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Simulations of the end of supersymmetric hybrid inflation and nontopological soliton formation
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We present two- and three-dimensional simulations of the growth of quantum fluctuations of the scalar
fields in supersymmetric hybrid inflation models. For a natural range of couplings, subhorizon quantum
fluctuations undergo rapid growth due to scalar field dynamics, resulting in the formation of quasistable
nontopological solitons (inflaton condensate lumps) which dominate the postinflation era.
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I. INTRODUCTION

Hybrid inflation models [1] are a promising class of
model, having a classically flat inflaton potential without
requiring fine-tuning of coupling constants. In order to
control radiative corrections to the inflaton potential,
supersymmetric (SUSY) hybrid inflation models are fa-
vored [2–4]. D-term hybrid inflation models are of par-
ticular interest, since they naturally account for the absence
of order H2 corrections to the inflaton mass squared term
coming from nonrenormalizable interactions with nonzero
F-terms. However, in spite of requiring fine-tuning to
eliminate order H2 corrections, several F-term hybrid in-
flation models have also been proposed. In light of recent
reconsideration of the issue of fine-tuning in SUSY models
and the idea of ‘‘split supersymmetry’’ [5], such models
may still play an important role.

An important issue is the process by which inflation ends
and the Universe reheats. It is known that the end of
inflation and reheating in hybrid inflation is dominated
by the nonlinear dynamics of the scalar fields responsible
for inflation [6–8]. Subhorizon quantum fluctuations are
rapidly amplified by scalar field dynamics once the
symmetry-breaking transition ending inflation occurs, be-
coming effectively classical modes [6,7]. The energy den-
sity at the end of inflation rapidly becomes dominated by
spatial fluctuations of the inflaton. For the case of D-term
hybrid inflation, the rapid growth of the perturbations is
expected to dominate the energy density for � * 0:1g [9].
Similar dynamics may be observed in models of tachyonic
inflation [10]. 1

What is the subsequent evolution of this inhomogeneous
scalar field? There are two possible outcomes. The growth
of the spatial perturbations of the inflaton could result in
scalar field waves which scatter from each other, dispersing
the energy of the initially highly inhomogeneous state
[6,7]. Alternatively, the growth of the spatial perturbations
might continue, resulting in the formation of nontopolog-
ical solitons corresponding to inflaton breathers [8] (also
address: mattb@amtp.liv.ac.uk
address: j.mcdonald@lancaster.ac.uk
analyses of tachyonic preheating see [11].
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known as oscillons [12]). This was first suggested in an
alternative view of the end of hybrid inflation, inflaton
condensate fragmentation [8], which was based upon per-
turbing a homogeneous inflaton condensate assumed to
form immediately after the end of hybrid inflation. In [8]
the nontopological solitons were called inflaton condensate
lumps. Their existence can be understood as the result of an
effective attractive interaction between the inflaton scalars
due to the symmetry-breaking field [8]. Although the as-
sumption of a homogeneous inflaton condensate is violated
by the rapid growth of quantum fluctuations within a few
coherent oscillation periods, the possibility that spatial
perturbations could form nontopological solitons remains.
Such objects were subsequently observed in a numerical
simulation of the phase transition in hybrid inflation [13].
Oscillons such as inflaton condensate lumps are known to
be quasistable, having a lifetime much longer than the
period of the inflaton coherent oscillations [12]. They
decay by a slow radiation of scalar field waves. For the
case of the effective theory associated with SUSY hybrid
inflation models, the lifetime of the inflaton condensate
lumps is 103–104 times the oscillation period [14].

The possibility of nontopological soliton formation at
the end of SUSY hybrid inflation is strengthened by the
existence of stable Q-ball solutions of the scalar field
equations of D- and F-term inflation [15]. These are two-
field Q-ball solutions, composed of a complex inflaton field
and a real symmetry-breaking field. They carry a con-
served global charge associated with the inflaton. As a
result, it is possible that SUSY hybrid inflation could end
by initially forming neutral nontopological solitons which
subsequently decay to pairs of stable Q-balls of opposite
global charge. The formation of neutral condensate lumps
which decay to Q-ball pairs has been observed numerically
in the context of Affleck-Dine condensates along minimal
SUSY standard model (MSSM) flat directions [16] (see
also [17]). It occurs because the initially neutral condensate
lumps are unstable with respect to growth of perturbations
of the phase of the complex scalar field, resulting in the
formation of an energetically preferred state consisting of a
stable Q-ball, anti-Q-ball pair. This is likely to be a generic
feature of the evolution of quasistable neutral condensate
lumps whenever a related stable Q-ball solution exists.
-1  2005 The American Physical Society
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Thus there exists the possibility that the postinflation era
of SUSY hybrid inflation models will be dominated by Q-
balls containing most of the energy of the Universe.
Whether this happens depends upon whether the inhomo-
geneous state of the Universe immediately following in-
flation evolves into quasistable neutral condensate lumps
or simply disperses as scalar field waves. In this paper we
report the results of a numerical simulation of the growth
and evolution of quantum fluctuations of the scalar fields in
SUSY hybrid inflation models. The growth of quantum
fluctuations into classical fluctuations is studied using the
equivalent classical stochastic field method [18], which
replaces the quantum field theory by an equivalent classical
field theory with a classical probability distribution for the
initial conditions. We focus on the case of D-term inflation.
The results for F-term inflation are likely to be similar to
those of D-term inflation for a particular choice of the D-
term inflation model couplings.

The paper is organized as follows. In Sec. II we review
SUSY hybrid inflation models and the scalar field equa-
tions. In Sec. III we discuss the initial conditions and
details of the numerical simulation. In Sec. IV we present
the results of 2D and 3D simulations of the evolution of the
scalar fields. In Sec. V we discuss a scaling property of the
D-term inflation field equations and the dependence of our
numerical results on the coupling constants. In Sec. VI we
compare our results with earlier numerical simulations. In
Sec. VII we present our conclusions. In the appendix we
review the equivalent classical stochastic field method.
2�V�jSj; j��j� has been calculated in [9], where �V is given
for s 

���
2

p
Re�S� and �� 

���
2

p
Re��. The complex version is

given by replacing s, �� by
���
2

p
jSj,

���
2

p
j��j in �V�s;���.
II. SUSY HYBRID INFLATION MODELS

The minimal D-term inflation model is described by the
superpotential [2]

W � �S����; (1)

where S is the inflaton, �� are fields with charges �1 with
respect to a Fayet-Iliopoulos U�1�FI gauge symmetry, � >
0 is the Fayet-Iliopoulos term (�1=2 � 8:5� 1015 GeV [4])
and g is the U�1�FI gauge coupling. The scalar potential is
given by

V � �2jSj2�j��j
2 � j��j

2� � �2j��j
2j��j

2 �
g2

2

��j��j
2 � j��j

2 � ��2: (2)

Once jSj< sc=
���
2

p
� g�1=2=�, �� develops a nonzero

expectation value, breaking the U�1�FI symmetry and end-
ing inflation.

The simplest F-term inflation model is described by the
superpotential [3]

W �
�
2
S��2 ��2�; (3)

where S is the inflaton and � is the field which terminates
inflation. �2 and � may be chosen real and positive. The
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scalar potential is then

V � �2jSj2j�j2 �
�2

4
j�2 ��2j2: (4)

For the case of real scalar fields, the F-term scalar field
equations become equivalent to the D-term equations in the
limit where �� � 0 and � �

���
2

p
g.

The superpotentials in Eqs. (1) and (3) are invariant with
respect to an R-symmetry under which only S transforms,
which manifests itself as a global U�1� symmetry of the
scalar potential, S! ei�S. It is this symmetry which is
responsible for the conserved global charge of the hybrid
inflation Q-balls [15].

In the following we will focus on the minimal D-term
inflation model. We expect the end of inflation in F-term
inflation models to be similar to D-term inflation in the
case � �

���
2

p
g, up to the effect of U�1�FI symmetry-

breaking and cosmic-string formation, which our results
indicate are of secondary importance to the evolution of the
energy density. During inflation, the inflaton evolves due to
the 1-loop effective potential, �V�jSj; j��j�.

2 This deter-
mines its rate of rolling at the end of inflation, an important
initial condition for the subsequent nonlinear growth of the
field perturbations. We assume throughout that �� � 0.
This is justified since the �� field has a large positive mass
squared both during and after inflation. The equations of
motion are then

S� 3H _S�
r2

a2
S � ���2j��j

2S� �
@�V

@Sy
; (5)

and

���3H _���
r2

a2
������2jSj2���

�g2���j��j
2����

@�V

@�y
�

: (6)
III. INITIAL CONDITIONS AND NUMERICAL
METHODS

The mechanism behind the formation of spatial inho-
mogeneities of the inflaton field at the end of D-term
hybrid inflation is the dynamical amplification of subhor-
izon quantum fluctuations of the scalar fields. In the ap-
pendix we review the formation of classical scalar field
perturbations from dynamical amplification of quantum
fluctuations. The process can be summarized as follows.
At the end of hybrid inflation, the symmetry-breaking
transition results in the formation of an effectively ta-
chyonic scalar potential for the inflaton. Rapid growth of
the quantum modes in this potential results in semiclassical
-2
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quantum fluctuations. If the quantum fluctuations grow to
become semiclassical while the field equations are linear in
the inflaton, then the quantum field theory becomes equiva-
lent to solving the classical field equations with a classical
probability distribution for the initial conditions, given by
the Wigner function of the field modes and their conjugate
momenta in the semiclassical limit. The subsequent evo-
lution of the scalar field fluctuations can then be studied by
solving the classical scalar field equations with stochastic
initial conditions (equivalent classical stochastic field). In
this way we can simulate the growth of subhorizon quan-
tum fluctuations at the end of hybrid inflation.

A. Initial conditions

The initial conditions for the simulation are obtained
from the values of��t� and _��t� for the homogeneous zero
modes and values of the equivalent classical momentum
modes q�k; t� and p�k; t�. (Here � represents any real
scalar field.) The classical initial conditions are applied at
the end of hybrid inflation, jSj � sc=

���
2

p
, at which time the

S and �� fields are massless.
The fields are studied in a comoving box of volume V �

L3 with periodic boundary conditions, with the classical
field � and its derivative, _�, being expanded in terms of
modes as

��x; t� �
1����
V

p
X
q�k; t�eik�x (7)

and

_��x; t� �
1����
V

p
X
p�k; t�eik�x; (8)

where k � �k��;�;  � with integer �, �,  and �k �
2!=L.

For a massless scalar field in de Sitter space, the initial
condition for nonzero modes q�k; t� at t � 0 corresponds
to a complex Gaussian distribution for jq�k; 0�j with the
root mean squared (rms) value given by (appendix) [18]

jq�k; 0�jrms �
1�����
2k

p

�
1�

1

k2�2

�
1=2
; (9)

and a random phase factor ei"k for each k. Here � is the
conformal time at the end of inflation (� � �H�1) and
k � jkj. Since ��x; t� is a real scalar field, the modes and
phase satisfy q��k; t� � qy�k; t� and "�k � �"k. The
initial value of the mode function p�k; t� has an rms
magnitude

jp�k; 0�jrms �
1�����

2k
p

j�j

�
1�

1

k2�2

�
�1=2

: (10)

For the subhorizon modes of interest, jk�j  jk=Hj � 1.
In this case, from Eqs. (9) and (10), initially jp�k; 0�j 
j _q�k; 0�j � Hjq�k; 0�j. Since the mode q�k; t�, corre-
sponding to a wave function of wave number k, will satisfy
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_q�k; t� � kq�k; t� � Hjq�k; 0�j at subsequent times, the
initial value of _q�k; t� from Eq. (10) will have a negligible
effect.

In our simulations we modeled the initial mode function
q�k; 0� by the rms value of jq�k; 0�j multiplied by a ran-
dom complex phase for each k. To simulate the evolution
of the scalar field, we considered a spatial lattice with x �
�x�i; j; k� for integer i; j; k. The sum over nonzero modes
in Eq. (7) then gives the initial spatial perturbation on the
lattice,

"��x; 0� �
1����
V

p
X 8�������������

2k�� 
p cos��k�x�i� %��

� cos��k�x�j� %�� cos��k�x k� % �;

(11)

where k�� � �k��2 � �2 �  2�1=2 and we have substi-
tuted "k ! %� � %� � % , where %�;�; are random
phases. We then solved the scalar field equations numeri-
cally on the lattice using Eq. (11) and " _��x; 0� � 0 for
each of the real scalar fields.

Only those modes which are amplified, such that their
occupation number becomes large, can be considered clas-
sical. Modes which are not amplified remain as quantum
fluctuations. In simulations the quantum fluctuations must
be regularized, since summing over large k modes will
result in a large initial amplitude for the spatial perturba-
tions, causing the assumption of linearity of the field
equations to break down. We introduce a cutoff � at a
value given by the mass of the inflaton field in vacuum,
� � mS � ��1=2. This should be close to the largest value
of k for which modes can grow dynamically, kmax, although
the exact value of kmax cannot be known a priori since it is
determined by the full scalar field dynamics.
IV. RESULTS OF NUMERICAL SIMULATIONS

In order to investigate the formation of neutral inflaton
condensate lumps, we have studied a model with a real
inflaton field, s 

���
2

p
Re�S�. We considered numerical

simulations in two and three dimensions, using a staggered
leapfrog routine and the initial conditions for quantum
fluctuations Eq. (11) applied to s, ��1 and ��2 at s �
sc, where �� � ���1 � i��2�=

���
2

p
.

In Fig. 1, we show the results for the growth of the
energy density in a 2D simulation using a 200� 200
lattice, for the case � � 0:14 and g � 1, for four different
times. We compare the energy density ' with the mean
energy density averaged over the lattice, '. The time from
the first to last figure corresponds to five S coherent oscil-
lation periods, (S, where (S � 2!m�1

S . The growth of the
energy density perturbations to nonlinearity occurs within
the first two coherent oscillation periods. We find that
roughly circular lumps of energy density form, which are
stable over the duration of the simulation. Essentially all of
-3



(a) τ = τS (b) τ = 3τS

(c) τ = 4τS (d) τ = 5τS

FIG. 1 (color online). 2D growth of energy density perturbations for � � 0:14 and g � 1 on a 200� 200 lattice. Black areas
correspond to ' > 4'.
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the energy density becomes concentrated in the lumps. We
also observe some condensate lumps coalescing into larger
lumps, in particular, by comparing Figs. 1(c) and 1(d). The
lattice spatial dimension is given by L � 20!m�1

S , which
is small compared with the horizon H�1 �

�3=4!�1=2�2MPl=�gm
2
S�.

In Fig. 2, we show the amplitude of the S field at the
center of one of the energy density lumps in Fig. 1. The
t

−2.0

−1.0

0.0

1.0

2.0

s(
t)

/s
c

s(t) inside soliton
s(t) − homogeneous

FIG. 2. Coherent oscillations of an energy density lump.
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oscillations of an unperturbed homogeneous inflaton field
are shown for comparison. The field inside the lump is
oscillating in time, showing that the inflaton condensate
lump is indeed a quasistable oscillon. This is important, as
it is not obvious that the energy density lumps in Fig. 1 are
not simply concentrations of the energy density with no
coherent structure. If this were true, it would be possible
for such concentrations to have a short lifetime due to a
large amount of kinetic energy associated with their con-
stituent scalar particles. The fact the energy density lumps
are oscillons suggests that they will have a very long life-
time compared with the coherent oscillation period, as
observed in numerical and analytical studies of single-field
oscillons [12,14].

In Fig. 3 we show the results of a 3D simulation on a 503

lattice. The regions where the energy density is greater
than 4' are shown. This clearly demonstrates the forma-
tion of inflaton condensate lumps in the 3D case, confirm-
ing the results of the higher resolution 2D simulations.

We find no evidence of cosmic strings forming within
the volume of our lattice. This is consistent with our
previous semianalytical analysis, which indicated that the
typical separation of U�1�FI cosmic strings formed at the
end of hybrid inflation would be not very much smaller
than the horizon, corresponding to the wavelength of the
first �� fluctuations to be able to grow classically and
break the U�1�FI symmetry [9].
-4



FIG. 3. 503 lattice 3D simulation. The plot shows regions of
energy ' > 4' at t � 5(S.
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V. A SCALING PROPERTY OF THE D-TERM
INFLATION FIELD EQUATIONS

Throughout we have considered the case g � 1.
However, by rescaling the spacetime coordinates, the D-
term inflation field equations can be written in a form that
depends only upon the ratio �=g. As a result, the condition
for the formation of inflaton condensate lumps is likely to
depend primarily upon the ratio �=g, with only a weak
logarithmic dependence on g due to the initial value of the
perturbations.

Under the rescaling of the coordinates t � ~t=g, x � ~x=g,
the tree-level scalar field equations become

S� 3 ~H _S�
r2

a2
S � �

�2

g2
j��j

2S; (12)

and

���3 ~H _���
r2

a2
����

�2

g2
jSj2��

�

�
��j��j

2

�
��; (13)

where derivatives are now with respect to ~x and ~t. We have
defined ~H � a�1da=d~t � H=g. ~H is a function purely of
�=g. This follows since H2 / ' where, in terms of deriva-
tives with respect to rescaled spacetime coordinates,

' � g2
�
j _Sj2 � j _��j

2 �

��������rSa
��������2

�

��������r��

a

��������2
�V�S;���=g

2

�
 g2 ~': (14)
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V�S;���=g
2 is purely a function of �=g, therefore ~'

depends only on �=g. ThusH / '1=2 � g~'1=2 and so ~H �

H=g / ~'1=2. Therefore ~H � ~H��=g�.
The dependence of the rescaled field equations only on

�=g does not extend to the quantum fluctuation initial
conditions, Eq. (11). In terms of rescaled coordinates and
the rescaled wave number, ~k � k=g, the initial fluctuation
becomes

"��~x; 0� �
1����
V

p
X 8g�1=2�������������

2~k�� 
q cos��~k�~x�i� %��

� cos��~k�~x�j� %�� cos��~k�~x k� % �:

(15)

The upper limit of the sum, corresponding to the largest
value of ~k for which the modes can grow, is determined
from the rescaled field equations and is therefore purely a
function of �=g. Thus the initial conditions for the rescaled
field equations are proportional to g�1=2. However, the
growth of perturbations in a tachyonic potential is typically
rapid (exponential), in which case the condition for per-
turbations to become nonlinear will depend only weakly
(logarithmically) on the initial perturbation. As a result, if
inflaton condensate lumps form for one value of g (we
considered g � 1 in our simulations) then they will form
for any value of g for the same value of �=g, up to a weak
dependence on the initial conditions. The effect of reduc-
ing gwill be to increase the time for the lumps to form (t �
~t=g) and to increase the size of the resulting lumps (x �
~x=g).
VI. COMPARISON WITH PREVIOUS
SIMULATIONS

In [6] a simulation of SUSY hybrid inflation was re-
ported for the case equivalent to D-term inflation couplings
� � 0:014 and g � 0:14, such that �=g � 0:1. It was
concluded that the energy density would be transferred to
inhomogeneous classical scalar field waves. Although no
nontopological soliton formation was observed, this value
of �=g is on the borderline of values for which we would
expect to find nontopological soliton formation [9].
Therefore the results of [6] are not in any obvious way
inconsistent with the results we have obtained here.

In [13] a simulation of the end of D-term was performed,
again for the case equivalent to � � 0:014, g � 0:14 in D-
term inflation. The formation of nontopological solitons
was observed along the length of cosmic strings. However,
only quantum fluctuations of the symmetry-breaking field
were considered in [13], with no inflaton fluctuations,
which cannot be considered fully realistic. As discussed
above, we expect that fluctuations of the symmetry-
breaking field will only play a minor role in the evolution
of the total energy density, being primarily associated with
cosmic-string formation on scales not very much smaller
-5
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than the horizon [9]. Nevertheless, the results in [13] con-
firm the possibility of nontopological soliton formation at
the end of SUSY hybrid inflation.
VII. CONCLUSIONS AND DISCUSSION

Our numerical simulations have shown that growth of
quantum fluctuations of the scalar fields in SUSY hybrid
inflation models results in the formation of inflaton con-
densate lumps corresponding to spherical lumps of coher-
ently oscillating scalar field, also known as oscillons. The
energy density of the Universe becomes almost entirely
concentrated in these condensate lumps. We have focused
on the case of D-term hybrid inflation, in which case the
inflaton condensate lumps form if � * 0:1g. Although a
full analysis remains to be done, similar results may be
expected in the case of F-term inflation, whose classical
field equations are similar to those of D-term inflation for
the case � �

���
2

p
g.

We have performed simulations for the case of a real
inflaton field. The fact that the objects which form in this
case are oscillons is significant, since from numerical and
analytical studies of single-field oscillons such objects are
known to be quasistable, with very long lifetimes com-
pared to the scalar field coherent oscillation period.
Therefore we expect that the postinflation era will consist
entirely of long-lived inflaton condensate lumps, even
though our present numerical simulations are unable to
resolve the evolution over more than about 10 coherent
oscillation periods.

In the case of a complex inflaton field, oscillons are
expected to be a precursor to stable Q-ball formation via
decay to Q-ball pairs. Decay to Q-ball pairs is likely to
occur long before the neutral inflaton condensate lumps
decay via radiation of scalar field waves. Thus if inflaton
condensate lumps form in the case of a real inflaton field, it
is very likely that decay to Q-ball pairs and a Q-ball
dominated postinflation era will occur once a complex
inflaton is considered. Since the Q-balls are classically
stable, this era will only end once the scalar particles
forming the Q-ball decay perturbatively to MSSM parti-
cles, reheating the Universe. A highly inhomogeneous
inflaton condensate lump or Q-ball dominated era would
have significant consequences for postinflation SUSY cos-
mology. For example, it has been shown that the dynamics
of scalar fields in the postinflation era will not be subject to
order H mass corrections [19], with important consequen-
ces for Affleck-Dine baryogenesis, SUSY curvatons and
moduli dynamics. Reheating will also be inhomogeneous,
via Q-ball decay.

We plan to develop the capabilities of our numerical
simulations in the future, with the ultimate goal of achiev-
ing a complete understanding of the postinflation era of
SUSY hybrid inflation models.
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APPENDIX A: NONLINEAR GROWTH OF
QUANTUM FLUCTUATIONS AND THE

EQUIVALENT CLASSICAL STOCHASTIC FIELD

In this appendix we review the growth of quantum
fluctuations in the presence of a time-dependent tachyonic
mass squared term. We first consider a real scalar field in
Minkowski space with a positive or negative mass squared
term. We then generalize to the case of a Friedmann-
Robertson-Walker background, in particular, de Sitter
space.

In order to derive the classical initial conditions used in
the lattice simulations, we quantize the theory in a box of
side L. We consider an initial state corresponding to a
Minkowski or Bunch-Davies vacuum state for a massive
scalar field. The scalar field theory is exactly quantized in
terms of creation and annihilation operators for momentum
modes, which is valid so long as interaction terms can be
neglected in the Hamiltonian, or equivalently the scalar
field equations are linear. To follow the evolution of the
quantum fluctuations into the nonlinear regime, the quan-
tum field theory is replaced by an equivalent classical field
theory with a classical probability distribution for the
initial conditions [18,20], equivalent in the sense that the
results of quantum field theory for the expectation values of
products of fields are equal to the values obtained by
solving the classical field equations with the classical
probability distribution for the initial field values. This
can be done if the occupation numbers of the quantum
modes become large compared with one during the linear
regime. The classical probability distribution is then given
by the Wigner function of the field modes in the semiclas-
sical limit. Although the classical probability distribution
must become valid at some time during the period when the
theory can be considered linear, once it becomes estab-
lished it can be applied at any earlier time during the linear
regime.

The Lagrangian and Hamiltonian for the scalar field in
Minkowski space are

L �
1

2
@��@

���
m2

2
�2; (A1)

and

H � ! _��L �
1

2
�!2 � �r��2 �m2�2�; (A2)

where the canonical momentum is !  @L=@ _� � _�. We
consider the scalar field in a cube of volume L3 with
periodic boundary conditions. The field and canonical
momentum are expanded in terms of momentum modes as
-6



SIMULATIONS OF THE END OF SUPERSYMMETRIC . . . PHYSICAL REVIEW D 72, 043519 (2005)
��x; t� �
1����
V

p
X
k

q�k; t�eik�x (A3)

and

!�x; t� �
1����
V

p
X
k

p�k; t�eik�x; (A4)

where the components of k satisfy ki � 2!ni=Lwith ni an
integer. !�x; t� � _��x; t� implies that p�k; t� � _q�k; t�.
The nonzero equal-time canonical commutation relations
for the field operators are

�!�x; t�; ��x0; t�� � �i"3�x� x0�: (A5)

The field and conjugate momentum mode operators must
then satisfy

�p��k; t�; q�l; t�� � �i"k;l: (A6)

In terms of mode operators the Hamiltonian becomes

H �
1

2

X
k

py�k; t�p�k; t� �!2
kq

y�k; t�q�k; t�;

!2
k � k2 �m2;

(A7)

where the mode operators satisfy the classical Hamiltonian
equations of motion. In general, a Hamiltonian which is
quadratic in the mode operators may be exactly quantized
by expanding the operators in terms of time-independent
creation and annihilation operators

q�k; t� � fkak � fyka
y
�k (A8)

and

p�k; t� � �igkak � igyka
y
�k; (A9)

where �ak; a
y
l � � "k;l. p�k; t� � _q�k; t� implies that gk �

i _fk. The mode functions fk and gk satisfy the classical
field equations for the momentum modes (which are, by
assumption, linear in fk) and the canonical commutation
relations. The latter implies that the mode functions satisfy
the condition gkf

y
k � gykfk � 1. For the case of a constant

positive mass squared term, the mode functions fk must
also satisfy the condition that the Hamiltonian is correctly
quantized, such that the energy eigenstates correspond to
numbers of quanta of energy !k. The unique solution for
fk which satisfies both of these conditions is

fk �
i���������
2!k

p e�i!kt: (A10)

To study the evolution of the mode functions from an initial
time t � 0 at whichm2 � 0, we use Eq. (A10) as the initial
condition for the mode functions. The subsequent evolu-
tion may then be studied by solving the classical equation
of motion for fk so long as we are in the linear regime,
since in this case the field equations may be satisfied by
043519
field operators expanded in terms of time-independent
creation and annihilation operators.

As an example, we consider the evolution for a model
where a field is massless at t � 0 and gains a constant
negative mass squared term once t > 0. The field operator
at t > 0 satisfies the equation, for modes with k2 < jmj2,

q�k; t� � ~!2
kq�k; t�; ~!2

k � jmj2 � k2; (A11)

with general solution

q�k; t� � �ke
~!kt � �ke

� ~!kt (A12)

and

p�k; t�  _q�k; t� � ~!k��ke
~!kt � �ke

� ~!kt�; (A13)

where �k and �k are time-independent operators corre-
sponding to linear combinations of ak and ay�k. Matching
these with the vacuum (m � 0) solution at t � 0 implies
that

�k �
i

2
���������
2!k

p

��
1�

i!k

~!k

�
ak �

�
1�

i!k

~!k

�
ay�k

	
(A14)

and

�k �
i

2
���������
2!k

p

��
1�

i!k

~!k

�
ak �

�
1�

i!k

~!k

�
ay�k

	
; (A15)

where !k � jkj. Therefore q�k; t� for t > 0 can be written
in the form of Eq. (A8) with

fk �
i

2
���������
2!k

p

��
1�

i!k

~!k

�
e ~!kt �

�
1�

i!k

~!k

�
e� ~!kt

	
:

(A16)

For ~!kt� 1, q�k; t� � �ke ~!kt and p�k; t� � !k�ke ~!kt,
so that to a good approximation q�k; t� and p�k; t� com-
mute, corresponding to the limit of classical physics.

In order to study the growth of quantum fluctuations
beyond the linear regime, we need the classical stochastic
initial conditions which reproduce the field theory expec-
tation values in the semiclassical limit. The classical proba-
bility distribution is obtained from the Wigner function,

W�q; p; t� �
Z dx1dx2

�2!�2
e�i�p1x1�p2x2�

�

�
q�

x
2
; t
��������'

��������q� x
2
; t
�
; (A17)

where p � p1 � ip2, q � q1 � iq2 and x � x1 � ix2. The
q and p represent complex generalized coordinates and
conjugate momenta, which in our case correspond to
q�k; t� and p�k; t�. ' � j o�t�ih o�t�j is the density matrix
of the Schrodinger picture state, j o�t�i, which evolves
from the initial vacuum state. In general the Wigner func-
tion gives the probability distribution of the observable q at
t after integrating over p and vice versa. In the classical
limit the Wigner function tends towards a classical proba-
bility distribution, f�q; p; t�, which reproduces the quan-
-7
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tum field theory results for expectation values of the field
operators. Although f�q; p; t� should be calculated in the
semiclassical limit, it can be applied at any time during the
linear evolution of the field, in particular, at earlier times,
since it satisfies the classical equations of motion [20]. In
the case of hybrid inflation, we can therefore apply the
classical initial conditions at the end of inflation (s � sc),
corresponding to massless scalar fields.

The annihilation operators can be expressed as

ak �
gyk

2Re�fkg
y
k�

�
q�k; t� �

fyk
igyk

p�k; t�
�
: (A18)

By definition akj0i � 0, where the Heisenberg picture
initial vacuum state, j0i, is equivalent to the Schrodinger
picture vacuum state at t � 0. In order to obtain the
Schrodinger wave function  �q; t�  hqj o�t�i corre-
sponding to the state evolving from the initial vacuum
state, we express the equation akj0i as a wave equation
in the position representation [18]. In terms of the time
evolution operator U�t�, akj0i � 0 can be expressed as

Uy

�
q�k; 0� �

ifyk
gyk

p�k; 0�
	
Uj0i � 0; (A19)

where q�k; t� � Uyq�k; 0�U. Since Uj0i  j o�t�i is the
time-dependent Schrodinger state vector and q�k; 0�  qk,
p�k; 0�  pk are the Schrodinger representation general-
ized coordinate and momentum operators, with pk con-
jugate to q�k  qyk (�pk; q

y
k� � �i), the momentum

operator in the position representation becomes pk �
�i@=@q�k. The wave equation can then be written as�

qk �
fyk
gyk

@
@q�k

�
 o�qk; q�k; t� � 0: (A20)

This has the solution [18]

 o�qk; q�k; t� � No exp
�
�
gyk
fyk

jqkj2
�
; (A21)

where No � �
����
!

p
jfkj��1. The normalized probability dis-

tribution is then

P�qk; q
�
k; t� �

1

!jfkj2
exp

�
�

jqkj2

jfk�t�j2

�
: (A22)

This gives the probability that the magnitude of the clas-
sical mode amplitude q�k; t� at t is jqkj. This is a complex
Gaussian distribution, with rms value for jqkj equal to jfkj.
Then q�k; t� � jq�k; t�jei"k , with "k a random phase.

The Wigner function is then given by

W�qk; pk; t� �
ZZ dx1dx2

�2!�2
e�i�pk1x1�pk2x2� �

o�qk � x=2; t�

�  o�qk � x=2; t�: (A23)

Integrating gives
043519
W�qk; pk; t� �
1

!2 exp
�
�

jqkj2

jfkj2
� jfkj

2

��������pk

�
Fk

jfkj2
qk

��������2
	
; (A24)

where Fk � Im�fykgk�. In the limit jfkj2 � 1, where the
Wigner function tends towards the classical probability
distribution, the Wigner function is vanishing except if

pk �
Fk

jfkj2
qk: (A25)

Since the classical probability distribution can be applied
at any time during the linear regime, we can choose to
apply the initial conditions at the end of hybrid inflation,
such that the fields are massless. For the case of flat space,
the mode functions with m � 0 are given by

fk �
i�����
2k

p e�ikt; gk � i

���
k
2

s
e�ikt; (A26)

where k � jkj. Thus Fk � Im�fykgk� � 0. Therefore the
flat space classical initial condition for p�k; t� is p�k; 0� �
0, while the flat space classical initial conditions for q�k; t�
at t � 0 corresponds to a complex Gaussian distribution
for jq�k; 0�j, with rms value

jq�k; 0�jrms �
1�����
2k

p (A27)

and with a random phase factor ei"k for each k.
These results can easily be generalized to a scalar field in

Friedman-Robertson-Walker spacetime. In this case the
action is

S �
Z
d4x

�������
�g

p
�
1

2
@��@���

m2

2
�2

	
: (A28)

In terms of y � a�t�� and conformal time � [dt �
a�t�d�], where a�t� is the scale factor, this becomes

S �
Z
d4x

�
1

2

�
y0 �

a0

a
y
�
2
�

�ry�2

2
�
m2a2

2
y2
	
; (A29)

where 0 denotes differentiation with respect to conformal
time and d4x is now understood as an integral over comov-
ing coordinates and conformal time. The conjugate mo-
mentum is

! �
@L
@y0

� y0 �
a0

a
y (A30)

and the Hamiltonian is

H �
Z
d3x

�
!2

2
�

�ry�2

2
�
m2a2

2
y2 �

a0

a
!y

	
: (A31)

Expanding y�x; �� and!�x; �� in terms of modes as before
(but now with � in place of t and y in place of �) implies
that
-8
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H �
1

2

X
k

�
p�k; ��yp�k; �� �!2

kq�k; ��
yq�k; ��

�
a0

a
�p�k; ��qy�k; �� � py�k; ��q�k; ���

	
; (A32)

where !2
k � k2 �m2a2 and

p�k; �� � q0�k; �� �
a0

a
q�k; ��: (A33)

This is quantized by expanding q and p in terms of creation
and annihilation operators according to Eqs. (A8) and
(A9). The mode functions satisfy the classical equation
of motion

f00k �
a00

a
fk � ��k2 �m2a2�fk; (A34)

with the requirement that the initial fk reduces to the
Minkowski modes in the limit k� H (Bunch-Davies
vacuum).

For the case of de Sitter space, H � const, the mode
equation becomes

f00k �

�
k2 �

�2� m2

H2�

�2

	
fk � 0; (A35)

where � � �1=aH. For a constant m2, the solution which
tends to the Minkowski vacuum in the limit k� H is

fk��� �

����
!

p

2
ei��!=2�4��!=4�� ��������

��
p

H�1�
4 ��k��;

42 �
9

4
�
m2

H2 ;

(A36)

where H�1�
4 is a spherical Hankel function of the first kind.

The Wigner function analysis is as before except with �
in place of t. fk is now given by Eq. (A36), while gk
follows from p�k; �� � q0�k; �� � �a0=a�q�k; ��, which

SIMULATIONS OF THE END OF SUPERSYMMETRIC . . .
043519
implies that gk � i�f0k � �a0=a�fk�. The initial conditions
we impose correspond to de Sitter space with a massless
field, in which case 4 � 3=2 and so

fk �
i

����
!

p

2

��������
��

p
H�1�

3=2��k�� �
e�ik������
2k

p

�
1�

i
k�

	
(A37)

gk �

���
k
2

s
e�ik�; (A38)

where we have used the expression for the Hankel function

H�1�
3=2�x� � �

�
2

!x

�
1=2
eix

�
1�

i
x

	
: (A39)

Thus Fk � Im�fykgk� � 1=�2k��. The classical rms values
for the magnitudes of the mode functions are then

jq�k; ��jrms � jfkj �
1�����
2k

p

�
1�

1

k2�2

�
1=2

(A40)

and

jp�k; ��jrms �
1�����

2k
p

j�j

�
1�

1

k2�2

�
�1=2

: (A41)

These may be used to model the initial conditions for the
massless scalar fields at the end of hybrid inflation.

In practice, we numerically solve the classical scalar
field equations for ��x; t� rather than y�x; ��. In general,
y�x; �� � a��x; t� and !�x; �� � a2 _��x; t�. Choosing
a � 1 at the end of inflation (corresponding to choosing
� � �H�1 at t � 0) implies that ��x; 0� � y�x; �� and
_��x; 0� � !�x; �� at the end of inflation. In this case the

mode functions in Eqs. (A40) and (A41) will provide the
initial conditions for the mode expansions of ��x; t� and
_��x; t� in de Sitter space.
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