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Short distance and initial state effects in inflation: Stress tensor and decoherence
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We present a consistent low energy effective field theory framework for parametrizing the effects of
novel short distance physics in inflation, and their possible observational signatures in the cosmic
microwave background. We consider the class of general homogeneous, isotropic initial states for
quantum scalar fields in Robertson-Walker (RW) spacetimes, subject to the requirement that their
ultraviolet behavior be consistent with renormalizability of the covariantly conserved stress tensor which
couples to gravity. In the functional Schrödinger picture such states are coherent, squeezed, mixed states
characterized by a Gaussian density matrix. This Gaussian has parameters which approach those of the
adiabatic vacuum at large wave number, and evolve in time according to an effective classical
Hamiltonian. The one complex parameter family of � squeezed states in de Sitter spacetime does not
fall into this UV allowed class, except for the special value of the parameter corresponding to the Bunch-
Davies state. We determine the finite contributions to the inflationary power spectrum and stress tensor
expectation value of general UV allowed adiabatic states, and obtain quantitative limits on the observ-
ability and backreaction effects of some recently proposed models of short distance modifications of the
initial state of inflation. For all UV allowed states, the second order adiabatic basis provides a good
description of particles created in the expanding RW universe. Because of the absence of particle creation
for the massless, minimally coupled scalar field in de Sitter space, there is no phase decoherence in the
simplest free field inflationary models. We apply adiabatic regularization to the renormalization of the
decoherence functional in cosmology to corroborate this result.
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I. INTRODUCTION AND OVERVIEW

Inflationary models were introduced principally to ac-
count for the observed large scale homogeneity, isotropy
and flatness of the Universe in a causal way, independently
of detailed initial conditions [1]. Because of the exponen-
tial expansion of an initially small causal patch, the infla-
tionary de Sitter epoch dominated by the vacuum equation
of state p � �" suppresses any classical inhomogeneities
in the initial conditions by many orders of magnitude, and
leads to a primordial power spectrum that is both scale
invariant and featureless. Most inflationary models assume
that the quantum fluctuations which lead to this scale
invariant spectrum originate in the maximally O�4; 1� sym-
metric Bunch-Davies state of scalar fields in de Sitter
spacetime [2], although the possibility that other states
may play a role was considered by some authors [3–5].
In the last few years there has been a renewed interest in the
possible effects of different initial states in inflation [6–
address: anderson@wfu.edu
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20], fueled largely by the speculation that more precise
observations of the cosmic microwave background (CMB)
might make such effects observable, thus opening up the
possibility of using CMB observations to probe novel short
distance physics in the very early Universe.

The primary purpose of this paper is to present a con-
sistent low energy effective field theory (EFT) framework
for parametrizing such short distance and initial state ef-
fects in cosmological spacetimes. Although the elements
of quantum field theory in curved space upon which this
EFT framework relies have been known for some time, a
comprehensive treatment of general homogeneous, iso-
tropic initial states in Robertson-Walker spacetimes has
not been given previously to our knowledge. Such a treat-
ment of general initial states requires both covariant and
canonical methods, as well as a dictionary to translate
between them. Establishing the EFT framework, the rela-
tionship between the covariant and canonical approaches,
and the form of the state-dependent terms in the covariant
stress tensor occupies Secs. II, III, and IVof the paper. The
paper is designed so that after becoming acquainted with
the definitions and conventions in Sec. II, the reader may
skip the detailed development of Secs. III and IV if desired,
-1  2005 The American Physical Society
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and go directly to the applications in later sections, refer-
ring back to the previous sections for the derivation of the
formulas as necessary. Readers interested only, in particu-
lar, modifications of the initial state of inflation and their
effects on the CMB may wish to skip directly to Sec. V.

The secondary purpose of this paper is to apply the EFT
methods developed in Secs. II, III, and IV to the processes
of particle creation and decoherence in semiclassical cos-
mology. Certain problems with the definitions of particle
number and the decoherence functional are resolved by the
same adiabatic methods used to define the general class of
UV allowed initial states in the EFT approach. Readers
interested primarily in these applications may wish to go
directly to Secs. VI or VII respectively, likewise referring
to the earlier sections as needed. The remainder of this
introduction contains a general overview of the issues
addressed in the paper and our approach to them. As a
further guide to the content of the paper, the concluding
Sec. VIII contains a point-by-point summary of our main
results.

As we consider initial state modifications of inflation it
is perhaps worth emphasizing from the outset that any
sensitivity of present day observations to initial state ef-
fects runs counter to some of the original motivations for
and attractiveness of inflation. A scale invariant spectrum
is one of inflation’s most generic predictions, precisely
because of the presumed late time insensitivity to pertur-
bations of the initial state. If there are features in the power
spectrum of the CMB today which are not erased by the
exponential redshift of the inflationary epoch and which
bear the imprint of new physics at short distance scales,
then one might ask what prevents short distance physics
from affecting other large scale properties of the Universe,
such as its homogeneity, isotropy or flatness. Further, since
it is not clear which inflationary model (if any) is correct,
fine-tuning a specific model to make particular modifica-
tions observable in the CMB power spectrum results in a
diminishing of the overall predictive power of inflation. As
long as it is possible to accommodate any observable
features in the power spectrum by appropriately fine-
tuning the inflationary model, the physical origin of these
features as true signatures of new high energy physics must
remain uncertain [20]. Finally, the remarkable detection of
a nonzero cosmological dark energy in the Universe today
[21], at a level very different from estimates based on
considerations of ‘‘naturalness’’ from short distance phys-
ics, should caution that present cosmological models are as
yet far from complete, and the connection between micro-
physics and macroscopic structure in the Universe is still to
be elucidated.

Despite these fine-tuning and naturalness problems, it is
nevertheless true that in almost any given inflationary
model there can be surviving initial state effects in the
primordial power spectrum at some level, and the advent of
more precise CMB data makes quantifying the sensitivity
043515
of inflationary models to such initial state effects poten-
tially worthwhile.

A quantitative treatment of short distance and initial
state effects in inflation requires a predictive, low energy
framework in which such effects can be parametrized and
studied with a minimum of assumptions about the un-
known physics at ultrashort distances. Effective field the-
ory provides exactly that framework in other contexts, and
we assume in this paper that EFT methods may be applied
in gravity and cosmology as well. The EFT approach to
perturbative gravitational scattering amplitudes was dis-
cussed in Ref. [22]. Here we extend EFT methods to the
nonperturbative regime of semiclassical cosmology.

Since a fully predictive quantum theory of gravity is still
lacking, we are virtually compelled to adopt an EFT ap-
proach to cosmology. Since all scales are presumed to be
redshifted to lower energy scales where an EFT description
eventually becomes applicable, the EFT appropriate for
cosmology which respects general coordinate invariance
and the equivalence principle is the Einstein theory to-
gether with its quantum corrections. In the EFT framework
of semiclassical gravity we can study general (i.e., scale
noninvariant) initial states in Robertson-Walker (RW)
spacetimes in a well-defined way, without detailed knowl-
edge of the short distance physics which may have gen-
erated them. Although more general initial states and more
general matter EFT interactions could be considered, we
focus in this paper on the specific gravitational effects of
quantum matter fields, and restrict ourselves for simplicity
to free scalar fields in spatially homogeneous and isotropic
initial states consistent with the symmetry of the RW
geometry.

The redshifting of short distance scales to larger ones as
the Universe expands distinguishes semiclassical gravity
from other effective field theories, which possess a fixed
physical cutoff. In the case of a fixed cutoff, the shorter
distance modes of the effective theory can be excluded
from consideration, and their effects subsumed into a finite
number of parameters of the low energy description. In
practice, absorption of the cutoff dependence of quantum
corrections into a finite set of parameters of the effective
action is no different in an EFT from that in a renormaliz-
able theory, except for the allowance of higher dimensional
interactions and the corresponding parameters which are
suppressed by the cutoff scale in the EFT description.

Implicit in the EFT framework is the assumption that the
effects of short distance degrees of freedom decouple from
the long distance ones. However, in an expanding Universe
decoupling is a delicate matter. New short distance modes
are continually coming within the purview of the low
energy description, and some additional information is
required to handle these short distance degrees of freedom
as they newly appear. If these ultraviolet (UV) modes carry
energy-momentum, as they should when their wavelength
becomes larger than the short distance cutoff and EFT
-2
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methods apply, then simply excluding their contribution to
the energy-momentum tensor at earlier times will lead to
violations of energy conservation, a well-known point that
has been emphasized anew in Ref. [13]. Energy noncon-
servation occurs with a physical momentum cutoff because
energy is being supplied (by an unspecified external
mechanism) to the new degrees of freedom as they redshift
below the cutoff, although they carried no energy-
momentum formerly. This is an essential point: arbitrary
short distance modifications that violate energy conserva-
tion are unacceptable in a low energy EFT respecting
general coordinate invariance, since the resulting energy-
momentum tensor hTabi cannot be a consistent source for
the semiclassical Einstein equations at large distances.
Upsetting the macroscopic energy conservation law by a
short distance physical cutoff affects the cosmological
evolution at all scales, hence violating decoupling as well.

These considerations show that the necessary existence
of a conserved source for the semiclassical Einstein equa-
tions provides an important constraint on the class of
possible short distance modifications of the initial state of
inflation, quite independent of the matter field content and
its EFT. Let us emphasize that there is no problem modify-
ing the initial state of a quantum field at a fixed time t0 for
momenta below some physical scale M at that time.
However the quantum state is not completely specified
and a conserved energy-momentum tensor cannot be com-
puted unambiguously, until information is given also for
physical momenta initially much greater than M, which
will redshift below M at later times t > t0. Without some
prescription consistent with general coordinate invariance
for dealing with these arbitrarily high energy ‘‘trans-
Planckian’’ modes, which will become physical low en-
ergy modes eventually, the low energy effective theory of
semiclassical gravity is not complete or predictive.

General covariance of the low energy effective theory of
gravity coupled to quantum matter is the key technical
assumption which we make in this paper. General coordi-
nate invariance determines the form of the effective action,
and therefore the counterterms which are available to
absorb the ultraviolet divergences of the energy-
momentum tensor of the quantum matter fluctuations.
The renormalization of hTabi with the standard local co-
variant counterterms up to dimension four is possible if and
only if the short distance properties of the vacuum fluctua-
tions are the standard ones, as expressed, for example, in
the Hadamard conditions on the two-point function
h��x���x0�i as x! x0 [23,24]. These UV conditions on
the structure of the vacuum should be viewed as an exten-
sion of the equivalence principle to semiclassical gravity,
since they amount to assuming that the local behavior of
quantum matter fluctuations are determined in a curved
spacetime by those of flat spacetime and small (calculable)
deviations therefrom. With this physical assumption about
the local properties of the vacuum, the ultrashort distance
043515
modes are necessarily adiabatic vacuum modes and are
fully specified as they redshift below the UV cutoff scale.
Then covariant energy conservation is ensured, there are no
state-dependent divergences in hTabi, and the effective field
theory of semiclassical gravity applied to cosmology be-
comes well-defined and predictive within its domain of
validity.

Several authors have considered specific short distance
modifications, such as modified dispersion relations for the
modes [11] or spacetime noncommutativity [12]. We do
not consider in this paper these or any other possible
specific short distance modifications that would take us
out of the framework of the covariant low energy EFT of
gravity, without providing a completely consistent quan-
tum alternative. Once the low energy EFT of semiclassical
gravity applies, any imprint of UV physics can be encoded
only in the parameters of the initial state up to some large
but finite energy scale M. While many papers have dis-
cussed possible imprints of new short distance physics on
the CMB power spectrum, a few authors have considered
also the constraints that may arise from the energy-
momentum tensor of the fields in a state other than the
Bunch-Davies (BD) state, making use of various order of
magnitude estimates [9,14,16–18,20]. If the initial state
modifications are parametrized by adding irrelevant higher
dimensional operators of the scalar EFT at the boundary,
there is apparent disagreement between several authors
about the order of the corrections these modifications
induce in the energy-momentum tensor [16,17].
Quantitative control of the finite state-dependent terms in
the energy-momentum tensor is potentially important for
determining whether the short distance modifications can
be observable in the power spectrum without upsetting
other features of inflation. If the scalar field energy density
is too large, it could prevent an inflationary phase from
occurring at all [9,13,20]. In this paper we present the
framework necessary for the unambiguous evaluation of
initial state effects in both the power spectrum and the
renormalized hTabi for any homogeneous and isotropic
state. We then use the general framework to find specific
constraints on initial states, such as those proposed in the
boundary action formalism of Ref. [25]. We find by ex-
plicit computation that the terms in the matter EFT bound-
ary action linear in the first higher dimensional operators
that one can add, do enter the energy-momentum tensor
and may place more restrictive bounds on the parameters
than reported in [17].

A systematic study of more general initial states in RW
spacetimes and their stress tensor expectation values was
initiated in two recent papers [26,27]. Although it had
generally been assumed that initial state inhomogeneities
in hTabi, different from the BD expectation value, would
redshift on an expansion time scale H�1, the proper treat-
ment of the initially ultrahigh frequency (trans-Planckian)
modes is critical to proving this result, and also for dem-
-3
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onstrating how it may break down in certain special cases.
The conditions on homogeneous and isotropic initial states
of a free scalar field in de Sitter space, necessary for its
two-point function and energy-momentum tensor to be
both finite in the IR and renormalizable in the UV were
defined in Ref. [27]. When these conditions are satisfied it
was shown that hTabi for a free scalar field of mass m and
curvature coupling � does approach the BD value with
corrections that decay as a�3	2 Re�

dS for Re� < 3=2, where
adS is the RW scale factor in de Sitter space, given by
Eq. (5.1) and � is defined by Eq. (5.2) below. For suffi-
ciently massive fields � is purely imaginary and these fields
have energy-momentum tensor expectation values which
decay to the BD value as a�3

dS , just as would be expected for
classical nonrelativistic dust with negligible pressure.
However, the light or massless cases in which �2 > 0,
show a quite different late time behavior. The massless
conformally coupled scalar field, for which � � 
1=2, has
in addition to the expected subdominant a�4

dS behavior of
classical massless radiation with p � "=3, a much more
slowly falling a�2

dS component, with p � �"=3, arising
from quantum squeezed state effects. In the massless,
minimally coupled case, relevant for the slowly rolling
inflaton field, as well as the graviton itself, � � 3=2, and
there is an additional a0

dS constant coherent component in
the late time behavior, with p � �", signaling the break-
down of the O�4; 1� invariant BD state in the IR, and the
change in the stress tensor from the BD to the Allen-
Folacci (AF) value [28]. These features could not be so
readily anticipated by purely classical considerations, but
are quite straightforward to obtain with the general prop-
erly renormalized hTabi.

We present here a comprehensive treatment of general
initial states in arbitrary RW spacetimes begun in
Refs. [26,27], from both a canonical and covariant view-
point. We emphasize throughout the paper that in a general
RW spacetime all such states are on an equal footing a
priori. There is no need to resolve the vacuum ‘‘ambigu-
ity’’ often said to exist in curved space field theory.
Different physical initial data will simply select different
physical states. Only the local behavior of these states at
very short distances needs to be restricted by the equiva-
lence principle. Because the structure of the vacuum is
most explicit in its wave functional representation, we
review the Schrödinger description of arbitrary RW states
first. The Schrödinger description in RW spacetimes has
previously been investigated for pure states in [29,30] and
for mixed states in [31]. The general state of a free scalar
field is that of a mixed, squeezed state Gaussian density
matrix �̂, given by Eq. (3.10), evolving according to the
quantum Liouville equation (3.29) in the Schrödinger rep-
resentation. The parameters that specify this general
Gaussian density matrix are in one-to-one correspondence
with the amplitudes that define the two-point Wightman
function and power spectrum of the field. We show that the
043515
quantum Liouville equation or the scalar wave equation in
the covariant description imply that these Gaussian pa-
rameters evolve with time according to an effective clas-
sical Hamiltonian, given by Eqs. (A10)–(A12), in which @
appears as a parameter. This demonstrates that the evolu-
tion of an arbitrary initial state is completely unitary and
time reversible in any RW spacetime. Any apparent dis-
crepancy between the Hamiltonian and covariant ap-
proaches is resolved by including the RW scale factor on
an equal footing with the matter field(s) in the Hamiltonian
description. The correct source for Einstein’s equations
and backreaction considerations is not the canonical or
effective Hamiltonian of the Schrödinger representation
but the expectation value of the covariant energy-
momentum tensor, hTabi.

The fourth order adiabaticity condition [32] on the short
distance components of the wave functional defines the
class of UV allowed RW states consistent with the low
energy effective field theory satisfying general covariance.
We exhibit the finite state-dependent contributions to hTabi
for a general homogeneous, isotropic RW state in (4.16).
TheO�4; 1� invariant BD state is a UVallowed fourth order
adiabatic vacuum state in de Sitter space, but the one
complex parameter family of squeezed state generaliza-
tions of the BD state [4,5] (sometimes called � vacua) are
not UV allowed RW states [33]. All such states except the
BD state are therefore excluded as possible modified initial
states in the low energy description, unless they are cut off
at some physical momentum scale M [8,13], and are then
no longer de Sitter invariant. Various possible modifica-
tions of the inflaton initial state up to some physical scale
M at the initial time t0 are considered in Sec. V, and their
power spectrum and backreaction effects are computed in a
consistent way. We compare our treatment of short dis-
tance and initial state effects with previous work involving
� vacua [8], adiabatic states [7], and a boundary action
approach [17,25]. The precise connection between the
boundary action approach and the initial state specification
is established. Readers interested in only these initial state
effects in inflation may wish to skip directly to Sec. V,
where these short distance effects are considered, and
bounds on the short distance modifications are obtained
from backreaction considerations.

In addition to the power spectrum and energy-
momentum source for the gravitational field, the adiabatic
method provides a consistent framework to discuss particle
creation and decoherence in semiclassical cosmology.
Although the definition of particle number in an expanding
Universe is inherently nonunique, we show that the adia-
batic number basis matched to the second order adiabatic
terms in hTabi is the minimum one that allows for a finite
total particle number with conserved energy-momentum.
Matching the particle basis to fourth or higher adiabatic
order is possible but of decreasing physical and practical
importance. The EFT description also suggests that one
-4
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should limit the particle number definition to the minimal
one that requires the fewest number of derivatives of the
scale factor, i.e., two, which are sufficient to eliminate all
power law cutoff dependences in the stress tensor. Hence
the second order adiabatic basis is selected by the short
distance covariance properties of the vacuum, together
with the local derivative expansion characteristic of a low
energy EFT description of Einstein’s equations, which are
themselves second order in derivatives of the metric. As is
well known, in the case of the massless, conformally
coupled scalar field in an arbitrary RW spacetime the
zeroth order adiabatic vacuum modes become exact solu-
tions of the wave equation, and hence no mixing between
positive and negative frequency modes occurs. We show
that no particle creation occurs also for the massless,
minimally coupled scalar field (which sometimes serves
as the inflaton field) in the special case of de Sitter
spacetime.

Particle creation may be described as a squeezing of the
density matrix parameters and corresponds to a basis in
which the off-diagonal elements of �̂ are rapidly oscillat-
ing in phase, and may be replaced by zero with a high
degree of accuracy. To the extent that this approximation is
valid and the information contained in these rapidly oscil-
lating phases cannot be recovered, the evolution is effec-
tively dissipative at a macroscopic level, despite being
microscopically time reversible. The macroscopic irrever-
sibility is measured by the von Neumann entropy (6.10) of
the phase averaged density matrix in the adiabatic particle
basis. In the two special massless cases of cosmological
interest mentioned above, namely, the conformally
coupled, scalar field in an arbitrary RW spacetime and
the minimally coupled scalar field in de Sitter spacetime,
this phase averaging effect is absent, since no particle
creation occurs.

The decoherence functional is defined in the
Schrödinger representation as the wave function overlap
between two states with similar initial conditions but dif-
ferent macroscopic RW scale factors, i.e., it measures the
quantum (de)coherence between different semiclassical
realizations of the Universe [34]. Physical expectations
of a very nearly classical Universe suggest that this quan-
tum overlap between different macroscopic states in cos-
mology should be finite in principle but extremely small.
However, a naive computation of the decoherence func-
tional in RW cosmology is plagued by divergences, quali-
tatively similar to those encountered in hTabi. Moreover,
previous authors have found that the exact form and degree
of these divergences depend upon the parametrization used
for the matter field variables [34–36]. These divergences
and ambiguities have prevented up until now the straight-
forward application and physical interpretation of the de-
coherence functional in semiclassical cosmology. By
analyzing the general form of the divergences in the deco-
herence functional and relating them to the divergences in
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the effective closed time path (CTP) action of semiclassical
gravity [37], we show that these divergences can be regu-
lated and removed by a slightly modified form of the
adiabatic subtraction procedure [38] used to define both
the renormalized hTabi and the finite particle number basis.
This gives an unambiguous definition of a physical, UV
finite decoherence functional for RW spacetimes which is
displayed in Eq. (7.13) and which is free of field parame-
trization dependence and other ambiguities previously
noted in the literature. The finite decoherence functional
does fall rapidly to zero with time in the general case in
which particle creation takes place, in accordance with
physical intuition. In the special massless cases in which
no particle creation occurs, the renormalized decoherence
functional vanishes, showing that no decoherence of quan-
tum fluctuations between different semiclassical RW uni-
verses occurs in these cases. This corroborates the close
connection between the particle creation and decoherence
effects which has been found in other contexts [39], and
shows that the emergence of a classical Universe from
initial conditions on a massless field must be due to other
effects, such as interactions, which are neglected in the free
field treatment presented in this paper.

The outline of the paper is as follows. In the next section
we establish notation and define the general class of ho-
mogeneous, isotropic RW states in a RW spacetime. In
Sec. III, we review the Hamiltonian description of the
evolution of these states and give the form of the mixed
state Gaussian density matrix of the Schrödinger represen-
tation, as well as the Wigner function and effective classi-
cal Hamiltonian which describes the evolution. In Sec. IV
we evaluate the expectation value of the energy-
momentum tensor, and the low energy effective action
for gravity of which it is part. We specify the conditions
on the short distance components of a general RW state in
order for hTabi to be UV renormalizable with geometric
counterterms of the same form as the effective action, and
obtain an expression for the finite contributions of arbitrary
UVallowed RW states. In Sec. V we consider three types of
modified initial states in inflation, evaluating the power
spectrum and energy-momentum tensor for each in turn. In
Sec. VI we define the adiabatic particle number basis and
show how particle creation leads to an effective dissipation
in the density matrix description. In Sec. VII we define a
finite renormalized decoherence functional for semiclassi-
cal cosmology, and corroborate the nondecoherence of
massless inflaton fluctuations in de Sitter space. We con-
clude with a detailed summary and discussion of our
results. Technical details of the Gaussian parametrization
of the density matrix and its properties, the evaluation of
integrals needed in Sec. V and the comparison of adiabatic
bases used in squeezing and decoherence calculations by
previous authors are relegated to Appendices A, B, and C
respectively. Throughout we set c � 1 and use the metric
and curvature conventions of Misner, Thorne, and Wheeler
[40].
-5
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II. GENERAL RW INITIAL STATES

Homogeneous and isotropic RW spacetimes can be
described by the line element,

ds2 � �dt2 	 a2�t�d
2 � �dt2 	 a2�t��ijdxidxj;

(2.1)

with t the comoving (or cosmic) time, and �ij the metric of
the three-dimensional spacelike sections 
 of constant
spatial curvature, which may be open, flat, or closed. It is
also useful to introduce the conformal time coordinate,

� �
Z t dt

a�t�
; (2.2)

so that the line element (2.1) may be expressed in the
alternative form,

ds2 � a2�����d�2 	 d
2�; (2.3)

where a is now viewed as a function of conformal time �.
We take a to have dimensions of length with � dimension-
less. The scalar curvature is

R � 6
�

_H	 2H2 	
�

a2

�
; H �

_a
a
: (2.4)

The overdot denotes differentiation with respect to t and
� � �1; 0;	1 depending on whether the spatial sections
are open, flat, or closed, respectively.

A free scalar field with mass m obeys the scalar wave
equation,

��� 	m2 	 �R�� � 0; (2.5)

where � � gabrarb and � is the arbitrary dimensionless
coupling to the scalar curvature. Since the RW three-
geometry 
 is spatially homogeneous and isotropic, the
wave equation (2.5) may be solved by decomposing ��t;x�
into Fourier modes in the general form,

��t;x� �
Z

dk��ak�k�t�Yk�x� 	 ayk�

�
k�t�Y

�
k�x��: (2.6)

The Yk are the eigenfunctions of the three-dimensional
Laplace-Beltrami operator �3 on 
, satisfying

��3Yk�x� � �
1����
�

p
@
@xi

�ij
����
�

p @
@xj

Yk�x�

� �k2 � ��Yk�x�; (2.7)

and the �k�t� are functions only of time and the magnitude
of the wave vector, k � jkj.

For flat spatial sections, � � 0, �ij � #ij, � � det�ij �
1, and the Yk�x� are simply plane waves eik�x. The inte-
gration measure in Eq. (2.6) for this case is

R

dk� �R

d3k=�2%�3.
In the case of compact spatial sections, � � 	1, the

wave number k takes on discrete values which we label
by the positive integers k � 1, and the harmonic functions
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in Eq. (2.7) are the spherical harmonics of the sphere S3.
These S3 harmonics denoted by Yklm depend on three
integers k $ �k; ‘;m�, the first of which may be identified
with jkj, while �‘;m� refer to the usual spherical harmonics
on S2 with ‘ � k� 1. Since

Pk�1
‘�0�2‘	 1� � k2, a given

eigenvalue of the Laplacian (2.7) labeled by k is k2-fold
degenerate. The scalar spherical harmonics Yklm may be
chosen to satisfy Y�

k�x� � Y�k�x� � Yk‘�m�x�, and nor-
malized on S3 so that [41]Z

S3
d3
Y�

k0‘0m0 �x�Yk‘m�x� � #kk0 � #kk0#‘‘0#mm0 ; (2.8)

and

Xk�1

‘�0

X‘
m��‘

jYk‘m�x�j2 �
k2

2%2 ; (2.9)

which is independent of x.
In the open case � � �1, the sums over �‘;m� remain,

but k becomes a continuous variable with range 
0;1�.
After integration over the direction of k in the � � 0 case,
one is also left with the integration over the magnitude k
with the scalar measure

R
dkk2=�2%2�. Because of

Eq. (2.9), the compact � � 	1 case is simply related to
the noncompact cases of � � 0;�1 by the replacement of
the integral

R
dkk2=�2%2� by the discrete sum,P

k�1k
2=�2%2�. Beginning the sum from k � 1 (so that

the spatially homogeneous mode on S3 has eigenvalue k �
1 instead of k � 0) makes this correspondence between the
discrete and continuous cases most immediate. We define
the scalar measure,

Z

dk� �

(R
1
0 dk if � � 0;�1P
1
k�1 if � � 1

(2.10)

in order to cover all three cases with a single notation.
The time-dependent mode functions �k�t� satisfy the

ordinary differential equation,

d2�k

dt2
	 3H

d�k

dt
	

�k2 � ��

a2 �k 	 �m2 	 �R��k � 0:

(2.11)

If one defines fk�t� � a3=2�k, then this equation is equiva-
lent to

�f k 	
	
!2
k 	

�
��

1

6

�
R�

1

2

�
_H 	

H2

2

�

fk � 0; (2.12)

where

!2
k�t� �

k2

a2 	m2: (2.13)

Equation (2.12) is the equation for a harmonic oscillator
with time-dependent frequency. Note that the comoving
momentum index k of the mode is constant, while the
-6
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physical momentum p � k=a redshifts as the Universe
expands.

An analogous time-dependent harmonic oscillator equa-
tion may be derived also in conformal time under the
substitution, +k��� � a�k, viz.,

+00
k 	

	
k2 	m2a2 	 �6�� 1�

�
a00

a
	 �

�

+k � 0; (2.14)

where the primes denote differentiation with respect to
conformal time �.

In view of the completeness and orthonormality of the
spatial harmonic functions Yk�x�, it is easily verified that
the equal time commutation relation	

��t;x�;
@�

@t
�t;x0�



�
i@

a3 #
�x;x0� �
i@

a3

����
�

p
#3�x� x0�;

(2.15)

is satisfied, provided the creation and annihilation opera-
tors obey


ak; a
y
k0 � � #kk0 ; (2.16)

in the discrete notation, and the complex mode functions
satisfy the Wronskian condition,

a3� _�k��
k ��k

_��
k� �

_fkf�k � fk _f�k � +0
k+

�
k � +k+�0

k

� �i@: (2.17)

From the equation of motion (2.11), (2.12) or (2.14) this
Wronskian condition is preserved under time evolution.
Hence any initial condition for the second order equation
of motion satisfying (2.17) is a priori allowed by the
commutation relations. Given any two solutions of
(2.11), we define their Klein-Gordon inner product as

� k;�k� �
ia3

@
� �

k
_�k � _ �

k�k�; (2.18)

which is independent of time.
Let vk�t� be some particular set of time-dependent mode

functions satisfying Eq. (2.11) and the Wronskian condi-
tion (2.17). These can be used to define a vacuum state.
Any other set of solutions �k satisfying the same
Wronskian condition can be expressed as a linear super-
position of vk and its complex conjugate,

�k � Akvk 	 Bkv
�
k; (2.19)

which is the form of a Bogoliubov transformation. Because
of Eq. (2.17) the time-independent complex Bogoliubov
coefficients must satisfy

jAkj
2 � jBkj

2 � 1; (2.20)

for each k. This is one real condition on the two complex
numbers Ak and Bk. Since multiplication of both Ak and Bk
by an overall constant phase has no physical consequences,
there are only two real parameters needed to specify the
mode function for each k.
043515
The inner product (2.18) is preserved under the
Bogoliubov transformation (2.19), i.e.,

��k;�k� � �vk; vk� � 1; (2.21a)

���
k; �k� � �v�k; vk� � 0: (2.21b)

Thus, we can invert (2.19) and solve for the Bogoliubov
coefficients at an arbitrary initial time, t � t0 or � � �0,
with the result,

Ak � �vk;�k� �
ia3

0

@
�v�k _�k � _v�k�k�0; (2.22a)

Bk � �v�k; �k� � �
ia3

0

@
�vk _�k � _vk�k�0: (2.22b)

Interactions may be incorporated in this treatment as well
[42,43], within the semiclassical large N approximation,
but in order to keep the discussion as simple as possible we
shall not consider scalar self-interactions in this paper.

We restrict our attention to initial states of a free scalar
field, which like the RW geometry (2.1) itself, are also
spatially homogeneous and isotropic, and call such states
RW states. Spatial homogeneity of the RW states, i.e.,
invariance under spatial translations in 
 implies that the
bilinear expectation values, haykak0 i and haka

y
k0 i, can be

nonvanishing if and only if k � k0, while the expectation
values, hayka

y
k0 i and hakak0 i, can be nonvanishing if and

only if k � �k0. In addition, isotropy of the RW states
under spatial rotations implies that the expectation value of
the number operator for k � k0,

haykaki � nk � haka
y
ki � 1; (2.23)

can be a function only of the magnitude k. This constant
number nk in each Fourier mode is the consequence of the
unmeasurable U�1� phase of the mode functions, and be-
comes the third real parameter needed for each k to specify
the initial quantum state of the scalar field. We show in the
next section that if the free field density matrix for a RW
state is described by the general Gaussian ansatz in the
Hamiltonian description, then the state is necessarily a
mixed state if nk � 0.

Because of the two parameter freedom to redefine �k
according to the Bogoliubov transformation, (2.19) and
(2.20), it is always possible to fix the parameters so that
the remaining bilinears are equal to zero [43], i.e.,

haka�ki � hayka
y
�ki � 0: (2.24)

If � is expanded in terms of the vacuum modes vk instead
of �k, then the corresponding annihilation and creation
operators are

ck � Akak 	 B�
ka

y
�k; (2.25a)

cyk � A�
ka

y
k 	 Bka�k: (2.25b)

This is the characteristic form of a Bogoliubov transfor-
mation to a squeezed state. If the arbitrary overall phase is
-7
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fixed by requiring Ak to be real, then the general squeezed
state parameters rk and 4k are defined by

Ak � coshrk; (2.26a)

Bk � ei4k sinhrk: (2.26b)

The bilinear expectation values,

hckc�ki � �2nk 	 1�AkB
�
k � 5kAkB

�
k; (2.27a)

hcykc
y
�ki � �2nk 	 1�A�

kBk � 5kA
�
kBk; (2.27b)

are nonzero, and

Nk � hcykcki � jBkj2 	 �2jBkj2 	 1�nk � nk 	 5kjBkj2;

(2.28)

is the average occupation number of the general mixed,
squeezed state with respect to the vacuum modes vk. We
have introduced the shorthand notation 5k � 2nk 	 1 for
the Bose-Einstein factor in Eqs. (2.27) and (2.28).

The two-point (Wightman) function of the scalar field
may be expressed in terms of the mode functions�k and nk
in the form,

h��t;x���t0;x0�i �
Z

dk��nk��

k�t��k�t
0� 	 �nk 	 1�

��k�t��
�
k�t

0��Yk�x�Y�
k�x

0�; (2.29)

in the case that the expectation value h��t;x�i � 0. When
x � x0, the sums or integrals over the angular part of k can
be evaluated with the result that

h�2�t;x�i �
Z

dk�

P��k; t�

k
; (2.30)

is independent of x. Here

P��k; t� �
k3

2%2 5kj�k�t�j
2 (2.31)

is the power spectrum of scalar fluctuations in the general
RW mixed, squeezed initial state. It may also be expressed
in terms of vk in the form,

P��k; t� � Pv�k; t� 	
k3

%2 �Nkjvk�t�j
2

	 5k Re
AkB�
kv

2
k�t��� (2.32a)

where Pv�k; t� �
k3

2%2 jvk�t�j
2 (2.32b)

is the fluctuation power spectrum in the selected vacuum
state, and Eqs. (2.19) and (2.28) have been used.

In inflationary models this scalar power spectrum be-
comes the source for scalar metric fluctuations, and it is the
power spectrum of the metric fluctuations that is actually
measured in the CMB [44]. Because of the linearity of the
metric fluctuations and the assumed spatial homogeneity of
the classical inflaton field, the resulting power spectrum in
the CMB is the same (up to an overall normalization) as the
043515
quantum scalar field spectrum (2.32) that generates it. For
example, in slow roll inflationary models, the relation
between the linearized curvature perturbation Rk and the
quantum scalar field perturbation #�k is [1]

R k � �

	
H
_��
#�k



t�t�

; (2.33)

where ���t� � h��t;x�i is the classical inflaton field (as-
sumed independent of position) and t� is a time a few e-
folds after the perturbation has exited the horizon. From
(2.33) we find that the power spectrum of Gaussian curva-
ture fluctuations PR�k; t�� that is actually observed in the
temperature fluctuations of the CMB is related to the power
spectrum of scalar field fluctuations P��k; t�� by

PR�k; t�� �
�
H
_��

�
2
P��k; t�� �

1

8%2�

�
H
MPl

�
2 P��k; t��

PBD
� �k; t��

:

(2.34)

In the latter relation we have introduced the standard
definition of the slow roll parameter � [1], not to be
confused with the � � 0;
1 defined in (2.4) denoting
flat, closed or open spatial sections. We have also normal-
ized the spectrum to the scale invariant Bunch-Davies
vacuum power spectrum Pv�k; t�� � PBD

� �k; t��, given ex-
plicitly by Eq. (5.6) of Sec. V below. Since our intention in
this paper is to address the short distance and initial state
effects of the scalar field in a general, model independent
way, we focus on the scalar field power spectrum P��k; t�
of Eqs. (2.32) exclusively in the succeeding sections, leav-
ing the model dependent connection to the scalar metric
power spectrum PR�k; t� unspecified. We do not discuss
tensor perturbations of the metric at all in this paper.
III. DENSITY MATRIX AND HAMILTONIAN

The development of the previous section in terms of
expectation values of the Heisenberg field operator
��t;x�, with initial data specified by the time-dependent
complex mode functions �k is well suited to a treatment of
the covariant energy-momentum tensor and its renormal-
ization. We consider this in detail for general RW states in
the next section. However, the evolution of a quantum
system from given initial conditions may be expressed
just as well in the Schrödinger representation, and it is
the latter approach which makes most explicit the specifi-
cation of the initial state and its unitary evolution in
configuration space. The Schrödinger representation is
also the one best suited to discussions of decoherence of
cosmological perturbations and the quantum to classical
transition in inflationary models, which we discuss in
Sec. VII. We present the Hamiltonian form of the evolution
and corresponding density matrix for a general RW initial
state in this section, demonstrating its full equivalence with
the covariant formulation.
-8
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For a free field theory (or an interacting one treated in
the semiclassical large N or Hartree approximations) it is
clear that the two-point function (2.29) contains all the
nontrivial information about the dynamical evolution of
the general RW initial state. Even if nonzero, higher order
connected correlators do not evolve in time either in a free
field theory or in the leading order large N approximation
to an interacting theory. Hence at least as far as the time
evolution is concerned, a time-dependent Gaussian ansatz
for the Schrödinger wave functional (or density matrix) of
the scalar field about its mean value is sufficient in both
cases. A proof of the equivalence between the large N
semiclassical equations and the evolution of a Gaussian
density matrix has been given for flat Minkowski space-
time in Refs. [43,45]. The general RW case differs from the
flat spacetime case mainly by the appearance of the time-
dependent scale factor, so that with the appropriate mod-
ifications a mixed state Gaussian density matrix also exists
for the scalar field evolution in cosmology.

In order to obtain this Gaussian density matrix, let us
first derive the Hamiltonian form of the evolution equa-
tions (2.5) and (2.11). In its Hamiltonian form, the varia-
tional principle both for the matter and metric degrees of
freedom, should begin with a classical action that contains
only first time derivatives of both � and a. However, the
standard classical action for the scalar field plus gravity
system, viz.,

S� 	 SEH � �
1

2

Z
d4x

�������
�g

p

�ra��gab�rb�� 	m2�2

	 �R�2� 	
1

16%GN

Z
d4x

�������
�g

p
�R� 2%�

(3.1)

contains the Ricci scalar R in both the matter action S�

(when � � 0) and the Einstein-Hilbert action SEH. For RW
spacetimes R contains second order time derivatives of the
scale factor in the _H term of Eq. (2.4). In order to remove
these second order time derivatives from the action one
should add a surface term to the action functional above,
thereby replacing S� 	 SEH in Eq. (3.1) by

Scl
�; _�;a; _a� � S� 	 SEH 	 3
Z
dtd3


d
dt

�

	
a3H

�
��2 �

1

8%GN

�

; (3.2)

which modifies both the matter and gravitational parts of
the classical action at the end points of the time integration,
but otherwise leaves the Lagrangian evolution equations
away from the end points unchanged. In fact, it is this
classical action Scl modified by the surface term in
Eq. (3.2), and not S� 	 SEH whose Euler-Lagrange varia-
tion (which by definition has vanishing #� and #a at the
end points) leads to the scalar field equation of motion
(2.5), as well as the Friedmann equation for the scale factor.
043515
The surface term addition to the gravitational action for a
general spacetime has been given in Ref. [46].

With this corrected classical action Scl, the conjugate
momentum for the scalar field is

&� �
#Scl

# _�
� a3� _� 	 6�H��: (3.3)

If we ignore the Friedmann equation for the scale factor for
the moment, treating a�t� as an externally specified func-
tion of time, then the classical Hamiltonian density of the
scalar field alone is

H� � _�&� �Lcl

�
&2

�

2a3 � 3�H�&�� 	 �&�� 	
a
2
�ij�@i���@j��

	
a3

2
m2�2 	 3�a3

	
�6�� 1�H2 	

�

a2



�2; (3.4)

where we have symmetrized the second term in this ex-
pression involving &��, in anticipation of the replace-
ment of � and &� by noncommuting quantum operators.

In the Hamiltonian framework the three independent
symmetric quadratic variances, h�2i, h�&� 	 &��i
and h&2

�i at coincident times determine the Gaussian
density matrix �̂. The one antisymmetric variance,
h�&� � &��i is fixed by the canonical commutation
relation,


��t;x�;&��t;x0�� � i@#
�x;x0�; (3.5)

which using Eq. (3.3) and 
�;�� � 
&�;&�� � 0 is
equivalent to Eq. (2.15). Let us introduce the definitions,

5k � 2nk 	 1; (3.6a)

8k�t� �
������
5k

p
j�kj; (3.6b)

%k�t� � a3� _8k 	 6�H8k�; (3.6c)

for the time-independent Bose-Einstein factor, 5k, and the
two real functions of time, 8k�t� and %k�t�. We show in
Appendix A that these definitions allow us to express the
three bilinear Fourier field mode amplitudes in the form,

5kj�kj
2 � 82

k ; (3.7a)

5k Re���
k

_�k� � 8k _8k; (3.7b)

5kj _�kj
2 � _82

k 	
@

252
k

4a682
k

; (3.7c)

and this allows in turn for the three independent Gaussian
variances at coincident spacetime points to be written as

h�2i �
1

2%2

Z

dk�k282

k ; (3.8a)

h�&� 	 &��i �
1

%2

Z

dk�k28k%k; (3.8b)

h&2
�i �

1

2%2

Z

dk�k2

�
%2
k 	

@
252

k

482
k

�
: (3.8c)
-9
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Thus, the three independent bilinears depend on a set of
three real functions of k, �8k; %k;5k�, as expected from our
discussion of the initial data in the Heisenberg representa-
tion of the previous section. The usefulness of this particu-
lar set is that �8k; %k� will turn out to be canonically
conjugate variables of the effective Hamiltonian that de-
scribes the semiclassical time evolution of the general
Gaussian density matrix, while 5k is strictly a constant
of the motion. Notice also that the power spectrum defined
in (2.31) can be written in terms of the Gaussian width
parameter 8k�t� directly as

P��k; t� �
k3

2%2 8
2
k �t�; (3.9)

for both the pure and more general mixed state cases. It is
043515
independent of x and the direction of k by the spatial
homogeneity and isotropy of the RW state.

The Hamiltonian and corresponding pure state
Schrödinger wave functional for scalar field evolution in
cosmology has been previously given in Refs. [29,30].
However, a pure state Gaussian ansatz for the wave func-
tional imposes a constraint on the three parameters
�8k; %k;5k�, in fact implying 5k � 1 for all k [43,45]. To
remove this restriction one must allow for the Gaussian
ansatz also to contain mixed terms, so that the density
matrix �̂ � j'ih'j in general. By simply keeping track
of the powers of a�t� and its derivatives, it is straightfor-
ward to generalize the Minkowski spacetime density ma-
trix to the RW case with the result,
hqj�̂�t�jq0i� hq0j�̂0� ��; �p;80;%0;50�jq
0
0i
Y
k�0

hqkj�̂�8k;%k;5k�jq
0
ki

��0

Y
k�0

�2%82
k �

�1=2 exp
�
�
52
k	1

882
k

�jqkj2	jq0kj
2�	

i%k
2@8k

�jqkj2�jq0kj
2�	

52
k�1

882
k

�qkq0�k 	q0kq
�
k�



; (3.10)
where the fqkg are the set of complex valued Fourier
coordinates of the scalar field which are time-independent
in the Schrödinger representation, i.e., the matrix elements
of the Heisenberg field operator ��t0;x� at an arbitrary
initial time t0 are defined by

hqj��t0;x�jq0i �
�Z


dk�Yk�x�qk

�
hqjq0i: (3.11)

The latter matrix element is nonvanishing only for qk �
q0k and is defined precisely by Eq. (3.19) below. In this
Schrödinger coordinate representation the action of the
conjugate momentum operator &� is given by

hqj&��t0;x�jq0i � �i@
�Z


dk�Yk�x�
@
@q�k

�
hqjq0i: (3.12)

Since � is a real field, the complex coordinates are related
by q�k � q�k and occur in conjugate pairs. Hence we have
the rule,

@qk
@q�k0

� #k;�k0 (3.13)
and the 
k terms in the density matrix (3.10) are identical,
and may be combined. The qk�0 field coordinate is real,
and we have separated off the k � 0 component of the
density matrix �̂ in Eq. (3.10), denoting it by �0. In this
spatially homogeneous and isotropic Fourier component
we may also allow for the possibility of a nonvanishing real
mean value of the scalar field,

���t� � h��t;x�i � Tr���t;x��̂�

�
Z 1

�1
dq0q0hq0j�̂0� ��; �p; 80; %0;50�jq0i; (3.14)
which because of the RW symmetry is a function of time
only. This spatially homogeneous expectation value is the
classical inflaton field in inflationary models. Separating
this mode explicitly from the rest is possible strictly only in
a discrete basis, such as that corresponding to closed
spatial sections, � � 	1. The density matrix in the spa-
tially homogeneous sector is
�0�t� � hq0j�̂0� ��; �p; 80; %0;50�jq
0
0i � �2%82

0 �
�1=2 exp

�
i

�p
@
�q0 � q00�

�
52

0 	 1

882
0


�q0 � ���2 	 �q00 � ���2� 	
i%0

2@80

�q0 � ���2 � �q00 � ���2� 	

52
0 � 1

482
0

�q0 � ����q00 � ���


; (3.15)

where
�p�t� � a3� _���t� 	 6�H ���t�� (3.16)

is the momentum conjugate to the spatially homogeneous
mean field ���t�.

Real field coordinates �qR
k; q

I
k� for the k � 0 modes may

be introduced by
qk �
1���
2

p �qR
k � iqI

k�; k � 0 (3.17)

and the functional integration measure over the field coor-
dinate space defined by
-10
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Dq� � dq0

Y
k>0

dqR
kdq

I
k: (3.18)

The inner product appearing in (3.11) is defined by

hqjq0i � #�q0 � q00�
Y
k>0

#�qR
k � q0Rk �#�qI

k � q0Ik� (3.19)

and the general mixed state Gaussian density matrix (3.10)
is properly normalized,

Tr �̂ �
Z

Dq�hqj�̂jqi � 1; (3.20)

with respect to this measure.
It is clear from (3.10) that if 5k � 1 for all k, then the

mixed terms vanish and the density matrix reduces to the
product,

hqj�̂jq0ij5k�1 � hqj'ih'jq0i �
Y
k

'�qk�'��q0k�;

(3.21)

characteristic of a pure state, with

'�qk� � '�q�k� � �2%82
k �

�1=4 exp
�
�
jqkj2

482
k

	 i%k
jqkj2

2@8k



;

k � 0; (3.22a)

'�q0� � �2%82
0 �

�1=4 exp
�
i

�p
@
�q0 � ��� �

�q0 � ���2

482
0

	 i%0
�q0 � ���2

2@80



; k � 0; (3.22b)

which is the Gaussian pure state Schrödinger wave func-
tional in the Fourier representation of the complex field
coordinate basis (3.11). The pure state case corresponds to
nk � 0,5k � 1, and requires only the two real functions of
k and t, �8k; %k� for its full specification.

The Wigner function(al) representation of the Gaussian
density matrix is obtained by shifting qk ! qk 	 xk=2 and
q0k ! qk � xk=2 in (3.10), and Fourier transforming �̂
with respect to the difference variables xk. This yields

FW
q;p��
Z

Dx�

Y
k

�2%@��1 exp
�
�
i
@
p�
kxk

�

�

�
qk	

xk
2

���������̂
��������qk�xk2

�
�F0�q0;p0�

Y
k�0

�%@5k��1

�exp
�
�
jqkj

2

282
k

�
2

@
252

k

j8kpk�%kqkj2


; (3.23)

where p�
k � p�k, and
043515
F0�q0; p0� � �%@50�
�1 exp

�
�
�q0 � ���2

282
0

�
2

@
252

0


80�p0 � �p� �%0�q0 � ����2



(3.24)

is the Wigner function in the spatially homogeneous k � 0
sector. Note that the normalization of the Gaussian Wigner
functional is constant in time, as required for a
Hamiltonian evolution in phase space. For a given qk
this Gaussian function is peaked on the phase space tra-
jectory,

pk �
%k
8k
qk; k � 0; (3.25a)

p0 � �p	
%0

80
�q0 � ���; k � 0; (3.25b)

becoming very sharply peaked on this trajectory in the
formal classical limit @! 0, 5k fixed, although the width
of the peak becomes larger for mixed states with larger 5k
(with @ fixed) [47]. The Wigner functional (3.23) is positive
definite for Gaussian states and may be interpreted as a
normalized probability distribution for any @5k [20].

The functional integration measure (3.18) implies an
inner product,

h'2j'1i �
Z

Dq�h'2jqihqj'1i � exp�i,12� (3.26)

between pure states, and a coherence probability func-
tional,

Tr ��̂1�̂2� �
Z

Dq�

Z

Dq0�hqj�̂1jq

0ihq0j�̂2jqi

� exp��2~,12� (3.27)

for general mixed states in the Schrödinger picture. In the
case of pure states the real functional ~,12 becomes Im,12

of (3.26). In the case �̂1 � �̂2, performing the Gaussian
integrations in the coordinate representation gives

Tr��̂2� �
Z

Dq�

Z

Dq0�hqj�̂jq0ihq0j�̂jqi �

�Y
k

5k

�
�1

� exp
�
�

1

%2

Z

dk�k2 ln5k

�
� 1: (3.28)

The inequality is saturated if and only if5k � 1 for all k, in
which case �̂ � j'ih'j, and the equality is simply a
consequence of the normalization condition, h'j'i � 1
on the pure state wave functional. If for any k, 5k > 1,
Tr�̂2 < 1, which is characteristic of a mixed state density
matrix.

For either a pure or mixed state the Gaussian density
matrix satisfies the quantum Liouville equation,

i@
@�̂
@t

� 
H�; �̂�; (3.29)

provided the time-dependent parameters � ��; �p; 8k; %k� ap-
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pearing in �̂ satisfy the first order equations,

_���
�p

a3�6�H ��; (3.30a)

_�p�6�H �p�a3

	
m2	6�

�

a2	6��6��1�H2



��; (3.30b)

_8k�
%k
a3 �6�H8k; (3.30c)

_%k�6�H%k�a3

	
k2

a2	m
2	�6��1�

�
�

a2	6�H2

�

8k

	
@

252
k

4a383
k

: (3.30d)

The first two of these equations are equivalent to the
second order equation for the spatially homogeneous
mean field,

���	 3H _��	 �m2 	 �R� �� � 0; (3.31)

while the latter two may be combined to yield the second
order equation for the Gaussian width parameter,

�8 k 	 3H _8k 	
�
k2 � �

a2 	m2 	 �R
�
8k �

@
252

k

4a683
k

: (3.32)

The last equation is derived in Appendix A from Eq. (2.11)
and the defining relation (3.6b).

This establishes the equivalence between the
Hamiltonian evolution of the Gaussian density matrix
(3.10), according to (3.29), and the Lagrangian evolution
of general RW initial states described in the previous
section. Since the Hamiltonian (3.4) is Hermitian with
respect to the field coordinate measure (3.18), the time
evolution of �̂ is unitary and the normalization (3.20) is
preserved. Hence there is no dissipation in the system and
the evolution is fully time reversible in principle. The time
evolution of the density matrix parameters � ��; �p; 8k; %k�
may also be derived from an effective classical
Hamiltonian, Heff � Tr�H��̂�, given explicitly by
Eq. (A10) of Appendix A. This effective Hamiltonian is
just the expectation value of the quantum Hamiltonian
H� in the general Gaussian state, in which @ appears as
a parameter. Notice that the role of the @ term in Eq. (3.32)
is to act as a ‘‘centrifugal barrier’’ for the coordinate 8k,
preventing the Gaussian width parameter from ever shrink-
ing to zero. This width depends on the product @5k, so that
the classical high temperature limit @5k ! kBT=!k is
treated on the same footing as the quantum zero tempera-
ture limit @5k ! @. Both classical thermal and quantum
uncertainty principle effects contribute to the width of the
Gaussian in general.

The Hamiltonian evolution and the density matrix de-
scription of RW states is not manifestly covariant under
general coordinate transformations, depending as it does
on a particular slicing of the four-dimensional geometry
into three-dimensional surfaces 
. Since initial data must
be specified on such a spacelike Cauchy surface, this is the
043515
natural 3 	 1 splitting for initial value problems in RW
cosmology. The equation of motion (2.5) is certainly in-
variant under general coordinate transformations, whereas
the initial data must be specified on some three surface 

for any particular physical initial state.

We note that the canonical effective Hamiltonian gen-
erating the time evolution of the wave functional in the
Schrödinger representation is not simply related to the
expectation value hTtti of the covariant energy-momentum
tensor. The key point in reconciling the canonical and
covariant energy densities is that the full system of matter
plus metric fields must be taken into account. After the
addition of the surface terms to the standard classical
action in Eq. (3.1) to remove the second derivatives of
the metric, the momentum conjugate to the scale factor a is

&a �
#Scl

# _a
� �

3

4%GN
_aa	 6� _aa�2 	 6�a2 _��:

(3.33)

Then the total Hamiltonian density, constructed in the
canonical prescription is

H tot � &�
_� 	 &a _a�Lcl � �

1

8%GN
a3Gtt 	 a3Ttt;

(3.34)

where

Gtt � 3
�
H2 	

�

a2

�
; (3.35)

is the tt component of the Einstein tensor, Gab � Rab �
gabR=2 and

Ttt �
1

2
_�2 	 6�H _�� 	

1

2a2 �
ij�@i���@j��

	
m2

2
�2 	 3�

�
H2 	

�

a2

�
�2; (3.36)

is the tt component of the covariant energy-momentum
tensor

Tab � �
2�������
�g

p
#

#gab
S�

� �ra���rb�� �
gab
2
gcd�rc���rd��

� 2�ra��rb�� 	 2�gabgcdrd��rc��

	 �Gab�
2 �

m2

2
gab�2: (3.37)

Invariance under transformations of the time coordinate
leads to the classical equation of constraint,

H tot � 0: (3.38)

Because of Eq. (3.34) this coincides with the tt component
of the classical Einstein equations, viz., the Friedmann
equation for RW cosmologies. This constraint equation is
-12
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equivalent to the requirement that the classical theory be
invariant under arbitrary time reparametrizations, t! t0�t�,
a condition which Hamiltonian evolution in a fixed back-
ground a�t� does not require. The three momentum con-
straints of spatial coordinate transformations, equivalent to
the ti components of Einstein’s equations are automatically
satisfied in any homogeneous, isotropic RW state.

Hence the Hamiltonian and covariant approaches agree,
only for the full system of gravity plus matter, i.e., provided
that the RW scale factor is treated as a dynamical degree of
freedom, on the same footing as the matter field �. In
contrast, the Hamiltonian H� of Eq. (3.4) generates the
correct evolution of the � field in a fixed RW background,
whether or not the scale factor a�t� satisfies Einstein’s
equations, and with no requirement of invariance under
reparametrizations of time. It is the covariant energy-
momentum tensor Tab that is conserved and should be
used whenever the full cosmological theory of matter and
gravitational degrees of freedom are under consideration.
With this important proviso the canonical and covariant
formulations of the initial value problem are completely
equivalent.
IV. ENERGY-MOMENTUM TENSOR OF UV
ALLOWED RW STATES

In the previous sections we have defined and described
general homogeneous and isotropic RW initial states, with
no restriction on the set of three density matrix parameters
�8k; %k;5k� which describes the state and its evolution.
However, because of the Wronskian condition (2.17), that
enforces the canonical commutation relations of the quan-
tum field, the state parameters do not approach zero rapidly
enough at large k for the integrals in (3.8) or the expecta-
tion value of the covariant energy-momentum tensor hTabi,
to converge. Hence these expressions are purely formal,
and a definite renormalization prescription is necessary to
extract the finite state-dependent terms. This is a necessary
prerequisite for any discussion of short distance, initial
state, or backreaction effects in inflation, at least within a
conventional effective field theory framework.

Because the energy-momentum tensor is an operator of
mass dimension four, it contains divergences up to fourth
order in the comoving momentum cutoff kM. Requiring
that the forms of the integrands at large k match those
expected for the vacuum up to fourth order in derivatives of
the metric, allows for all the divergences in hTabi to be
absorbed into counterterms of the relevant and marginally
irrelevant terms of the local gravitational effective action
[32]. This adiabatic order four condition on the initial state
imposes restrictions on the set of parameters �8k; %k;5k� at
large k, and guarantees that the renormalized expectation
value hTabiR will remain finite and well-defined at all
subsequent times [38]. Conversely, failure to impose these
short distance restrictions on the initial state leads to cutoff
dependence which cannot be identified with covariant local
043515
counterterms up to dimension four in the gravitational
action, and which violate the assumptions of a low energy
EFT for gravity consistent with the symmetries of general
covariance implied by the equivalence principle.

The available counterterms up to dimension four in the
coordinate invariant effective action for gravity are the four
local geometric terms %, R, R2 and CabcdCabcd (the square
of the Weyl conformal tensor), which can be added to the
one-loop action of the scalar field, S�1�
g�. Hence the low
energy gravitational effective action is formally

Seff
g� � S�1�
g� 	
1

16%GN

Z
d4x

�������
�g

p
�R� 2%�

�
1

2

Z
d4x

�������
�g

p
��CabcdC

abcd 	 =R2�; (4.1)

where

S�1�
g� �
i@
2

Tr ln��� 	 �R	m2�; (4.2)

and %, GN , �, and = are bare parameters which are chosen
to cancel the corresponding divergences in S�1�
g�. A fully
covariant renormalization procedure is one that removes
all divergences in S�1�
g� by adjustment of the scalar pa-
rameters %, GN , �, and = of (4.1), and only those parame-
ters, in such a way that the total effective action Seff
g� and
the renormalized energy-momentum tensor derived from
it,

hTabiR � �
2�������
�g

p
#

#gab
S�1�R 
g�; (4.3)

is finite (i.e., independent of the cutoff kM) and covariantly
conserved:

rbhTabiR � 0: (4.4)

Thus the renormalized expectation value hTabiR is strictly
well-defined only by reference to the full low energy
effective action Seff
g� and the equations of motion of the
gravitational field following from it,

1

8%GN
�Gab 	 %gab� � hTabiR 	 �R

�C�Hab 	 =R
�1�Hab;

(4.5)

of which it is a part.
The local conserved tensors,

�1�Hab �
1�������
�g

p
#

#gab
Z
d4x

�������
�g

p
R2

� 2gab�R� 2rarbR	 2RRab �
gab
2
R2; (4.6a)

�C�Hab �
1�������
�g

p
#

#gab
Z
d4x

�������
�g

p
CabcdCabcd

� 4rcrdCacbd 	 2RcdCacbd; (4.6b)

derived from the fourth order terms in the effective action
are similar to those which appear in any EFT, whose
equations of motion involve a local expansion in the num-
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ber of derivatives. Provided that we restrict our attention to
the low momentum region of validity of the EFT, these
terms in Eq. (4.3) should be negligible compared to those
involving fewer derivatives of the metric. Their only role is
to provide the covariant UV counterterms necessary to
remove the subleading logarithmic divergences in hTabi.
Conversely, if when multiplied by finite renormalized pa-
rameters �R and =R of order unity, they are not negligibly
small, then the applicability of the EFT framework for low
energy gravity is in question. In cosmology certainly a
necessary condition for this framework to be applicable
is that the Riemann curvature tensor components and their
contractions are negligibly small in Planck length units,
i.e.,

‘2
PljRab

cdj � @GNjRab
cdj � 1; (4.7)

and we restrict ourselves to this regime.
The independent (unrenormalized) components of the

energy-momentum tensor with nonvanishing expectation
values in a general RW initial state are the energy density,

"u�hTttiu

�
1

4%2

Z

dk�k25k

	
j _�kj

2	

�
k2��

a2 	m2

�
j�kj

2




	
3�

2%2

Z

dk�k25k

	
2HRe���

k
_�k�	

�
�

a2	H
2

�
j�kj

2



;

(4.8a)

and the trace,

Tu �
�6�� 1�

2%2

Z

dk�k25k

	
�j _�kj

2 	

�
k2 � �

a2

	m2 	 �R
�
j�kj

2



�
m2

2%2

Z

dk�k25kj�kj

2: (4.8b)

The other nonvanishing components of hTabi in a general
RW state are the diagonal spatial components, hTiji �
pgij. The isotropic pressure p may be obtained from the
energy density " and trace T, by p � �"	 T�=3. The
conservation equation (4.4) in the case of RW symmetry
has only a time component which is nontrivial, namely,

_"	 3H�"	 p� � _"	H�4"	 T� � 0: (4.9)

The unrenormalized expressions (4.8) satisfy this relation
by use of the equation of motion (2.11), provided that a
comoving momentum cutoff kM, introduced to render the
integrals finite, is itself independent of time. An important
criterion for any renormalization procedure is that it pre-
serve this property so that (4.9) remains valid for the fully
renormalized quantities as well. Notice that a fixed cutoff
in the physical momentum pM � kM=a will not preserve
the form of the covariant conservation equation (4.9), be-
cause of the nonvanishing time derivative operating on the
upper limit of the integrals at kM � pMa, if pM � M is
assumed to be independent of time.
043515
In the case of spatially homogeneous and isotropic RW
spacetimes the adiabatic method has been shown to be
equivalent to a fully covariant treatment of the divergences
of the energy-momentum tensor which preserves its con-
servation [48]. The starting point of this method is the
WKB-like form of the exact mode functions,

�k�t� �

��������������
@

2a3/k

s
exp

�
�i

Z t
dt0/k�t0�

�
; (4.10)

which when substituted into (2.11), yields the second order
equation for /k,

/2
k � !2

k 	

�
��

1

6

�
R�

1

2

�
_H 	

H2

2

�
	

3

4

_/2
k

/2
k

�
�/k

2/k
:

(4.11)

From this expression a systematic asymptotic expansion of
the frequency /k in time derivatives of the metric scale
factor a�t� can be developed. At leading order, neglecting
all time derivatives, /k ’ !k. Substituting this into the
right-hand side of (4.11), one finds to second order,

/k’!k	
��� 1

6�

2!k
R�

m2

4!3
k

� _H	3H2�	
5

8

m4

!5
k

H2	 . . . ;

(4.12)

where the ellipsis consists of terms third and higher order
in derivatives of the metric. It is clear that this asymptotic
expansion is valid at large k, i.e., at distance scales much
shorter than the characteristic scale of the variation of the
geometry H�1. Hence requiring the exact solutions of the
mode equation (2.11) to match this asymptotic expansion
to some order implies that the quantum state density matrix
of the scalar field (3.10) should match that of the local
vacuum to that order. It is a statement of the equivalence
principle in the low energy EFT that the local, short
distance properties of the quantum vacuum at a point x
should approximate that of the nearly flat space vacuum
constructed in a local neighborhood of x. Hence the wave
functional (3.22) must have large k components character-
ized by f8k; %kg which are universal, corresponding to local
geometric invariants at x in the effective action, and the
same for all physically realizable states, independent of the
geometry of the spacetime at larger scales.

When (4.12) is substituted into (4.10), and the resulting
mode function is substituted into (4.8) with 5k set equal to
1, one obtains integrands which match the quartic and
quadratic divergent behavior of the unrenormalized stress
tensor components [38]. Up to adiabatic order two these
are explicitly given by

"�2� �
@

4%2a3

Z

dk�k2"�2�k ; (4.13a)

T�2� �
@

4%2a3

Z

dk�k2T�2�

k ; (4.13b)
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with

"�2�k �!k	
m4

8!5
k

H2	
�6��1�

2!k

	
�

a2�H
2�

m2

!2
k

H2



; (4.14a)

T�2�
k ��

m2

!k
�
m4

4!5
k

� _H	3H2�	
5m6

8!7
k

H2	
�6��1�

!k

�

	
_H	H2	

m2

2!2
k

�
2 _H	3H2	

�

a2

�
�

3m4

2!4
k

H2



:

(4.14b)

Notice that these expressions are state-independent and
universal, depending only upon the RW geometry and the
parameters m; � of the matter Lagrangian. Although not
manifestly covariant in form, the results of Ref. [48] in-
dicate that subtracting these second order asymptotic terms
from the unrenormalized energy density (4.8a) and trace
(4.8b) corresponds to adjustment of the generally covariant
counterterms up to two derivatives in the low energy
effective action (4.1). Consistent with this, it may be
checked that the second order energy density "�2� of
Eq. (4.14a) and the second order pressure p�2�, satisfy the
covariant conservation equation (4.9), provided any cutoff
of the k integrals is again independent of time. Hence the
(partially) renormalized energy density "u � "�2�, and trace
Tu � T�2�, which are free of quartic and quadratic diver-
gences, also obey the conservation equation (4.9).

In order to remove the remaining logarithmic divergen-
ces in the energy density and trace in a general RW space-
time, the terms containing up to four derivatives of the
metric must be subtracted as well in four spacetime di-
mensions. The expressions for the adiabatic order four
terms in the mode expansion (4.12), or "�4� and T�4� can
be found in [26,41,48]. We shall not need their explicit
form here, and simply assume that one can identify a
particular solution vk to (2.11), whose frequency function
/k possesses an asymptotic expansion for large k which
agrees with (4.12), up to fourth adiabatic order, and stress
tensor components (4.8), which agree with "�4� and T�4� up
to fourth adiabatic order.

In the general case, this is the necessary and sufficient
condition for the renormalized stress tensor to be finite and
conserved in the RW state corresponding to this particular
mode function vk. For example, in de Sitter spacetime,
043515
these modes, vk, could be taken to be the BD modes [2],
since these are adiabatic order four modes and the BD state
is a candidate vacuum state. A general set of modes�k can
be written then as a Bogoliubov transformation (2.19) of
these vacuum modes. The difference of the renormalized
stress tensor in this general state with that given by the
particular choice of �k � vk and 5k � 1 then define the
finite state-dependent terms in the stress tensor in the
general RW initial state. In order for the initial state defined
by this general set of modes to remain a UV allowed RW
initial state, the state-dependent terms in the renormalized
stress tensor should not spoil the fourth order approach to
the local vacuum which we required of the vacuum modes
vk. Hence we impose the condition that the integrals with
state-dependent integrands must be convergent as well.
Pure or mixed states satisfying this condition will be called
UV allowed RW states.

These UV allowed states are described by mode func-
tions, �k and corresponding density matrix parameters,
�8k; %k;5k� for which the integrands in the stress tensor
components (4.8) agree with the fourth order adiabatic
integrands "�4�k and T�4�

k at large k. We may choose any
particular fourth order adiabatic vk with respect to which to
define the renormalized vacuum energy-momentum tensor
components,

"v � "u
�������k�vk

5k�1

� "�4�; (4.15a)

Tv � Tu
�������k�vk

5k�1

� T�4�: (4.15b)

The definition of the class of UV allowed states then
guarantees that the difference of stress tensors for any
UVallowed RW state with respect to this choice of vacuum
are well-defined and finite. To identify these terms we have
only to introduce the form of the Bogoliubov transforma-
tion (2.19) for the general mode function �k into (4.8), and
using (2.20), separate off the vacuum terms evaluated at
Ak � 1, Bk � 0, and 5k � 1, which are renormalized by
(4.15). The remaining terms are the finite terms for arbi-
trary UV allowed RW states with respect to the given
vacuum choice. Collecting these remaining state-
dependent terms gives the fully renormalized result,
"�hTttiR�"v	
1

2%2

Z

dk�k2�Nkj _vkj2	5kRe
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k _v2
k��	
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�
k2��
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�
�Nkjvkj2	5kRe
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2
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6�H
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Z
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2

�
�Nkjvkj

2	5kRe
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�
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2
k��; (4.16a)

and

T�hTiR�Tv	
�1�6��
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Z

dk�k2�Nkj _vkj2	5kRe
AkB�

k _v2
k��
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2
k���

m2
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dk�k2�Nkjvkj2	5kRe
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k��; (4.16b)
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where Nk is defined by Eq. (2.28). The vacuum terms
denoted by the subscript v defined by Eqs. (4.15) and the
additional state-dependent terms in Eqs. (4.16) are sepa-
rately conserved. Because the state is assumed to be UV
allowed, Nk also approaches zero faster than k�4 as k!
1, and all terms in Eq. (4.16) are finite, i.e., there is no
cutoff dependence and the integrals may be extended to
infinity. Note also that a pure state with nk � 0; 5k � 1
remains a pure (coherent) state under the Bogoliubov trans-
formation (2.19), notwithstanding the nonzero value of
Nk � jBkj2 for this state in the vk basis. The quantum
coherence effects of the Bogoliubov transformation appear
also in the rapidly oscillating interference terms involving
AkB�

k in Eq. (4.16), which must be retained in the general
UV allowed RW coherent state in order to retain the strict
time reversibility of the evolution, as we shall see in
Sec. VI.
V. SHORT DISTANCE EFFECTS IN INFLATION

The development of the previous sections applies to
general RW initial states of the scalar field of any mass
and � in an arbitrary RW spacetime. In this section we
apply this general framework to the special case relevant
for slow roll inflationary models, namely, de Sitter space
with a massless minimally coupled inflaton field. If spa-
tially flat sections are used, then the scale factor for
de Sitter space takes the form,

adS �
1

H
eHt � �

1

H�
; �1<�< 0; (5.1)

with H a spacetime constant related to the scalar curvature
by R � 12H2. The entire de Sitter manifold may be rep-
resented as a hyperboloid of revolution embedded in a five-
dimensional flat Minkowski spacetime [32]. The hyperbo-
loid possesses an O�4; 1� invariance group of isometries,
which can be made manifest if spatially closed coordinates
(� � 1) are used. The flat coordinates (� � 0) with the
scale factor given by (5.1) cover only one-half of the full
de Sitter hyperboloid. None of the results presented in this
section will depend on the choice of flat, open, or geodesi-
cally complete closed spatial sections, so we treat only the
flat sections (� � 0) in detail.

In the flat sections under the transformation of variables
y � �k� � k exp��Ht�, the mode equation (2.12) be-
comes Bessel’s equation with index,

�2 �
9

4
�
m2

H2 � 12�: (5.2)

The BD state [2,49,50] is the unique RW allowed state
which is completely invariant under the full O�4; 1� isome-
try group of de Sitter space. In the coordinates where the
scale factor is given by (5.1) the BD state is specified by the
particular solution of (2.11) given by
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�BD
k �

��������������
%@

4Ha3
dS

s
ei%�=2ei%=4H�1�

� �y�

!
1

adS

�����
@

2k

s
e�ik� as y! 1: (5.3)

For �2 < 0, � is purely imaginary and Eq. (5.3) is inde-
pendent of the choice of sign of Im���. Note that the
asymptotic form for y � jk�j ! 1, holds independently
of the value of �. From the subleading terms in this
asymptotic expansion of the Hankel function H�1�

� for large
values of its argument, it is straightforward to show that the
BD state (with nk � 0) is an adiabatic order four UV
allowed RW state for any �. Hence taking vk � �BD

k is
UV allowed and the adiabatic order four subtractions of
Eqs. (4.15) yield a UV finite vacuum energy-momentum
tensor expectation value in the BD state, which satisfies
Tv � �4"v or pv � �"v, as a consequence of the
de Sitter invariance of this state. The calculation of the
renormalized "v as a function of the parameters m;H; � is
given in Refs. [2,33,50].

The massless minimally coupled field is of particular
interest both because slow roll inflationary models rely on
such a field, and because it obeys the same mode equation
in a RW spacetime as gravitons in a certain gauge [51]. For
this field m � � � 0, � � 3=2 and Eq. (5.3) becomes

�BD
k

�����m�0
��0

� H

��������
@

2k3

s
e�ik��i� k��: (5.4)

Although this state is perfectly UV finite, an infrared
divergence occurs in the two-point function, Eq. (2.29).
The BD state must therefore be modified at very small
values of k [52] which means that, strictly speaking, it is
not possible to take vk � �BD

k for all k. An IR finite
vacuum state is the AF state [28], which is actually a
family of IR finite states. Because these states are not
de Sitter invariant, the energy-momentum tensor for the
massless minimally coupled scalar field in any of these
states is also not de Sitter invariant [28,53]. Nevertheless it
has been proven [27] that the energy-momentum tensor of
the m � 0, � � 0 scalar field for any of the AF states and
indeed for any UV finite, homogeneous, isotropic state,
asymptotically approaches the de Sitter invariant energy-
momentum tensor found by Allen and Folacci [28],
namely, pv � �"v � 119@H4=960%2.

Since an AF state is just the BD state modified at very
small values of k, the short distance or UV properties of the
AF and BD states are identical. In this paper we are only
concerned with these short distance effects, so we take as
our preferred vacuum state vk � �BD

k , even in the m �
� � 0 case, ignoring the infrared divergences in the two-
point function which this generates. This is not a problem
for the power spectrum provided that the k � 0 modes are
not the ones that dominate today. There are no infrared
-16
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divergences in the energy-momentum tensor of the BD
state and the finite difference in hTabiR between the BD
state and any realistic AF state are of order H4 and small if
H � MPl. Hence this distinction will play no role in our
analysis of short distance modifications of the initial state.

With vk � �BD
k the power spectrum for a general UV

allowed pure state given by (2.32) becomes

P��k; t�jnk�0 � PBD
� 	

k3

%2 �jBkj
2j�BD

k j2

	 Re
AkB
�
k��

BD
k �2�� (5.5)

where

PBD
� �

k3

2%2 j�
BD
k j2 � @

�
H
2%

�
2
�1 	 k2�2�; (5.6)

is the spectrum of the Bunch-Davies state for the massless,
minimally coupled field. In the late time limit, �! 0�,

PBD
� !

@H2

4%2 ; (5.7)

the BD power spectrum becomes completely independent
of k, i.e., scale invariant. If one evaluates the power spec-
trum at the time of horizon crossing instead, kj�j �
k=aH� 1, one also obtains a scale invariant spectrum
with a normalization differing slightly from (5.7) by a
constant factor of order unity [20,44].

The terms in (5.5) dependent on jBkj2 and on AkB�
k are

the contributions to the value of the power spectrum for
states different from the BD vacuum state. The first im-
portant point to notice is that if the state is UVallowed then
jBkj must approach zero and P� must approach PBD

� at
large k. From this fact we can draw an immediate con-
clusion, namely, if P� is evaluated at horizon crossing, k �
Ha � eHt, then the power present in any UV allowed
initial state always reverts to its scale invariant BD value
for fluctuations with large enough k which cross the hori-
zon at sufficiently late times. To make this statement more
quantitative suppose that the initial state is nonadiabatic up
to some physical scale M at the initial time t0 with a�t0� �
a0, while above that scale it is the same as the BD state.
The comoving wave number corresponding to this scale is
kM � Ma0. The horizon crossing time for a mode with this
wave number is

tM � H�1 lnkM � t0 	H�1 ln
�
M
H

�
: (5.8)

Fluctuations which leave the horizon at times t > tM will
have k > kM and the standard BD power spectrum, PBD

� .
Thus, if inflation goes on for longer than ln�M=H� e-
foldings, the initial state effects at the physical scale M
inflate to scales far outside the horizon. If the scales we
observe in the CMB now correspond to k > kM, i.e., to
modes which left the horizon of the de Sitter epoch at times
t > tM, then there will be no imprint of the short distance
043515
initial state effects at scale M in the present day CMB
observations. Conversely, if k � kM for the currently ob-
servable modes then the initial state modifications of the
spectrum at scale M may be observable. Taking the present
horizon crossing scale to be of the order of the present
Hubble parameter Hnow, this would imply that the condi-
tion

Ma0=anow ’ Hnow (5.9)

is satisfied. This condition on Ma0=anow is a general con-
straint on the present observability of any initial state
effects in inflation at the scale M in the low energy EFT
framework, regardless of their short distance origin.
Additional constraints and additional parameters may arise
in any given inflationary model. For example in the slow
roll scenario the measured CMB power spectrum depends
on the slow roll parameter � in Eq. (2.34), so that obser-
vational constraints on the CMB power spectrum generally
depend on more parameters than simply those of the initial
state of the scalar field.

A constraint which does not depend on other parameters
of the inflationary model is that arising from the energy-
momentum tensor of initial states different from the BD
state. If these contributions to the stress tensor are too large
the model will deviate significantly from de Sitter space
and may not inflate at all. Specializing our general results
(4.16) to the case of de Sitter space with flat spatial sections
and a scalar field that is massless and minimally coupled,
the relevant energy-momentum tensor components are

" � "BD 	 I1 	 I2; (5.10a)

T � TBD 	 2I1 � 2I2; (5.10b)

p �
"	 T

3
� pBD 	 I1 �

I2
3
; (5.10c)

where the finite state-dependent integrals I1 and I2 for the
case nk � 0; 5k � 1 are

I1 �
1

2%2

Z 1

0
dkk2�jBkj2j _�BD

k j2

	 Re
AkB
�
k�

_�BD
k �2��; (5.11a)

I2 �
1

2%2a2

Z 1

0
dkk4�jBkj

2j�BD
k j2

	 Re
AkB�
k��

BD
k �2��: (5.11b)

In the following subsections we consider various examples
of modifications of the initial data for inflation and make
use of these general expressions to compute the modified
power spectrum and energy-momentum tensor compo-
nents they generate.

A. de Sitter invariant � states

The BD state for the massive scalar field described by
the mode functions (5.3) is a special RW allowed state,
since it is invariant not only under spatial translations and
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rotations, but also under the full O�4; 1� isometry group of
globally extended de Sitter spacetime [2]. For that reason it
has seemed the most natural analog of the Poincaré invari-
ant vacuum state of quantum field theory in flat Minkowski
spacetime, and is usually assumed, explicitly or implicitly,
to be the relevant ‘‘vacuum’’ state of the scalar field in
inflationary models. However, as maximally extended
de Sitter spacetime is very different from flat spacetime
globally, global O�4; 1� invariance is a much stronger
condition than local flat space behavior.

Because it is a RW allowed state the BD state indeed has
a two-point correlation function h��x���x0�i with short
distance properties as x! x0 that depend only on the local
geometry at x, and more specifically are of the Hadamard
form [33]. Since h��x���x0�i is of mass dimension two,
this is equivalent to the statement that the BD mode func-
tions (5.3) possess an asymptotic expansion for large k
which agrees with Eqs. (4.10) and (4.12) up to second
adiabatic order. However, any UV allowed state satisfies
this property. What is special about the BD state is that its
asymptotic expansion for large k agrees with the adiabatic
expansion (4.12) to all orders. This is a much stronger
statement than that it goes over to the local Poincaré
invariant vacuum state in the flat space limit, since an
infinite order adiabatic state carries information about the
geometry of the background spacetime at all scales, in-
cluding correlations on causally disconnected scales much
larger than that of the horizon H�1, a situation which has
no analog in flat space.

The fourth order adiabatic condition on the state guar-
antees that the stress tensor in that state possesses no new
divergences, and can be renormalized accordingly by the
standard local counterterms of the low energy EFT of
gravity. None of these RW allowed states are de Sitter
invariant except the BD state. Nevertheless, we showed
in Ref. [27] that as a consequence of the redshifting of short
distance modes to large distances in de Sitter space, all RW
allowed initial states for Re� < 3=2 have a renormalized
hTabi which approaches the BD value at late times. All
such fourth order RW states are equivalent locally and are a
priori equally possible initial states for an inflationary
model.

The only possible way to generalize the BD state while
maintaining de Sitter invariance, for Re� < 3=2, would be
to require jAkj � jAj and jBkj � jBj be independent of k
and satisfy (2.19) [4,5,49]. Because of the unmeasurable
overall phase of the Bogoliubov coefficients, we can
choose A to be purely real and parametrize these squeezed
states by a single complex number, z � rei4 as

Ak � coshr �
1�����������������

1 � jBj2
p �

1����������������������
1 � e�	�

�
p ; (5.12a)

Bk � ei4 sinhr �
B�����������������

1 � jBj2
p �

e�����������������������
1 � e�	�

�
p : (5.12b)
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The two alternate parametrizations shown in terms of B
and e� are sometimes employed [8,13,49,54].

The Wightman function (2.29) for this general one com-
plex parameter family of squeezed states is de Sitter in-
variant, in the sense that it is a function only of the O�4; 1�
de Sitter invariant distance between the points. However, as
pointed out in Ref. [55] none of these squeezed � states are
truly invariant under the de Sitter isometry group except for
the BD state, r � 0, since the r � 0 states transform under
O�4; 1� transformations by a nonzero (in fact, infinite)
phase. Since the Bogoliubov coefficient Bk in (5.12) does
not approach zero at large k, this class of r or � states are
not UV allowed states unless r � 0 identically. If
Eqs. (5.12) were taken literally for all k, the integrals
(5.10) and (5.11) would diverge quartically. Although these
states were used in various contexts, such as studying the
sign of backreaction effects of particle creation in de Sitter
space [4], and have been reconsidered lately by several
authors [8,13,54], this severe UV divergence is unaccept-
able for a physical initial state within the low energy
effective theory of gravity described by Eq. (4.1). This is
clear even at the level of field theory with no self-
interactions, provided only that it is covariantly coupled
to gravity, since the stress tensor in the general � state has
divergences which depend on �, and thus requires state-
dependent counterterms for its renormalization [33]. When
self-interactions are considered still other unphysical fea-
tures become manifest [54].

Computing the power spectrum for a general �r; 4� state
by using Eq. (2.31) with (5.12), we obtain

P��k; r; 4� � PBD
�

�
1 	 2 sinh2r�

sinh2r

1 	 k2�2

� Re��1 	 ik��2e�2ik��i4�



: (5.13a)

At late times, �! 0� (with k fixed)

P��k; r; 4� !
@H2

4%2 �1 	 2 sinh2r� sinh2r cos4�: (5.13b)

Because of the nonadiabatic UV modification of the BD
state by r at arbitrarily large k, the effects of this modifi-
cation do not redshift away, and essentially the same result
is obtained if Eq. (5.13) is evaluated at horizon crossing
time � � �1=k! 0� with k� � �1 fixed. The scale
invariant modification (5.13) is equivalent to that found
in Ref. [8] with the choice,

sinhr �
H

2M
; (5.14a)

4 �
%
2
�

2M
H

� tan�1

�
H

2M

�
; (5.14b)

which gives
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P� � PBD
�

�
1 �

H
M

sin
�
2M
H

�
	
H2

M2 sin2

�
M
H

�


’ PBD
�

�
1 �

H
M

sin
�
2M
H

�

; (5.15)

where the last approximate equality holds if H � M, with
M the physical UV scale of new physics, denoted by % in
[8]. In the case of exact de Sitter invariance the general
de Sitter invariant squeezed state gives a simple multi-
plicative correction to PBD

� sinusoidally varying with
H=M, which is itself unobservable in the CMB, since it
has no k dependence. Hence it could be interpreted as a
redefinition of the inflation scale H, with no observable
consequences.

More importantly, the k independence of the strictly
de Sitter invariant r and 4 state is untenable in the EFT
framework, since it leads to state-dependent divergences in
the energy-momentum tensor. These are avoided if and
only if the Bogoliubov coefficient Bk approaches zero
fast enough at large k, for the state to be a UV allowed
state. Thus one could consider a cutoff version of the �r; 4�
states in which r � 0 above some large but finite comoving
cutoff,

kM � Ma0; (5.16)

with M the physical cutoff (in units of inverse length) at
some arbitrary initial time t0. One can then assume that
modes with k > kM are in the adiabatic BD state while
modes with smaller values of k are in an �r; 4� state. It is
clear that such a state is no longer de Sitter invariant and
has a power spectrum identical to (5.13) or (5.15) for k <
kM, but reverting back to its BD value for k > kM. Thus in
such a state,

P� � PBD
� f1 	 4�kM � k�
2 sinh2r� sinh2r cos4�g;

(5.17)

instead of (5.13). There is now a sharp break in the power
spectrum, which could be observable in principle, if we are
fortunate enough to have access to the right values of k�
kM in the present CMB. If we assume that this condition is
satisfied by the wave number of the present CMB, then
observations would put a constraint on the magnitude of
the deviations from scale invariance of the spectrum of the
form (5.17). However, since this constraint is model de-
pendent in any given inflationary model, we do not con-
sider it further, and turn instead to the constraints arising
from the contributions of such a cutoff r state to the energy-
momentum tensor during the de Sitter phase.

It is clear from the divergence of the energy-momentum
tensor at infinite kM that the dominant contribution to the
integrals in (5.11) comes from those modes close to the UV
cutoff. Substituting (5.12) into (5.11) and cutting the inte-
grals off at kM � Ma0, gives
043515
I1 �
@M4

16%2

�
a0

a

�
4
sinh2r

�
@M4

64%2

�
a0

a

�
4

sinh2rF�3�
4 �x�jx�Ma0=Ha (5.18a)

I2 �
@M4

16%2

	�
a0

a

�
4
	

2H2

M2

�
a0

a

�
2


sinh2r

�
@M4

64%2

�
a0

a

�
4

sinh2r

�

	
F�3�
4 �x� �

4

x
F�2�
4 �x� 	

4

x2 F
�1�
4 �x�



x�Ma0=Ha

(5.18b)

with

F�p�
4 �x� �

@p

@xp

�
sinx sin�x� 4�

x

�
: (5.19)

The properties of the functions F�p�
4 �x� are discussed in

Appendix B. All contributions to Eqs. (5.18) are finite (for
finite M) at all times, including the initial time. All terms
redshift with the expansion at least as rapidly as a�2, in
accordance with our general theorem in Ref. [27]. The
terms involving F�p�

4 are rapidly oscillating for early times,
Ma0 � Ha, but redshift to zero as fast or faster than the
nonoscillatory terms for late times, Ma0 � Ha. The tran-
sition from the oscillatory to damping behavior occurs at a
time when Ma0 �Ha which is of the same order para-
metrically in M=H as tM, defined in Eq. (5.8). By that time
all the oscillatory terms give contributions to I1 and I2
which are already of order H4 and negligible.

Since the maximum of F�p�
4 �x� is of order unity, at an x of

order unity, while jF�p�
4 �x�j is bounded by 1=x as x! 1,

the oscillating terms are never larger parametrically than
HM3, while the nonoscillating terms make a maximum
contribution to the energy density or the pressure of order,

@M4

16%2
sinh2r (5.20)

at the initial time, a � a0. Comparing this with the energy
density of the inflaton field at the onset of inflation,
3@H2M2

Pl=8% and requiring that the backreaction from
the additional terms (5.18) be smaller gives the bound,

sinhr <
�������
6%

p H
M
MPl

M
: (5.21)

It is possible for the right side of this inequality to be larger
than unity, even for H � M. Hence sinhr could be quite
large and the break in the power spectrum (5.17) large
enough to be observable, without creating too large a
backreaction. This kind of a nonadiabatic initial state
modification of the BD state at short distances produces
the largest effects in the power spectrum (5.17) of the CMB
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without giving an unacceptably large backreaction during
inflation.

If on the other hand r is assumed small, as, for example,
in (5.14), then no term in (5.18) is larger in magnitude than

@H2M2

16%2
; (5.22)

and we obtain only the weaker condition,

M<
�������
6%

p
MPl: (5.23)

In this case the effects on the power spectrum would be
small, though observable in principle, and the physical
momentum scale of the cutoff kM=a0 � M at the onset
of inflation need only be somewhat smaller than the Planck
scale, beyond which there would be no justification for
using the low energy effective action for gravity (4.1) in
any case.

Summarizing, the r states do not match the adiabatic
expansion of the mode functions or the energy-momentum
tensor at any k for which r � 0. They are therefore com-
pletely nonadiabatic states. For that very reason the size of
their effects on the CMB power spectrum for k below the
cutoff scale kM can be arbitrarily large in principle.
Observations of the CMB may provide the strongest con-
straints on this kind of initial state modification, but the
quantitative bound depends on the inflationary model. The
only model independent constraint for these nonadiabatic
modifications of the initial state comes from the magnitude
of the backreaction produced, which is a relatively weak
constraint, giving Eq. (5.21) or (5.23). The largest power of
the physical cutoff Mallowed by dimensional analysis
appears in the stress tensor, i.e., M4 in (5.20) for these
states. To illustrate how these results change if adiabatic
conditions are imposed on the initial state, we consider
next zeroth order adiabatic states.

B. Adiabatic order zero states

A state of given adiabatic order can be obtained by first
substituting the expansion (4.12) into (4.10) and expanding
to that adiabatic order. The result, evaluated at some arbi-
trary time t0 serves as the initial condition for the exact
modes �k. These modes will remain adiabatic to this order
for all time [32].

A zeroth order adiabatic vacuum state for the massless
minimally coupled scalar field can be obtained by setting
/k � !k in Eq. (4.10) and omitting terms proportional to _a
in the resulting expression for _�k since they are of first
adiabatic order. At the time t0 one has then

�k�0� � �H�0

�����
@

2k

s
e�ik�0 ; (5.24a)

_�k�0� � _vk�0� � �iH2�2
0

�����
@k
2

s
e�ik�0 : (5.24b)
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Substituting into (2.22) with vk � �BD
k gives:

Ak �
�
1 	

i
2k�0

�
; (5.25a)

Bk �
i

2k�0
e�2ik�0 : (5.25b)

If the relations (5.25) are substituted into Eq. (5.5), one
finds the late time power spectrum,

P��k;�! 0�� � PBD
�

	
1 �

sin�2k�0�

k�0
	

sin2�k�0�

k2�2
0



:

(5.26)

In this case the initial state effects produce sinusoidal
modulations of the power spectrum with wave number
which vanish as k! 1. Also note that if the adiabatic
order zero initial condition is taken in the infinite past,
�0 ! �1, the modifications vanish as well. This is be-
cause in that limit the adiabatic order zero initial state
becomes the BD state with Ak � 1, Bk � 0, and the spec-
trum reverts to the standard BD value.

Danielsson [7] has considered initial data which are of
the same form as Eqs. (5.24) and (5.25), but despite this
apparently adiabatic construction, rather than viewing �0

as a fixed time Cauchy surface, where initial conditions are
imposed on the state for all k, he takes �0 to depend on k in
such a way that k�0 � �M=H, with M a fixed physical
scale. The motivation seems to have been to avoid making
any statement about modes whose physical wavelength is
shorter than the cutoff M�1, and indeed �0�k� �
�M=�Hk� is the conformal time at which the mode with
comoving wave number k first falls below the physical
cutoff M. However, inspection of (5.25) with this substitu-
tion, shows that jBkj now behaves as a constant, H=2M, as
k! 1. Hence this prescription yields a state which is not
adiabatic at all, but amounts to populating the highest
frequency modes considered with a constant particle occu-
pation number, and choosing a cutoff �r; 4� state with
parameters given by (5.14). Thus the results of the previous
subsection apply. These initial conditions taken literally for
all k lead to an energy-momentum tensor which is quarti-
cally dependent on the cutoff, just as in the previous
subsection. As discussed there, this is not a physically
allowed UV state if extended to arbitrarily large k, i.e.,
arbitrarily late times �0�k� ! 0�.

This example illustrates the shortcomings of considering
modifications of the initial state of inflation and their
effects on the CMB power spectrum alone, without also
considering the associated effects on the energy-
momentum tensor and backreaction. When one considers
only the power spectrum for some finite range of k, it may
seem perfectly reasonable to restrict attention to only those
modes with a physical wavelength larger than the short
distance cutoff scale M�1, since no sum or integral over k
-20
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is required for the power spectrum. However, the stress
tensor does require such a sum over all k, and some
prescription for the ultrashort distance modes has to be
given as these modes will redshift to wavelengths larger
than the short distance cutoff at later times. The essential
question is not at what time �0 these UV modes have
physical wavelengths larger than M�1, but rather what
contribution do these short distance modes make to the
energy-momentum tensor, which involves a sum/integra-
tion over all k, at any time. This question requires that a
choice be made about whether the stress tensor is to be a
consistent source for Einstein’s equations and only if it is,
can the magnitude of the backreaction be reliably esti-
mated. General covariance of semiclassical gravity re-
quires the state to be adiabatic at the very highest trans-
Planckian energies, and this adiabaticity condition in turn
constrains the possible effects of short distance initial state
modifications on the power spectrum at late times, which
might otherwise be overlooked.

Instead of taking �0 to be a function of k let us assume
that all the modes are determined at the same arbitrary but
fixed time �0, independent of k, by Eq. (5.24). This defines
a true adiabatic order zero state. Although Bk given by
(5.25) now does decrease with increasing k, its magnitude
still does not fall off fast enough to make the state fourth
order adiabatic and UV allowed. Since k4jBkj � k3 as k!
1, the energy-momentum tensor can depend as much as
cubically on the comoving momentum cutoff of the mode
sum. The cubic divergence in the state-dependent mode
sum means that there is no local (state-independent) coun-
terterm available to absorb this divergence. The necessity
of imposing a physical cutoff on the behavior of (5.25)
implies that the power spectrum (5.26) cannot be valid for
arbitrarily large k either, but instead must approach the BD
spectrum more rapidly than (5.26) as k! 1. If we insert a
cutoff kM, as in the previous subsection such that the modes
are the BD modes for k > kM, then the condition (5.9) is
necessary for these initial state modifications to be observ-
able in the CMB today.

If Eqs. (5.25) are substituted into Eqs. (5.11) with a
cutoff kM one finds that

I1 �
@HM3

32%2

�
a0

a

�
4

�

	
F�2��x� 	
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�
H
M
F�1��x�



x�kM����0�

; (5.27a)
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4H2
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4H2

M2
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a0

�
F�x�

�
4H3
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�
a
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F��1��x�



x�kM����0�

: (5.27b)

Here F�p� � F�p�
0 with the latter defined in Eq. (5.19), F �
043515
F�0�, and

F��1��x� �
Z x

0
dyF�y� �

Z x

0
dy

sin2y
y

: (5.28)

As expected the effects of the state-dependent terms red-
shift away like a�2 and a�4, and are largest at or near the
initial time � � �0 when they are of order,

@HM3

32%2
: (5.29)

Requiring this to be less than the energy density of the
inflaton field gives the bound,

M< �12%HM2
Pl�

1=3; (5.30)

for the adiabatic order zero state, in place of (5.21) for the
nonadiabatic state.

It is clear that Eq. (5.29), softer by one power of H=M
compared to the previous case (5.20) is the result of the fact
that the adiabatic order zero state has a Bogoliubov coef-
ficient, jBkj, which approaches zero at large k with one
power of 1=k in (5.25). If we had chosen a state which
matches the adiabatic vacuum mode vk to first, second, or
third order, i.e., with Bogoliubov coefficient jBkj ap-
proaching zero at large k like k�2, k�3 or k�4, respectively,
then we should expect to obtain leading contributions to
the stress tensor components that behave like H2M2, H3M
or H4 ln�M=H�, respectively, for large M=H. When the
state is a UV allowed state, the stress tensor components
are independent of the upper limit kM � Ma0 of the mode
integrals for large M, so that the integral may be extended
to infinity. In that case the stress tensor components are of
order H4, independent of the cutoff M, and negligible
compared to the energy density driving the inflation for
all H � MPl.

C. Boundary action approach

The authors of Ref. [25] have discussed setting condi-
tions of the form,

�@t�k 	 C�k�jt�t0 � 0; (5.31)

on the initial state mode functions, motivated by the addi-
tion of boundary terms to the low energy EFT action
functional. Here C is in general a complex function of k.
For the BD state,

CBD � �
_�BD
k �t0�

�BD
k �t0�

�
Hk2�2

0

1 	 ik�0
(5.32)

becomes purely imaginary in the limit kj�0j ! 1. If we
make use of (2.22) we find that the Bogoliubov coefficients
are given by
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Ak �
�i�C� C�BD�

2
������������������������������
�ImC��ImCBD�

p �BD
k �0��

j�BD
k �0�j

; (5.33a)

Bk �
i�C� CBD�

2
������������������������������
�ImC��ImCBD�

p �BD
k �0�

j�BD
k �0�j

; (5.33b)

up to an overall phase.
If attention is restricted to modifications of the BD state

corresponding to the lowest dimension local operator in the
scalar EFT on the initial time surface at t � t0, namely
=�ri��2=M where M is again the physical cutoff scale,
then the authors of Ref. [25] argue that this would lead to a
modified initial condition of the form (5.31) with

C � CBD 	
=k2

a2
0M

: (5.34)

If the effective action on the boundary is real for real time it
would seem that = must be real. The authors of Ref. [25]
treat = as a real parameter, obtaining corrections to the
(real) power spectrum which are linear in =. Treating = as
an arbitrary complex parameter, we obtain the Bogoliubov
coefficients for the case kj�0j � 1,

AkB
�
k ’ �i=� k

2Ma0
e2ik�0

�
1 �

i=k
2Ma0

�

�

�
1 	

k
Ma0

Im=
�
�1
; (5.35a)

jBkj
2 ’

j=j2k2

4M2a2
0

�
1 	

k
Ma0

Im=
�
�1
: (5.35b)

As in the � state case discussed in Sec. VA, these
Bogoliubov coefficients are nonadiabatic and would lead
to a divergent stress tensor if continued to arbitrarily large
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k. Substituting the cutoff kM � Ma0 into the power spec-
trum (5.5) as before, we obtain at late times,

P��k;�!0���PBD
�

�
1	

4�kM�k�k
�kM	kIm=�

�

�
Re�i=�e2ik�0�	j=j2

k
kM

cos2�k�0�

�

:

(5.36)

If j=j is of order one then both terms in Eq. (5.36) are of the
same order at k ’ kM, and the (large) deviations from a
scale invariant spectrum may be observable in present
CMB data. The same remarks about fine-tuning to k�
kM and dependence on the specific features of the infla-
tionary model apply to this initial state modifications as to
the cutoff r states of Sec. VA.

If j=j is assumed to be much less than unity, we can
write = � j=jei� and obtain the modified power spectrum
to linear order in j=j,

P��k� ’ PBD
�

�
1 � j=j4�kM � k�

k
kM

sin�2k�0 � ��

	O�j=j2�


: (5.37)

The finite state-dependent contributions to the stress
tensor given by the integrals (5.11) are easily written
down for the case of general complex =, but because of
the denominators in (5.35) they are rather complicated. In
the case that = is purely real the integrals simplify and may
be evaluated in terms of the functions F�p� � F�p�

0 with the
latter defined in Eq. (5.19). The result is
I1 �
@=M4

128%2

�
a0

a

�
4
F�4��x�jx�kM����0�

	
@=2M4

96%2

�
a0

a

�
4
	
1 	

3

16
F�5��x�



x�kM����0�

(5.38a)

I2 � �
@=M4

128%2

�
a0

a

�
4
	
F�4��x� 	

4H
M

a
a0
F�3��x� 	

4H2

M2

�
a
a0

�
2
F�2��x�



x�kM����0�

	
@=2M4

96%2

�
a0

a

�
4
	
1 	

3H2

2M2

�
a
a0

�
2
�

3

16
F�5��x� �

3H
4M

a
a0
F�4��x� �

3H2

4M2

�
a
a0

�
2
F�3��x�



x�kM����0�

: (5.38b)
All terms are again finite at all times and redshift at late
times at least as rapidly as a�2, in accordance with our
general theorem in Ref. [27]. The oscillatory integrals
F�p��x� are discussed in Appendix B, and the illustrative
particular case of F�4��x� is plotted in Fig. 1.

Since the maximum of F�p��x� is of order 3 to 4 at x �
kM��� �0� � 1 (for p even) or x � 0 (for p odd), the
maximum value of either the terms linear or quadratic in =
is of order,

max�=;=2�
@M4

32%2 ; (5.39)

in contrast to (5.18), where the oscillatory terms were
smaller than the nonoscillatory ones. If the maximum of
the contributions (5.39) are required to be smaller than the
energy density driving the expansion, and =� 1 then the
terms linear in = give the largest contribution and the
strongest bound, viz.,

=< 12%
�
H
M

�
2
�
MPl

M

�
2
: (5.40)

If =< 1 this bound on the term linear in = is of the same
order of magnitude as that obtained in Ref. [16], but
disagrees with the bound in Ref. [17], whose authors argue
that the term linear in = gives no bound on the bulk stress
tensor away from the initial boundary surface at t � t0.
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FIG. 1. The oscillatory function F�p� for p � 4 defined by
Eq. (B5), as a function of x � kM��� �0�.
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The authors of Ref. [17] evaluate integrals such as F�4�

with a Gaussian cutoff in k, rather than with a hard cutoff at
k � kM used here. However this by itself does not account
for the disagreement. A Gaussian cutoff amounts to a
slightly different choice of initial state which is also per-
fectly UV allowed, since it approaches the BD state faster
than any power of k. This different state gives a different
finite contribution to the renormalized stress tensor, which
is of the same order in M as the contribution (5.39), differ-
ing only in its numerical coefficient at the initial time, and
with a smoother, less strongly oscillatory behavior in time
than that shown in Fig. 1 for the hard cutoff kM. In neither
case does the contribution to the energy-momentum tensor
fall off exponentially in the conformal time difference ��
�0 as claimed in Ref. [17]. At late times �! 0� either the
Gaussian or hard cutoff of the initial state momentum
integral yields a finite stress tensor with components that
fall off as a�4, a�3 and a�2, as expected by the redshift of
the RW expansion and in accordance with Ref. [27]. Hence
the finite terms in the renormalized stress tensor which are
first order in = are no more subject to renormalization
ambiguities or localized on the boundary than those which
are second order in=. Which terms give the stronger bound
on = depends entirely on the values assumed for the
parameters kM�0, H and M.

For general values of =, if the ratios H=M and M=MPl

are the same order of magnitude, then requiring that the
maximum contributions (5.39) be smaller than the energy
density driving the expansion yields the bound,

max�=;=2�< 10 $ 100: (5.41)

If =< 1 this bound is easily satisfied, while if => 1 the
maximum value comes from the terms quadratic in =, and
the results of Ref. [17] are recovered. We conclude that
although the precise evaluation of the backreaction effects
of initial state modifications differs from the estimates
given in either [16] or [17], the qualitative final conclusion
043515
that the backreaction constraints are not a very severe
restriction on the parameter(s) of the boundary value action
is similar to the conclusions reached by these authors.

VI. ADIABATIC PARTICLE CREATION AND
DEPHASING

One of the principal physical effects that can be de-
scribed by the semiclassical Gaussian density matrix is
particle creation by a time varying RW scale factor [56].
Although the definition of a ‘‘particle’’ is intrinsically
nonunique in a time varying background, it is possible to
use the adiabatic nature of the UV allowed RW states to
constrain this nonuniqueness considerably. The adiabatic
particle concept was studied in some detail in Ref. [26],
where a proposal was made for the adiabatic basis. The
deficiency with that earlier proposal is that the two parts of
the stress-energy tensor corresponding to vacuum and
particle contributions are not separately conserved. Here
we remedy that defect and in the process remove almost all
of the nonuniqueness in the definition of adiabatic particle
number.

Let us remark first that it is always possible to express
the density matrix �̂ in the time-independent number basis
in which the number operator aykak of Eq. (2.23) is diago-
nal. The transformation to this particle number basis may
be derived by the methods of Refs. [43,57] with the result,

hnj�̂jn0i �
Y
k

2#nkn0k
5k 	 1

�
5k � 1

5k 	 1

�
nk
; (6.1)

where n labels the set of integers fnkg, one for each distinct
k. In this occupation number representation, the density
matrix is time-independent and diagonal, since the 5k are
constants of motion. The positive diagonal matrix elements
of �̂ in this discrete number representation may be viewed
as the probabilities of finding exactly nk particles in the
mode labeled by wave number k, with the particle number
basis defined by the time-independent operator, n̂k �

aykak, i.e.,

haykaki � Tr�n̂k�̂� �
2

5k 	 1

X1
nk�0

nk

�
5k � 1

5k 	 1

�
nk

�
5k � 1

2
; (6.2)

which is equivalent to Eq. (2.23), together with (3.6a).
Since the unitary transformation to the nk basis exactly

undoes the action of the time evolution operator, the pre-
ceding definition of particle number is always time-
independent, no matter how rapidly the geometry changes
with time. Hence it carries no information about particle
creation in the time evolving RW geometry, or indeed
about any features of the time evolution of the system
whatsoever. Moreover, if one makes a Bogoliubov trans-
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formation from one exact set of eigenfunctions �k�t� to
another exact set vk�t�, then the particle number Nk with
respect to the new basis remains exactly time-independent,
cf. (2.28). Useful as these are in the description of the
density matrix and energy-momentum tensor of the field,
any such time-independent parametrization of particle
number is not the appropriate one to describe particle
creation in time varying RW cosmologies. For that purpose
one needs to define an appropriate time-dependent number
operator with respect to an approximate adiabatic vacuum
basis, which agrees with the exact number basis only at
very large k.

The definition of the approximate adiabatic basis is
constrained by several physical and practical requirements.
First the basis should be defined by a set of WKB-like
approximate mode functions,

~� k � a�3=2 ~fk

�

��������������
@

2a3Wk

s
exp

�
�i

Z t
dt0Wk�t0� � i#k�t�

�
; (6.3)

similar in form to Eq. (4.10), for some adiabatic frequency
function Wk and additional time-dependent phase #k�t�, to
be specified. If Wk � /k, with /k a solution to Eq. (4.11),
and #k is constant in time, then ~fk would be an exact
solution to the mode equation (2.12), and we would obtain
the time-independent number basis (6.1). However, there is
no constraint on the ~�k to satisfy the equation of motion
(2.11), except asymptotically for large k, where they should
approach the exact mode functions. Hence we have con-
siderable freedom to choose the two functions, Wk�t� and
#k�t� which define the adiabatic basis. The most physically
meaningful choice of basis is that which requires the
vacuum energy-momentum tensor defined by ~�k to agree
with the adiabatic expansion of the vacuum terms in the
covariant energy-momentum tensor to a fixed adiabatic
order. It is this tensor which couples to gravity and is
covariantly conserved (as distinguished from the canonical
Hamiltonian), so that matching the adiabatic basis (6.3) to
this tensor will guarantee separate conservation of the
vacuum polarization and particle contributions to the
stress-energy.

It is clear that the leading (adiabatic order zero) terms in
Eqs. (4.14) are vacuum polarization terms, and not particle
contributions, since they appear even in static or flat space-
times, where there can be no particle creation whatsoever.
Thus, the frequencyWk of the adiabatic modes (6.3) should
certainly match the zeroth order term !k in order for the
energy-momentum tensor of these modes to match the
adiabatic order zero terms in Eq. (4.14). However, adia-
batic order zero matching is not sufficient. If we do not
require matching ~�k to at least second order in the adia-
batic expansion of the vacuum vk, then we will find particle
contributions to the energy-momentum tensor which di-
verge quadratically in the UV cutoff kM. These divergent
043515
adiabatic order two terms are clearly part of the state-
independent vacuum polarization contribution to hTabi,
and not the particle content of the state. Choosing the
adiabatic frequency and phase in (6.3) to match the adia-
batic order two expansion terms (4.14) exactly guarantees
that they will be completely removed by the subtractions in
(4.15). It is this physical requirement that the power law
divergences in the conserved stress tensor components
should be associated with the state-independent geometri-
cal contributions and not the state-dependent particle con-
tent that determines the adiabatic basis functions ~�k and
renders the definition of adiabatic particle number (almost)
unique. The only remaining nonuniqueness of the particle
definition arises from the possibility of matching the vac-
uum contributions to the stress tensor to higher than second
order in the adiabatic expansion.

In order to define the adiabatic basis precisely let the
exact mode functions be expressed in terms of the adiabatic
modes (6.3) as

fk � �k�t�~fk 	 =k�t�~f
�
k; (6.4a)

in terms of time varying Bogoliubov coefficients, �k�t� and
=k�t�. The time-dependent Bogoliubov coefficients are
required to satisfy

j�k�t�j2 � j=k�t�j2 � 1; (6.4b)

for each k, in order to guarantee that the transformation of
bases is a canonical one. As in the case of the time-
independent change of bases discussed in Sec. II, this
allows a two real parameter freedom in the choice of the
~fk for each k (up to an overall irrelevant phase). Rather
than using the Bogoliubov coefficients or Wk and #k as the
two independent parameters, it is more convenient to use
Wk and a different independent function of time Vk�t�,
defined by the relation on the first time derivative of
Eq. (6.4a). We define Vk implicitly by the relation,

_fk �
�
�iWk 	

Vk
2

�
�k�t�~fk 	

�
iWk 	

Vk
2

�
=k�t�~f

�
k: (6.4c)

The canonical transformation from the exact mode func-
tions fk to the approximate adiabatic functions ~fk is now
completely specified byWk and Vk, while #k of Eq. (6.3) is
fixed (implicitly) in terms of these two. Before determining
Wk and Vk explicitly from the stress tensor components we
first compute the particle number N k and density matrix
in the general adiabatic basis determined by Eqs. (6.4).

If the original field operator ��t;x� is expanded in terms
of the approximate adiabatic mode functions, ~fk and ~f�k,
the corresponding annihilation and creation operators,

~ak�t� � ak�k�t� 	 ay�k=
�
k�t�; (6.5a)

~ayk�t� � ayk�
�
k�t� 	 a�k=k�t�; (6.5b)

are generally time-dependent. Because of Eq. (6.4b) and
the freedom to choose the phase of �k we may set
-24



SHORT DISTANCE AND INITIAL STATE EFFECTS IN . . . PHYSICAL REVIEW D 72, 043515 (2005)
�k�t� � coshrk�t�; (6.6a)

=k�t� � ei4k�t� sinhrk�t�; (6.6b)

in analogy with Eq. (2.26). With respect to this time-
dependent adiabatic basis, the number density of particles
in mode k is

N k�t� � h~ayk~aki � nk 	 5kj=k�t�j
2

� sinh2rk�t� 	 nk cosh2rk�t�; (6.7)

which also depends on time in general. However, ifWk and
Vk are chosen properly at large k, N k will be an adiabatic
invariant with respect to the effective classical Hamiltonian
(A10), and therefore slowly varying in time for a slowly
varying RW scale factor. The number density of particles
spontaneously created from the vacuum with nk � 0 is
j=k�t�j

2. An expression for this quantity in terms of Wk
and Vk is easily obtained from Eq. (6.4) in the same way as
(2.22), with the result,

j=k�t�j2 � sinh2rk�t� �
1

2@Wk

�������� _fk 	
�
iWk �

Vk
2

�
fk

��������2

�
1

4Wk/k

	
�Wk � /k�

2 	
1

4

�
Vk 	

_/k

/k

�
2


; (6.8)

where the last expression follows from inserting the WKB-
form (4.10) for the exact mode function fk in terms of the
exact frequency /k. From this we observe that if (and only
if) the adiabatic frequency matches the exact frequency,
Wk � /k and Vk � � _/k=/k, then the Bogoliubov coef-
ficient =k vanishes identically. In that case there is no
particle creation and N k � nk is strictly a constant of
the motion.

Using the value of j=kj
2 the density matrix may be

expressed in the adiabatic particle basis, by the methods
of Refs. [43,57]. Unlike Eq. (6.1) the off-diagonal matrix
elements of �̂ do not vanish in this basis, and are quite
complicated in the general case [43,57]. Although the
diagonal elements are time-dependent, they depend on
time only through the function rk�t�. This means that
they are relatively much more slowly varying than the
corresponding phase variables 4k�t�, upon which the off-
diagonal elements of �̂ also depend. Thus, in this adiabatic
number basis it becomes possible to argue that particle
creation is related to phase decoherence or dephasing of
the state: since macroscopic observables are generally
relatively insensitive to the process of averaging over the
rapidly varying phases, one can replace the exact �̂ in this
basis by its more slowly varying diagonal elements only
[58]. In the pure state case, with adiabatic vacuum con-
ditions in the infinite past, these diagonal elements simplify
and are given explicitly by [43]

�nk�2lk�k; t� �
�2lk � 1�!!

2lk lk!
sechrk tanh2lkrk: (6.9)
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The diagonal matrix elements are nonvanishing only for
even integers, corresponding to the fact that particles are
created from the vacuum in pairs. The positive numbers
(6.9) have the interpretation of the probabilities of finding
exactly lk pairs of adiabatic particles at time t in the mode
labeled by k � jkj, with vacuum initial conditions as t!
�1. If this replacement of the exact pure state density
matrix (3.10) by its phase averaged diagonal elements is
justified, then the von Neumann entropy suffers the re-
placement,

S � �Tr��̂ ln�̂�

! �
1

2%2

Z
dkk2

X1
lk�0

�2lk�k; t� ln�2lk�k; t�; (6.10)
which becomes time-dependent. Although, in general the
effective von Neumann entropy does not grow strictly
monotonically in time, starting in an initial pure state
with all of the rk � 0 leads to a larger effective entropy
at late times when some of the modes have rk � 0
[39,58,59]. This shows that particle creation is directly
related to increased squeezing of the initial state, and the
growth of entropy this entails corresponds to the effective
loss of information resulting from averaging over the rap-
idly varying phases e
i4k�t� in macroscopic physical
observables.

The validity of a truncation of the density matrix to its
diagonal terms only in the adiabatic number basis and the
associated loss of phase information will depend on the
initial state and the details of the evolution [58]. When
particle creation takes place from initial vacuumlike states
this would seem to be quite a good approximation in the
cases that it has been tested quantitatively [39,43].
Conversely, if one starts from a different type of initial
state the squeezing parameters need not increase mono-
tonically with time, and phase averaging is not justified. If
it should happen in some special case(s) that the squeezing
coefficients rk are constant in time for all k, so that the
adiabatic particle number basis becomes an exact vacuum
basis, then by making the appropriate time-independent
Bogoliubov transformation (2.19) to that basis one can set
all the rk � 0. Then it is clear that the 4k become undefined
and no phase decoherence of the initial state can occur by
particle creation or dephasing effects in 4k.

With these general remarks on the adiabatic particle
number basis and dephasing let us fix the still undeter-
mined functions Wk and Vk. Following Ref. [26] let us
replace the exact mode functions �k by ~�k, and their time
derivatives _�k by d ~�k=dt � ��iWk 	 Vk=2 � 3H=2� ~�k
with �k � 1, =k � 0, and nk � 0 in Eqs. (4.8) for the
stress tensor components. In this way we obtain the (cutoff
dependent) adiabatic vacuum contributions in this basis to
the energy density and trace, namely,
-25
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~" �
@

4%2a3

Z

dk�k2~"k; (6.11a)

~T �
@

4%2a3

Z

dk�k2 ~Tk; (6.11b)

with ~"k and ~Tk the following functions of Wk and Vk:
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: (6.12b)
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The adiabatic vacuum basis and particle number may be
fixed now by setting these two expressions in terms of Wk
and Vk precisely equal to the corresponding state-
independent vacuum contributions to energy-momentum
tensor in a general RW spacetime to second adiabatic
order, given previously by Eq. (4.14). That is, we require
~"k � "�2�k ; (6.13a)

~Tk � T�2�
k ; (6.13b)
thus giving two relations for the two functions, Wk and Vk
which determine the adiabatic particle basis. Solving for
Wk we find
Wk �
�m2 	 �6�� 1��2!2

k 	HVk 	 _H� 	 �6�� 1�2�HVk 	 _H 	 2�
a2�

2�6�� 1�"�2�k 	 T�2�
k

: (6.14)
If this is substituted back into either of Eqs. (6.13), we
obtain a quadratic equation for Vk, so that the two functions
Wk and Vk which determine the adiabatic vacuum modes
can be determined algebraically for any � and m for the
general RW geometry.

In this way the energy-momentum tensor components
may be written in a form analogous to (4.16), where
because of the exact matching (6.13) the vacuum terms
up to second adiabatic order are now identically zero.
Therefore the remaining nonvacuum terms defined with
respect to the time-dependent adiabatic vacuum neces-
sarily satisfy the covariant conservation equation (4.9).
The nonvacuum terms in the adiabatic particle basis can
be obtained from (4.16) with the replacements of Nk !
N k, vk ! ~�k, Ak ! �k and Bk ! =k. The nonvacuum
energy-momentum tensor components for general Wk and
Vk are given explicitly in [26], and we do not repeat them
here.

Since Eq. (6.13) matches the vacuum energy-momentum
tensor to second adiabatic order, the adiabatic frequency
Wk obtained from solving Eqs. (6.13) agrees with the
adiabatic expansion (4.12) up to and including second
adiabatic order, differing from /k only at adiabatic order
four. On the other hand since V2

k and HVk appear in
Eqs. (6.13), and Vk contains terms of odd adiabatic orders,
Vk needs to agree with � _/k=/k ’ � _!k=!k only up to
first adiabatic order, i.e.,

Vk � �
_!k

!k
	 . . . � H

�
1 �

m2

!2
k

�
	 . . . (6.15)

where the ellipsis includes terms of third adiabatic order
and higher. Hence Vk 	 _/k=/k is in general nonvanishing
at adiabatic order three, and the lowest order term in the
adiabatic expansion which appears in the expression for
j=kj2 in Eq. (6.8) is sixth order, i.e., the adiabatic particle
number N k defined by Eqs. (6.7), (6.8), and (6.13) is a
fourth order adiabatic invariant. Time derivatives of N k
are correspondingly highly suppressed, and particle crea-
tion is small in slowly varying backgrounds, particularly at
the highest wave numbers. In flat spacetime, H, � and Vk
vanish, and (6.14) together with (4.14) give Wk � !k
which is time-independent. Hence the adiabatic modes
become exact modes, =k � 0, and no particles at all are
created.

In the general case, Eqs. (6.13) match the vacuum
energy-momentum tensor contributions to second adia-
batic order and therefore satisfy a weaker condition than
the fourth order UV allowed state condition. However the
second order condition (6.13) is sufficient to render the
total number of adiabatic particles created finite, i.e.,

N �t� �
1

2%2

Z

dk�k2N k�t�<1: (6.16)

Note that this would not be the case had we matched the
energy-momentum tensor components only to the lowest
(zeroth) order adiabatic expansion, or followed the
Hamiltonian diagonalization procedure of Ref. [56]. The
requirement of matching the stress tensor contributions
(6.12) exactly to a fixed adiabatic order as in (6.13) (rather
than reexpanding the algebraic expressions for Wk and Vk)
removes essentially all of the ambiguity in the definition of
the particle number, and guarantees that the nonvacuum
particle contribution is separately conserved.

Because of the weighting of the momentum integrals for
the energy-momentum tensor components (4.16) by an
extra power of k with respect to Eq. (6.16), the identifica-
tion (6.13) still leaves a logarithmic cutoff dependence in
the vacuum energy-momentum tensor components. Unlike
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the power law divergences which are noncovariant in form,
the remaining logarithmic cutoff dependence is propor-
tional to the geometric tensor �1�Hab of Eq. (4.6a). Hence
it can be viewed as a geometric vacuum polarization con-
tribution in the low energy EFT equipped with a short
distance cutoff. Even if the short distance cutoff is of the
order of the Planck length, the higher derivatives in �1�Hab
mean that this contribution is negligible for all geometries
varying more slowly than the Planck scale. Of course one is
free to define the adiabatic particle basis by replacing the
second order terms in (6.13) with the corresponding adia-
batic order four (or higher) components "�4� and T�4�,
which would remove also the covariant logarithmic cutoff
dependence in hTabi. Matching (6.3) to fourth order would
make the resulting particle number (6.7) an adiabatic in-
variant of even higher (in fact, eighth) order. Matching to
higher orders requires accurate knowledge of higher and
higher order time derivatives of the metric scale factor, and
hence of the entire spacetime evolution. Because only the
power law divergences are noncovariant in form in the
adiabatic procedure, matching to higher than second order
is both unnecessary from the point of view of the covariant
UV divergence structure of the stress tensor, and contrary
to an EFT approach in terms of the minimal number of
spacetime derivatives whenever EFT and the limits (4.7)
apply. The tensor �1�Hab actually vanishes in the important
special case of de Sitter space, which renders the distinc-
tion between matching to second or fourth adiabatic order
to remove the remaining logarithmic divergences in the
stress tensor superfluous in this case. Finally, the second
order definition of particle number through Eqs. (6.7),
(6.8), and (6.13) is also the minimal one necessary to yield
a finite total number of created particles (6.16) in a general
RW spacetime. We emphasize that such a definition of
particle number is intrinsic, based on the physical require-
ment of identifying and removing the vacuum contribu-
tions to the conserved stress tensor, and does not depend on
the existence of flat in and out regions of the spacetime, or
any extraneous notion of particle detectors [2].

We now apply this general second order definition of
adiabatic particle number to two important special cases
with zero mass. When m � 0 the relations (6.13) simplify
043515
considerably. For the massless conformally coupled field
(m � 0, � � 1=6), the condition on the trace (6.13b) be-
comes empty but the first condition (6.13a) gives directly,

m � 0; � �
1

6
: �Wk �!k�

2 	
�Vk �H�2

4
� 0;

(6.17)

which is solved uniquely for real Wk and Vk by

Wk � !k �
k
a
; (6.18a)

Vk � H � �
_Wk

Wk
: (6.18b)

Because the fourth order adiabatic terms in "�4� and T�4�

vanish for the massless conformally coupled field in an
arbitrary RW spacetime, this result for Wk and Vk remains
unchanged if the fourth order adiabatic basis is used.
Indeed as a result of the relations (6.18), the adiabatic basis
functions (6.3) become exact solutions of Eq. (2.11) for the
massless, conformally coupled field in a general RW
spacetime. This means that the Bogoliubov coefficients
�k and =k become time-independent. As in Eq. (2.19),
N k may be identified with the time-independent Nk and
there is no production of massless, conformally coupled
scalar particles.

In a second important special case, the massless mini-
mally coupled field (m � 0; � � 0), Vk drops out of
Eq. (6.14), and either of Eqs. (6.13) gives a quadratic
equation for Vk, which is easily solved. Thus for m � 0
and � � 0 we obtain

Wk�
2�k2���

2k2��	a2� _H	2H2�

k
a
; (6.19a)

Vk�3H�
2�k2���1=2

2k2��	a2� _H	2H2�

�

	
4H2k2��a2 _H	��

�
_H	2H2�

�

a2

�

1=2
; (6.19b)

in a general RW spacetime. Although this definition of the
adiabatic basis was determined by matching only to second
adiabatic order, by Eqs. (6.13), in the special case of
de Sitter space it becomes exact. Explicitly in flat spatial
sections, � � 0, for which _H � 0, we have
m � 0; � � 0; a � adS: Wk �
k2

k2 	H2a2
dS

k
adS

; (6.20a)

Vk � H
k2 	 3H2a2

dS

k2 	H2a2
dS

� �
_Wk

Wk
; (6.20b)

with adS given by Eq. (5.1). As a result of these relations, the adiabatic mode function ~�k is an exact solution of the mode
equation (2.11) in de Sitter space. Indeed from Eqs. (5.1) and (6.20),Z t

dt0Wk�t
0��k3

Z � d�0�02

1	k2�02 �k�� tan�1�k��: (6.21)

Hence,
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@

2a3Wk

s
exp

�
�i

Z t
dt0Wk�t

0�

�

�H

������������������������
@�1	k2�2�

2k3

s
exp��ik�	 itan�1�k���

��i�BD
k jm�0

��0
(6.22)

by Eq. (5.4). The fact that the second order adiabatic mode
functions ~�k of Eq. (6.3) coincide with the exact BD mode
functions up to a constant phase for the massless, mini-
mally coupled field in de Sitter space implies that the
Bogoliubov coefficients �k and =k are time-independent.
This may be verified explicitly by computing Eq. (6.8) with
Wk and Vk given by Eqs. (6.20). Thus N k may be identi-
fied with Nk, and there is no production of massless,
minimally coupled scalar particles in the special case of
exact de Sitter spacetime. This implies that there is also no
phase decoherence of the free massless inflaton field in the
de Sitter epoch, with respect to the adiabatic particle basis
defined by Eqs. (6.13). In the next section we will corrobo-
rate the absence of decoherence for the massless inflaton
by computing the decoherence functional directly. A com-
parison of this result with the results of earlier work, such
as that of Ref. [47] is given in Appendix C.

To conclude this section we remark that the adiabatic
particle number basis should provide an efficient approxi-
mation of the low energy semiclassical limit of the energy-
momentum tensor. If we neglect the phase correlated bi-
linears,

h~ak~a�ki � 5k sinhrk coshrke
�i4k ; (6.23)

which should make a relatively small contribution to hTabi
in the mode sum over k, compared to the terms involving
N k, then the energy density becomes simply

" ’ ~" � "v 	
1

2%2a3

Z

dk�k2"�2�k N k: (6.24)

This should provide a useful analytic approximation to the
energy density in a general UVallowed RW state whenever
the RW scale factor varies slowly enough for the higher
order adiabatic corrections to "�2�k and N k, to be
negligible.

The quantity "�2�k in Eq. (6.24), given by (4.14a) has the
interpretation of the single particle energy in the time
varying RW background. Because this second order single
particle energy satisfies

_" �2�
k � �H"�2�k �HT�2�

k ; (6.25)

where T�2�
k is given by Eq. (4.14b), and the finite vacuum

contributions of Eqs. (4.15) are separately conserved, it
follows that the conservation equation (4.9) is exactly
satisfied, provided that the trace in the quasiparticle ap-
proximation corresponding to Eq. (6.24) is
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T ’ ~T � Tv 	
1

2%2a3

Z

dk�k2T�2�

k N k

�
1

2%2Ha3

Z

dk�k2"�2�k

_N k: (6.26)

Defining the ideal fluid pressure in this approximation to be
that in the absence of any particle creation, i.e.,

~p �
"v 	 Tv

3
	

1

6%2a3

Z

dk�k2�"�2�k 	 T�2�

k �N k;

(6.27)

the conservation equation (4.9) becomes then

_~"	 3H�~"	 ~p� �
1

2%2a3

Z

dk�k2"�2�k

_N k; (6.28)

after transposing the last term of Eq. (6.26) to the right-
hand side of Eq. (6.28). Thus in the quasiparticle limit
where it is valid to make the replacements (6.24) and
(6.26), the term involving _N k carries the interpretation
of the rate of heat dissipation per unit volume due to the
nonconservation of adiabatic particle number N k. If the
particles are in quasistationary local thermodynamic equi-
librium at the slowly varying effective temperature Teff�t�,
then this rate of heat dissipation may be equated to Teff

times the rate of effective entropy density generation seff ,

Teff
dseff

dt
�

1

2%2a3

Z

dk�k2"�2�k

_N k; (6.29)

by the first law of thermodynamics. The effective entropy
generation gives rise to an effective bulk viscosity in the
energy-momentum tensor due to particle creation, even in
the absence of self-interactions of the quasiparticles.

Let us emphasize that the entropy generation and bulk
viscosity are only effective, i.e., an approximation valid
only to the extent that the phase information contained in
the off-diagonal elements of the exact density matrix (3.10)
in the adiabatic particle basis cannot be recovered.
Likewise the correlations (6.23), which also depend on
the rapidly varying phases 4k conjugate to N k should
make a negligible contribution to macroscopic physical
quantities. If the exact phase information is retained, then
the evolution remains unitary, as required by the equiva-
lence of the evolution to that of the effective classical
Hamiltonian (A10). However, the extension of the usual
description of the cosmological fluid by nonideal terms is
suggested by the adiabatic particle creation rate and phase
averaging in the low energy EFT. This may provide a
useful phenomenological description in some circumstan-
ces, and also shows the approximations which are neces-
sary in principle to pass from the fully reversible field
theory description of matter in cosmological spacetimes
to an effective, irreversible kinetic theory with a definite
arrow of time.
-28
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VII. DECOHERENCE

The density matrix description of the evolution of arbi-
trary RW states in Sec. III allows us to describe the
quantum to classical transition, i.e., decoherence, in a
cosmological setting. The fundamental quantity of interest
is the decoherence functional between two different histor-
ies, ,12 or ~,12 [35], given by Eqs. (3.26) or (3.27), of the
pure or mixed state cases, respectively. Evaluating the
Gaussian integrals needed to compute Tr��̂1�̂2� with the
measure (3.18) gives

~, 12 �
1

4%2

Z

dk�k2 ln

�
1

4

�
51k

82k

81k
	 52k

81k

82k

�
2

	
�81k%2k � 82k%1k�

2

@
2 	

�51k � 52k�
2

4



; (7.1)

where f81k; %1k;51kg and f82k; %2k;52kg are the Gaussian
state parameters of the two different histories. This sim-
plifies somewhat in the case of two different pure state
histories,

Im ,12 � ~,12j5k1�5k2�1

�
1

4%2

Z

dk�k2 ln

�
1

4

�
82k

81k
	
81k

82k

�
2

	
�81k%2k � 82k%1k�

2

@
2



: (7.2)

In this pure state case the decoherence functional may be
expressed in terms of one complex frequency function,

5k �
@

282
k

�
i%k
8k

(7.3a)

� �ia3
_��
k

��
k

� 6i�Ha3; (7.3b)

where the last relation is derived in Appendix A. It is
straightforward to rewrite Eq. (7.2) in the two alternate
forms,

Im,12 �
1

4%2

Z

dk�k2 ln

�
j51k 	 5�

2kj
2

4�Re51k��Re52k�



(7.4a)

�
1

4%2

Z

dk�k2 lnfja3�6�

1 �a6�
1 �1k

_���
2k

� a3�6�
2 �a6�

2 �
�
2k

_��1kj
2=@2g: (7.4b)

Because of the infinite product of integrations in the func-
tional measure (3.18), it is clear that some condition(s) will
have to be imposed on the two states or density matrices in
these expressions, in order to insure a convergent result for
large k. The otherwise ill-defined divergent nature of (3.26)
has been noted by several authors [34–36]. The divergen-
ces in the decoherence functional are similar to those
encountered in the unrenormalized expressions for the
energy-momentum tensor components, Eqs. (4.8). In that
case, the superficial degree of divergence was quartic,
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whereas that of Eq. (7.1) or (7.2) is reduced by one power
of k, and can be no more than cubically divergent at large k.
A method to handle this cubic and subleading linear cutoff
dependence of the decoherence functional (7.1) or (7.4) is
needed before meaningful results in the low energy EFT
description can be obtained.

In order to study the cutoff dependence of the inner
product and decoherence functional, let us write

51k � 5k 	 #5k; (7.5a)

52k � 5k � #5k; (7.5b)

and expand the logarithm in Eq. (7.4a) to second order in
#5k. We find that

Im ,12 �
1

4%2

Z

dk�k2 j#5kj

2

�Re5k�
2 	O�#5k�

4: (7.6)

The leading behavior of Re5k at large k may be read from
the first order equation satisfied by this function, viz.,

52
k � ia3 _5k 	 a6

	
!2
k 	 �6�� 1�

�
6�H2 	

�

a2

�

� 12i�Ha35k; (7.7)

which is easily derived from the definition (7.3a) and the
relations (3.30c) and (3.30d). From Eq. (7.7) we see that

Re 5k ! ka2

	
1 	O

�
1

k2

�

; k! 1: (7.8)

Since #5k is the same order as 5k generically at large k,
the decoherence functional (7.6) will generally diverge as
the UV cutoff is removed. Indeed the asymptotic behavior
given by Eq. (7.8) implies at large k that

#5k ! 2ka�#a� 	 . . . (7.9)

so that (7.6) will diverge cubically in the cutoff kM, unless
#a � 0 identically. Hence no meaningful comparison be-
tween two different RW geometries in the low energy EFT
can be made through the decoherence functional.

This divergent short distance behavior of the decoher-
ence functional could have been anticipated from the rela-
tionship between ,12 and the closed time path [37] action
functional. Variation of the CTP action functional with
respect to the metric, gab, produces connected correlation
functions of the energy-momentum tensor with particular
time orderings of their arguments. The first variation is the
same as that of Seff
g� in Eq. (4.1), and produces the stress
tensor expectation value (4.3). The second order variation
(7.6) is formally proportional to

Im
Z t

0
d4x

�������
�g

p Z t

0
d4x0

���������
�g0

q
#gab�x�&abcd�x; x0�#gcd�x0�:

(7.10)

The symmetrized expectation value of stress tensors,
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FIG. 2. The imaginary part of the one-loop vacuum polariza-
tion given by Eqs. (7.10) and (7.11), which enters the decoher-
ence functional at second order in the metric variation, #gab
(represented by the wavy lines). The shaded part of the diagram
represents the complex conjugation of the unshaded part, and the
resulting squared amplitude is proportional to the probability for
the creation of a scalar particle/antiparticle pair, represented by
the diagonal cut through the diagram.
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Im &abcd�x:x0� �
1

2
hTab�x�Tcd�x0� 	 Tcd�x0�Tab�x�i

(7.11)

is proportional to the noise kernel of fluctuations around
the mean hTabi [60]. In flat spacetime, where one may
transform conveniently to the momentum representation
(7.10) is proportional to the cut in the one-loop polarization
diagram of Fig. 2, corresponding to the squared matrix
element for the creation of particle pairs by the perturba-
tion #gab. We shall be particularly interested in the specific
homogeneous variation, #gab � 2�#a=a�gab which pre-
serves the RW symmetries.

In coordinate space Eq. (7.11) is a singular distribution
at coincident points x � x0, involving in general up to four
derivatives of #�4��x; x0�. Thus, the second variation (7.10)
exists only for metric variations, #gab, which fall off
rapidly enough in both space and time to permit integration
by parts of the derivatives of #�4��x; x0�. Since the time
interval 
0; t� is finite in Eq. (7.10), the surface terms
generated by these integrations by parts do not vanish at
the end points in general, and can generate up to two
derivatives of delta functions at equal spacetime argu-
ments, i.e., formal cubic (and subleading linear) divergen-
ces in the decoherence functional, which is just what is
obtained in from Eqs. (7.6), (7.8), and (7.9).

The unrenormalized decoherence functional is not only
cutoff dependent in general but also ambiguous in that it
depends upon the precise definition of the local measure
(3.18) [36], which does not affect the physical content of
the evolution described by the density matrix (3.10). In
fact, had we used the ~qk � aqk field to parametrize the
density matrix rather than qk, then in order to normalize
the state properly the measure would have to be replaced
by a product of the d~qk. This differs from Eq. (3.18) by an
infinite number of local factors of a���. Hence, we should
expect the inner product and decoherence functional de-
fined by this measure on the field configuration space to
differ from the previous one by cutoff dependent contact
terms. Indeed, the frequency function 5k would be modi-
fied to
043515
~5 k �
5k

a2 ; (7.12)

for which the leading term in the large k limit (7.9) cancels.
The explicit form of #5k is given below by Eq. (7.22), with
the result that the decoherence functional (7.4a) generally
diverges cubically as the comoving momentum cutoff
kM ! 1. Because of the different large k behavior of
~5k, if the same steps leading to Eq. (7.22) are carried out
for ~5k instead, the resulting expression lacks the last term
in Eq. (7.22), and for that reason its contribution to the
decoherence functional is only linearly divergent [34,36].
This shows that the degree of divergence is dependent on
the field parametrization and the definition of the inner
product (3.26) on the field configuration space, which
should not have any physical consequences for decoher-
ence due to a slowly evolving geometry in the low energy
EFT.

Because of the appearance of divergences of odd
powers, associated with the boundaries of the region of
integration, the divergences in the decoherence functional
cannot be removed by renormalization of the bulk terms in
the low energy effective action (4.1). Instead their renor-
malization requires introducing counterterms in the effec-
tive action, of dimension one and three, which are strictly
localized on the boundaries. Adiabatic regularization may
be used to define the necessary subtractions of the deco-
herence functional, corresponding to renormalization of
these boundary terms, in a way quite analogous to the
adiabatic subtractions used to define the renormalized
energy-momentum tensor [38]. Since terms in the effective
action up to dimension three are involved, we define the
renormalized decoherence functional by subtracting from
its unrenormalized value the adiabatic expansion of the
functional up to and including its third adiabatic order
asymptotic expansion for large k. Since the decoherence
functional involves an absolute square, this requires sub-
tracting only up to the first adiabatic order in the expression
inside the absolute value signs in Eq. (7.4). That is, we
define the renormalized decoherence functional by

Im ,�R�
12 �

1

4%2

Z

dk�k2

�������� #5�
k

Re5k
�

�
#5�

k

Re5k

�
1

��������2
; (7.13)

where the subscript 1 denotes the expansion of the quantity
in parentheses up to and including first order in its adia-
batic expansion. This leaves the leading unsubtracted be-
havior at large k to be second adiabatic order under the
absolute value signs, and fourth adiabatic order in its
square in ~,�R�

12 . This corresponds to subtracting all surface
divergences up to and including third adiabatic order in the
CTP action functional, which is what is required.

To carry this out explicitly we begin by rewriting
Eq. (7.3b) in conformal time in the form,

5�
k � ia2�

0
k

�k
	 6i�a0a � ia2 +

0
k

+k
	 i�6�� 1�a0a; (7.14)
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and computing its first variation,

#5�
k � 2ia#a

+0
k

+k
	 ia2 #+

0
k

+k
� ia2 +

0
k#+k
+2
k

	 i�6�� 1�#�a0a�: (7.15)

The variations of +k and its derivative are computed by
varying Eq. (2.14), to obtain

#+00
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k2 	m2a2 	 �6�� 1�

�
a00

a
	 �

�

#+k

� �

	
m2#a2 	 �6�� 1�#

�
a00

a

�

+k; (7.16)

which is solved in terms of the retarded Green’s function of
the differential operator on the left-hand side,

GR��;�
0� �

i
@
�+k���+
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(7.17)

in the form,

#+k��� � �
Z
d�0GR��;�0�
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	 �6�� 1�#
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a00

a

�

�0
+k��

0�

� #�k���+k��� 	 #=k���+
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k���; (7.18)

where

#�k��� � �
i
@

Z �
d�0

	
m2#a2 	 �6�� 1�

� #
�
a00

a

�

�0
j+k��0�j2; (7.19a)
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i
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m2#a2 	 �6�� 1�

� #
�
a00

a

�

�0

+k��

0��2: (7.19b)

The lower limits of the integrals in Eq. (7.19) depend on the
initial conditions of the wave functional and give a time-
independent phase in the decoherence functional below
which we shall not need to specify. Substituting
Eq. (7.18) into (7.15) and using the Wronskian condition
(2.17), we find that the #�k term cancels and we are left
with

#5�
k � 2ia#a

+0
k

+k
�
@a2

+2
k

#=k 	 i�6�� 1�#�a0a�: (7.20)

Using Eq. (2.17) again, we have

Re 5k �
@a2

2j+kj
2 ; (7.21)

so that we secure finally,
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This form is valid for a scalar field of arbitrary mass and
curvature coupling in a general RW spacetime. In order to
renormalize it, we should subtract its asymptotic expansion
up to adiabatic order one and substitute the square of the
subtracted quantity in Eq. (7.13). We carry out this sub-
traction explicitly in two important special cases, namely,
when the mass m � 0 and the curvature coupling � takes
on either its conformal or minimally coupled value, � �
1=6; 0, respectively.

Using Eq. (7.22) together with (7.19) and the form of
Eq. (2.14) in the massless, conformally coupled case, we
obtain
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� 2
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a
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(7.23)

which involves no time derivatives and hence is clearly of
adiabatic order zero. If we were to substitute this directly
into Eq. (7.4a), we would obtain a cubically divergent
decoherence functional. Since this cubic divergence can
be removed by simply redefining the canonical variables as
in Eqs. (7.12) and (A16), it is clear that it can have no
physical significance. However, if we first subtract off the
adiabatic order zero part (which in this case is the entire
expression), then the renormalized decoherence functional
(7.13) in an arbitrary RW spacetime is identically zero for
the massless, conformally coupled field. This lack of de-
coherence corresponds to the lack of particle creation for
this field in any RW space which we have found in the
previous section.

In the massless, minimally coupled case the correspond-
ing expression is
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Re5k
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0; (7.24)

which is generally nonzero. Note that the first term in this
last expression depends upon the variation of the RW scale
factor over the entire evolution from an arbitrary (unspe-
cified) initial time at the lower limit of the �0 integral to the
final time �, while the last two terms of Eq. (7.24) depend
upon the variation of the scale factor only at the final time.
It is these two latter surface terms that generate divergen-
ces in the unsubtracted decoherence functional (7.6), when
integrated over k. Such surface terms arise in the covariant
expression (7.10) if the conservation of Tab is used to
express the tensorial noise correlator (7.11) in terms of
-31



ANDERSON, MOLINA-PARÍS, AND MOTTOLA PHYSICAL REVIEW D 72, 043515 (2005)
covariant derivatives of scalar quantities, and then an in-
tegration by parts is performed.

Specializing to de Sitter spacetime and using the form of
the BD mode functions (5.3), the last term in Eq. (7.24)
becomes

2i+�
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@+k
a#a��2

k�
0jdS � 2
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�
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i
k�

�
: (7.25)

Here the first term is of adiabatic order zero as in the
previous conformally coupled case, while the second
term is of adiabatic order one. Hence both terms are fully
subtracted in the renormalized decoherence functional.
The other contact term becomes in de Sitter space,
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which consists of an adiabatic order one and order three
term. Hence subtracting up to adiabatic order one removes
the first term but leaves the 1=k2�2 term unaffected. Since
the first term in Eq. (7.24) involves two time derivatives of
the scale factor or its variation, it is adiabatic order two,
and likewise unaffected by the subtraction of up to adia-
batic order one terms. Hence finally,
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which is UV finite and nonzero for arbitrary variations of
the scale factor.

If we consider the particular variation of the scale factor
in which the de Sitter Hubble parameter H is varied in
Eq. (7.27), while the conformal time � is held fixed, then
a0=a � �1=� and a00=a � 2=�2 are fixed and Eq. (7.27)
vanishes. Hence we find that under variations of the
de Sitter curvature, which compare the wave functionals
of the quantum field in macroscopically different de Sitter
universes but at the same conformal time, the decoherence
functional for the massless, minimally coupled field van-
ishes identically.

The ambiguous contact terms which are field parametri-
zation dependent are removed by the adiabatic regulariza-
tion and renormalization procedure in Eq. (7.13), as the
two cases considered explicitly above show. Hence,
Eq. (7.13) yields both a finite decoherence functional free
of unphysical dependence on the short distance cutoff, and
one that is independent of redefinitions of the scalar field
variables and inner product. The renormalized decoher-
ence functional proposed here vanishes in the two special
massless cases of the conformally coupled field in a gen-
eral RW background and the minimally coupled field in a
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de Sitter background, the same two cases studied in the
previous section where the adiabatic particle creation rate

_N k � 0. Since the imaginary part of the polarization
tensor (7.11) is just the cut one-loop diagram shown in
Fig. 2, which is proportional to the probability for the
metric fluctuation to create a particle/antiparticle pair
from the vacuum, a close correspondence between the
lack of particle creation and a vanishing decoherence func-
tional for homogeneous metric perturbations in the Hubble
parameter is not unexpected. The fact that the adiabatic
subtraction procedure for the decoherence functional pro-
posed here supports this correspondence suggests that it is
the correct one to define a finite decoherence functional for
semiclassical cosmology. In order to prove that this is
indeed the unique procedure for defining a physical deco-
herence functional in the EFT approach, the adiabatic
subtractions of first and third order should be related to
definite boundary counterterms in the CTP effective action
which reside exclusively on the surfaces at the initial and
final times. These boundary terms may be related to those
found recently by the authors of Ref. [19]. We leave the
determination of these surface terms for a future
investigation.
VIII. SUMMARY AND CONCLUSIONS

The principal objective of this paper has been to place
semiclassical cosmology within a consistent EFT frame-
work, in which possible short distance effects can be
parametrized by well-defined initial conditions at the onset
of inflation. Although the general principles and adiabatic
methods underlying such an EFT framework have been
available for some time, we have thought it worthwhile to
make these assumptions completely explicit in this paper,
and demonstrate how they can be applied and extended in a
number of different ways, which may be useful for future
cosmological models and observations. Because of the
several different applications considered in the paper, we
collect here and summarize the principal results, together
with the relevant equations and sections where each point
is discussed in detail.

(1) The general homogeneous, isotropic RW pure state
is defined by field amplitudes �k obeying (2.11), which are
linear combinations of vacuum modes (2.19) with
Bogoliubov coefficients satisfying (2.20).

(2) These pure RW states are squeezed vacuum states
annihilated by ak in the mode expansion (2.6) and speci-
fied by two real time-independent squeezing parameters
(2.26), up to an overall irrelevant phase.

(3) The wave functionals of these pure RW states are
Gaussians (3.22) in the Schrödinger picture field coordi-
nate basis.

(4) The general RW state with a nonzero occupation
number (2.23) evolves as a mixed state described by the
Gaussian density matrix (3.10) in the coordinate basis.
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(5) The general RW mixed state requires three indepen-
dent functions of k, �8k; %k;5k�, which are related to the
mode function�k by (3.6) or (3.7), and determine the three
equal time symmetrized correlators of the field by (3.8) in
the Hamiltonian description.

(6) The first two of these functions of k, �8k; %k� are
time-dependent and form a canonically conjugate pair for
the unitary evolution of the density matrix (3.29) and
(3.30), described by the effective classical Hamiltonian
(A10)–(A12), in which @ appears as a parameter.

(7) The third function of k, 5k � 2nk 	 1 is strictly a
constant of the motion.

(8) The form of the Hamiltonian of the scalar field
evolution in a fixed RW background depends on the field
parametrization, and in general is not equal to the covariant
energy density " � Ttt.

(9) The covariant and Hamiltonian descriptions of the
evolution are completely equivalent nonetheless, and the
total Hamiltonian of the combined matter plus geometry
system (3.34) vanishes by time reparametrization invari-
ance for evolutions satisfying the classical Friedmann
equation.

(10) The power spectrum of scalar field fluctuations in
the general homogeneous, isotropic, mixed RW state is
given by Eqs. (2.32).

(11) The spectrum of the actual scalar metric fluctua-
tions observed in the CMB are dependent upon additional
parameters which may be different for different inflation-
ary models. An example is the dependence on the slow roll
parameter � in Eq. (2.34).

(12) The energy density and trace of the stress tensor in
the general RW state is given by Eqs. (4.16), with "v and Tv
the values in the fiducial vacuum state.

(13) In order to be a UV allowed RW state with short
distance behavior consistent with general covariance of the
low energy EFT and the equivalence principle, the fiducial
vacuum state and all other physical states must be fourth
order adiabatic states.

(14) Any modification of the fourth order adiabaticity
condition at short distances has the potential to disturb the
conservation of hTabi, and/or violate the equivalence prin-
ciple at arbitrarily large distances and late times, which
would also violate the decoupling hypothesis of low energy
EFT.

(15) The Bunch-Davies state is a UV allowed fourth
order adiabatic state, which is also invariant under the
full O�4; 1� isometry group of global de Sitter space-
time.

(16) The general one complex parameter squeezed �
states of the scalar field in de Sitter space are not UV
allowed fourth order adiabatic states (even for non-self-
interacting scalar fields), except for the single value of the
parameter corresponding to the BD state.

(17) Because all UV allowed states are fourth order
adiabatic, their power spectrum approaches that of the
BD state for sufficiently large comoving wave numbers
043515
k > kM, and sufficiently late times t > tM after the onset of
inflation (5.8), when EFT methods should apply.

(18) As a consequence of this kinematic effect of the
expansion, any modifications of the power spectrum due to
initial state effects require a coincidence of fine-tuning
(5.9) in order to be observable in the CMB today.

(19) Assuming such fine-tuning and cutting off the
squeezed � state at a finite large comoving momentum
scale kM produces potentially observable scale dependent
modifications of the CMB power spectrum (5.17), whose
magnitude depends in general upon additional parameters
of the inflationary model.

(20) Cutoff � states and nonadiabatic states generally
produce the largest backreaction contributions during the
inflationary epoch, given by (5.18), which are of order
(5.20).

(21) States which are adiabatic order zero up to the
cutoff scale kM produce scale dependent modifications of
the CMB power spectrum (5.26) which may be observable
as modulations in the CMB power spectrum.

(22) Such states also produce backreaction effects dur-
ing inflation which are somewhat smaller in amplitude than
the cutoff � states, and which can be calculated exactly
from Eqs. (5.10), (5.11), and (5.27).

(23) The modifications of the initial state given by the
addition of a local higher dimension operator with coeffi-
cient = in the boundary action approach are nonadiabatic
and yield in general modifications to the CMB power
spectrum at linear order, Eqs. (5.36) and (5.37) in =.

(24) The backreaction contributions to the stress tensor
during inflation are also linear in = in general and of order
=M4, which may be significant, depending on the cutoff
and inflation scales M and H, but do not disturb inflation if
(5.40) is satisfied.

(25) The adiabatic expansion of the stress tensor can be
used also to define a time-dependent particle number basis
for particles created by the RW expansion, (6.7), with
parameters Wk and Vk defined by Eqs. (4.14), (6.12), and
(6.13) matched to the stress tensor exactly at second adia-
batic order.

(26) The total particle number defined in this way is the
minimal one that is finite, (6.16), and gives separately
conserved vacuum and particle contributions to the cova-
riant stress tensor.

(27) In the general massive case the particle number
is not conserved but is a sixth order adiabatic invar-
iant, implying that the density matrix in the adiabatic
particle representation has slowly varying diagonal com-
ponents but much more rapidly varying off-diagonal
components.

(28) Although the exact evolution is unitary and fully
reversible, averaging over the rapidly varying off-diagonal
elements of the density matrix in this basis gives rise to an
approximation which is effectively dissipative, and in
which the effective von Neumann entropy of the reduced
density matrix (6.10) may increase with time.
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(29) Neglect of these same phase correlations in the
energy-momentum tensor via the approximations (6.24)
and (6.27) gives an effective rate of heat dissipation due
to particle creation (6.28) and (6.29), even in the absence of
matter self-interactions.

(30) Notable exceptions to this dephasing occur in sev-
eral special massless cases, due to the absence of particle
creation for a conformally invariant scalar field in any RW
spacetime, and for a massless, minimally coupled scalar
field in de Sitter spacetime.

(31) The latter result implies that the quantum phase
information in the density perturbations derived in slow
roll inflationary models is not washed out by the expansion
alone, so that the loss of phase decoherence in such models
must be due to other effects not considered in this paper.

(32) The decoherence functional for arbitrary mixed
Gaussian states given by Eq. (7.1) is related to the noise
kernel, or imaginary part of the second variation CTP
effective action (7.10).

(33) The adiabatic method may be used again to define
the renormalized decoherence functional (7.13) in semi-
classical cosmology, which is independent of the short
distance cutoff and field reparametrizations.

(34) This renormalized decoherence functional van-
ishes in the special cases where there is no adiabatic
particle creation, corroborating the close connection be-
tween particle creation, dephasing and decoherence.

(35) Comparison of the decoherence functional defined
here with a previous result in the massless case is given in
Appendix C.

(36) Verifying this adiabatic subtraction through a co-
variant subtraction of the surface terms in the CTP action
functional would allow the study of decoherence effects
and the quantum to classical transition quantitatively and
reliably in general RW cosmologies for the first time.
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APPENDIX A: EQUATIONS FOR �k AND �k AND
THEIR EFFECTIVE HAMILTONIAN

In this appendix we compute the three independent and
symmetric Gaussian variances h�2i, h�&� 	 &��i and
h&2

�i, and derive the equations of motion for the density
matrix parameters 8k and %k defined in Sec. III.

The square of the defining relation for 8k in Eq. (3.6) is

5kj�kj
2 � 82

k : (A1)

Hence using Eq. (2.29) and evaluating the sums or integrals
over the angular part of k, we find directly for the first
variance at coincident spacetime points,

h�2i �
1

2%2

Z

dk�k25kj�kj

2 �
1

2%2

Z

dk�k282

k ; (A2)

which is explicitly real and independent of x. In order to
compute the second variance we differentiate Eq. (A1) to
obtain

5k
2
��k

_��
k 	

_�k�
�
k� � 5k Re��k

_��
k� � 8k _8k; (A3)

which is the second of relations (3.7). Hence, using
Eq. (3.3) the second symmetric variance at coincident
points is

h�&� 	 &��i � a3h� _� 	 _�� 	 12�H�2i

�
a3

%2

Z

dk�k25k
Re��k

_��
k�

	 6�Hj�kj
2�

�
1

%2

Z

dk�k28k%k: (A4)

By squaring Eq. (A3) and using the Wronskian condition
(2.17) in

��k
_��
k 	

_�k�
�
k�

2 � 4j�kj
2j _�kj

2 	 ��k
_��
k �

_�k�
�
k�

2

� 4j�kj
2j _�kj

2 �
@

2

a6
; (A5)

we obtain

5kj _�kj
2 � _82

k 	
@

252
k

4a682
k

; (A6)

which is the third member of Eq. (3.7). Hence the third
Gaussian variance is
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h&2
�i � a6h _�2 	 6�H�� _� 	 _��� 	 36�2H2�2i

�
a6

2%2

Z
dkk25k
j _�kj

2 	 12�H Re��k
_��
k� 	 36�2H2j�kj

2�

�
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_82
k 	
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k
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k

	 12�H8k _8k 	 36�2H282
k




�
1

2%2

Z
dkk2

�
%2
k 	

@
252

k

482
k

�
: (A7)
This establishes Eqs. (3.8) of Sec. III.
The second order differential equation for 8k may be

derived by differentiating (A3), and making use of
Eqs. (2.11) and (A6) to obtain

�8 k 	 3H _8k 	
�
k2 � �

a2 	m2 	 �R
�
8k �

@
252

k

4a683
k

; (A8)

which is Eq. (3.32) of the text.
The equations for the parameters of the Gaussian density

matrix may be compared with those arising from the purely
classical Hamiltonian (3.4), viz.,

_� �
&�

a3 � 6�H�; (A9a)

_&� � 6�H&� � a3

	
��3 	 �

a2 	m2 	 �6�� 1�

�

�
�

a2 	 6�H2

�

�: (A9b)

Note, in particular, that for @ � 0 the equation of motion
for%k (3.30d) differs from Eq. (A9b) of the purely classical
evolution by the last centrifugal barrierlike term in
Eq. (3.30d) which is a result of the uncertainty principle
being enforced on the initial data through the Wronskian
condition (2.17).

The first order evolution equations for the parameters
� ��; �p; 8k; %k;5k� may also be regarded as Hamilton’s
equations for the effective classical Hamiltonian,

Heff
 ��; �p; f8k; %k;5kg� � Tr�H��̂� � H�� ��; �p�

	
1

2%2

Z

dk�k2H k�8k; %k;5k�

(A10)

where

H�� ��; �p� �
�p2

2a3 � 6�H �p ��	
a3

2

	
m2 	 6�

�

a2

	 6��6�� 1�H2



��2; (A11)

is the classical Hamiltonian of the spatially independent
mean values, � ��; �p� and
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H k�8k; %k;5k� �
%2
k

2a3 � 6�H%k8k 	
a3

2

	
!2
k 	 �6�� 1�

�
�

a2 	 6��6�� 1�H2



82
k 	

@
252

k

8a382
k

;

(A12)

is the effective Hamiltonian describing the Gaussian fluc-
tuations around the mean field for the Fourier mode k. It is
straightforward then to verify that Hamilton’s equations for
this effective classical Hamiltonian (in which @ appears as
a parameter), viz.,

_�� �
@H�

@ �p
; (A13a)

_�p � �
@H�

@ ��
; (A13b)

_8k �
@H k

@%k
; (A13c)

_%k � �
@H k

@8k
; (A13d)

are identical with Eqs. (3.30) of the text. Hence 8k and %k
are conjugate variables with respect to the effective clas-
sical Hamiltonian (A10).

If we define the complex frequency 5k by (7.3a) of the
text, then by differentiating that definition and using
Eq. (3.30) we obtain its equation of motion (7.7). On the
other hand Eq. (A3) with 5k � 1, together with the
Wronskian condition (2.17) imply

@ � 2ia38k _8k � �2ia3�k
_��
k; (A14)

so that dividing by 282
k � 2�k�

�
k, and using the definition

of %k in Eq. (3.6) we obtain

5k �
@

282
k

�
i%k
8k

� �ia3
_��
k

��
k

� 6i�Ha3; (A15)

which establishes Eq. (7.3b) of the text.
Finally we remark that H� depends on the choice of

variables used to represent the scalar field. Indeed, if we
choose the conformal field variable,

+ � a�; (A16a)
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instead of � and define the conjugate field momentum,

&+ �
@Scl

@+0
� +0 �

a0

a
+ �m � 0; � � 0� (A16b)

for the massless, minimally coupled field, the canonical
Hamiltonian,

H + �
1

2
&2
+ 	

k2

2
+2 	

a0

a
+&+ � aH� 	 _a�&�;

�m � 0; � � 0�; (A17)

differs from H� defined by Eq. (3.4), and neither is equal
to the time component of the covariant stress tensor which
couples to gravity for general m and �. This is to be
expected since the canonical transformation from
��;&�� to �+;&+� is a time-dependent transformation,
and neither Hamiltonian is a conserved quantity. This has
the consequence that while every representation is physi-
cally equivalent, describing exactly the same physical time
evolution, there is no spacetime or field coordinate inde-
pendent meaning to the basis which diagonalizes the in-
stantaneous canonical Hamiltonian in a particular set of
coordinates [56], and no reason to prefer any such choice
over any other as a physical particle basis.
APPENDIX B: EVALUATION OF INTEGRALS

In evaluating the integrals I1 and I2 in Eqs. (5.11) which
contribute to the energy density and pressure of the mass-
less, minimally coupled scalar field, we encounter integrals
of the form, Z kM

0
dkk2n sin�2ku� 4�

� ���n
k2n	1
M

22n F�2n�
4 �kMu�; (B1a)Z kM

0
dkk2n	1 cos�2ku� 4�

� ���n
k2n	2
M

22n	1 F
�2n	1�
4 �kMu�: (B1b)

Integrals of this kind are easily evaluated by successive
differentiation with respect to u of the elementary integral,

Z kM

0
dk sin�2ku� 4� �

cos4� cos�2kMu� 4�
2u

� kMF4�kMu�; (B2)

where

F4�x� � F�0�
4 �x� �

cos4� cos�2x� 4�
2x

�
sinx sin�x� 4�

x
: (B3)

Thus, in Eq. (B1) we have
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F�p�
4 �x� �

@p

@xp

�
sinx sin�x� 4�

x

�
; (B4)

and, in the particular case 4 � 0,

F�p��x� � F�p�
0 �x� �

@p

@xp

�
sin2x
x

�
: (B5)

We also define

F��1��x� �
Z x

0
dyF�y� �

Z x

0
dy

sin2y
y

: (B6)

For any 4 and p � 0, F�p�
4 �x� are damped oscillatory

functions whose maxima occur at x � 0 for p odd and
on the first oscillation for p even. The values of x and F�p�

4
at the maximum are of order unity. The leading behavior as
x! 1 is obtained by differentiating the oscillatory nu-
merator only, i.e.,

F�p�
4 �x� !

1

x
@p

@xp
sinx sin�x� 4� 	O

�
1

x2

�
: (B7)

Thus the absolute value of F�p�
4 �x� is bounded by 1=x for

x� 1. Hence the maximum value of the integrals (B1) are
of order k2n	1

M and k2n	2
M respectively for u� k�1

M , while
they behave like k2n

M and k2n	1
M respectively, multiplied by a

rapidly oscillating function of kMu, as kMu! 1. The form
of F�4��x� as a function of x in the special case of p � 4 and
4 � 0 is given by Fig. 1 of the text.
APPENDIX C: COMPARISON OF SQUEEZING IN
DIFFERENT BASES

In Sec. VI we found that in the second order adiabatic
particle basis defined by Eqs. (6.13) there is no large
squeezing and no particle creation for a massless, mini-
mally coupled scalar field in exact de Sitter spacetime. In
Sec. VII we corroborated the lack of true decoherence for
this field. In this appendix we compare this result to earlier
work, in particular, to Ref. [47], whose authors use a field
amplitude ‘‘pointer basis.’’

Let us first consider a zeroth order adiabatic basis rather
than the second order adiabatic basis defined by
Eqs. (6.13). The zeroth order basis function is obtained
by replacing Wk of Eq. (6.20) by !k � k=adS, resulting in

~� �0�
k �

��������������
@

2a3!k

s
exp

�
�i

Z t
dt0!k�t

0�

�

�
1

a

�����
@

2k

s
exp��ik�� (C1)

instead of Eq. (6.22). When the exact BD mode is ex-
pressed as a linear combination of these zeroth order
adiabatic modes in the form of the Bogoliubov transfor-
mation,
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�BD
k � ��0�

k
~��0�
k 	 =�0�

k
~��0��
k ; (C2)

we now obtain the nontrivial time-dependent coefficients,

��0�
k �

�
1 �

i
2k�

�
; (C3a)

=�0�
k � �

i
2k�

exp��2ik��: (C3b)

Clearly in this adiabatic zero basis sinhr�0�k � j=�0�
k j �

1=j2k�j which does not fall off fast enough at large k to
be fourth order adiabatic, and which also approaches in-
finity as �! 0�.

The problem with the zeroth order adiabatic basis (C1) is
that the particle number (6.16),

1

2%2

Z
dkk2j=�0�

k j2 �
1

8%2�2

Z
dk! 1 (C4)

is divergent at any finite time �. Corresponding to this
linear divergence in the total number, the energy-
momentum tensor of these ‘‘particles’’ is quadratically
divergent at large k. Clearly this quadratic divergence is
a residual divergence of the vacuum stress tensor and has
nothing at all to do with physical particles, which are
unambiguously well-defined in the UV limit k! 1. In
that limit of wavelength much smaller than the horizon
scale, the region of spacetime the modes sample may be
approximated as flat, and the effects of the time variation of
the geometry should be negligible. The ��2 factor in
Eq. (C4) shows that this mismatch only grows more severe
at late times, as the zeroth order basis (C1) becomes more
and more different from the second order basis (6.22).
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The quadratic vacuum divergences can be subtracted
only by matching the energy-momentum tensor to second
adiabatic order as in Eq. (6.13). When that is done the
particle number is finite and no squeezing, phase decoher-
ence or particle creation effect at all is obtained. Moreover,
since the second order adiabatic modes (6.22) are already
exact for the massless, minimally coupled scalar field in
de Sitter space, any ambiguity in the particle concept at
wavelengths of the order of the horizon scale is irrelevant
here. Going to higher orders in the adiabatic expansion will
not change the result obtained at second order.

The authors of Ref. [47] define a field pointer basis for
the massless, minimally coupled field in de Sitter space.
Comparing Eqs. (15), (19), and (47) of Ref. [47] with
relations (C3) above, we find that the Bogoliubov coeffi-
cients, �k and =k of Eq. (15) in Ref. [47] are precisely
equal to ��0�

k and =�0�
k respectively, of the zeroth order

adiabatic basis given by (C3). As we have seen, the squeez-
ing parameter with respect to this basis, sinhr�0�k �

1=j2k�j ! 1 does become very large for superhorizon
modes in the late time limit. The authors of Ref. [47] argue
that the large squeezing in this basis leads to an effective
decoherence of modes of the scalar field much larger than
the de Sitter horizon.

It is clear that the squeezing is very much dependent on
the basis in which it is computed. In the second order basis
(6.22), determined by the structure of the short distance
expansion of the covariantly conserved stress tensor
through Eqs. (6.13), there is no mixing of positive and
negative frequency modes, and no large squeezing of
superhorizon modes. True decoherence of these modes
should occur through other effects, such as those consid-
ered in Ref. [61] at the time these modes reenter the
horizon.
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Poincaré, A 9, 109 (1968); E. A. Tagirov, Ann. Phys.
(N.Y.) 76, 561 (1973).

[50] J. S. Dowker and R. Critchley, Phys. Rev. D 13, 3224
(1976).

[51] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974) [Sov.
Phys. JETP 40, 409 (1975)].

[52] L. H. Ford, Phys. Rev. D 31, 710 (1985).
[53] K. Kirsten and J. Garriga, Phys. Rev. D 48, 567 (1993).
[54] M. B. Einhorn and F. Larsen, Phys. Rev. D 67, 024001

(2003); 68, 064002 (2003); T. Banks and L. Mannelli,
Phys. Rev. D 67, 065009 (2003); K. Goldstein and D. A.
Lowe, Nucl. Phys. B669, 325 (2003); H. Collins, R.
Holman, and M. R. Martin, Phys. Rev. D 68, 124012
(2003); H. Collins and R. Holman, Phys. Rev. D 70,
084019 (2004).

[55] R. Floreanini, C. T. Hill, and R. Jackiw, Ann. Phys. (N.Y.)
175, 345 (1987).

[56] A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko,
Fortschr. Phys. 28, 173 (1980).

[57] L. S. Brown and S. J. Carson, Phys. Rev. A 20, 2486
(1979); Y. Kluger, E. Mottola, and J. M. Eisenberg,
Phys. Rev. D 58, 125015 (1998).

[58] B. L. Hu and H. E. Kandrup, Phys. Rev. D 35, 1776
(1987); H. E. Kandrup, Phys. Rev. D 37, 3505 (1988).

[59] B. L. Hu and D. Pavon, Phys. Lett. B 180, 329 (1986).
[60] E. Mottola, Phys. Rev. D 33, 2136 (1986); B. L. Hu and S.

Sinha, Phys. Rev. D 51, 1587 (1995); N. G. Phillips and
B. L. Hu, Phys. Rev. D 63, 104001 (2001); B. L. Hu and E.
Verdaguer, Living Rev. Relativity 7, 3 (2004).

[61] C. Kiefer, D. Polarski, and A. A. Starobinsky, Phys. Rev. D
62, 043518 (2000).
-38


