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We have reexamined the holographic dark energy model by considering the spatial curvature. We have
refined the model parameter and observed that the holographic dark energy model does not behave as
phantom model. Comparing the holographic dark energy model to the supernova observation alone, we
found that the closed Universe is favored. Combining with the Wilkinson microwave anisotropy probe
(WMAP) data, we obtained the reasonable value of the spatial curvature of our Universe.
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I. INTRODUCTION

The total entropy of matter inside a black hole cannot be
greater than the Bekenstein-Hawking entropy, which is one
quarter of the area of the event horizon of the black hole
measured in Planck unit. In view of the example of black
hole entropy, Bekenstein proposed a universal entropy
bound S � 2�ER for a weak self-gravitating physical
system with total energy E and size R in 1981 [1]. Later
’t Hooft and Susskind proposed an influential holographic
principle, relating the maximum number of degrees of
freedom in a volume to its boundary surface area [2].
The extension of the holographic principle to the cosmo-
logical setting was first addressed by Fischler and Susskind
(FS) [3]. Subsequently, various modifications of the FS
version of the holographic principle was proposed [4].
The idea of the holographic principle is viewed as a real
conceptual change in our thinking about gravity [5]. It has
appeared in many examples of applying the holographic
principle to study cosmology, such as understanding the
possible value of the cosmological constant [6,7], selecting
a physically acceptable model in inhomogeneous cosmol-
ogy [8] and discussing upper limits on the number of e-
foldings in inflation [9]. It is of great interest to generalize
the application of holography to a much broader class of
situations, especially to cosmology.

The type Ia supernova (SN Ia) observations suggest that
the Universe is dominated by dark energy with negative
pressure which provides the dynamical mechanism of the
accelerating expansion of the Universe [10,11]. The sim-
plest candidate of dark energy is the cosmological con-
stant. However the unusual small value of the cosmological
constant is a big challenge to theoretical physicists.
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Whether holography can shed us some light in understand-
ing the profound puzzle posed by the dark energy is a
question we want to ask. Motivated by the assumption
that for any state in the Hilbert space with energy E, the
corresponding Schwarzschild radius Rs � E is less than
the infrared (IR) cutoff L [7], a relationship between the
ultraviolet (UV) cutoff and the infrared cutoff is derived,
i.e., 8�GL3�D=3� L [7]. We can express the holographic
dark energy density as

�D �
3c2d2

8�GL2
; (1)

where c is the speed of light and d is a constant of the order
of unity. This UV-IR relationship was also obtained by
Padmanabhan by arguing that the cosmological constant
is due to the vacuum fluctuation of energy density. Hsu
found that the holographic dark energy model based on the
Hubble scale as the IR cutoff will not give an accelerating
universe [12]. In [13], Li showed that when choosing the
particle horizon as the IR cutoff, an accelerating universe
will not be produced either. However, by relating the IR
cutoff to an event horizon, it was found that the holo-
graphic dark energy model can accommodate the acceler-
ating universe [13,14]. The model in the flat universe was
found inconsistent with current observations [15]. Here we
would like to point out that the form �D �H2 also works
for dark energy model building. For example, the model
�D � �� � 3c2d2H2=�8�G� with �� a constant derived
from the renormalization group models of the cosmologi-
cal constant can explain the accelerating expansion of the
Universe [16]. Ito also discovered a viable holographic
dark energy model by using the Hubble scale as the IR
cutoff with the use of nonminimal coupling to scalar field
[17]. More recently, a dark energy model �D �H2 with an
interaction between the dark energy and dark matter was
proposed to explain the accelerating expansion [18]. The
-1  2005 The American Physical Society
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holographic dark energy model in the framework of Brans-
Dicke theory was discussed in [19]. Some speculations
about the deep reasons of the holographic dark energy
were considered by several authors [20]. The holographic
principle was also used to constrain dark energy models in
[21]. In this paper, we reexamine the holographic dark
energy model proposed in [13]. We give constraints on
this model from both the theoretical argument and the
observational data. Including the spatial curvature, we
will find that the closed universe is marginally favored.
This result agrees to the cosmic microwave background
(CMB) anisotropy experiments [22–24] and recent super-
nova investigations [25].
II. HOLOGRAPHIC DARK ENERGY MODELWITH
CURVATURE

We start from the homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) space-time metric

ds2 � �c2dt2 � a2�t�
�
dr2

1� kr2
� r2d�

�
: (2)

If a light is emitted from a point r1 at time t1, it will arrive
at the origin at time t0. The light follows the null geodesics,
so we have Z t0

t1

cdt
a�t�

�
Z r1
0

dr����������������
1� kr2

p 	 f�r1�; (3)

where

f�r1� �
1������
jkj

p sinn�1�
������
jkj

p
r1�

�

8><>:
sin�1�

������
jkj

p
r1�=

������
jkj

p
; k � 1;

r1; k � 0;
sinh�1�

������
jkj

p
r1�=

������
jkj

p
; k � �1:

With both an ordinary pressureless dust matter and the
holographic dark energy as sources, the Friedmann equa-
tions are

H2�
kc2
a2

�
8�G
3

��m� �r� �D�; (4)

_�D� 3H��D� pD� � 0; (5)

where the Hubble parameter H � _a=a, the matter density
�m � �m0�1=a�3, the radiation density �r � �r0�1=a�4,
the dot means derivative with respect to time and the sub-
script 0 means the value of the variable at present time and
a0 � 1 is set.

Now as done in [13] we choose the event horizon as the
IR cutoff, where

Reh�t� � a�t�
Z 1

t

cdt
a�t�

� a�t�
Z 1

a�t�

cd~a
~a2H

�
Z r
0

d~r�����������������
1� k~r2

p ;

(6)
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L � a�t�r �
a�t� sinn�

������
jkj

p
Reh�t�=a�t�
������

jkj
p : (7)

Apparently, we recover L � Reh for a spatially flat
universe.

Let us rewrite Eq. (4) as

�m ��r ��D � 1��k; (8)

where �m � �m=�cr � �m0H
2
0=�H

2a3�, �r � �r=�cr �
�r0H

2
0=�H

2a4�, �D � d2c2=�L2H2� and �k �
kc2=�a2H2� � �k0H

2
0=�a

2H2�. Since

�k
�m

� a
�k0
�m0

� a�;

where � � �k0=�m0, and

�r
�m

�
�r0
a�m0

�
�
a
;

where � � �r0=�m0 � 1=�1� zeq� and the matter radia-
tion equality redshift zeq � 3233 [26], we have

�m �
�m0H

2
0

H2a3
�
a�1��D�

�� a� a2�
: (9)

From the above equation, we get

1

aH
�
a
H0

����������������������������������������
1��D

�m0��� a� a2��

s
: (10)

Combining Eqs. (7) and (10) and using the definition of
�D, we obtain

������
jkj

p Reh
a

� sinn�1

24d �������
j�j

q ��������������������������������������
a2�1��D�

�D��� a� a2��

s 35
� sinn�1�d

��������������������
j�kj=�D

q
�: (11)

If �k > 0, then we require d �
�����������������
�D=�k

p
.

By using Eqs. (1) and (5)–(7), and (8), we get the dark
energy equation of state

wD � �
1

3

d ln�D
d lna

� 1

� �
1

3

�
1�

2

d

��������
�D

p
cosn�

������
jkj

p
Reh=a�

�

� �
1

3

�
1�

2

d

�������������������������
�D � d2�k

q �
; (12)

where

1������
jkj

p cosn�
������
jkj

p
x� �

8><>:
cos�x�; k � 1;
1; k � 0;

cosh�x�; k � �1:

It is obvious that wD � �1=3, so we can have an accel-
erating universe.
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Taking derivative with respect to a on both sides of
Eq. (11) and using the redshift z � 1=a� 1 as the variable,
we get the following differential equation by using Eqs. (6)
and (10)

d�D
dz

� �
2�3=2

D �1��D�

d�1� z�

�

��������������������������������������������������������������������
1�

d2��1��D�

�D���1� z�2 � 1� z� �


s

�
�D�1��D��1� 2��1� z�


��1� z�2 � 1� z� �
: (13)

With this expression, we can understand the evolution
behavior of the dark energy.

Let us find the constraints on the parameter d in the
holographic dark energy model. The entropy of the whole
system is described by S � �M2

pL
2. To satisfy the second

law of thermodynamics, we require that

_L � LH � ccosn�
������
jkj

p
Reh�t�=a�t�


� c
�
d��������
�D

p �

��������������������������������������������������������������������
1�

d2��1��D�

�D���1� z�2 � 1� z� �


s �
� 0:

(14)

Thus

d2 �
�D���1� z�2 � 1� z� �


��1� z�2 � 1� z� ��D
�

�D
1��k

: (15)

For the spatially flat universe, we recover d2 � �D. When
the dark energy dominates, d2 � 1, which is the lower
bound of d proposed in [14].

In addition to the lower bound on d, employing the
argument that the total energy in a region of size L should
not exceed the mass of a black hole of the same size, we
have the upper bound d � 1. Alternatively d � 1 can be
argued by using the condition Rs � L. For a dark energy
dominated universe, we have

Rs �
2GM

c2
� 2G�D

�
4�

3c2
L3

�
� L; (16)

so

�D �
3c2

8�GL2
: (17)

Comparing Eqs. (1) and (17), we get d � 1. Thus we find
that d must lie in the range����������������

�D
1��k

s
� d � 1: (18)

As the dark energy gradually dominates the Universe,
�D ! 1, the allowed range of d will become smaller. It
is also interesting to note that the Bekenstein entropy
bound
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S �
2�EL
c

�
8�2c�DL4

3
�
�c3L2

G
� SBH: (19)

Therefore, the maximum entropy is the Bekenstein-
Hawking entropy SBH.

Applying the constraint Eq. (18) to Eq. (12), we find that
wD � �1. Therefore, the holographic dark energy has no
phantomlike behavior.
III. PHENOMENOLOGICAL CONSEQUENCES

Now we use the 157 gold sample SN Ia data compiled in
[27] to fit the model. The parameters d, �m0, and �k0 in
the model are determined by minimizing

!2 �
X
i

�#obs�zi� �#�zi�
2

$2i
; (20)

where the extinction-corrected distance modulus #�z� �
5log10�dL�z�=Mpc� � 25, the luminosity distance is

dL � �1� z�r�z�

�
c�1� z�

H0
������������
j�k0j

p sinn�
������
jkj

p
��1� z�Reh�z� � Reh�0�
�

�
c�1� z�

H0
������������
j�k0j

p sinn
�
�sinn�1

� ����������������
d2j�k0j
�D0

s �

� sinn�1
� �����������������������������������������������������������

d2j�j�1��D�

�D���1� z�2 � 1� z� �


s ��
; (21)

$i is the total uncertainty in the observation. The nuisance
parameter H0 is marginalized over with a flat prior as-
sumption. Since H0 appears linearly as the form of
5log10H0 in !2, the marginalization by integrating L �
exp��!2=2� over all possible values of H0 is equivalent to
finding the value of H0 which minimizes !2 if we also
include the suitable integration constant. Therefore we
marginalize H0 by minimizing !02 � !2�y� �

2 ln�10�y=5� 2 ln�ln�10�
�����������������������������
�2�=

P
i1=$

2
i �

q
=5
 over y, where

y � 5log10H0. We also assume a prior �m0 � 0:3� 0:1.
The parameter space for�m0 is [0, 1], the parameter space
for�k0 is ��1; 1
, and the parameter space for d is coming
from the constraint Eq. (15). The best fit parameters are
�m0 � 0:35�0:11�0:10, �k0 � 0:35�0:17�0:38, and d � 1:0�0:17 with
!2 � 173:35. Note that d has reached the upper bound 1,
so there is no positive error for d. The error is referred to
1$ error throughout this paper. For the flat universe, the
best fit parameters are �m0 � 0:30�0:04�0:08 and d � 0:84�0:16�0:03
with !2 � 176:33. For comparison, the best fit to the flat
�CDM model gives !2 � 176:51. Therefore using the
holographic dark energy model from the supernova data
fitting, the closed universe is marginally favored compared
to the flat case.

To further constrain the model, we combine the SN Ia
data with the WMAP data. The main effect of changing the
-3
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FIG. 2. The evolution of wD by using the best fit parameters
�m0 � 0:29, �k0 � 0:02, and d � 0:84.
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values of �m0 and �k0 on the CMB anisotropy can be
found from the shift parameter R with which the l-space
positions of the acoustic peaks in the angular power spec-
trum shift [28],

R �
����������
�m0

p
H0r�zls�=c

�
1�������
j�j

p sinn
�
�sinn�1

� ����������������
d2j�k0j
�D0

s �

� sinn�1
� ����������������������������������������������������������������

d2j�j�1��D�

�D���1� zls�
2 � 1� zls � �


s ��
� 1:710� 0:137; (22)

where zls � 1089� 1 [26]. Therefore we use the above
shift parameter along with the SN Ia data to fit the model.
The best fit parameters are �m0 � 0:29�0:06�0:08, �k0 �
0:02� 0:10, and d � 0:84�0:16�0:03 with !2 � 176:12. It is
interesting to note that this best fitting result presents us
the same curvature of the Universe as that from the WMAP
observation. This result suggests that the WMAP data
prefers an almost spatially flat universe while the SN Ia
data gives a closed universe. By using the best fit parame-
ters, we plot the evolutions of �D, �m, and �k in Fig. 1.

From Fig. 1, we see that �D ! 1, �m ! 0, and �k !
�1��D � 0. Combining Eqs. (13) and (12), we get the
evolution of wD. The result is plotted in Fig. 2.

From Fig. 2, we see that as expected the holographic
dark energy does not have phantomlike behavior.

Using Eqs. (4) and (5), we get the acceleration equation

"a
a
� �

4�G
3

��m � �D � 3pD�

� �
H2

2
��m � �1� 3wD��D
: (23)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Redshift z

Ω

Ω
D

Ω
m

Ω
k

FIG. 1. The evolution of �D, �m, and �k by using the best fit
parameters �m0 � 0:29, �k0 � 0:02, and d � 0:84.
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It is clear that the sign of �m � �1� 3wD��D determines
the sign of "a. Combining the behaviors of �D, �m, and
wD, we plot the evolution of �m � �1� 3wD��D �
�2 "a=�aH2� which shows the behavior of acceleration in
Fig. 3.

From Fig. 3, we see that the Universe experienced the
transition from deceleration to acceleration around zt �
0:6. By fixing �k0 at its best fit value �k0 � 0:02, we give
the contour plot for �m0 and d in Fig. 4. For the spatially
flat holographic model, the best fit parameters are �m0 �
0:28� 0:05 and d � 0:85�0:15�0:03 with !2 � 176:18. Again,
for comparison, the best fit parameter of the flat �CDM
model is �m0 � 0:31�0:04�0:03 with !2 � 176:61. Thus com-
bining with the WMAP data, the closed universe still
cannot be ruled out.
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FIG. 3. The evolution of �2 "a=�aH2� by using the best fit
parameters �m0 � 0:29, �k0 � 0:02, and d � 0:84.
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IV. CONCLUSIONS

In conclusion, we have reexamined the holographic dark
energy model and given a constraint on its parameter. By
comparing to observations, we found that the holographic
model is an effective model in describing dark energy. A
spatially closed universe is favored by using the SN Ia data
alone. Combining with the WMAP data, the best fitting
result gives us a reasonable value of the curvature of our
universe and the closed universe cannot be ruled out.
Statistically the closed universe plays the same role as
the flat universe in comparing with observations. By in-
vestigating the evolution of the dark energy, we observed
that the transition of our universe from the deceleration to
043510
the acceleration happens at zt � 0:6. In Ref. [15], one of us
discussed the spatially flat holographic dark energy model
and found that �m0 � 0:46 and d � 0:20, the model be-
haved like phantom. In this paper, we used the arguments
of the second law of thermodynamics and the holographic
principle to get the lower and upper bounds on the parame-
ter d. Because of the constraint Eq. (18), the holographic
model discussed in this paper has no phantomlike behavior.
Furthermore, we get a lower value of �m0 which is more
consistent with other observations on the value of the
nonrelativistic matter energy density.

Comparing with Ref. [15], we have included the curva-
ture of the Universe in our discussion. The SN Ia data alone
favors the closed universe with a bit bigger �k, while
combining with the WMAP data, �k decreases to a value
around 0.02. This discussion is not trivial. Although our
result is consistent with the viewpoint that our universe is
approximately flat, the small curvature of the Universe is
still interesting since it may contribute to the small l
suppress of the CMB spectrum [24].
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