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Quantum contributions to cosmological correlations
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The ‘‘in-in’’ formalism is reviewed and extended, and applied to the calculation of higher-order
Gaussian and non-Gaussian correlations in cosmology. Previous calculations of these correlations
amounted to the evaluation of tree graphs in the in-in formalism; here we also consider loop graphs. It
turns out that for some though not all theories, the contributions of loop graphs as well as tree graphs
depend only on the behavior of the inflaton potential near the time of horizon exit. A sample one-loop
calculation is presented.

DOI: 10.1103/PhysRevD.72.043514 PACS numbers: 98.80.2k, 04.60.2m, 04.62.+v, 98.80.Jk
I. INTRODUCTION

The departures from cosmological homogeneity and
isotropy observed in the cosmic microwave background
and large scale structure are small, so it is natural that they
should be dominated by a Gaussian probability distribu-
tion, with bilinear averages given by the terms in the
Lagrangian that are quadratic in perturbations. Never-
theless, there is growing interest in the possibility of ob-
serving non-Gaussian terms in various correlation func-
tions [1], such as an expectation value of a product of three
temperature fluctuations. It is also important to understand
the higher-order corrections to bilinear correlation func-
tions, which appear in Gaussian correlations.

Until now, higher-order cosmological correlations have
been calculated by solving the classical field equations
beyond the linear approximation. As will be shown in the
Appendix, this is equivalent to calculating sums of tree
graphs, though in a formalism different from the familiar
Feynman graph formalism. For instance, Maldacena [2]
has calculated the non-Gaussian average of a product of
three scalar and/or gravitational fields to first order in their
interactions, which amounts to calculating a tree graph
consisting of a single vertex with 3 attached gravitational
and/or scalar field lines.

This paper will discuss how calculations of cosmologi-
cal correlations can be carried to arbitrary orders of per-
turbation theory, including the quantum effects represented
by loop graphs. So far, loop corrections to correlation
functions appear to be much too small ever to be observed.
The present work is motivated by the opinion that we ought
to understand what our theories entail, even where in
practice its predictions cannot be verified experimentally,
just as field theorists in the 1940s and 1950s took pains to
understand quantum electrodynamics to all orders of per-
turbation theory, even though it was only possible to verify
results in the first few orders.

There is a particular question that will concern us. In the
familiar calculations of lowest-order Gaussian correla-
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tions, and also in Maldacena’s tree-graph calculation of
non-Gaussian correlations, the results depended only on
the behavior of the unperturbed inflaton field near the time
of horizon exit. Is the same true for loop graphs? If so, it
will be possible to calculate the loop contributions with
some confidence, but we can learn little new from such
calculations. On the other hand, if the contribution of loop
graphs depends on the whole history of the unperturbed
inflaton field, then calculations become much more diffi-
cult, but potentially more revealing. In this case, it might
even be that the loop contributions are much larger than
otherwise expected.

The appropriate formalism for dealing with this sort of
problem is the ‘‘in-in’’ formalism originally due to
Schwinger [3]. Schwinger’s presentation is somewhat
opaque, so this formalism is outlined (and extended) in
an Appendix. In Sec. II we summarize those aspects of this
formalism that are needed for our present purposes.
Section III introduces a class of theories to serve as a basis
of discussion, with a single inflaton field, plus any number
of additional massless scalar fields with only gravitational
interactions and vanishing expectation values. In Sec. IV
we prove a general theorem about the late-time behavior of
cosmological correlations at fixed internal as well as ex-
ternal wave numbers. Section V introduces a class of
unrealistic theories to illustrate the problems raised by
the integration over internal wave numbers, and how these
problems may be circumvented. In Sec. VI we return to the
theories introduced in Sec. III, and we show that the
conditions of the theorem proved in Sec. IV are satisfied
for these theories. This means that, to all orders of pertur-
bation theory, if ultraviolet divergences cancel in the in-
tegrals over internal wave numbers, then cosmological
correlations do indeed depend only on the behavior of
the unperturbed inflation field near the time of horizon
exit in the cases studied. We can also find other theories
in which this result does not apply, as for instance by giving
the additional scalar fields a self-interaction. Section VII
presents a sample one-loop calculation of a cosmological
correlation.
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.043514


STEVEN WEINBERG PHYSICAL REVIEW D 72, 043514 (2005)
II. THE IN-IN FORMALISM IN COSMOLOGY

The problem of calculating cosmological correlation
functions differs from the more familiar problems encoun-
tered in quantum field theory in at least three respects:
(i) W
e are not interested here in the calculation
of S-matrix elements, but rather in evaluating ex-
pectation values of products of fields at a fixed
time.
(ii) C
onditions are not imposed on the fields at both
very early and very late times, as in the calculation
of S-matrix elements, but only at very early times,
when the wavelength is deep inside the horizon and
according to the equivalence principle the inte-
raction-picture fields should have the same form
(when expressed in terms of metric rather than
comoving coordinates) as in Minkowski spacetime.
(iii) A
lthough the Hamiltonian H that generates the
time dependence of the various quantum fields is
constant in time, the time dependence of the fluc-
tuations in these fields is governed by a fluctuation
Hamiltonian ~H with an explicit time dependence,
which as shown in the Appendix is constructed by
expanding H around the unperturbed solution of
the field equation, and discarding the terms of first
order in the perturbations to the fields and their
canonical conjugates.
Given a fluctuation Hamiltonian ~H, we want to use it to
calculate expectation values of some product Q�t� of field
043514
operators, all at the same time t but generally with different
space arguments. As discussed in the Appendix, the pre-
scription of the in-in formalism is that

hQ�t�i �
��

�T exp
�
i
Z t

�1
HI�t�dt

��
QI�t�

�

�
T exp

�
�i

Z t

�1
HI�t�dt�

��
: (1)

Here T denotes a time-ordered product; �T is an anti-time-
ordered product; QI is the product Q in the interaction
picture (with time dependence generated by the part of ~H
that is quadratic in fluctuations); and HI is the interaction
part of ~H in the interaction picture. (This result is different
from that originally given by Maldacena [2] and other
authors [4], who left out the time ordering and anti-time
ordering, perhaps through a typographical error. However,
this makes no difference to first order in the interaction,
which is the approximation used by these authors in their
calculations.) We are here taking the time t0 at which the
fluctuations are supposed to behave like free fields as t0 �
�1, which is appropriate for cosmology because at very
early times the fluctuation wavelengths are deep inside the
horizon.

Equation (1) leads to a fairly complicated diagrammatic
formalism, described in the Appendix. Unfortunately this
formalism obscures crucial cancellations that occur be-
tween different diagrams. For our present purposes, it is
more convenient to use a formula equivalent to Eq. (1):
hQ�t�i �
X1
N�0

iN
Z t

�1
dtN

Z tN

�1
dtN�1 	 	 	

Z t2

�1
dt1h
HI�t1�; 
HI�t2�; 	 	 	 
HI�tN�; Q

I�t�� 	 	 	��i (2)
1Standard counting arguments show that in these theories the
number of factors of 8�G in any graph equals the number of
loops of any kind, plus a fixed number that depends only on
which correlation function is being calculated. Matter loops are
numerically more important than loops containing graviton or
inflaton lines, because they carry an additional factor equal to the
number of types of matter fields.
[with the N � 0 term understood to be just hQI�t�i]. This
can easily be derived from Eq. (1) by mathematical induc-
tion. Obviously Eqs. (1) and (2) give the same results to
zeroth and first order in HI. If we assume that the right-
hand sides of Eqs. (1) and (2) are equal for arbitrary
operators Q up to order N � 1 in HI, then by differentiat-
ing these equations we easily see that the time derivatives
of the right-hand sides are equal up to order N.
Equations (1) and (2) also give the same results for t!
�1 to all orders, so they give the same results for arbitrary
t to order N.

III. THEORIES OF INFLATION

To make our discussion concrete, in this section we will
take up a particular class of theories of inflation. The reader
who prefers to avoid details of specific theories can skip
this section, and go on immediately to the general analysis
of late-time behavior in the following section.
In this section we will consider theories of inflation with
two kinds of matter fields: a real scalar field ’�x; t� with a
nonzero homogeneous expectation value �’�t� that rolls
down a potential V�’�, and any number of real massless
scalar fields �n�x; t�, which have only minimal gravita-
tional interactions, and are prevented by unbroken symme-
tries from acquiring vacuum expectation values. The real
field ’ serves as an inflaton whose energy density drives
inflation, while the �n are a stand-in for the large number
of species of matter fields that will dominate the effects of
loop graphs on the correlations of the inflaton field.1
-2
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We follow Maldacena [2], adopting a gauge in which
there are no fluctuations in the inflaton field, so that
’�x; t� � �’�t�, and in which the spatial part of the metric
takes the form2

gij � a2e2� 
exp��ij; �ii � 0; @i�ij � 0; (3)

where a�t� is the Robertson-Walker scale factor, �ij�x; t� is
a gravitational wave amplitude, and ��x; t� is a scalar
whose characteristic feature is that it is conserved outside
the horizon [5], that is, for physical wave numbers that are
small compared with the expansion rate. The same is true
of �ij.

The other components of the metric are given in the
Arnowitt-Deser-Misner formalism [6] by

g00 � �N2  gijNiNj; gi0 � gijNj; (4)

whereN andNi are auxiliary fields, whose time derivatives
do not appear in the action. The Lagrangian density in this
gauge (with 8�G � 1) is

L �
a3

2
e3�

�
NR�3� � 2NV� �’�  N�1�EjiE

i
j � �Eii�

2�

 N�1 _�’2  N�1
X
n

� _�n � Ni@i�n�2

� Na�2e�2� 
exp�����ij
X
n

@i�n@j�n

�
;

(5)

where

Eij �
1

2
� _gij �riNj �rjNi�; (6)

and bars denote unperturbed quantities. All spatial indices
i, j, etc. are lowered and raised with the matrix gij and its
reciprocal; ri is the three-dimensional covariant derivative
calculated with this three-metric; and R�3� is the curvature
scalar calculated with this three-metric:

R�3� � a�2e�2� 
e���ijR�3�
ij :

The auxiliary fields N and Ni are to be found by requiring
that the action is stationary in these variables. This gives
the constraint equations:
2I am adopting Maldacena’s notation, but the quantity he calls
� is more usually called �R. To first order in fields, the quantity
usually called � is defined as ���H�"= _�", while the quantity
usually called R is defined as ��H�u. [Here the contribu-
tion of scalar modes to gij is written in general gauges as
�2a2���ij  @2�0=@xi@xj�, while �" and �" are the perturba-
tion to the total energy density and its unperturbed value, while
�u is the perturbed velocity potential, which for a single inflaton
field is �u � ��’= _�’.] In the gauge used by Maldacena and in
the present paper �u � �0 � 0, so since � is defined here as �
to first order in fields, it corresponds to the quantity usually
called �R. Outside the horizon R and � are the same.
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ri
N
�1�Eij � �ijE

k
k�� � N�1

X
n

@j�n� _�n � Ni@i�n�;

(7)

N2
R�3� � 2V � a�2e�2�
�
exp�����ij

X
n

@i�n@j�n

�

� EijE
j
i � �Eii�

2  _�’2 
X
n

� _�n � Ni@i�n�
2: (8)

For instance, to first order in fields (including field deriva-
tives) the auxiliary fields are the same as in the case of no
additional matter fields [2]

N � 1 _�=H; Ni � �
1

a2H
@i�  �@ir�2 _�; (9)

where

� � �
_H

H2 �
_�’2

2H2 ; H �
_a
a
: (10)

The fields in the interaction picture satisfy free-field
equations. For � we have the Mukhanov equation [7]:

@2�

@t2


�
d ln�a3��

dt

�
@�
@t

� a�2r2� � 0: (11)

The field equation for gravitational waves is

@2�ij
@t2

 3H
@�ij
@t

� a�2r2�ij � 0; (12)

and for the matter fields

@2�n
@t2

 3H
@�n
@t

� a�2r2�n � 0: (13)

The fields in the interaction picture are then

��x; t� �
Z
d3q
eiq	x �q��q�t�  e�iq	x ��q���q�t��;

(14)

�ij�x; t� �
Z
d3q

X
!


eiq	xeij�q̂; !� �q; !��q�t�

 e�iq	xe�ij�q̂; !� 
��q; !���

q�t��; (15)

�n�x; t� �
Z
d3q
eiq	x �q; n��q�t�

 e�iq	x ��q; n���
q�t��; (16)

where ! � �2 is a helicity index and eij�q̂; !� is a polar-
ization tensor, while  �q�, �q; !�, and  �q; n� are conven-
tionally normalized annihilation operators, satisfying the
usual commutation relations


 �q�; ��q0����3�q�q0�; 
 �q�; �q0���0; (17)
-3



4

STEVEN WEINBERG PHYSICAL REVIEW D 72, 043514 (2005)

 �q; !�;  ��q0; !0�� � �!!0�
3�q� q0�;


 �q; !�;  �q0; !0�� � 0;
(18)

and


 �q; n�;  ��q0; n0�� � �nn0�3�q� q0�;


 �q; n�;  �q0; n0�� � 0:
(19)

Also, �q�t�, �q�t�, and �q�t� are suitably normalized
positive-frequency solutions of Eqs. (11)–(13), with r2

replaced with �q2. They satisfy initial conditions, de-
signed to make �� _�’=H, �ij=

													
16�G

p
, and �n behave

like conventionally normalized free fields at t! �13:

�
_�’�t��q�t�

H�t�
!

�q�t�													
16�G

p ! �q�t�

!
1

�2��3=2
						
2q

p
a�t�

exp
�
iq

Z 1

t

dt0

a�t0�

�
: (20)

IV. LATE-TIME BEHAVIOR

The question to be addressed in this section is whether
the time integrals in Eqs. (1) and (2) are dominated by
times near horizon exit for general graphs. This question is
more complicated for loop graphs than for tree graphs,
such as that considered by Maldacena, because for loops
there are two different kinds of wave number: the fixed
wave numbers q associated with external lines, and the
internal wave numbers p circulating in loops, over which
we must integrate. It is only if the integrals over internal
wave numbers p are dominated by values of order p � q
that we can speak of a definite time of horizon exit, when
q=a � p=a � H. In this section we will integrate first over
the time arguments in Eq. (2), holding the internal wave
numbers at fixed values, and return at the end of this
section to the problems raised by the necessity of then
integrating over the ps.

There is never any problem with the convergence of the
time integrals at very early times; all fluctuations oscillate
very rapidly for q=a� H and p=a� H, suppressing the
contribution of early times to the time integrals in Eq. (2).
To see what happens for late times, when q=a� H and
p=a� H, we need to count the powers of a in the con-
tribution of late times in general loop as well as tree graphs.

For this purpose, we need to consider the behavior of the
coefficient functions appearing in the Fourier decomposi-
tions (14)–(16) of the fields in the interaction picture. In
order to implement dimensional regularization, we will
consider these coefficient functions in 2& space dimen-
sions, returning later to the limit 2&! 3. The coefficient
functions then obey differential equations obtained by
replacing the space dimensionality 3 in Eqs. (11)–(13)
3In Newtonian gauge the quantity ���x; t� _�’�t�=H�t� ap-
proaches the inflaton field fluctuation �’�t� for t! �1.
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with 2&, as well as replacing the Laplacian with �q2:

d2�q�t�

dt2


�
d ln�a2&�t���t��

dt

� d�q�t�
dt


q2

a2�t�
�q�t� � 0;

(21)

d2�q�t�

dt2
 2&H�t�

d�q�t�

dt


q2

a2�t�
�q�t� � 0; (22)

d2�q�t�

dt2
 2&H�t�

d�q�t�

dt

q2

a2
�q�t� � 0: (23)

At late times,4 when q=a� H, the solutions can be writ-
ten as asymptotic expansions in inverse powers of a:

�q�t�!�oq

�
1

Z 1

t

q2dt0

a2&�t0���t0�

Z t0

�1
a2&�2�t00���t00�dt00

			

�
Cq

�Z 1

t

dt0

a2&�t0���t0�
q2

Z 1

t

dt0

a2&�t0���t0�

�
Z t0

�1
a2&�2�t00���t00�dt00

Z 1

t00

dt000

a2&�t000���t000�
			

�
;

(24)

�q�t� ! �oq

�
1

Z 1

t

q2dt0

a2&�t0�

Z t0

�1
a2&�2�t00�dt00  	 	 	

�

Dq

�Z 1

t

dt0

a2&�t0�
 q2

Z 1

t

dt0

a2&�t0�

�
Z t0

�1
a2&�2�t00�dt00

Z 1

t00

dt000

a2&�t000�
 	 	 	

�
; (25)

�q�t� ! �oq

�
1

Z 1

t

q2dt0

a2&�t0�

Z t0

�1
a2&�2�t00�dt00  	 	 	

�

 Eq

�Z 1

t

dt0

a2&�t0�
 q2

Z 1

t

dt0

a2&�t0�

�
Z t0

�1
a2&�2�t00�dt00

Z 1

t00

dt000

a2&�t000�
 	 	 	

�
; (26)

where �oq , �0
q, and �oq are the limiting values of �q�t�, �q�t�,

and �q�t� (the ‘‘o’’ superscript stands for ‘‘outside the
horizon’’) and Cq, Dq, and Eq are additional constants.
In any kind of inflation with sufficient expansion, the
Robertson-Walker scale factor a will grow much faster
than H or � can change, and Eqs. (24)–(26) thus show
that (at least for 2& � 2) the time derivatives of �q, �q, and
�q all vanish for q=a� H like 1=a2.

If an interaction involves enough factors of _� , _�ij, and/or
_�n so that these 1=a2 factors and any 1=a2 factors from the
By t � 1 in the limits of these integrals and elsewhere in this
paper, we mean a time still during inflation, but sufficiently late
so that a�t� is many e foldings larger than its value when q=a
falls below H.
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contraction of space indices more than compensate for the
a2& factor in the interaction from the square root of the
metric determinant, then the integral over the associated
time coordinate will converge exponentially fast at late
times as well as at early times, and therefore may be
expected to be dominated by the era in which the wave-
length leaves the horizon. For instance, the extension of
Eq. (5) to 2& space dimensions gives the interaction be-
tween a � field and a pair of � fields

L��� � �
a2&�2

2
�
X
n

@i�n@i�n �
a2&�2

2H
_�
X
n

@i�n@i�n

 a2&�2@i

�
�
H

� �a2r�2 _�
�X
n

_�n@i�n

�
a2&

2H
_�
X
n

_�2
n 

3a2&

2
�
X
n

_�2
n: (27)

(The ��� interaction Hamiltonian given by canonical
quantization is just �

R
d2&xL���, but this simple relation

does not always apply.) Counting a factor a�2 for each _� or
_�n, the terms in this interaction go as a2&�2, a2&�4, a2&�4,
a2&�6, and a2&�4, respectively. All these terms are safe for
2& < 4, except for the first, which for 2& > 2 grows ex-
ponentially at late times.

Because of the commutators in Eq. (2), the condition for
a safe interaction is actually less stringent than that it
should decay exponentially with time, and even a growing
term that only involves fields rather than their time deriva-
tives, like the first term in Eq. (27), may not destroy the
convergence of the time integrals. We will now prove the
following:

Theorem.—The integrals over the time coordinates of
interactions converge exponentially for t! 1, essentially
as

R
1 dt=an�t� with n > 0, provided that in 2& space

dimensions, all interactions are of one or the other of two
types:
(i) s
afe interactions that contain a number of factors of
a�t� (including �2 factors of a for each time de-
rivative and the 2& factors of a from

															
� detg

p
)

strictly less than 2&� 2, and

(ii) d
angerous interactions, which grow at late times no

faster than a2&�2, and contain only fields, not time
derivatives of fields.
These conditions are evidently met by the interaction (27),
irrespective of the value of &, and, as we shall see in
Sec. VI, they are satisfied by all other interactions in the
theories of Sec. III, but not in all theories.

Before proceeding to the proof, it should be noted that
just as in Eq. (27), the space dimensionality 2& enters in the
interaction only in a factor

															
� detg

p
/ a2&, so the question

of whether or not a given theory satisfies the conditions of
this theorem does not depend on the value of 2&. Thus this
theorem has the corollary:

Corollary.—The integrals over the time coordinates of
interactions converge exponentially for t! 1, essentially
043514
as
R
1 dt=an�t� with n > 0, provided that in 3 space dimen-

sions all interactions are of one or the other of two types:

(i) s
-5
afe interactions that contain a number of factors of
a�t� (including �2 factors of a for each time de-
rivative and the 3 factors of a from

															
� detg

p
) strictly

less than 1, and

(ii) d
angerous interactions, which grow at late times no

faster than a, and contain only fields, not time
derivatives of fields.
Here is the proof. As already mentioned, the reason that
dangerous interactions are not necessarily fatal has to do
with how they enter into commutators in Eq. (2). Because
of the time ordering in Eq. (2), any failure of convergence
of the time integrals for t! 1 in Nth-order perturbation
theory must come from a region of the multitime region of
integration in which, for some r, the time arguments
tr; tr1; . . . ; tN , all go to infinity together. We will therefore
have to count the number of factors of a�tr�;
a�tr1�; . . . ; a�tN�, treating them all as being of the same
order of magnitude. (This does not take proper account of
factors of loga, but as long as the integral over
tr; tr1; . . . ; tN involves a negative total number of factors
of a, it converges exponentially fast no matter how many
factors of loga arise from subintegrations.) Now, at least
one of the fields or field time derivatives in each term in
H�ts� with r � s � N must appear in a commutator with
one of the fields in some other HI�ts0 � with s < s0 � N. So
we need to consider the commutators of fields at times
which may be unequal, but are both late. In the sense
described above, treating all a�tr�; a�tr1�; . . . ; a�tN� as
being of the same order of magnitude, if a�t� increases
more or less exponentially, then the commutator of two
fields or a field and a field time derivative goes as a�2&,
while the commutator of two field time derivatives goes as
a�2&�2.

For instance, the unequal-time commutators of the
interaction-picture fields (14)–(16) are


��x; t�; ��x0; t0�� �
Z
d2&peip	�x�x0���p�t��

�
p�t

0�

� �p�t0���p�t��; (28)


�ij�x;t�;�kl�x0;t0���
Z
d2&peip	�x�x0��ijkl�p̂���p�t��

�
p�t

0�

��p�t0���
p�t��; (29)


�n�x; t�; �m�x0; t0�� � �nm
Z
d2&peip	�x�x0���p�t��

�
p�t

0�

� �p�t
0���

p�t��; (30)

where �ijkl�p̂� �
P
!eij�p̂; !�ekl�p̂; !�. The two asymp-

totic expansions given in Eqs. (21)–(23) for each of the
fields are both real aside from overall factors, so neither by
itself contributes to the commutators. On the other hand,
the constants Cp�o�p , Dp�o�p , and Ep�o�p are in general
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complex. (For instance, in a strictly exponential expansion, the phase of Cp�o�p is given by a factor �e�i&�.) The
asymptotic expansions of the commutators at late times are therefore


��x1; t1�; ��x2; t2�� ! 2i
Z
d2&p Im
Cp�o�p �eip	�x1�x2�

�Z t2

t1

dt0

a2&�t0���t0�
 p2

Z t2

t1

dt0

a2&�t0���t0�

�
Z t0

�1
a2&�2�t00���t00�dt00

Z 1

t00

dt000

a2&�t000���t000�
 p2

Z 1

t1

dt01
a2&�t01���t

0
1�

Z 1

t2

dt02
a2&�t02���t

0
2�

�
Z t02

t01

a2&�2�t00���t00�dt00  	 	 	

�
; (31)


�ij�x1; t1�; �kl�x2; t2�� ! 2i
Z
d2&p�ijkl�p̂�Im
Dp�

o�
p �eip	�x1�x2�

�Z t2

t1

dt0

a2&�t0�
 p2

Z t2

t1

dt0

a2&�t0�

�
Z t0

�1
a2&�2�t00�dt00

Z 1

t00

dt000

a2&�t000�
 p2

Z 1

t1

dt01
a2&�t01�

Z 1

t2

dt02
a2&�t02�

Z t02

t01

a2&�2�t00�dt00  	 	 	

�
; (32)


�n�x1; t1�; �m�x2; t2�� ! 2i�nm
Z
d2&p Im
Ep�o�p �eip	�x1�x2�

�Z t2

t1

dt0

a2&�t0�
 p2

Z t2

t1

dt0

a2&�t0�

Z t0

�1
a2&�2�t00�dt00

Z 1

t00

dt000

a2&�t000�

 p2
Z 1

t1

dt01
a2&�t01�

Z 1

t2

dt02
a2&�t02�

Z t02

t01

a2&�2�t00�dt00  	 	 	

�
: (33)

We see that the commutator of two fields vanishes essentially as a�2& for late times, and the same is true for the
commutator of a field and its time derivative, but the commutators of two time derivatives arise only from the third terms in
the expansions (31)–(33), and therefore go as a�2&�2. That is,


 _��x1; t1�; _��x2; t2�� ! 2i
Z
d2&p Im
Cp�

o�
p �eip	�x1�x2�

�
p2

a2&�t1���t1�a
2&�t2���t2�

Z t2

t1
a2&�2�t0���t0�dt0  	 	 	

�
;

and likewise for �ij and �n.
Let us now add up the total number of factors of

a�tr�; a�tr1�; . . . and a�tN� in the integrand of Eq. (2), for
some selection of terms in the interactions H�ts� with r �
s � N. Suppose that the selected term in H�ts� contains an
explicit factor a�ts�As , and Bs factors of field time deriva-
tives. Suppose also that in the inner N � r 1 commuta-
tors in Eq. (1) there appear C commutators of fields with
each other, C0 commutators of fields with field time de-
rivatives, and C00 commutators of field time derivatives
with each other. The number of field time derivatives that
are not in these commutators is

P
sBs � C0 � 2C00, and

these contribute a total �2
P
sBs  2C0  4C00 factors of

a. (All sums over s here run from r to N.) In addition, there
are

P
sAs factors of a that appear explicitly in the inter-

actions, and as we have seen, the commutators contribute
�2&C� 2&C0 � �2& 2�C00 factors of a. Hence the total
number of factors of a�tr�; a�tr1�; . . . and a�tN� in the
integrand of Eq. (2) is

# �
X
s

�As � 2Bs� � 2&C� �2&� 2��C0  C00�

�
X
s

�As � 2Bs � 2& 2� � 2C; (34)

in which we have used the fact that the total number C
C0  C00 of commutators of the interactions H�tr�;
043514
H�tr1�; . . . and H�tN� with each other and with the field
product Q equals the number of these interactions. Under
the assumptions of this theorem, all interactions have As �
2Bs � 2&� 2. If any of them are safe in the sense that
As � 2Bs < 2&� 2, then #< 0, and the integral over time
converges exponentially fast. On the other hand, if all of
them have As � 2Bs � 2&� 2, then under the assump-
tions of this theorem they all involve only fields, not field
time derivatives, so the same is true of the commutators of
these interactions. In this case C> 0 and # � �2C< 0, so
again the integral over time converges exponentially fast.

In counting powers of a, we have held the wave numbers
p associated with internal lines fixed, like the external
wave numbers, because we are integrating over time coor-
dinates before we integrate over the internal wave num-
bers. The integrals over time receive little contribution
from values of the conformal time 2 � �

R
1
t dt=a satisfy-

ing �p2� 1 and �q2� 1, because of the rapid oscil-
lation of the integrand, and for theories satisfying the
conditions of our theorem they also receive little contribu-
tion from values of 2 with �p2� 1 and �q2� 1, be-
cause of the damping provided by negative powers of a.
[Note that when a�t� increases more or less exponentially,
2 is of the order of �1=aH.] Thus for these theories, we
expect the integrals to be dominated by times for which
�1=2 is in the range from the qs to the ps. The question
-6
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then is whether the integrals over the internal wave num-
bers p are dominated by values of the order of the external
wave numbers q? If they are, then the results depend only
on the history of inflation around the time of horizon exit,
�q2 � 1, or in other words, q=a � H.

Any integral over the internal wave numbers will in
general take the form of a polynomial in the external
wave numbers, with coefficients that may be divergent,
plus a finite term given by a convergent integral dominated
by internal wave numbers of the same order of magnitude
as the fixed external wave numbers. An example of this
decomposition is given in Sec. VII. In particular, the
integral over the wave number associated with an internal
line that begins and ends at the same vertex does not
involve the external wave numbers, so its contribution is
purely a polynomial in the wave numbers of the other lines
attached to the same vertex.

Just as in dealing with ultraviolet divergences in flat
space quantum field theory, renormalization removes
some of these ultraviolet divergent polynomial terms, and
others are removed by appropriate redefinitions of the field
operators. (Some examples are given in the next section.)
Where redefinition of the field operators is necessary, it is
only products of the redefined ‘‘renormalized’’ field opera-
tors whose expectation values may be expected to give
results that converge at late times. If, after all such renorm-
alizations and redefinitions, there remained ultraviolet di-
vergences in the integrals over internal wave numbers, we
could conclude that the approximation of extending the
time integrals to 1 is not valid, and that these integrals
can be taken only to some time t late in inflation. The
decrease of the integrand at wave numbers p much greater
than �1=2�t� would then provide the ultraviolet cutoff that
is still needed, but the correlation functions would exhibit
the sort of time dependence that has been found in other
contexts by Woodard and his collaborators [3], and we
would not be able to draw conclusions about correlations
actually measured at times much closer to the present. The
possible presence of such ultraviolet divergences that are
not removed by renormalization and field redefinition is an
important issue, which merits further study.5 But even if
such ultraviolet divergences are present, it would still be
5Many theories are afflicted with infrared divergences, even
when t is held fixed. The infrared divergences are attributed to
the imposition of the unrealistic initial condition that at early
times all of infinite space is occupied by a Bunch-Davies
vacuum. The infrared divergence can be eliminated either by
taking space to be finite [8] or by changing the vacuum [9]. In
any case, it is the appearance of uncanceled ultraviolet rather
than infrared divergences when we integrate over internal wave
numbers after taking the limit t! 1 that shows the impropriety
of this interchange of limit and integral, because factors of 1=a in
the integrand are typically accompanied with factors of internal
wave numbers, so that the 1=a factors do not suppress the
integrand for large values of a if the integral receives contribu-
tions from arbitrarily large values of the internal wave number.

043514
possible to calculate the nonpolynomial part of the inte-
grals over internal momenta which is not ultraviolet diver-
gent (at least in one-loop order) even when the time t is
taken to infinity. Such a calculation will be presented in
Sec. VII.

V. AN EXAMPLE: EXPONENTIAL EXPANSION

To clarify the issues discussed at the end of the previous
section, we will examine a simple unphysical model, along
with a revealing class of generalizations.

First, consider a single real scalar field ’�x; t� in a fixed
de Sitter metric.6 In order to implement dimensional regu-
larization, we work in 2& space dimensions, letting &!
3=2 at the end of our calculation. The Lagrangian density is
taken as

L � �
1

2

														
� detg

p
g3&�1 !’2�@3’@&’

� �1 !’2�

�
a2&

2
_’2 �

a2&�2

2
�r’�2

�
; (35)

where a / eHt with H constant. (This of course can be
rewritten as a free-field theory, but it is instructive none-
theless, and will be generalized later in this section to
interacting theories.) We follow the usual procedure of
defining a canonical conjugate field � � @L=@ _’, con-
structing the Hamiltonian density H � � _’�L with _’
expressed in terms of �, dividing H into a quadratic part
H 0 and interaction part H I, and then replacing � in H I
with the interaction picture �I given by _’ �


@H 0=@�����I . This gives an interaction

HI �
!
2

Z
d2&x

�
�
a2

2


’2

1 !’2 ; _’
2

�
 a2&�2�r’�2’2

�
:

(36)

(An anticommutator is needed in the first term to satisfy the
requirement that HI be Hermitian.) This interaction satis-
fies the conditions of the theorem proved in the previous
section for any value of the space dimensionality 2&: the
first term in the square brackets contains 2&� 4 factors of
a (counting a factor a�2 for each time derivative, so it is
safe, while the second term contains 2&� 2 factors of a,
and is therefore dangerous, but it only involves fields
(including space derivatives), not their time derivatives,
so though dangerous it still satisfies the conditions of our
theorem.

To first order in !, the expectation value h’�x; t�’�x0; t�i
is given by a one-loop diagram, in which a scalar field line
is emitted and absorbed at the same vertex, with the two
external lines also attached to this vertex. This expectation
value receives contributions of three kinds:
6This model, and much of the analysis, was suggested to me
by Woodard, private communication.
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(i) T
7Here
4� to 2&
that acc
erms in which no time derivatives act on the
internal lines. This contribution is the same as
would be obtained by adding effective interactions
proportional to a2&�2�r’�2, a2&�2’2, or a2& _’2, all
of which satisfy the conditions of the theorem of
the previous section. Thus it cannot affect the con-
clusion that the integral over the time argument of
HI�t1� converges exponentially at t1 � 1, so that
h’�x; t�’�x0; t�i approaches a finite limit for t!
1.
(ii) T
erms in which time derivatives act on both ends of
the internal line. This produces an effective inter-
action proportional to a2&’2, which violates the
conditions of our theorem, but it can be removed
by adding an R’2

															
� detg

p
counterterm in the

Lagrangian. (This cancellation is not automatic,
because the condition of minimal coupling is not
enforced by any symmetry.)
(iii) T
erms in which a time derivative acts on just one
end of the internal line. This produces an effective
interaction proportional to a2&’ _’, which violates
the conditions of our theorem, and cannot be re-
moved by adding a generally covariant counterterm
to the Lagrangian.
To see in detail what trouble is caused by the third type
of contribution, note that the interaction-picture scalar field
is given by a Fourier decomposition like Eq. (16), with
coefficient functions7

’q�t� �
ei��2&1�=4H&�1=2

4�
			
2

p
q&

H�1�
& ��q2���q2�&; (37)

where 2 is the conformal time

2 � �
Z 1

t

dt0

a�t0�
� �

1

a�t�H
: (38)

The contribution of the third kind to the expectation value
then has the Fourier transform
Z
d2&xeiq	�x�x0�h’�x; t�’�x0; t�iiii

�

�
H2&�1

32�2

�
3
�
2�
q

�
4&
4�

Z 1

0

dp
p

Z t

�1
dt1a

2&�t1�

�

�
d
dt1

j��p21�&H
�1�
& ��p21�j2

�
Im

d
dt1

�
���q21�&H
�1�
& ��q21��2���q2�&H

�1�
& ��q2���2�:

(39)

Let us see what happens if we evaluate this by integrating
first over p and then over t1 from �1 to late times, or vice
versa.
and below we will not be careful to extend factors like
space dimensions. This only affects the constant terms

ompany any �2&� 3��1 poles.

043514
To integrate first over p, we can change the variable of
integration from p to z � �p21, in which case the first
derivative with respect to t1 can be replaced with d=dt1 �
�z=a121��d=dz� � �Hz�d=dz�, while dp=p � dz=z.
Dimensional regularization (with 2& < 1) makes the func-
tion jz&H�1�

& �z�j vanish at z! 1, while for & > 0 it takes
the value 2&��&�=� for z! 0, so

Z 1

0
dz

d
dz

jz&H�1�
& �z�j2 � �

�
2&��&�
�

�
2
;

and therefore
Z
d2&xeiq	�x�x0�h’�x; t�’�x0; t�iiii

� �4�H
�
2&��&�
�

�
2
�
H2&�1

32�2

�
3
�
2�
q

�
4&

�
Z t

�1
dt1a

2&�t1�Im
d
dt1


���q21�
&H�1�

& ��q21��
2

� ���q2�&H�1�
& ��q2���2�: (40)

For t1 ! 1 and t! 1 (that is, 2! 0 and 21 ! 0),
the integrand of the integral over t1 on the second line has
the constant limit

a2&�t1�Im
d
dt1


���q21�&H
�1�
& ��q21��2

����q2�&H�1�
& ��q2���2�

! �
4��&�2q2&

�3H2&�1 : (41)

Thus for t! 1, the correlation function (39) does not
approach a constant, but instead goes as

Z
d2&xeiq	�x�x0�h’�x; t�’�x0; t�iiii !

H4&�1��&�4t

2�2��10�4&q2&
:

(42)

There is no pole here that prevents continuation to space
dimensionality 2& � 3. From this point of view, integrat-
ing first over p, the failure of the correlation function to
approach a finite limit at late times is due to the fact already
noted, that the integral over p produces an effective inter-
action that does not satisfy the conditions of our theorem.

But suppose we first integrate over t1 from �1 to 1.
Now there is no problem with convergence at late times,
because the original interaction does satisfy the conditions
of our theorem, but instead we now have a problem with
the convergence of the integral over p. It will be helpful to
divide the integral over p into an integral from 0 to �q,
where � � 1, and an integral from �q to infinity. The first
integral obviously has no ultraviolet divergence, and the
vanishing of the first time derivative in Eq. (39) for p! 0
prevents any infrared divergence. In the second integral p
and �1=2 are the only magnitudes in the problem with
which q can be compared, so for t! 1 and hence 2! 0
-8
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we can evaluate the correlation function by letting q! 0
and keeping only the leading term in q. Here again we can
use the limiting formula (41), now for q! 0 instead of
2! 0 and 21 ! 0. The integral over t1 is then trivial, and
we find that for q� 1=2 the correlation function is

Z
d2&xeiq	�x�x0�h’�x; t�’�x0; t�iiii

!
H4&�2��&�4

2�2��10�2&q2&
Z 1

�q

dp
p

 finite: (43)

The ultraviolet divergent integral over p is the price we pay
for the naughtiness of taking the limit t! 1 before we
integrate over p.

In this model it is clear how to remedy the difficulty of
calculating correlation functions at late times. As already
mentioned, the original Lagrangian density (35) actually
describes a free-field theory. This is made manifest by
defining a new scalar field

~’ �
Z 																		

1 !’2
q

d’; (44)

for which the Lagrangian density takes the form

L � �
1

2

														
� detg

p
g3&@3 ~’@& ~’: (45)

There is no problem in taking the late-time limit of the
correlation function

R
d2&eiq	�x�x0�h~’�x; t�~’�x0; t�i—it is

just 22&H2&�1��&�2=32�4q2&. From this point of view,
the growth of the correlation function (42) at late times is
a result of our perversity in calculating the correlation
function of ’ instead of ~’.

Can we find fields whose correlation functions have a
constant limit at late times in theories that satisfy the
conditions of our theorem but are not equivalent to free-
field theories? The general answer is not known, but here is
a class of interacting field theories for which such renor-
malized fields can be found. This time we consider an
arbitrary number of real scalar fields ’n�x; t� in a fixed
de Sitter metric. The Lagrangian density is taken to have
the form of a nonlinear � model:

L � �
1

2

X
nm

														
� detg

p
g3&��nm  !Knm�’��@3’n@&’m;

(46)

where Knm�’� is an arbitrary real symmetric matrix func-
tion of the ’n; ! is a coupling constant; and again a / eHt

with H constant. The Hamiltonian derived from this
Lagrangian density does satisfy the conditions of the theo-
rem of Sec. IV, whatever the function Knm�’�.

To first order in !, the same problem discussed earlier in
this section arises from graphs in which an internal line of
the field ’n is emitted and absorbed from the same vertex,
with a time derivative acting on just one end of this line.
Depending on what correlation function is being calcu-
043514
lated, the contribution of such graphs is proportional to
various contractions of partial derivatives of the function

Am�’� �
X
n

@Knm�’�
@’n

: (47)

Suppose we make a redefinition of the fields of first order in
!:

~’n � ’n � !�n�’�: (48)

This changes the matrix K to

~K nm�’� � Knm�’� 
@�n�’�
@’m


@�m�’�
@’n

; (49)

and so

~Am�’� �
X
n

@ ~Knm�’�
@’n

� Am�’� 
X
n

@2�n�’�
@’n@’m


X
n

@2�m�’�
@’n@’n

: (50)

Thus the fields ~’n are renormalized, in the sense that to
first order in ! correlation functions have finite limits at
late times, provided that

X
n

@2�n�’�
@’n@’m


X
n

@2�m�’�
@’n@’n

� �Am�’�: (51)

This can be solved by first solving the Poisson equation

X
n

@2B�’�
@’n@’n

� �
1

2

X
n

@An�’�
@’n

(52)

and then solving a second Poisson equation

X
n

@2�m�’�
@’n@’n

� �Am�’� �
@B�’�
@’m

: (53)

Thus for at least to first order in this class of theories, it is
always possible to find a suitable set of renormalized fields.

Because we can take the limit t! 1 only for the
correlation functions of suitably defined fields (such as
~’n in our example), the question naturally arises, whether
these are the fields whose correlation functions we want to
calculate. The answer is conditioned by the fact that astro-
nomical observations of the cosmic microwave back-
ground or large scale structure are made following a long
era that has intervened since the end of inflation, during
which things happened about which we know almost noth-
ing, such as reheating, baryon and lepton synthesis, and
dark matter decoupling. The only thing that allows us to
use observations to learn about inflation is that some
quantities were conserved during this era, while fluctuation
wavelengths were outside the horizon. These are the only
quantities whose correlation functions at the end of infla-
tion can be interpreted in terms of current observations. In
the classical limit, the quantities that are conserved outside
-9
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the horizon are � and �ij, but we do not know whether this
will be true when quantum effects are taken into account.
Still, we can expect that quantities are conserved only
when there is some symmetry principle that makes them
conserved, and whatever symmetry principle keeps some
quantity conserved from the end of inflation to the time of
horizon reentry is likely also to keep it conserved from the
time of horizon exit to the end of inflation. So we may
guess that the quantities whose correlation functions we
will need to know are just those whose correlation func-
tions approach constant limits at the end of inflation.

VI. DANGEROUS INTERACTIONS IN
INFLATIONARY THEORIES

We now return to the semirealistic theories described in
Sec. III. We will show in this section that all interactions
are of the type called for in the theorem of Sec. IV; that is,
they are all safe interactions that (in three space dimen-
sions) do not grow exponentially at late times (and in fact
are suppressed at late times at least by a factor a�1), or
dangerous interactions containing only fields and not their
time derivatives, which grow no faster that a at late times.
Fortunately, as noticed by Maldacena [2] in a different
context, for this purpose it is not necessary to solve the
constraint equations (7) and (8), which are quite compli-
cated especially when the �n fields are included.
Inspection of these equations shows that when we count
_� , _�ij, and _�n as of order a�2, the auxiliary fields N � 1

and Ni are both also of order a�2.8 This is apparent in the
first-order solution (9) of the constraint equations, but it
holds to all orders in the fields. To calculate the quantity
EjiE

i
j � �Eii�

2 in Eq. (5), we note that

Eij �H�ij _��ij
1

2

�
e��

@
@t
e�
�
i

j
�
1

2
�riNjrjNi�:

(54)

The first term H�ij is of order zero in a, while all other
terms are of order a�2, so

EjiE
i
j � �Eii�

2 � �6H2 � 12H _� � 4HrkNk O�a�4�:

(55)

(In deriving this result, we note that 
e�� @
@t e

��ii � _�ii �
0.) The terms in (5) of first order in N � 1 all cancel as a
consequence of the constraint equation (8), while terms of
second order in N � 1 in Eq. (5) (and, in particular, in
a3e3� _�’2=2N and �3H3a3e3�=2N) are suppressed by at
least a factor a3�a�2�2, and are therefore safe. Therefore
we can isolate all terms that are potentially dangerous by
setting N � 1, and find
8In counting powers of a, note that the three-dimensional
affine connection and Ricci tensor are independent of a, so the
curvature scalar R�3� goes as a�2. For instance, for �ij � 0, we
have R�3� � �a�2e�2� �4r2�  2�r��2�.
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L �
a3

2
e3�

�
R�3��2V� �’��6H2�12H _��4HrkN

k _�’2

�a�2e�2� 
exp�����ij
X
n

@i�n@j�n

�
O�a�1�:

(56)

We note that e3�rkNk � @k�e3�Nk�, so this term vanishes
when integrated over three-space, and therefore makes no
contribution to the action. The term proportional to _� can
be written

�6a3e3�H _� �
@
@t

��2a3He3� �  a3e3� �6H2  2 _H�:

The first term vanishes when integrated over time, so it
gives no contribution to the action. To evaluate the remain-
ing terms we use the unperturbed inflaton field equation,
which (with 8�G � 1) gives _H � � _�’2=2, and the
Friedmann equation, which gives 6H2 � 2V  _�’2. We
then find a cancellation

�V � 3H2 
1

2
_�’2  6H2  2 _H � 0:

Aside from terms that make no contribution to the action,
the Lagrangian density is then

L �
a3

2
e3�

�
R�3� � a�2e�2� 
exp�����ij

X
n

@i�n@j�n

�

O�a�1�: (57)

We see that, at least in this class of theories, the dangerous
terms that are not suppressed by a factor a�1 grow at most
like a at late times, and involve only fields, not their time
derivatives, as assumed in the theorem of Sec. III.

It remains to be seen if in these theories, after integrating
over times and taking the limit t! 1, the remaining
integrals over internal wave numbers are made convergent
by the same counterterms that eliminate ultraviolet diver-
gences in flat spacetime, and if not, whether they can be
made convergent by suitable redefinitions of the fields �
and �ij appearing in the correlation functions. This is left
as a problem for further work.

Not all theories satisfy the conditions of the theorem of
Sec. IV. For instance, a nonderivative interaction															
� detg

p
F��� of the � fields would have 3 factors of

a, and hence would violate the condition that the total
number of factors of a (counting each time derivative as
�2 factors) must be no greater than 1. The � fields must
be the Goldstone bosons of some broken global symmetry
in order to satisfy the conditions of our theorem in a natural
way.
VII. A SAMPLE CALCULATION

As an application of the formalism described in this
paper, we will now calculate the one-loop contribution to
-10
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the correlation function of two � fields, which is measured
in the spectrum of anisotropies of the cosmic microwave
background. As already mentioned, in the class of theories
described in Sec. III, this two-point function is dominated
by a matter loop, because there are many types of matter
field and only one gravitational field. We first consider the
contribution of second order in the interaction (27). It saves
a great deal of work if we use the interaction-picture field
equations (11) and (13) to put this interaction in the form

H����t� � �
Z
d3xL����x; t� � A�t�  _B�t� (58)
043514
where

A � �2�Ha5
X
n

Z
d3x _�2

nr
�2 _�; (59)

B �
X
n

Z
d3x

�
a�
H

� �a3r�2 _�
��
1

2
�r�n�2 

1

2
a2 _�2

n

�
:

(60)

In general, for an interaction Hamiltonian of the form (58),
Eq. (2) can be put in the form
hQ�t�i �
X1
N�0

iN
Z t

�1
dtN

Z tN

�1
dtN�1 	 	 	

Z t2

�1
dt1h
 ~HI�t1�; 
 ~HI�t2�; 	 	 	 
 ~HI�tN�; ~Q

I�t�� 	 	 	��i; (61)

where

~H I�t� � eiB�t�
�
A�t�  _B�t�  ie�iB�t�

�
d
dt
eiB�t�

��
e�iB�t� � A�t�  i
B�t�; A�t�� 

i
2

B�t�; _B�t��  	 	 	 ; (62)

~Q I�t� � eiB�t�QI�t�e�iB�t� � QI�t�  i
B�t�; QI�t�� �
1

2

B�t�; 
B�t�; QI�t���  	 	 	 : (63)

To second order in an interaction of the form (58), the expectation value is then

hQ�t�i2 ��
Z t

�1
dt2

Z t2

�1
dt1h
A�t1�; 
A�t2�;Q

I�t���i�
Z t

�1
dt1h

B�t1�;A�t1� _B�t1�=2�;Q

I�t��i� h
B�t�; 
B�t�;QI�t���i:

(64)

The Fourier transform of the second-order term in the expectation value of a product of two �s is then

Z
d3xeiq	�x�x0�hvac;inj��x;t���x0;t�jvac; ini2��

32�2��9

q4
Re

Z t

�1
a5�t2���t2�H�t2�dt2

Z t2

�1
a5�t1���t1�H�t1�dt1 _�q�t1���q�t�

�� _�q�t2��
�
q�t���q�t� _�

�
q�t2��N

Z
d3p

Z
d3p0�3�pp0 q� _�p�t1� _��

p

��t2� _�p0 �t1� _��
p0 �t2�

�2��3

4q4
N

Z
d3p

Z
d3p0�3�pp0 q�

��p 	p0�2j�p�t�j2j�p0 �t�j2			 ; (65)
where N is the number of � fields. We have shown here
explicitly the contribution of the first and third lines on the
right-hand side of Eq. (64). The dots represent one-loop
contributions of the second line, in which 
B;A _B=2�
plays the role of a ���� ‘‘seagull’’ interaction, as well as
one-loop terms of first order in the ���� terms in Eq. (5),
in both of which the integral over internal wave number is
q independent, plus counterterms arising in first order from
interactions that cancel ultraviolet divergences in flat
space, including

															
� detg

p
R3&R3& and

															
� detg

p
R2 terms

in the Lagrangian density that are not included in Eq. (5).
Though it has not been made explicit in this section, we

use dimensional regularization to remove infinities in the
integrals over p and p0 at intermediate stages in the calcu-
lation, and we now assume that the singularity as the
number of space dimensions approaches three is canceled
by the terms in Eq. (65) represented by dots, leaving it to
future work to show that this is the case. Then these
integrals are dominated by p � p0 � q. As we have
seen, the integrals over time are then dominated by the
time tq of horizon exit, when q=a�tq� ’ H�tq�. For sim-
plicity, we will assume (for the first time in this paper) that
the unperturbed inflaton field �’�t� is rolling very slowly
down the potential at time tq, so that the expansion near
this time can be approximated as strictly exponential,
a�t� / eHt. Then the wave functions are

�q�t� ’ �oqe�iq2�1 iq2�;

�q�t� ’ �oqe�iq2�1 iq2�;

where 2 is the conformal time
-11
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2 � �
Z 1

t

dt
a�t�

;

and the wave functions outside the horizon have modulus

j�oqj2 �
H2�tq�

2�2��3q3
; j�oq j2 �

H2�tq�

2�2��3��tq�q
3 :

Using these wave functions in Eq. (65) gives
Z
d3xeiq	�x�x0�hvac; inj��x; t���x0; t�jvac; ini2

�
�8�GH2�tq��2N

�2��3
Z
d3p

Z
d3p0�3�p p0  q�

�

�
pp0

q7�p p0  q�


�p 	 p0�2

16q4p3p03

�
 	 	 	 (66)

with the dots having the same meaning as in Eq. (65).
Simple dimensional analysis tells us that when the in-

tegral over internal wave numbers of the first term in
square brackets is made finite by dimensional regulariza-
tion, it is converted to

Z
d3p

Z
d3p0�3�p p0  q�

pp0

p p0  q
) q4�F���;

(67)

where � is a measure of the difference between the space
dimensionality and three. The ultraviolet divergence in this
integral for � � 0 gives the function F��� a singularity as
�! 0:

F��� !
F0

�
 F1; (68)

so that in the limit � � 0

Z
d3p

Z
d3p0�3�p p0  q�

pp0

p p0  q

� q4
F0 lnq L�; (69)

where L is a divergent constant. We can easily calculate the
coefficient F0 of the logarithm. For this purpose, we note
that, in general,

Z
d3p

Z
d3p0�3�p p0  q�f�p; p0; q�

�
2�
q

Z 1

0
pdp

Z pq

jp�qj
p0dp0f�p; p0; q�: (70)

To eliminate the divergence in the integral over p and p0,
we multiply by q and differentiate 6 times with respect to
q. A tedious but straightforward calculation gives

d6

dq6

�
q
Z
d3p

Z
d3p0�3�p p0  q�

pp0

p p0  q

�

� �
8�
q
:
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Comparing this with the result of applying the same op-
eration to Eq. (69) then gives F0 � ��=15.

In contrast, the integral of the second term in square
brackets in Eq. (66) is a sum of powers of q with divergent
coefficients, but with no logarithmic singularity in q. [This
term would be eliminated if we calculated the expectation
value of a product of fields ~� � exp��iB�� exp�iB� instead
of � .] The terms represented by dots in Eq. (65) make
contributions that are also just a sum of powers of q with
divergent coefficients. We are assuming that all ultraviolet
divergences cancel, but we cannot find resulting finite
power terms without knowing the renormalized coeffi-
cients of the

															
� detg

p
R3&R3& and

															
� detg

p
R2 terms in

the Lagrangian density. So we are left with the result
(now restoring a suitable power of 8�G) that

Z
d3xeiq	�x�x0�hvac; inj��x; t���x0; t�jvac; ini2

� �
��8�GH2�tq��

2N

15�2��3q3

lnq C� (71)

with C an unknown constant. This may be compared with
the classical (and classic) result, that in slow roll inflation
this correlation function takes the form

Z
d3xeiq	�x�x0�hvac; inj��x; t���x0; t�jvac; ini0

�
8�GH2�tq�

4�2��3j��tq�jq
3 : (72)

The one-loop correction (71) is smaller by a factor of order
8�GH2N j��tq�j, so even if N is 102 or 103 this correc-
tion is likely to remain unobservable. Still, it is interesting
that even in the extreme slow roll limit, where H�tq� and
��tq� are nearly constant, the factor lnq gives it a different
dependence on the wave number q.
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APPENDIX: THE IN-IN FORMALISM

1. Time dependence

First, it is necessary to be precise about the origin of the
time dependence of the fluctuation Hamiltonian in appli-
cations such as those encountered in cosmology. Consider
-12
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a general Hamiltonian system, with canonical variables
:a�x; t� and conjugates �a�x; t� satisfying the commuta-
tion relations


:a�x; t�; �b�y; t�� � i�ab�
3�x� y�;


:a�x; t�; :b�y; t�� � 
�a�x; t�; �b�y; t�� � 0;
(A1)

and the equations of motion

_:a�x; t� � i
H
:�t�; ��t��; :a�x; t��;

_�a�x; t� � i
H
:�t�; ��t��; �a�x; t��:
(A2)

Here a is a compound index labeling particular fields and
their spin components. The Hamiltonian H is a functional
of the:a�x; t� and�a�x; t� at fixed time t, which according
to Eq. (A2) is of course independent of the time at which
these variables are evaluated.

We assume the existence of a time-dependent c-number
solution �:a�x; t�, ��a�x; t�, satisfying the classical equa-
tions of motion:

_�:a�x; t� �
�H
 �:�t�; ���t��
� ��a�x; t�

;

_��a�x; t� � �
�H� �:�t�; ���t��

� �:a�x; t�
;

(A3)

and we expand around this solution, writing

:a�x; t� � �:a�x; t�  �:a�x; t�;

�a�x; t� � ��a�x; t�  ��a�x; t�:
(A4)

(In cosmology, �:a would describe the Robertson-Walker
metric and the expectation values of various scalar fields.)
Of course, since c numbers commute with everything, the
fluctuations satisfy the same commutation rules (A1) as the
total variables:


�:a�x; t�; ��b�y; t�� � i�ab�
3�x� y�;


�:a�x; t�; �:b�x; t�� � 
��a�x; t�; ��b�x; t�� � 0:

(A5)

When the Hamiltonian is expanded in powers of the per-
turbations �:a�x; t� and ��a�x; t� at some definite time t,
we encounter terms of zeroth and first order in the pertur-
bations, as well as time-dependent terms of second and
higher order:

H
:�t�; ��t�� � H
 �:�t�; ���t��


X
a

�H
 �:�t�; ���t��

� �:a�x; t�
�:a�x; t�


X
a

�H
 �:�t�; ���t��
@ ��a�x; t�

��a�x; t�

 ~H
�:�t�; ���t�; t�; (A6)

where ~H
�:�t�; ���t�; t� is the sum of all terms in
043514
H
 �:�t�  �:�t�; ���t�  ���t�� of second and higher order
in the �:�x; t� and/or ���x; t�.

Now, although H generates the time dependence of
:a�x; t� and �a�x; t�, it is ~H rather than H that generates
the time dependence of �:a�x; t� and ��a�x; t�. That is,
Eq. (A2) gives

_�:a�x; t�  � _:a�x; t� � i
H
:�t�; ��t��; �:a�x; t��;

_��a�x; t�  � _�a�x; t� � i
H
:�t�; ��t��; ��a�x; t��;

while Eqs. (A3) and (A5) give

i
�X
b

Z
d3y

�H
 �:�t�; ���t��

� �:b�y; t�
�:b�y; t�


X
b

Z
d3y

�H
 �:�t�; ���t��
� ��b�y; t�

��b�y; t�; �:a�x; t�
�

� _�:a�x; t�;

i
�X
b

Z
d3y

�H
 �:�t�; ���t��

� �:b�y; t�
�:b�y; t�


X
b

Z
d3y

�H
 �:�t�; ���t��
� ��b�y; t�

��b�y; t�; ��a�x; t�
�

� _��a�x; t�:

Subtracting, we find

� _:a�x; t� � i
 ~H
:�t�; ��t�; t�; �:a�x; t��;

� _�a�x; t� � i
 ~H
:�t�; ��t�; t�; ��a�x; t��:
(A7)

This then is our prescription for constructing the time-
dependent Hamiltonian ~H that governs the time depen-
dence of the fluctuations: expand the original Hamiltonian
H in powers of fluctuations �: and ��, and throw away
the terms of zeroth and first order in these fluctuations. It is
this construction that gives ~H an explicit dependence on
time.

2. Operator formalism for expectation values

We consider a general Hamiltonian system, of the sort
described in the previous subsection. It follows from
Eq. (A7) that the fluctuations at time t can be expressed
in terms of the same operators at some very early time t0
through a unitary transformation

�:a�t� � U�1�t; t0��:a�t0�U�t; t0�;

��a�t� � U�1�t; t0���a�t0�U�t; t0�;
(A8)

where U�t; t0� is defined by the differential equation

d
dt
U�t; t0� � �i ~H
�:�t�; ���t�; t�U�t; t0� (A9)

and the initial condition
-13
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U�t0; t0� � 1: (A10)

In the application that concerns us in cosmology, we can
take t0 � �1, by which we mean any time early enough
so that the wavelengths of interest are deep inside the
horizon.

To calculateU�t; t0�, we now further decompose ~H into a
kinematic term H0 that is quadratic in the fluctuations, and
an interaction term HI:

~H
�:�t�; ���t�; t� � H0
�:�t�; ���t�; t�

HI
�:�t�; ���t�; t�; (A11)

and we seek to calculate U as a power series in HI. To this
end, we introduce an ‘‘interaction picture’’: we define
fluctuation operators �:Ia�t� and ��Ia�t� whose time de-
pendence is generated by the quadratic part of the
Hamiltonian:

� _:Ia�t� � i
H0
�:
I�t�; ��I�t�; t�; �:I

a�t��;

� _�Ia�t� � i
H0
�:I�t�; ��I�t�; t�; ��Ia�t��;
(A12)

and the initial conditions

�:I
a�t0� � �:a�t0�; ��Ia�t0� � ��a�t0�: (A13)

Because H0 is quadratic, the interaction-picture operators
are free fields, satisfying linear wave equations.

It follows from Eq. (A12) that in evaluating
H0
�:

I; ��I; t� we can take the time argument of �:I

and ��I to have any value, and, in particular, we can take it
as t0, so that

H0
�:
I�t�; ��I�t�; t� � H0
�:�t0�; ���t0�; t�; (A14)

but the intrinsic time dependence of H0 still remains. The
solution of Eq. (A12) can again be written as a unitary
transformation:

�:I
a�t� � U�1

0 �t; t0��:a�t0�U0�t; t0�;

��Ia�t� � U�1
0 �t; t0���a�t0�U0�t; t0�;

(A15)

with U0 defined by the differential equation

d
dt
U0�t; t0� � �iH0
�:�t0�; ���t0�; t�U0�t; t0� (A16)

and the initial condition

U0�t0; t0� � 1: (A17)

Then from Eqs. (A9) and (A16) we have

d
dt


U�1
0 �t; t0�U�t; t0�� � �iU�1

0 �t; t0�HI
�:�t0�;

���t0�; t�U�t; t0�:

Using Eq. (A15), this gives

U�t; t0� � U0�t; t0�F�t; t0�; (A18)

where
043514
d
dt
F�t; t0� � �iHI�t�F�t; t0�; F�t0; t0� � 1; (A19)

and HI�t� is the interaction Hamiltonian in the interaction
picture:

HI�t� � U0�t; t0�HI
�:�t0�; ���t0�; t�U�1
0 �t; t0�

� HI
�:
I�t�; ��I�t�; t�: (A20)

The solution of equations like (A19) is well known

F�t; t0� � T exp
�
�i

Z t

t0
HI�t�dt

�
; (A21)

where T indicates that the products of HIs in the power
series expansion of the exponential are to be time ordered;
that is, they are to be written from left to right in the
decreasing order of time arguments. The solution for the
fluctuations in terms of the free fields of the interaction
picture is then given by Eqs. (A8) and (A15) as

Q�t� � F�1�t; t0�Q
I�t�F�t; t0�

�

�
�T exp

�
i
Z t

t0
HI�t�dt

��
QI�t�

�

�
T exp

�
�i

Z t

t0
HI�t�dt

��
; (A22)

whereQ�t� is any �:�x; t� or ���x; t� or any product of the
�:s and/or ��s, all at the same time t but in general with
different space coordinates, and QI�t� is the same product
of �:I�x; t� and/or ��I�x; t�. Also, �T denotes anti-time
ordering: products of HIs in the power series expansion of
the exponential are to be written from left to right in the
increasing order of time arguments.

3. Diagrammatic formalism for expectation values

We want to use Eq. (A22) to calculate the expectation
value hQ�t�i of the product Q�t� in a ‘‘Bunch-Davies’’
vacuum, annihilated by the positive-frequency part of the
interaction-picture fluctuations �’I and ��I. We can use
the familiar Wick theorem to express the vacuum expec-
tation value of the right-hand side of Eq. (A22) as a sum
over pairings of the �’I and ��I with each other. [This of
course is the same as supposing the interaction-picture
fields in HI�t� and QI�t� to be governed by a Gaussian
probability distribution, except that the order of operators
in bilinear averages has to be the same as the order in which
they appear in Eq. (A22).] Expanding Eq. (A22) as a sum
of products of bilinear products leads to a set of diagram-
matic rules, but one that is rather complicated.

In calculating the term in hQi of Nth order in the
interaction, we draw all diagrams with N vertices. Just as
for ordinary Feynman diagrams, each vertex is labeled
with a space and time coordinate, and has lines attached
corresponding to the fields in the interaction. There are also
external lines, one for each field operator in the product Q,
labeled with the different space coordinates and the com-
-14
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mon time t in the arguments of these fields. All external
lines are connected to vertices or other external lines, and
all remaining lines attached to vertices are attached to other
vertices. But there are significant differences between the
rules following from Eq. (A22) and the usual Feynman
rules:
(i) W
e have to distinguish between ‘‘right’’ and ‘‘left’’
vertices, arising, respectively, from the time-
ordered product and the anti-time-ordered product.
A diagram with N vertices contributes a sum over
all 2N ways of choosing each vertex to be a left
vertex or a right vertex. Each right or left vertex
contributes a factor �i or i, respectively, as well
as whatever coupling parameters appear in the
interaction.
(ii) A
 line connecting two right vertices or a right
vertex and an external line, in which it is associated
with field operators A�x; t0� and B�y; t00�, contrib-
utes a conventional Feynman propagator
hTfA�x; t0�B�y; t00gi. (It will be understood here
and below that in calculating propagators all fields
A, B, etc. are taken in the interaction picture, and
can be �’Is and/or ��Is.) As a special case, if B is
associated with an external line then t00 � t, and
since t0 � t, this is hB�y; t�A�x; t0�i.
(iii) A
 line connecting two left vertices, associated with
field operators A�x; t0� and B�y; t00�, contributes a
propagator h �TfA�x; t0�B�y; t00gi. As a special case, if
B is associated with an external line then t00 � t,
and this is hA�x; t0�B�y; t�i.
(iv) A
 line connecting a left vertex, in which it is
associated with a field operator A�x; t0�, to a right
vertex, in which it is associated with a field operator
B�y; t00�, contributes a propagator hA�x; t0�B�y; t00�i.
(v) W
e must integrate over all over the times t0; t00; . . . ,
associated with the vertices from t0 to t, as well as
043514-15
over all space coordinates associated with the
vertices.
We must say a word about the disconnected parts of
diagrams. A vacuum fluctuation subdiagram is one in
which each vertex is connected only to other vertices, not
to external lines. Just as in ordinary quantum field theories,
the sum of all vacuum fluctuation diagrams contributes a
numerical factor multiplying the contribution of diagrams
in which vacuum fluctuations are excluded. But unlike the
case of ordinary quantum field theory, this numerical factor
is not a phase factor, but is simply��

�T exp
�
i
Z t

t0
HI�t�dt

���
T exp

�
�i

Z t

t0
HI�t�dt

���
� 1:

(A23)

Hence in the in-in formalism all vacuum fluctuation dia-
grams automatically cancel. Even so, a diagram may con-
tain disconnected parts which do not cancel, such as
external lines passing through the diagram without inter-
acting. Ignoring all disconnected parts gives what in the
theory of noise is known as the cumulants of expectation
values [10], from which the full expectation values can
easily be calculated as a sum of products of cumulants.

4. Path-integral derivation of the diagrammatic rules

It is often preferable use path integration instead of the
operator formalism, in order to derive the Feynman rules
directly from the Lagrangian rather than from the
Hamltonian, or to make available a larger range of gauge
choices, or to go beyond perturbation theory. Going back to
Eq. (1), and following the same reasoning [11] that leads
from the operator formalism to the path-integral formalism
in the calculation of S-matrix elements, we see that the
vacuum expectation value of any product Q�t� of �:s and
��s at the same time t (now taking t0 � �1) is
hQ�t�i �
Z Y

x;t0;a

d�:La�x; t0�
Y
x;t0;a

d��La�x; t0�
2�

Y
x;t0;a

d�:Ra�x; t0�
Y
x;t0;a

d��Ra�x; t0�
2�

� exp

�i

Z t

�1
dt0

�X
a

Z
d3x� _:La�x; t0���La�x; t0� � ~H
�:L�t0�; ��L�t0�; t0�

��

� exp

i
Z t

�1
dt0

�X
a

Z
d3x� _:Ra�x; t0���Ra�x; t0� � ~H��:R�x; t0�; ��R�x; t0�; t0�

��Y
x;a
���:La�x; t�

� �:Ra�x; t������La�x; t� � ��Ra�x; t��Q
�:L�t�; ��L�t���
�
0
�:L��1���0
�:R��1��: (A24)

Here the functional �0
�:� is the wave function of the vacuum [12],

�0
:��1�� / exp
�
�
1

2

X
a;b

Z
d3x

Z
d3yEab�x; y��:a�x;�1��:b�y;�1�

�

� exp
�
�
�
2

Z t

�1
dt0e�t

0
X
a;b

Z
d3x

Z
d3yEab�x; y��:a�t

0��:b�t
0�

�
; (A25)
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where � is a positive infinitesimal and Eab is a positive-
definite kernel. For instance, for a real scalar field of mass
m,

E �x; y� �
1

�2��3
Z
d3peip	�x�y�

																		
p2 m2

q
: (A26)

As is well known, if the Hamiltonian is quadratic in the
canonical conjugates ��a with a field-independent coeffi-
cient in the term of second order, then we can integrate
over the ��a by simply setting � _:a � @ ~H=@��a, and the
quantity

P
a� _:a�t0���a�t0� � ~H��:�t0�; ���t0�; t0� in

Eq. (A24) then becomes the original Lagrangian. We will
not pursue this here, but will rather take up a puzzle that at
first sight seems to throw doubt on the equivalence of the
path-integral formula (A24), when we do not integrate out
the �s, with the operator formalism.

The puzzle is that, although the propagators for lines
connecting left vertices to each other or right vertices to
043514
each other or left or right vertices to external lines are
Greens functions of the sort that familiarly emerge from
path integrals, what are we to make of the propagators
arising from Eq. (A22) for lines connecting left vertices
with right vertices? These are not Greens functions; that is,
they are solutions of homogeneous wave equations, not of
inhomogeneous wave equations with a delta function
source. As we shall see, the source of these propagators
lies in the delta functions in Eq. (A24). It is these delta
functions that tie together the integrals over the L variables
and over the R variables, so that the expression (A24) does
not factor into a product of these integrals.

In analyzing the consequences of Eq. (A24), it is con-
venient to condense our notation yet further, and let a
variable ?n�t� stand for all the �:a�x; t� and ��a�x; t�,
so that n runs over positions in space and whatever discrete
indices are used to distinguish different fields, plus a two-
valued index that distinguishes �: from ��. With this
understanding, Eq. (A24) reads
hQ�t�i �
Z Y

t0;n

d?Ln�t0�							
2�

p
Y
t0;n

d?Rn�t0�							
2�

p exp

�i

Z t

�1
dt0 ~L�?L�t

0�; _?L�t
0�; t0�

�
exp


i
Z t

�1
dt0 ~L
?R�t

0�; _?R�t
0�; t0�

�

�

�Y
n

��?Ln�t� � ?Rn�t��
�
Q�?L�t���

�
0�?L��1���0�?R��1��; (A27)

where

~L
?�t0�; _?�t0�; t0� �
X
a

Z
d3x��a�x; t0�� _:a�x; t0� � ~H
�:�t0�; ���t0�; t0�: (A28)

To expand in powers of the interaction, we split ~L into a term ~L0 that is quadratic in the fluctuations, plus an interaction
term � ~HI:

~L � ~L0 � ~HI; (A29)

where

~L 0
?�t
0�; _?�t0�; t0� �

X
a

Z
d3x� _:a�x; t0���a�x; t0� � ~H0��:�t

0�; ���t0�; t0�: (A30)

As in calculations of the S matrix, we will include the argument of the exponential in the vacuum wave functions along
with the quadratic part of the Lagrangian, writingZ t

�1
dt0


~L0
?R�t0�; _?R�t0�; t0� 

i�
2

X
ab

Z
d3x

Z
d3yEab�x; y��:Ra�x; t0��:Rb�y; t0�

�
�

1

2

X
nn0

X
t0;t00

DR
nt0;mt00?Rn�t

0�?Rn0 �t00�;

(A31)

Z t

1
dt0


~L0
?L�t0�; _?L�t0�; t0� �

i�
2

X
ab

Z
d3x

Z
d3yEab�x; y��:La�x; t0��:Lb�y; t0�

�
�

1

2

X
nn0

X
t0;t00

DL
nt0;n0t00?Ln�t

0�?Ln0 �t00�:

(A32)

The vacuum wave function is the same for ?L and ?R, but it is combined here with an exponential exp��i
R
~L0� for the ?Ln

and an exponential exp�i
R
~L0� for the ?Rn, which accounts for the different signs of the i� terms in Eqs. (A31) and (A32).

[The factor e�t
0
in Eq. (A25) is effectively equal to one for any finite t0, and has therefore been dropped.] We also express

the product of delta functions in Eq. (A27) as a Gaussian:
-16
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Y
n

�
�
?Ln�t� � ?Rn�t�

�
/ exp

�
�

1

�0
X
n

�?Ln�t� � ?Rn�t��2
�

� exp
�
�
X
nn0

X
t0t00

Cnt0;n0t00 �?Ln�t0� � ?Rn�t0���?Ln0 �t00� � ?Rn0 �t00��
�
; (A33)
where

C nt0;n0t00 �
1

�0
�nn0��t

0 � t���t00 � t�; (A34)

and �0 is another positive infinitesimal.
Following the usual rules for integrating a Gaussian

times a polynomial, the integral is given by a sum over
diagrams as described above, but with a line that connects
right vertices with each other (or with external lines)
contributing a factor �i�RR

nt0;n0t00 , a line that connects left
vertices with each other (or with external lines) contribut-
ing a factor i�LL

nt0;n0t00 , and a line that connects a right vertex
where it is associated with ?n�t0� with a left vertex asso-
ciated with ?n0 �t00� contributing a factor i�RL

nt0;n0t00 , with the
�s determined by the condition

iDR � C C
C �iDL � C

� �
�i�RR i�RL

i��RL�T i�LL

� �
�

1 0
0 1

� �
:

(A35)

This must hold whatever tiny value we give to �0, and so

D R�RR � 1; DL�LL � 1; (A36)

D R�RL � 0; DL��RL�T � 0; (A37)

C�LL � C�RL; C�RR � �C��RL�T: (A38)

The first Eq. (A36) is the usual inhomogeneous wave
equation for the propagator, whose solution as well known
is

�i�RR
nt0;n0t00 � hTf?n�t

0�?n0 �t
00�gi; (A39)

with the time ordering dictated by the i� in Eq. (A31).
The second Eq. (A36) is the complex conjugate of the first
wave equation, whose solution is the complex conjugate of
Eq. (A39):

i�LL
nt0;n0t00 � h �Tf?n�t

0�?n0 �t
00�gi: (A40)

Equations (A39) and (A40) thus give the same propagators
for lines connecting right vertices with each other or with
external lines, and for lines connecting left vertices with
each other or with external lines, as we encountered in the
operator formalism. Equations (A37) tell us that �RL and
043514
��RL�T satisfy the homogeneous versions of the wave
equations satisfied by �RR and �LL, but to find �RL we
also need an initial condition. This is provided by the first
of Eqs. (A38), which in more detail reads

i�RL
nm�t; t2� � i�LL

nm�t; t2� � h �Tf?n�t�?m�t2�gi

� h?m�t2�?n�t�i; (A41)

in which we have used the fact that t > t2. This, together
with the first of Eqs. (A37), tells us that

i�RL
nm�t1; t2� � h?m�t2�?n�t1�i; (A42)

which is the same propagator for internal lines connecting
right vertices with left vertices that we found in the opera-
tor formalism.

5. Tree graphs and classical solutions

We will now verify the remark made in Sec. I, that the
usual approach to the calculation of non-Gaussian correla-
tions, of solving the classical field equations beyond the
linear approximation, simply corresponds to the calcula-
tion of tree diagrams in the in-in formalism. This is a well-
known result [13] in the usual applications of quantum
field theory, but some modifications in the usual argument
are needed in the in-in formalism, in which the vacuum
persistence functional is always unity whether or not we
add a current term to the Lagrangian.

We begin by introducing a generating functional
W
J; t; g� for correlation functions of fields at a fixed
time t:

eW
J;t;g�=g � hvac; inje
�1=g�

P
a

R
d3x�:a�x;t�Ja�x�

jvac; inig;

(A43)

where Ja is an arbitrary current, and g a real parameter,
with the subscript g indicating that the expectation value is
to be calculated using a Lagrangian density multiplied with
a factor 1=g. (This is different from the usual definition of
the effective action, because here we are not introducing
the current into the Lagrangian.) The quantity of physical
interest is of course W
J; t; 1�, from which expectation
values of all products of fields can be found by expanding
in powers of the current.

Using Eq. (A27), we can calculateW as the path integral
-17
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eW
J;t;g�=g �
Z Y

�:L
Z Y

��L
Z Y

�:R
Z Y

��R exp
�
�i

Z t

�1
dt0

1

g
~L
�:L; ��L; t0�

�

� exp
�
i

Z t

�1
dt0

1

g
~L
�:R; ��R; t

0�

�Y
�
:L�t� � �:R�t��

Y
�
��L�t�

� ��R�t��e
�1=g�

P
a

R
d3x�:a�x;t�Ja�x�

	 	 	�vac
�:L��1���vac
�:R��1��: (A44)
The usual power-counting arguments [13] show that the L
loop contribution toW
J; t; g� has a g dependence given by
a factor g�L. For g! 0, W is thus given by the sum of all
tree graphs. The integrals over �:L, ��L, �:L, ��L are
dominated in the limit g! 0 by fields where ~L is sta-
tionary, i.e., where

�:L � �:R � �:classical;

��L � ��R � ��classical

with �:classical and ��classical the solutions of the classical
field equations with the initial conditions that the fields go
to free fields such as (14)–(16) satisfying the initial con-
ditions (20) at t! �1. Since the L and R fields take the
043514
same values at this stationary point, the action integrals
cancel, and we conclude that


W
J; t; 1��zero loops �
X
a

Z
d3x�:classical

a �x; t�Ja�x�:

(A45)

Expanding in powers of the current, this shows that in the
tree approximation the expectation value of any product of
fields is to be calculated by taking the product of the fields
obtained by solving the nonlinear classical field equations
with suitable free-field initial conditions, as was to be
proved.
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