add a
term X�GNewton �G�a�� to the right-hand side. Indeed, any
difference between two cosmological models that only
changes the source term, and keeps it linear in g, can be
viewed as transforming the solution of the homogeneous
differential equation for model 1 into a solution for model 2
of the effective inhomogeneous differential equation.

Using a Green function method one can obtain a formal
solution

g�ai; a� � �g�ai; a� �
Z a

ai
du� �Q�u�

�Q�u��g�ai; u�u
5H�u� �g�u� �g�a�



Z a

u
dv �g�2�v�v�5H�1�v�; (12)

where Q is the source term.1 The barred quantities repre-
sent some model 1 for which the solution is known (e.g.
general relativity), and the integral gives the particular
solution in the second model, for growth between any
two scale factors (we can set ai � 0 to get the total growth
up to some a).

The solution can also be written as a recursion relation

g�ai; a� � �g�ai; a� �
Z a

ai
du �g�ai; u�

X1
i�1

Ki�u; a�; (13)

Ki�1�u; a� �
Z a

u
dxK1�u; x�Ki�x; a�; (14)

K1�u; a� � � �Q�u� �Q�u��u5H�u� �g�u� �g�a�



Z a

u
dv �g�2�v�v�5H�1�v�: (15)

This is particularly useful when considering small pertur-
bations between models, e.g. when the gravitational cou-
1Technically, Q is the source term divided by the growth
variable g, and also multiplied by a�2 since Eq. (12) uses a
dependent variable of a rather than lna. For example Q �
��3=2� � �1=2��ln�m�a��

0 � �3=2�G�m�a��a
�2 in Eq. (11).
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pling is slowly changing, as in the case of some scalar-
tensor theories. (Retaining only the first order term, K1, is
basically a Born approximation.)

Another virtue of the Green function solution is the
ability to see broad physical trends as the models change.
This follows the approach of [8,9] who considered the
relation between distances as the cosmological model
changed, including an analogous change in the theoretical
framework (there in terms of allowing a clumpy universe).
Here we consider the relation between growth factors. If
�Q>Q then Ki > 0 and so g�ai; a�> �g�ai; a�. Thus we

have a criterion for when the growth will be stronger, or
when it will be more suppressed. With the expansion
history fixed, the criterion �Q>Q simply becomes �G<
G; i.e. if the effective gravitational coupling is stronger
than Newton’s constant then the growth is enhanced. For
more elaborate modifications of gravity, a nonzero right-
hand side to the growth equation can contribute to Q as
well, but the prescription above still applies.
V. A NEW FITTING FORMULA FOR GROWTH

The general growth solutions of the previous section are
formal, and while we saw that they can present generic
physical insights they are somewhat cumbersome for ap-
plication to cosmological models. One might draw an
analogy to trying to map the expansion history. While
one can calculate the expansion history in a specific model,
say from a high energy physics scalar field potential, this is
inefficient for comparison of the observations to many
possible models. Instead a useful approach is a model
independent one, using a parametrization of the expansion
history, for example, in terms of the equation of state w�z�
value and variation: w0 � w�z � 0� and wa �
��dw=da�jz�1 (this is also similar to the inflationary
power spectrum index and tilt parameters). In this section
we derive an analogous model independent parametriza-
tion of the growth history, putting it on equal footing with
the cosmic expansion history.

Rather than attempting to fit observations of growth
history with an effective equation of state wgrow�z�, it is
better to render the physics appropriately: the expansion
effects on the growth are described in terms of the standard
expansion w�z�, and the gravitational modifications giving
deviations from the expected growth history are treated as
additional inputs. Again, in the standard framework the
expansion history completely determines the growth his-
tory. Thus, we would like to write the growth history g�a�
as a function of an expansion history quantity plus a new,
framework testing characteristic.

Since the growth concerns matter density perturbations
we take the expansion history in terms of the matter density
history �m�a�. Two models with the same �m�a� �
�ma�3=�H=H0�

2 for all redshifts will have the same ex-
pansion history. So we look for a functional expression
g��m�a��. One that works superbly well, as both a highly
-3
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accurate approximation to the exact solution and as a
simple characterization stimulating physical intuition, is

g�a� � e
R
a

0
d lna��m�a���1�: (16)

Here � is our new parameter for the growth history, called
the growth index, encompassing deviations in the theoreti-
cal framework. Models with identical expansion histories
but different gravitational theories will possess different �
parameters.

A. Accuracy tests

First we establish the accuracy of the fitting formula,
Eq. (16), over a wide range of dark energy cosmologies.
Note that [10] (also see [11,12]) has found that a similar
formula provides estimations of the normalized growth
factor at the accuracy level of about 1%. However that
approach normalized to the growth factor today [so it could
not predict its value, and [2] showed that g�z�=g�0� varies
by only a few percent innately between models] and fixed
the growth index. Furthering the pioneering work of [10–
12] we can remove both those restrictions and obtain an
order of magnitude better accuracy.

In terms of the expansion history dark energy equation
of state, within general relativity, we find excellent fits, to
better than 0.2%, using

� � 0:55� 0:05�1� w�z � 1��: (17)

Employing the value of the equation of state evaluated at
z � 1 allows simple treatment of dynamical models where
the equation of state varies with redshift, as it generically
does.

For the cosmological constant case, the fitting formulas
Eqs. (16) and (17) reproduce the exact growth history for
any redshift (including the total growth to the present) to
better than 0.05% over the range �m 2 �0:22; 1�. It re-
mains accurate to better than 1% all the way down to �m �
0:01.

Models with equation of state w � �0:8 ( � 0:5) have
accurately fit growth histories to within 0.2% (0.4%) for
�m 2 �0:2; 1�. A dynamical model such as SUGRA with
w0 � �0:82, wa � 0:58 is fit to within 0.25%. Models
with equations of state w<�1 are similarly well approxi-
mated. When w � �1:2 ( � 1:5), the fit is good to 0.3%
(0.5%). If we are willing to slightly modify the simplest fit
of Eq. (17) to

� � 0:55� 0:02�1� w�z � 1�� for w<�1; (18)

for the phantom models w<�1, then we achieve an
astonishing 0.05% accuracy for these fits. (Note that the
fitting function of [13,14], also containing a single integral,
is accurate to only 5% for models with w � �0:8 or �1:2
and �m � 0:3.)

While impressive in accuracy, the growth function fitting
formula’s primary purpose is not a fit as such (the exact
solution requires only solving a second order differential
043529
equation), but rather its usefulness in physical intuition and
in parametrizing modifications of the Einstein growth
equation beyond the expansion behavior [just as w�z�
parametrizes modifications of the Friedmann expansion
equation]. The fitting function provides us access to the
acceleration physics that exists beyond what the expansion
history sees.

B. Example: braneworld gravity

The growth of matter perturbations in gravitational theo-
ries beyond general relativity is not well developed. Here
we consider one theory that has been shown to be self-
consistent [15–19], the Dvali-Gabadadze-Porrati (DGP)
[15,16] braneworld theory of gravity. In this theory gravity
has infrared modifications due to spacetime possessing a
large extra dimension (making our view a 4D brane within
a 5D bulk), causing a weakening of gravity on large scales
approaching the Hubble scale.

The expansion history for this braneworld theory fol-
lows from the modified Friedmann equation,

H2 �H=rc � �8�=3�
; (19)

where rc � H�1
0 =�1��m� is the crossover distance, re-

lated to the 5D Planck mass. Equivalently the expansion
history has an effective equation of state

w�a� � ��1��m�a���1; (20)

as noted elegantly by [17]. The braneworld expansion
history can be well approximated by a simple scalar field
model with w0 � �0:78, wa � 0:32. Indeed these two
very different physical origins for the acceleration agree
in distance measurements to within 0.5% (0.01 mag) out to
z � 2.

Information from the growth history, however, as stated
before can break this degeneracy in the nature of the
acceleration physics. Comparing the braneworld model
with a scalar field model with an identical expansion
history shows deviations in the present growth factor of
7%. Figure 1 illustrates how the growth history depends on
both expansion history and the gravitational framework.
Taking into account only the expansion history in the
growth equation, the braneworld and scalar field models
appear to have the same growth history. However, proper
treatment of the gravitational modifications inherent in the
braneworld scenario separates these models. This has been
pointed out as well in [17,20,21].

In the linear power spectrum the deviation ranges from
4% at z � 2 to 15% today. While a scalar field model that
matched the modified growth of the braneworld model is
possible, it in turn can be distinguished through the expan-
sion history. We see that expansion measurements and
growth measurements work in important complementarity
to reveal the nature of the new physics.

Figure 2 demonstrates this synergy explicitly. Supposing
the universe was described by a braneworld model with
-4



FIG. 2 (color online). Expansion history and growth history
constraints on the dark energy equation of state parameters can
test the theoretical framework by looking for inconsistent results.
The blue cross gives the best fit for the expansion history of a
quintessence (Q) universe matching the braneworld (BW) sce-
nario, but the red star gives the best fit for the growth history to a
quintessence model, assuming general relativity. The black
ellipse shows the constraints at 68% confidence level from
next generation data composed of SNAP supernovae data and
Planck CMB last scattering distance measurement.

FIG. 1 (color online). The growth history is shown for an extra
dimensional braneworld model (long dashed, blue curve) and a
quintessence model with w0 � �0:78, wa � 0:32 (short dashed,
red), having nearly identical expansion histories. When proper
account is taken of the effects of altered gravity on the brane-
world growth history (solid, black curve) this allows distinction
of these models. The expansion history can in turn rule out a
quintessence model degenerate with the solid curve.
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�m � 0:28, distance measurements of the quality of the
proposed Supernova/Acceleration Probe (SNAP; [22]) su-
pernova data set, together with a 0.7% measurement of the
distance to the CMB last scattering surface from Planck
[23], would provide the constraints (at 68% confidence
level, marginalizing over other parameters such as �m)
in the dark energy equation of state parameter space shown
by the ellipse. The best fit for growth measurements would
concur with the solution using braneworld gravity equa-
tions, showing the consistency of the data with this model.
However, if the growth equation employed general relativ-
ity, the best fit would lie at the red star, w0 � �0:56, wa �
0, clearly inconsistent. The comparison of expansion and
growth histories reveal a breakdown of the theoretical
framework, this discrepancy alerting us to a possible modi-
fication of gravity (or experimental systematic errors).

Of course if the measurements were too coarse and
imprecise, we would not necessarily have noticed a statis-
tically significant discrepancy. The braneworld model ex-
pansion is compatible with an expansion history of a
constant w � �0:71 model, to 1% in distance out to z �
1:7. So the expansion history measurements find a ‘‘dis-
tance’’ in equation of state space of �w0 � 0:15 between
the effective scalar field model from the expansion history
and that from the growth history. Conversely, the expan-
sion history of �w0; wa� � ��0:56; 0� can be fit by
��0:63; 0:32�, so the distance from the expansion fit to
the braneworld model of ��0:78; 0:32� is again �w0 �
0:15. This suggests that for a 3 detection of framework
inconsistency we should strive for experiments that pro-
vide an uncertainty of  �w0�< 0:05.

Likewise one can estimate from the different orienta-
tions of the expansion history and growth history con-
straints in the w0 � wa plane that the precision of
measurements on wa should be  �wa�< 0:2. This com-
parison of growth to expansion provides one of the only
ways of putting an absolute scale on the measurement
precision that should be striven for in experiments to reveal
the nature of the accelerating physics—a significant break-
through (see also [24]). This is somewhat dampened by the
realization that this scale is particular to the braneworld
scenario. Note that the relative precisions between w0 and
wa obey the relation

 �w0� �  �wa�=2 � 2 �w0�; (21)

found in [24,25], though that analysis was within the scalar
field context. This relation signifies that a precise measure-
ment ofw0 is of limited use without concomitant constraint
on wa, since a sufficiently different wa can spoof w0. That
is, the uncertainty in seeing a discrepancy will be domi-
nated by the largest error among the two equation of state
parameters.

To move beyond a mere alarm that there is an incon-
sistency, we need to employ the growth parametrization of
Eq. (16) to obtain a quantitative measure of the deviation
-5
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from the growth behavior predicted by the expansion his-
tory measurements. We find that the fitting formula works
for the braneworld scenario including gravitational mod-
ifications, using a growth index � � 0:68 (note that the
pioneering paper of [17] indicated the equivalent of � �
2=3). In fact, the growth history using the fitting function
Eq. (16) and � � 0:68 matches the exact solution to within
0.2% (for �m � 0:2).

The approximation of a single growth parameter beyond
the expansion history effects on the growth can be vali-
dated by asking what values of � as a function of redshift
reproduce the exact solution. For the case �m � 0:28, the
(now) function ��z� ranges between 0.665 at z � 0 to 0.683
at z � 1 to 0.687 at high redshift. (The constancy of � with
redshift holds even better for quintessence models.) This,
as well as the excellent fit to the growth function, justifies
the use of a single parameter �, the growth index.

With this model independent parametrization in hand,
we can obtain quantitative measures of the deviations
between models, even those that involve gravitational
modifications. To the cosmological parameters �m, w0,
and wa, we add the growth index � and can plot the
resulting parameter estimation uncertainties, marginaliz-
ing over subsets of parameters. Figure 3 illustrates an
example.
FIG. 3 (color online). While Fig. 2 showed that expansion
history and growth history constraints on the dark energy equa-
tion of state parameters could test the theoretical framework by
looking for inconsistent results, here we see quantitative mea-
sures of framework breaking by gravitational modification of the
growth index �. The red star gives the best fit for a quintessence
(Q) model matching the expansion history of the braneworld
(BW) scenario, but the blue cross gives the true result for the
braneworld growth history. The black ellipse shows the con-
straints at 68% confidence level from next generation data
composed of SNAP supernovae data and Planck CMB last
scattering distance measurement, marginalized over the equation
of state parameters w0, wa.

043529
The growth index � that would fit the braneworld growth
history is clearly distinct from the values allowed by a
scalar field model that matches the expansion history.
The distance in � is 0.11; to attain the value � � 0:68
would require, by extrapolation of Eq. (17), w � �1:6. A
3 distinction of the framework breaking would need a
measurement with precision  ��� � 0:037 (marginalized
over the other parameters). This corresponds roughly to a
2% measurement of the growth history. Indeed, this is in
good agreement with the results of Fig. 1, which showed
growth deviations between the two models with identical
expansion histories at up to the 7% level, so the same 3 
criterion leads to 	2% precision.

C. Coupling of matter and dark energy

While the primary purpose of the formalism here is to
test the gravitational framework, in the case of a physical
dark energy there can enter microphysical effects. These
can include spatial perturbations to the dark energy or
coupling to the matter component. We leave the first of
these to future work, but note that growth probes involving
correlations of large scale structure with the CMB might
play a role (e.g. [26–28]). Here we consider whether the
fitting formula and growth index approach remain valid in
the presence of coupling. Without a microphysical theory
these are necessarily toy models, and we only consider the
effects on matter growth, neglecting early universe or fifth
force constraints.

Interaction between matter and a dark energy compo-
nent is treated through a coupling of the evolution equa-
tions:

_
 i � �3H�1� wi�
i � �i�a; 
m; 
de�: (22)

We have considered the cases �m � ��de � #
m, #
de,
and #anH, the slinky inflation model [29], and the undu-
lant universe model [30]. Note the undulant universe is a
special case of the slinky model, without coupling, and is
ruled out by having a very low growth factor (g0 � 0:03).

All these models follow the growth index formalism if
the coupling is not too strong. As the coupling increases
[e.g. if the dimensionless coupling #0 � #=
m�0� * 0:5 in
the �m � #H case], this will start to break down because
the equation of state of matter begins to deviate signifi-
cantly from zero (plus in some cases the high redshift
universe is not matter dominated). As a simple example,
consider the decaying matter scenario where �m � �#
m.
This was treated in detail in [31], and the matter equation
of state is #=�3H� [32]. Generically, a coupling of the form
�i � #
i will change the equation of state of component i,
defined by the effective conservation equation _
i �
�3H�1� weff�
i, from wi to weff � wi � #=�3H� (pro-
viding a way for a w>�1 component to look phantom,
w<�1).

Further research into the effects of coupling on growth
of perturbations is underway [33] (also see [34]). Lack of a
-6
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consistent microphysical theory is the major obstacle. For
example, is the ‘‘new’’ energy density in a component
distributed uniformly or in the same spatial distribution
as the component it came from? Issues of evolution from
that point by clumping or free streaming make rigorous
calculation complicated.
VI. CONCLUSIONS

To reveal the physical origin of the acceleration of the
universe, both probes of the expansion history (such as the
distance-redshift relation) and of the growth history (such
as weak gravitational lensing measurements involving the
mass power spectrum) are required. While the two types of
probes in synergy give enhanced constraints on the effec-
tive dark energy equation of state, in comparison they can
test the theoretical framework of cosmology and general
relativity.

The growth history of mass in the universe follows the
source and friction term behaviors governed by the expan-
sion. Deviations from this reveal a breakdown of the frame-
work such as from modification of gravity. By rendering
the growth function in a physically appropriate manner,
separating the expansion effects from framework exten-
sions, we presented here a new, physically intuitive and
highly accurate (0.05%–0.2%) fitting function, Eq. (16),
for the linear growth of perturbations in generalized cos-
mologies. This allows model independent quantification of
gravitational modifications in terms of a new parameter,
the growth index �.

This research suggests a new paradigm for understand-
ing the nature of the acceleration physics: accurate mea-
surement of expansion and growth separately, for example,
through type Ia supernovae and weak gravitational lensing.
A useful, model independent, quantitative parameter set
was shown to be the equation of state value w0 and varia-
tion wa and the growth index �. In the specific worked case
of comparing an extra dimensional braneworld scenario
with scalar field physics in general relativity, the desired
measurement precisions should be of order  �w0� � 0:05,
 �wa� � 0:2,  ��� � 0:04. These should be technically
feasible and should be within the reach of next generation
experiments such as the Joint Dark Energy Mission.

The formalism presented here has further applications
for future investigation, such as seeing the effect of pertur-
bations in a physical dark energy component, couplings
between dark energy and matter, and scalar-tensor gravity.
To reveal the nature of the new physics responsible for the
universe-shaking acceleration, we will require a compre-
hensive suite of cosmological probes. The significance of
the discoveries is so great that every robust method is
needed to strengthen the accuracy, and the confidence in
our understanding. With clear measurements of the cosmic
expansion history and the cosmic growth history together
we can learn if nothing weighs something, if nowhere is
somewhere, or even more unexpected insights.
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APPENDIX: INHOMOGENEITIES AND COSMIC
EXPANSION

We have taken the cosmic growth history to not ‘‘back-
react’’ on the cosmic expansion history. That is, the global
homogeneous expansion independent of the growth of
matter structure is a valid treatment. This is a topic of great
interest and comment; here we simply present a brief
summary of the dependence of the metric on gravitational
potentials and the lack of large contributions by gravita-
tional potentials (in particular no infrared divergence) to
the cosmic expansion.

The approach taken by [6,7] is a straightforward calcu-
lation to obtain the metric of a realistically inhomogeneous
universe. In particular, it did not rely on any averaging
procedure, rather a harmonic decomposition of the pertur-
bations. The second key aspect was no a priori assumption
on the size of matter density fluctuations; rather it used a
post-Newtonian parametrization, essentially a weak field,
slow motion expansion. This followed work of Futamase
[35–37] and can be traced back to the mean field theory, or
two length scale, approach of Chandrasekhar [38].

For potentials parametrized by an amplitude %2 � 1,
and characteristic length scale &, the slow motion or,
more physically, the shear condition %2=&� 1 applies.
Violation of this condition leads to ray crossing in light
propagation (see [7,39]) and eventually relativistically
moving matter structures, contrary to observations of our
universe. Landau and Lifshitz [40] pointed out that the
dominant first order effect on the cosmic expansion entered
at what they called pseudotensor order: %4=&2. Thus the
shear condition ensures that the expansion is insignifi-
cantly affected, and conversely a significant backreaction
of inhomogeneities on the expansion would generically
lead to visible anisotropies.

However, here we concentrate on the post-Newtonian
gravitational potentials, and modification of the Newton-
Poisson equation relating the potentials to the matter den-
sity distribution. The general solution obtained by [6,7]
was

'��; ~x� � �
4�
3

Z �

�0

du
a0�u�



Z
d3 ~ya3�u��
�u; ~y�G�u; �; ~x; ~y�; (A1)

plus an initial condition term. The Green function is
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G �u; �; ~x; ~y� � �a�u�=a����


 �4�C�u; ����3=2e�j ~y� ~xj2=�4C�u;���;

(A2)

C�u; �� � �1=3�
Z �

u
dv�a=a0�; (A3)

where a prime denotes a derivative with respect to the
conformal time �.
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These expressions show that there is no divergence of
the potential or its derivatives in the presence of inhomo-
geneities. In contrast, the post-Newtonian Green function
solution, while matching the Newton-Poisson equation on
small scales, shows an exponential suppression of the
potential as one approaches horizon scales. These limits
are treated in detail in [7], and the physical problem is
shown to be closely analogous to the displacement proba-
bility distribution for isotropic random walks, and for
diffusion in a uniform medium.
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