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Constraints on holographic dark energy from type Ia supernova observations
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In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model
proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat
Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy compo-
nent. The fit result shows that the case c < 1 (c � 0:21) is favored, which implies that the holographic
dark energy behaves as a quintom-type dark energy. Furthermore, we also perform a joint analysis of
SNe� CMB� LSS to this model; the result is well improved and still upholds the quintom dark energy
conclusion. The best fit results in our analysis are c � 0:81, �0

m � 0:28, and h � 0:65, which lead to the
present equation of state of dark energy w0 � �1:03 and the deceleration/acceleration transition redshift
zT � 0:63. Finally, an expected supernova/acceleration probe simulation using �CDM as a fiducial model
is performed on this model, and the result shows that the holographic dark energy model takes on c < 1
(c � 0:92) even though the dark energy is indeed a cosmological constant.
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I. INTRODUCTION

The type Ia supernova (SN Ia) [1,2] observations provide
the first evidence for the accelerating expansion of the
present Universe. To explain this accelerated expansion,
the Universe at the present time is viewed as being domi-
nated by an exotic component with large negative pressure
referred to as dark energy. A combined analysis of cosmo-
logical observations, in particular, of the WMAP
(Wilkinson microwave anisotropy probe) experiment [3–
5], indicates that dark energy occupies about 2=3 of the
total energy of the Universe, and dark matter about 1=3.
The most obvious theoretical candidate of dark energy is
the cosmological constant � [6] which has the equation
of state w � �1. An alternative proposal is the dynamical
dark energy [7,8] which suggests that the energy form
with negative pressure is provided by a scalar field evolv-
ing down a proper potential. The feature of this class of
models is that the equation of state of dark energy w
evolves dynamically during the expansion of the
Universe. However, as is well known, there are two diffi-
culties arising from all these scenarios, namely, the two
dark energy (or cosmological constant) problems—the
fine-tuning problem and the ‘‘cosmic coincidence’’ prob-
lem. The fine-tuning problem asks why the dark energy
density today is so small compared to typical particle
scales. The dark energy density is of order 10�47 GeV4,
which appears to require the introduction of a new mass
scale 14 or so orders of magnitude smaller than the elec-
troweak scale. The second difficulty, the cosmic coinci-
dence problem, states ‘‘Since the energy densities of dark
energy and dark matter scale so differently during the
expansion of the Universe, why are they nearly equal
today’’? To get this coincidence, it appears that their ratio
must be set to a specific, infinitesimal value in the very
early universe.
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Recently, considerable interest has been stimulated in
explaining the observed dark energy by the holographic
dark energy model. For an effective field theory in a box of
size L, with UV cutoff �c the entropy S scales extensively,
S� L3�3

c. However, the peculiar thermodynamics of the
black hole [9] has led Bekenstein to postulate that the
maximum entropy in a box of volume L3 behaves non-
extensively, growing only as the area of the box, i.e. there is
a so-called Bekenstein entropy bound, S � SBH �

�M2
pL2. This nonextensive scaling suggests that quantum

field theory breaks down in large volume. To reconcile this
breakdown with the success of local quantum field theory
in describing observed particle phenomenology, Cohen
et al. [10] proposed a more restrictive bound—the energy
bound. They pointed out that in quantum field theory a
short distance (UV) cutoff is related to a long distance (IR)
cutoff due to the limit set by forming a black hole. In other
words, if the quantum zero-point energy density �X is
relevant to a UV cutoff, the total energy of the whole
system with size L should not exceed the mass of a black
hole of the same size, thus we have L3�X � LM2

p. This

means that the maximum entropy is on the order of S3=4
BH .

When we take the whole universe into account, the vacuum
energy related to this holographic principle [11] is viewed
as dark energy, usually dubbed holographic dark energy.
The largest IR cutoff L is chosen by saturating the inequal-
ity so that we get the holographic dark energy density

�X � 3c2M2
pL�2; (1)

where c is a numerical constant, andMp � 1=
����������
8�G

p
is the

reduced Planck mass. If we take L as the size of the current
universe, for instance the Hubble scale H�1, then the dark
energy density will be close to the observed data. However,
Hsu [12] pointed out that this yields a wrong equation of
state for dark energy. Li [13] subsequently proposed that
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the IR cutoff L should be taken as the size of the future
event horizon

Rh�a	 � a
Z 1

t

dt0

a�t0	
� a

Z 1

a

da0

Ha02
: (2)

Then the problem can be solved nicely and the holographic
dark energy model can thus be constructed successfully.
Some speculations on the deep reasons of the holographic
dark energy were considered by several authors [14]; for
further studies on this model, see also [15–23]. In addition,
it is necessary to discuss the choice L � H�1. Even though
this choice was argued to be unsuitable due to the fact that
it may lead to the holographic dark energy tracks the matter
density, this does not mean that the formalism M2

pH
2

cannot be made compatible with the observation. There
are other contexts in quantum field theory where one can
have a dark energy behaving as M2

pH
2 without introducing

the holographic principle. For instance, Ref. [24] nicely
introduces the M2

pH
2 law from general arguments in quan-

tum field theory. Actually, the first time where this law was
introduced in quantum field theory was in the context of
the renormalization group models of the cosmological
constant; see e.g. [25]. Otherwise, within the holographic
model framework, the choice L � H�1 can also be fa-
vored, if one introduces some interaction between dark
energy and dark matter [23]. However, in this paper we
restrict our attention to the holographic dark energy model
proposed by Li [13].

In this paper, we will see what constraints to the holo-
graphic dark energy model are set by present and future
SNe Ia observations. Recently, some constraints from
SNe Ia on a related model were obtained in
Refs. [16,17]. In this paper, we extend the analysis carried
out in Ref. [16]. The work presented here differs from [16]
(and [17]) in the following aspects: (a) We not only con-
strain the model by means of the SNe Ia observations, but
also test the fit results by using the age of the Universe;
(b) when performing the analysis of the SNe data, we also
test the sensitivity to the present Hubble parameter H0 in
the fit; (c) for improving the fit result, we combine the
current SNe Ia data with the cosmic microwave back-
ground (CMB) data and the large-scale structure (LSS)
data to analyze the model; (d) we also investigate the
predicted constraints on the model from future SNe Ia
observations.

II. THE HOLOGRAPHIC DARK ENERGY MODEL

The holographic dark energy scenario may provide si-
multaneously natural solutions to both dark energy prob-
lems as demonstrated in Ref. [13]. In what follows we will
review this model briefly and then constrain it by the
type Ia supernova observations. In addition, we will also
apply a joint analysis of SNe� CMB� LSS data to this
model. Consider now a spatially flat FRW (Friedmann-
Robertson-Walker) universe with matter component �m
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(including both baryon matter and cold dark matter) and
holographic dark energy component �X, the Friedmann
equation reads

3M2
pH

2 � �m � �X; (3)

or equivalently,

H2

H2
0

� �0
ma

�3 � �X
H2

H2
0

: (4)

Note that we always assume spatial flatness throughout this
paper as motivated by inflation. Combining the definition
of the holographic dark energy (1) and the definition of the
future event horizon (2), we derive

Z 1

a

d lna0

Ha0
�

c

Ha
�������
�X

p : (5)

We notice that the Friedmann equation implies

1

Ha
�

�����������������������
a�1� �X	

q 1

H0

��������
�0
m

p : (6)

Substituting (6) into (5), one obtains the following equa-
tion:

Z 1

x
ex

0=2
����������������
1� �X

p
dx0 � cex=2

����������������
1

�X
� 1

s
; (7)

where x � lna. Then taking a derivative with respect to x
in both sides of the above relation, we easily get the
dynamics satisfied by the dark energy, i.e. the differential
equation about the fractional density of dark energy,

�0
X � �X�1� �X	

�
1�

2

c

�������
�X

p �
; (8)

where the prime denotes the derivative with respect to x.
This equation describes the behavior of the holographic
dark energy completely, and it can be solved exactly
[13,16],

ln�X �
c

2� c
ln�1�

�������
�X

p
	 �

c
2� c

ln�1�
�������
�X

p
	

�
8

4� c2
ln�c� 2

�������
�X

p
	 � � ln�1� z	 � y0; (9)

where y0 can be determined through (9) by replacing �X
with �0

X as z � 0. From the energy conservation equation
of the dark energy, the equation of state of the dark energy
can be expressed as

w � �1 �
1

3

d ln�X
d lna

: (10)

Then making use of the formula �X � ��X=�1�
�X	�0

ma�3 and the differential equation of �X (8), the
equation of state for the holographic dark energy can be
given [13,16,17]
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FIG. 1. An illustrative example for the holographic dark en-
ergy model. The evolutions of the deceleration parameter q and
the equation of state of dark energy w. In this case, we take
�0
m � 0:27.
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w � �
1

3

�
1�

2

c

�������
�X

p �
: (11)

We can also give the deceleration parameter q � � �a=aH2,
in terms of �X,

q �
1

2
�

1

2
�X �

1

c
�3=2
X : (12)

It can be seen clearly that the equation of state of the
holographic dark energy evolves dynamically and satisfies
��1 � 2=c	=3 � w � �1=3 due to 0 � �X � 1. In this
sense, this model should be attributed to the class of
dynamical dark energy models even though it is without
the quintessence scalar field. The parameter c plays a
significant role in this model. If one takes c � 1, the
behavior of the holographic dark energy will be more
and more like a cosmological constant with the expansion
of the Universe, and the ultimate fate of the Universe will
be entering the de Sitter phase in the far future. As shown
in Ref. [13], if one puts the parameter �0

X � 0:73 into (11),
then a definite prediction of this model, w0 � �0:903, will
be given. On the other hand, if c < 1, the holographic dark
energy will behave like a quintom-type dark energy pro-
posed recently in Ref. [26], the amazing feature of which is
that the equation of state of the dark energy component w
crosses the phantom divide line, �1, i.e. it is larger than
�1 in the past while less then �1 today. The recent fits to
current SNe Ia data with parametrization of the equation of
state of dark energy find that the quintom-type dark energy
is mildly favored [27–29]. Usually the quintom dark en-
ergy model is realized in terms of double scalar fields, one
is a normal scalar field and the other is a phantom-type
scalar field [30,31]. However, the holographic dark energy
in the case c < 1 provides us with a more natural realiza-
tion for the quintom picture. While, if c > 1, the equation
of state of dark energy will be always larger than �1 such
that the Universe avoids entering the de Sitter phase and
the big rip phase. Hence, we see explicitly, the determi-
nation of the value of c is a key point to the feature of the
holographic dark energy as well as the ultimate fate of the
Universe.

As an illustrative example, we plot in Fig. 1 the evolu-
tions of the deceleration parameter q and the equation of
state of dark energy w in the cases of c � 1:2, 1.0, 0.8, and
0.6, respectively. It is easy to see that the equation of state
of dark energy crosses �1 as c < 1, which is in accordance
with the plots of the model-independent analysis in
Ref. [27]. It should be pointed out that the variable cosmo-
logical constant model can also give rise to a quintom
behavior, i.e. the effective equation of state produced by
this model can also cross �1 [32].

In the forthcoming sections, we will see what constraints
to the model described above are set by present and future
SNe Ia observations. In the fitting, we use the recent new
high redshift supernova observations from the HST/GOODS

program and previous supernova data, and furthermore we
043524
test the fit results by means of the cosmic age data. We find
that if we marginalize the nuisance parameter h, the fit of
the SNe observation provides 0:09 & c & 0:62 �1�	; this
means the holographic dark energy behaves as a quintom.
Further, we find that the allowed range of model parame-
ters depends on h evidently, for instance, we obtain (in 1�)
0:21 & c & 1:17 for h � 0:64, 0:10 & c & 0:43 for h �
0:66, and 0:03 & c & 0:07 for h � 0:71. The allowed re-
gions of model parameters become evidently smaller for
larger values of h. The fit values of the matter density �0

m
in this model are apparently larger than the fit value that
appears in the �CDM (WMAP result). Now that the SNe
data analysis evidently depends on the value of h, an
important thing we should do is to find some observational
quantities which do not depend on h to be useful comple-
ments of the SNe data set to probe the property of holo-
graphic dark energy. Such quantities can be found in CMB
and LSS (R and A, respectively, see Sec. IV). A combined
analysis of SNe� CMB� LSS shows that the confidence
region evidently shrinks, and the value of c is changed
considerably, namely, in 1�, 0:65 & c & 1:04. We will
discuss how the cosmological consequences come from
the fits, and compare the case of the joint analysis with the
case of the SNe only in detail. Interestingly, an expected
-3



FIG. 2. Confidence contours of 68%, 95%, and 99% in the
�c;�0

m	 plane for the case of marginalizing h. The point in the
figure, with the coordinate (0.21, 0.47), represents the best fit
value, with !2

min � 173:44. Constraints from the age of the
Universe give 0:95<H0t0 < 1:05 (at the 1� confidence level);
the dashed lines represent these two limits.
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supernova/acceleration probe (SNAP) simulation using
�CDM as a fiducial model shows that the holographic
dark energy model will also favor c < 1 even though the
Universe is indeed dominated by a cosmological constant.

III. THE CURRENT TYPE IA SUPERNOVA
CONSTRAINTS

We now perform the best fit analysis on our holographic
dark energy model with data of the type Ia supernova
observations. The luminosity distance of a light source is
defined in such a way as to generalize to an expanding and
curved space the inverse-square law of brightness valid in a
static Euclidean space,

dL �

�
L

4�F

�
1=2

� H�1
0 �1� z	

Z z

0

dz0

E�z0	
; (13)

where L is the absolute luminosity which is a known value
for the standard candle SNe Ia, F is the measured flux,
H�1

0 (here we use the natural unit, namely, the speed of
light is defined to be 1) represents the Hubble distance with
value H�1

0 � 2997:9h�1 Mpc, and E�z	 � H�z	=H0 can
be obtained from (4), expressed as

E�z	 �
�
�0
m�1� z	3

1��X

�
1=2
: (14)

Note that the dynamical behavior of �X is determined by
(8). The observations directly measure the apparent mag-
nitude m of a supernova and its redshift z. The apparent
magnitude m is related to the luminosity distance dL of the
supernova through

m�z	 � M� 5log10�dL�z	=Mpc	 � 25; (15)

where M is the absolute magnitude which is believed to be
constant for all type Ia supernovae. The numerical parame-
ter c of the model, the density parameter �0

m, and the
nuisance parameter h can be determined by minimizing

!2 �
X
i

�#obs�zi	 �#th�zi	2

�2
i

; (16)

where the extinction-corrected distance moduli #�z	 is
defined as #�z	 � m�z	 �M, and �i is the total uncer-
tainty in the observation. The likelihood L / e�!

2=2 if the
measurement errors are Gaussian. In our analysis, we take
the 157 gold data points listed in Riess et al. [33] which
includes recent new 14 high redshift SNe (gold) data from
the HST/GOODS program. The results of our analysis for the
holographic dark energy model are displayed in Fig. 2. In
this figure we marginalize over the nuisance parameter h
and show 68%, 95%, and 99% confidence level contours,
in the �c;�0

m	 plane. The best fit values for the model
parameters are h � 0:66, �0

m � 0:47�0:06
�0:15, and c �

0:21�0:41
�0:12 with !2

min � 173:44 (for similar results, see also
[16]). We see clearly that the fit values of this model are
evidently different from those of �CDM, i.e. the value of h
043524
is slightly smaller and �0
m evidently larger (the WMAP

results for �CDM model are [4,34]: h � 0:71�0:04
�0:03 and

�0
m � 0:27� 0:04). We notice in this figure that the cur-

rent SNe Ia data do not strongly constrain the parameters
�0
m and c (in 2�), in particular c, in the considered ranges.

Other observations may impose further constraints. For
instance, the CMB and LSS data can provide us with useful
complements to the SNe data for constraining cosmologi-
cal models. But, first, we will apply a cosmic age test to the
SNe analysis.

Recent analyses of the age of old stars [35] indicate that
the expansion time is in the range 11 & t0 & 17 Gyr at
95% confidence, with a central value t0 ’ 13 Gyr.
Following Krauss and Chaboyer [35] these numbers add
0.8 Gyr to the star ages, under the assumption that star
formation commenced no earlier than z � 6. A naive
addition in quadrature to the uncertainty in H0 indicates
that the dimensionless age parameter is in the range 0:72 &

H0t0 & 1:17 at 95% confidence, with a central value
H0t0 ’ 0:89. More recent, Richer et al. [36] and Hansen
et al. [37] found an age of 12:7� 0:7 Gyr at 95% con-
fidence using the white dwarf cooling sequence method.
For a full review of the cosmic age see Ref. [4]. All in all, it
seems reasonable to view �12 Gyr to be a low limit of the
cosmic age [38]. Now let us examine the age computation
of the holographic dark energy model. The age of the
Universe can be written as

t0 � H�1
0

Z 1

0

dz
�1� z	E�z	

; (17)

where H�1
0 represents the Hubble time with value H�1

0 �
9:778h�1 Gyr. Using the best fit values, the holographic
dark energy model gives the cosmic age t0 � 13:3 Gyr.
-4



FIG. 4. Confidence contours of 68%, 95%, and 99% in the
�c;�0

m	 plane for the case of h � 0:66. The best fit values for the
parameters are �0

m � 0:47�0:07
�0:11 and c � 0:21�0:22

�0:11, with !2
min �

173:44. Dashed lines represent the contours of cosmic age with
t0 � 12, 13, 14, 15, and 16 Gyr.
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This value is consistent with the above observational
analyses. Furthermore, we impose a more rigorous test
on it. The latest value of cosmic age appearing in the
Review of Particle Physics (PDG) [34] is given by a
combined analysis of various observations [4], t0 �
13:7� 0:2. Using the data from Ref. [34], we can get the
dimensionless age parameter range 0:96 & H0t0 & 1:05 at
68% confidence, with a central value H0t0 ’ 0:99. We also
display the contours H0t0 � 0:96 and H0t0 � 1:05 (1�) in
Fig. 2. It can be seen explicitly that the 1� fit result of the
SNe Ia data is almost excluded by this age test.

Next, we will probe the sensitivity to the present Hubble
parameter H0 in the analysis of the SNe data. We check
that, keeping the parameter h fixed, how well the SNe and
the cosmic age will constrain the holographic dark energy
model. We fix h � 0:64, 0.66, and 0.71, respectively, and
show the fit results in Figs. 3–5. From these figures, we
notice that with the increase of the parameter h, c decreases
evidently and the confidence contours in the �c;�0

m	 plane
shrink sharply. These figures clearly show that the SNe
analysis is dependent on the parameter h highly. Hence,
finding out observational quantities which do not depend
on H0 to jointly constrain the holographic dark energy
model becomes very important and senseful. We also dis-
play age contours in these figures, but the age constraints
are rather weak. The fits of SNe data indicate that the
current SNe Ia data tend to support a holographic dark
energy with c < 1, in other words, a quintom-type holo-
graphic dark energy. However, the authors of Ref. [17]
tried to show another possibility. They reexamined the
holographic dark energy model by considering the spatial
curvature, and found that the holographic dark energy will
not behave as phantom if the Universe is closed. However,
the spatial flatness is a definitive prediction of the infla-
FIG. 3. Confidence contours of 68%, 95%, and 99% in the
�c;�0

m	 plane for the case of h � 0:64. The best fit values for the
parameters are �0

m � 0:41�0:12
�0:18 and c � 0:46�0:71

�0:25, with !2
min �

175:90. Dashed lines represent the contours of cosmic age with
t0 � 12, 13, 14, 15, 16, and 18 Gyr.

FIG. 5. Confidence contours of 68%, 95%, and 99% in the
�c;�0

m	 plane for the case of h � 0:71. The best fit values for the
parameters are �0

m � 0:49� 0:03 and c � 0:05� 0:02, with
!2

min � 175:90. Dashed lines represent the contours of cosmic
age with t0 � 11, 12, 13, 14, and 16 Gyr.

043524
tionary cosmology, and has been confirmed precisely by
the WMAP. Thus we use the spatial flatness prior through-
out this paper.
IV. COMBINED ANALYSIS WITH CMB AND LSS

The above analyses show that the supernovae data alone
seem not sufficient to constrain the holographic dark en-
ergy model strictly. First, the confidence region of the c�
�0
m plane is rather large, especially for the parameter c.

Moreover, the best fit value of �0
m is evidently larger.

Second, it is very hard to understand the fit value of
parameter c, 0.21; it seems odd because it leads to an
-5



FIG. 6. Results for the analysis of SNe� CMB� LSS data,
1�, 2�, 3� confidence levels in the c��0

m space, margin-
alizing over h. The best fit values are h � 0:65, �0

m � 0:28, and
c � 0:81, with !2

min � 176:67. The cosmic age test, the dimen-
sionless age parameter range 0:96 & H0t0 & 1:05, is also shown.

FIG. 7. Likelihood distributions of parameter c in the fits of
SNe only and SNe� CMB� LSS.
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unreasonable present equation of state, w0 � �2:64, the
absolute value is too large. Third, even though the pre-
dicted cosmic age t0 � 13:3 Gyr is larger than the reason-
able low limit of the cosmic age estimated by old stars, a
more rigorous analysis implies that the fit result of the
SNe Ia data is contradictive to the present data of the
cosmic age (dimensionless age parameter H0t0).
Furthermore, our analysis shows that the fit of the SNe Ia
data is very sensitive to the parameter H0. Hence, it is very
important to find other observational quantities irrelevant
to H0 as a complement to SNe Ia data. Fortunately, such
suitable data can be found in the probes of CMB and LSS.

In what follows we will perform a combined analysis of
SNe Ia, CMB, and LSS on the constraints of the holo-
graphic dark energy model. We use a !2 statistic

!2 � !2
SN � !2

CMB � !2
LSS; (18)

where !2
SN is given by Eq. (16) for SNe Ia statistics, !2

CMB
and !2

LSS are contributions from CMB and LSS data,
respectively. For the CMB, we use only the measurement
of the CMB shift parameter [39],

R �
��������
�0
m

q Z zdec

0

dz
E�z	

; (19)

where zdec � 1089 [3]. Note that this quantity is irrelevant
to the parameter H0 such that provides robust constraint on
the dark energy model. The results from CMB data corre-
spond to R0 � 1:716� 0:062 (given by WMAP, CBI,
ACBAR) [4,40]. We include the CMB data in our analysis
by adding !2

CMB � ��R�R0	=�R2 (see [41]), where R
is computed by the holographic dark energy model using
Eq. (19). The only large-scale structure information we use
is the parameter A measured by SDSS [42], defined by

A �
��������
�0
m

q
E�z1	

�1=3
	
1

z1

Z z1

0

dz
E�z	



2=3
; (20)

where z1 � 0:35. Also, we find that this quantity is inde-
pendent of H0; thus we can provide another robust con-
straint on the model. The SDSS gives the measurement
data [42] A0 � 0:469� 0:017. We also include the LSS
constraints in our analysis by adding !2

LSS � ��A�
A0	=�A

2 (see [43]), where A is computed by the holo-
graphic dark energy model using Eq. (20).

Note that we have chosen to use only the most conser-
vative and robust information, R and A, from CMB and
LSS observations. These measurements we use do not
depend on the Hubble parameter H0. Furthermore, by
limiting the amount of information that we use from
CMB and LSS observations to complement the SNe Ia
data, we minimize the effect of the systematics inherent
in the CMB and LSS data on our results. Figure 6 shows
our main results, the contours of 1�, 2�, and 3� confi-
dence levels in the c� �0

m plane. The best fit values for the
model parameters are h � 0:65, �0

m � 0:28� 0:03, and
c � 0:81�0:23

�0:16, with !2
min � 176:67. We see clearly that a
043524
great progress has been made when we perform a joint
analysis of SNe Ia, CMB, and LSS data. Note that the best
fit value of c is also less than 1, while in the 1� range it can
be slightly larger than 1. Now the fit value of �0

m is roughly
the same as that of the �CDM model (WMAP result), but
h is still slightly smaller. It should be pointed out that a
slightly lower value of h is, however, in agreement with the
observations of [44] which can accommodate lower values
of h� 0:6. We also see from the figure that the fit result of
the joint analysis is consistent with the dimensionless age
range 0:96 & H0t0 & 1:05.

We now compare the fit results of the SNe analysis and
the joint analysis of SNe, CMB, and LSS, and discuss the
different cosmological consequences. Let us first look at
the likelihood distributions of the parameter c in the two
-6



CONSTRAINTS ON HOLOGRAPHIC DARK ENERGY FROM . . . PHYSICAL REVIEW D 72, 043524 (2005)
fits. In Fig. 7 we plot the 1-dimensional likelihood function
for c, marginalizing over the other parameters. The big
difference can lead to rather different conclusions for
some important cosmological parameters, such as today’s
equation-of-state parameter of dark energy, today’s decel-
eration parameter, etc. For the best fit results of the two fits,
we plot the evolution behaviors of the deceleration parame-
ter q and the equation-of-state parameter of dark energy w
in Fig. 8. For the SNe� CMB� LSS joint analysis, from
the figure, we see that the deceleration parameter q has a
value of q0 � �0:61 at present. The transition from decel-
eration to acceleration (q�zT	 � 0) occurs at a redshift of
zT � 0:63. The equation-of-state parameter w is slightly
smaller than �1 at present, w0 � �1:03. For comparison,
we list these values for the lone analysis of SNe data: q0 �
�1:60, zT � 0:27, and w0 � �2:64. Therefore, obviously,
the results of the combined fit seem more reasonable. From
a joint analysis of SNe� CMB� LSS data, one may
obtain within the framework of the holographic dark en-
ergy model a fairly good idea of when the Universe began
to accelerate and how fast the present acceleration is. In
contrary, the cosmological consequences given by the
alone analysis of the SNe data seem unreasonable.
FIG. 8. Deceleration parameter q and the equation of state of
dark energy w, versus redshift z, from two fits, SNe only and
SNe� CMB� LSS. Solid lines correspond to the joint analysis
of SNe� CMB� LSS, with the parameters c � 0:81, �0

m �
0:28, and h � 0:65. Dashed lines correspond to the lone analysis
of SNe, with the parameters c � 0:21, �0

m � 0:47, and h �
0:66.
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Comparing our plots in Fig. 8 with the model-independent
plots in Ref. [27] (which also use data from [33]), we find
that the holographic plot for the c � 0:81 case is in good
agreement with those model-independent plots for the
redshift range z � 0–2, while the c � 0:21 case does not
accord. Moreover, it should be mentioned again that these
results demonstrate that the best fit to SNe� CMB� LSS
observations also favors a quintom-type holographic dark
energy.
V. EXPECTED SNAP ANALYSIS

Finally we consider how well the proposed SNAP may
constrain the parameters c and �0

m. The SNAP mission is
expected to observe about 2000 type Ia SNe each year, over
a period of 3 yr, according to the SNAP specifications. To
find the expected precision of the SNAP, one must assume
a fiducial model, and then simulate the experiment assum-
ing it as a reference model. We will use SNAP specifica-
tions to construct mock SNe catalogs [45]. Following
previous investigations [46], we assume, in our
Monte Carlo simulations, that a total of 2000 supernovae
(roughly 1 yr of SNAP observations) will be observed with
the following redshift distribution. We consider, 1920
SNe Ia, distributed in 24 bins, from z � 0 to z � 1:2.
From redshift z � 1:2 to z � 1:5, we assume that
60 SNe Ia will be observed and we divide them in 6 bins.
From z � 1:5 to z � 1:7 we consider 4 bins with 5 SNe Ia
in each bin. All the supernovae are assumed to be uni-
formly distributed with (z � 0:05. To fully determine the
!2 functions, the error estimates for SNAP must be de-
fined. Following [45], we assume that the systematic errors
for the apparent magnitude, m, are given by

�sys �
0:02
1:5

z; (21)

which are measured in magnitudes such that at z � 1:5 the
systematic error is 0.02 mag, while the statistical errors for
m are estimated to be �sta � 0:15 mag. We add both kinds
of errors quadratically

�mag�zi	 �

������������������������������
�2

sys�zi	 �
�2

sta

ni

s
; (22)

where ni is the number of supernovae in the ith redshift bin
with width (z � 0:05. Now let us assume a spatial flat
�CDM model as a fiducial model, and analyze the holo-
graphic dark energy model fit. We aim to show if the
Universe is indeed described by the �CDM model, how
well the fitting of a holographic dark energy model will be.

In Fig. 9 we display the results of our simulation assum-
ing a �CDM model as a fiducial model with �0

m � 0:27
and h � 0:71. In the fit, we marginalize over the nuisance
parameter h. The best fit values for the model parameters
are �0

m � 0:23 and c � 0:92. From this figure it is clear
that the SNAP mission is able to place rigorous constraints
-7



FIG. 9. Predicted confidence contours of 68%, 95%, and 99%
in the �c;�0

m	 plane for the SNAP mission are shown. We
consider a fiducial model with �0

m � 0:27 and h � 0:71. The
best fit values for the parameters are �0

m � 0:23 and c � 0:92.
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on the holographic dark energy model. On the other hand,
we notice with interest that, even though the dark energy in
the Universe is exactly described by a cosmological con-
stant �, the precision type Ia supernova observations will
still support a quintom-type holographic dark energy.

VI. CONCLUDING REMARKS

In this paper, we investigated constraints on the holo-
graphic dark energy model from current and future SN Ia
observations. We considered a spatially flat FRW universe
with matter component and holographic dark energy com-
ponent. For the holographic dark energy model, the nu-
merical constant c plays a very important role in
determining the evolutionary behavior of the space-time
as well as the ultimate fate of the Universe. In a holo-
graphic dark energy dominated universe, the case of c � 1
corresponds to an asymptotic de Sitter universe; the choice
of c < 1 will lead to dark energy behaving as a quintom,
and in this case, the Gibbons-Hawking entropy will even-
tually decrease as the event horizon shrinks such that
violates the second law of thermodynamics. While the
case of c > 1 does not violate the second law of thermo-
dynamics, in this situation, the evolution of the correspond-
ing space-time avoids entering the de Sitter phase and the
big rip phase. Though the choice of c � 1 is favored
theoretically, other possibilities cannot be ruled out from
the viewpoint of phenomenology, and only experiments
and observations are capable of determining which choice
is realistic. We derived model parameter ranges from the
analysis of the present available SNe Ia data, and then
043524
imposed a rigorous test using the new data of the age of
the Universe on the derived parameter region. However,
only the supernova analysis seems not sufficient to be able
to precisely determine the value of c. For improving the
result of the analysis, we perform a joint analysis of SNe,
CMB, and LSS data to the holographic dark energy model.

The results of the SNe analysis show that the holo-
graphic dark energy model behaves as a quintom in the
1� confidence level, consistent with the current SNe Ia
data. However, when we perform a rigorous age test on this
analysis result using the latest PDG data, the 1� allowed
range is almost ruled out. Moreover, in this case, the
confidence regions in the parameter plane are rather large.
We also probe the sensitivity to the present Hubble pa-
rameter H0 in this analysis. We do this by fixing the
parameter h, and find the allowed regions of the parameters
shrink sharply as h increases. Hence, a combined analysis
of SNe data with other observational data becomes impor-
tant. A joint analysis of SNe� CMB� LSS produces
more reasonable results: c � 0:81, �0

m � 0:28, and h �
0:65, leading to the present equation of state of dark energy
is w0 � �1:03, and the epoch at which the Universe began
to accelerate is zT � 0:63. The confidence regions in this
analysis become more compact. On the whole, the analysis
indicates that the case of c < 1 is consistent with the
present SNe Ia data.

We are also interested in the constraints on the holo-
graphic dark energy model from a fictitious future super-
nova experiment. An expected SNAP fit, by using the
�CDM model as a fiducial model to generate mock ob-
servational data, shows that the case c < 1 (c � 0:92) is
also favored. Obviously, a large number of supernovae at
high redshifts, as well as better knowledge of the values of
H0 and �0

m, are therefore required to draw firm conclusions
about the property of the holographic dark energy. We
expect that a more sophisticated combined analysis of
various observations will be capable of determining the
value of c exactly and thus revealing the property of the
holographic dark energy.
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