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It has been widely claimed that inflation is generically eternal to the future, even in models where the
inflaton potential monotonically increases away from its minimum. The idea is that quantum fluctuations
allow the field to jump uphill, thereby continually revitalizing the inflationary process in some regions. In
this paper we investigate a simple model of this process, pertaining to ��4 inflation, in which analytic
progress may be made. We calculate several quantities of interest, such as the expected number of
inflationary efolds, first without and then with various selection effects. With no additional weighting, the
stochastic noise has little impact on the total number of inflationary efoldings in the model even if the
inflaton starts with a Planckian energy density. A ‘‘rolling’’ volume factor, i.e. weighting in proportion to
the volume at that time, also leads to a monotonically decreasing Hubble constant and hence no eternal
inflation. We show how stronger selection effects including a constraint on the initial and final states and
weighting with the final volume factor can lead to a picture similar to that usually associated with eternal
inflation.
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I. INTRODUCTION

If inflation is to provide a satisfactory explanation of the
early universe, it needs both to find a successful micro-
physical implementation and to answer the question of
why the universe started out in a high-energy inflating
state. The phenomenon of ‘‘eternal inflation’’ has been
proposed as a solution of this second problem [1–7].
Even if the inflaton potential monotonically increases
away from its minimum, quantum fluctuations allow the
inflaton field to jump uphill in some regions which would
then expand exponentially. It is argued that this process,
once started, can allow inflation to continue indefinitely,
and that in all likelihood there was a great deal of inflation
in the past of any observers ‘‘like us’’. The phrase ‘‘like
us’’ warns that selection effects are involved, and that these
might be important in evaluating the predictions for vari-
ous inflationary models [8]. At the simplest level an ob-
server ‘‘like us’’ could not live in a phase still undergoing
high-energy inflation. So, even if such a phase dominates
spacetime, no observers ‘‘like us’’ are there to see it.
Attempts have been made to implement selection effects
with the aid of a volume weighting, assigning more weight
to larger regions of the universe, which are assumed to
contain a greater number of ‘‘typical’’ observers.

The anthropic leanings of the discussion can be dis-
guised by attempting to rephrase selection effects in a
more physical way, for example, by demanding enough
inflation to provide superhorizon correlations on the last
scattering surface say. This amounts to the requirement that
there be something like 50 or more inflationary efolds in
typical models (see e.g. [9]). But the observed superhor-
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izon correlations in the universe (including large scale
homogeneity and isotropy) appear to be much stronger
than those required for successful galaxy formation. If
large amounts of inflation are exponentially less likely
than small amounts, one might interpret the existence of
superhorizon correlations in our cosmic microwave back-
ground as evidence against inflation.

In any case, it seems important to try and develop
calculations of conditional probabilities within inflationary
models, taking into account the backreaction of quantum
fluctuations on the process of inflation itself. At first
glance, one might think of a slow rolling inflaton field as
being similar to an over-damped harmonic oscillator in the
presence of weak stationary noise. After a short time such
an oscillator ends up at the bottom of its potential and it
only rarely fluctuates appreciably upwards. Memory of
initial conditions is exponentially suppressed, and small
fluctuations away from the minimum are exponentially
more common than larger ones. If such a model were
correct, one might expect ‘‘our’’ universe to only have
the minimum possible number of efoldings consistent
with the existence of a galaxy say.

As we relate here, taking into account the field depen-
dence of the Hubble damping and noise leads to a qualita-
tively different picture. As we shall discuss, with a change
of variable we see that the system is actually an upside-
down, over-damped harmonic oscillator, for which there is
no stationary state.

Nevertheless, the system can be studied via a simple
Langevin equation which, for a particular choice of infla-
ton potential V � ��4 and in the slow-roll approximation,
is linear and hence exactly soluble [10]. Even though the
dynamical evolution of the system is trivial, the quantities
we are interested in, such as the number of inflationary
efolds, are highly nonlinear and nonlocal in time and hence
-1  2005 The American Physical Society
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FIG. 1 (color online). Heuristic conformal diagram showing
an inflating patch of critical size, indicated by the spacetime
within the cone. The physical radius of the patch at time t is
1=H�t�; the physical volume of the patch does not increase
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nontrivial to compute. Nevertheless, we are able to make
progress and obtain a number of new results, extending
earlier works on stochastic inflation [10–17]. The main ad-
vantage of the Langevin approach we take over that in-
volving the Fokker-Planck equation (see e.g. [16,18,19]) is
that quantities which are nonlocal in time, such as the
number of efolds, are more easily treated analytically.
We are also able to include various proposed weightings
such as volume factors rather straightforwardly.

Before we outline these calculations, however, let us
explain the physical setup which we believe is approxi-
mately described by the simple stochastic model we
employ.
exponentially in time.
II. CAUSAL INTERPRETATION OF A HUBBLE
VOLUME DURING INFLATION

We shall be following a region whose size is the Hubble
radius during inflation, and computing the evolution of the
spatially-averaged field ��t� in this region. The justifica-
tion for focusing on just one such Hubble volume is that it
spans the past light cone of an observer located far to the
future. The spacetime volume inside this past light cone
can be considered as an isolated physical system: given
initial (or final, or mixed initial and final) conditions and
a set of dynamical laws, its state should be completely
describable without reference to the exterior. As long
as causality holds it cannot be influenced by anything
outside it.

Consider the past light cone emanating from some point
at time t1 in a universe described by a flat FRW metric with
scale factor a. At an earlier time t this light cone encloses a
sphere of physical radius

rphys�t� � a�t�
Z t1

t
dt0=a�t0�: (1)

If a�t� is increasing quasiexponentially, i.e. the Hubble
parameter H�t� � _a=a is positive and only slowly varying
with time, then the integral is dominated by its lower limit
and rphys�t� becomes approximately equal to 1=H�t�, the
Hubble radius at time t.

So we are interested in describing the evolution of the
scalar field when averaged on the scale of the Hubble
radius at that time. We shall employ a simple stochastic
model to describe the scalar field fluctuations which is
standard in discussions of eternal inflation. According to
the model, the scalar field acquires a fluctuation ���H
on a scale of order the Hubble radius, every Hubble time.
We may understand the equations as describing the history
of the fluctuating field as seen in the past light cone of a
point in the far future.

Usually one hears that the physical size of a region that
is known to be inflating increases rapidly. This statement is
only accurate in the case that the initial region is so large
that causal influences coming from outside the initial re-
gion cannot propagate far enough into it so as to shut
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inflation down. The critical size turns out to be the infla-
tionary Hubble radius. The stochastic model applies to a
region that lies on this knife edge: small enough to lie
within the past light cone of a future observer, and large
enough to remain in an inflating state well into the future.
See Fig. 1.
III. BACKGROUND EVOLUTION

Our starting point for the stochastic approach to inflation
will be the Friedmann and scalar field equations for a flat
FRW metric:

H2 �
8�G
3

�
1

2
_�2 � V

�
� 0; (2)

��� 3H _�� V;� � 0: (3)

One then considers linearized perturbations about a back-
ground solution. In each Hubble time, new quantum fluc-
tuations in the scalar field are generated and freeze out
on the scale of the Hubble radius with an amplitude of
order H [2].

We model the effects of such fluctuations by adding a
stochastic noise term onto the right-hand side (RHS) of
Eq. (3). We take the noise to be proportional to delta-
function-normalized Gaussian white noise, n�t�, which
obeys

hn�t�i � 0; hn�t�n�t0�i � ��t� t0�: (4)

Clearly, n�t� has dimensions of mass to the power one half.
The coefficient may be determined, up to a numerical
coefficient of order unity, by dimensional analysis. The
only scale entering into the fluctuations is H, with dimen-
sions of mass. Thus we needH5=2n�t� on the RHS of (3) for
the correct dimensions. We shall not be concerned about
the numerical coefficient here, but if desired this can be
determined by normalizing the model to a calculated quan-
tum correlation function (see e.g. [11]).

There is a long history of attempts to take account of the
effects of the fluctuations on the background evolution in
-2
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inflation, going back to [20] for example. Ref. [2] develops
a picture of the field evolution over a flat region of its
potential as Brownian motion. It was later realized that this
motion could also be important for fields with unbounded
potentials and that this effect might be crucial in predicting
what an observer might expect to observe (see [3–5]).
Numerical simulations of this process have been per-
formed (see e.g. [17–19]).

One can often self-consistently make the slow-roll ap-
proximation, even in the presence of noise, which involves
neglecting the _�2=2 term in (2) and the �� term in the noisy
version of (3), leaving us with

3H _�� V;� � H5=2n�t�; (5)

whereH � H��� �
��������������������������
8�GV���=3

p
. From now on we shall

adopt reduced Planck units, setting 8�G � 1.

IV. EXPLICIT SOLUTION FOR SLOW-ROLL ��4

There is a special choice of potential for which (5)
simplifies, namely, for V � ��4, as noticed by Hodges
[10] and Nambu [14]. This is an interesting potential to
investigate in its own right and might reasonably be ex-
pected to be representative of other models with simple
power law potentials such as m2�2. After a change of
variable, the Langevin equation becomes linear, with
field-independent noise. Remarkably, the new stochastic
variable is just the physical Hubble radius.

Dropping the second-derivative term, defining R �

1=�
���������
�=3

p
�2�, the physical Hubble radius in the slow-roll

approximation, and introducing � � 8
���������
�=3

p
and � �

2
���������
�=34

p
=3 we have

_R� �R � �n�t�; (6)

where we have changed the sign of the RHS relative to (5).
As introduced above, n�t� is delta-normalized Gaussian
white noise with zero mean. We use angular brackets
h�. . .�i to denote the ensemble average of a quantity �. . .�
over histories of the noise function. We shall use double
angle brackets hh�. . .�qii to denote the qth cumulant of the
distribution of a quantity �. . .�, and also for connected
correlation functions of products of quantities. Note that
powers of� count the number of times that the noise enters
into any expression.

Equation (6) describes, as claimed, an over-damped,
upside-down harmonic oscillator with linear noise. It im-
mediately reveals a potential problem in that nothing pre-
vents R from crossing zero for some trajectories. Both the
stochastic model and the underlying field theory of infla-
tion may be expected to break down there, since the scalar
field tends to infinity. A similar pathology occurs in the
Fokker-Planck approach [14,16], and we can try to apply
analogous workarounds here where necessary.

If we specify an initial condition R � r0 at t � 0 say, we
have the integral solution
043507
R�t� � r0e�t
�
1�

�
r0

Z t

0
dt1e��t1n�t1�

�
: (7)

Averaging over the noise, we find

hR�t�i � r0e�t; (8)

hR�t�R�t0�i � r20e
��t�t0�

�
1�

�2

2�r20
�1� e�2�min�t;t0��

�
: (9)

For the second expectation value we have multiplied two
integral solutions together, taken the ensemble average
using the assumed properties of the noise, given in (4),
and then performed the integrals over the dummy time
variables.

The mean value hR�t�i does not involve the noise at all.
Changing variables back to � we see this just represents

the classical slow-roll solution � � �0e
�4

������
�=3

p
t. Because

the noise is Gaussian, the R-distribution is also Gaussian,
with a mean � � roe

�t from (8) and a variance �2 �
�2�e2�t � 1�=�2�� given by setting t0 � t in (9). More
generally, one can derive a simple integral expression for
the expectation value of any function f�R�t�� of R that can
be expressed as a Fourier integral, by taking the averaging
inside the Fourier integral and writing heikRi in terms of
cumulants as eikhRi�k

2hhR2ii=2.
Defining X2 as a dimensionless measure, �2=�2, of the

variance in R�t�:

X2�t� �
hhR2�t�ii

hR�t�i2
�

�2

2�r20
�1� e�2�t�; (10)

we see that R � 0 lies 1=X standard deviations to the left of
hR�t�i. Thus if X is small, one can hope that for reasonable
weightings the problems associated with R � 0 can be
neglected. X is small at small times for all starting values
r0, and remains small for all time if r0 is large enough that
X2
1 � X2�1� � �2=�2�r20� 
 1. X2

1 is a quantity with a
nice physical meaning: it is, up to a numerical coefficient,
the ratio of the initial energy density to the Planck energy
density. So if we start well below the Planck scale, we do
not expect subtleties at R � 0 to be important when fol-
lowing a patch forward in time.

Strictly speaking, one should not trust the theory at all if
the density approaches the Planck density. Nevertheless,
one can attempt to patch the theory up by imposing reflect-
ing [14] or absorbing [16] boundary conditions at R � 0.
We shall discuss the latter in Sec. VI below. In our
Langevin treatment these two prescriptions correspond,
respectively, to averaging or differencing the probability
densities over trajectories that start at both r0 and �r0.
V. ASYMPTOTIC EXPANSION FOR THE NUMBER
OF EFOLDINGS

Let us use our integral solution to calculate the expected
number of inflationary efolds N�T� �

R
T
0 dtH�t�. If we
-3
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were following a comoving region of a homogeneous
inflating universe rather than one physical Hubble volume
in an inhomogeneous universe, N�T� would simply be the
number of inflationary efolds that the region had experi-
enced up to time T. We shall continue to call N the number
of efolds, keeping in mind though that it bears no simple
relation to the physical size of the volume that we are
actually tracking in the calculation.

Since H is just 1=R in our approximation,

hN�T�i �
Z T

0
dthH�t�i �

Z T

0
dt
�
e��t

r0
�1� I�t���1

�
;

(11)

where

I�t� �
�
r0

Z t

0
dt1e��t1n�t1�: (12)

We now perform a formal Taylor expansion in I�t� of the
reciprocal inside (11). The justification for this procedure
is that as long as the noise term can be treated as ‘‘small’’,
an expansion in the noise makes sense.

We can take the expectation value of powers of I term by
term making use of the fact that the noise is assumed to be
Gaussian so that all higher-order correlation functions of it
can be expressed in terms of products of its two-point
function via Wick’s theorem. It thus turns out that hIq�t�i
vanishes if q is odd, and equals �2p� 1�!!X2p�t� if q � 2p
is even, with X�t� as defined above and �2p� 1�!! �
�2p� 1��2p� 3� . . . 1. Thus

hH�t�i �
e��t

r0
�1� X2�t� � 3X4�t� � . . .

� �2p� 1�!!X2p�t� � . . .�: (13)

Finally, we can perform the integral over t term by term to
obtain a series for hN�T�i.

This procedure works particularly neatly if we take t!
1, since then the time integrals are straightforward, usingR
1
0 dye

�y�1� e�2y�p � 2pp!=�2p� 1�!!. With N1 �
N�1�, one obtains:

hN1i � Ncl

�
1� 1 �

2

3
� X2

1 � 3 �
16

30
� X4

1 � . . .

�
2pp!
2p� 1

X2p
1 � . . .

�
; (14)

where Ncl �
1
�r0

is the ‘‘classical’’ number of efolds ex-
pected in the slow-roll approximation at late times in the
absence of noise.

Unfortunately the two series expansions (13) and (14)
diverge. We shall investigate the apparent divergence of
hH�t�i and hN1i in more detail in the next section, showing
that they are in fact finite if an absorbing boundary condi-
tion is imposed at R � 0. For now, let us understand these
043507
series as asymptotic expansions in terms of X2
1, the initial

energy density. This is plausible since the Taylor expansion
of �1� I�t���1 inside the integral cannot be valid for all
histories of the noise. But if the noise is weak enough we
do not expect this inaccuracy to be significant. An analo-
gous example is the calculation of the expectation value of
�1� "x2��1 or �1� "x��1 say for a Gaussian distribution
with zero mean and unit variance in the case that "
 1,
for which the perturbative expansion, although only
asymptotic, is still extremely accurate.

Our second illustration �1� "x��1 above is instructive
in suggesting a formal procedure to account for effects
associated with R � 0. Here we have a divergence in the
calculation of the expectation value, at x � �1=", far into
the tail of the distribution. If we do not trust the detailed
form of the distribution for large negative x, we may feel
that such a divergence is unphysical and irrelevant. A
natural mathematical way of removing such a divergence,
and allowing us nevertheless to continue to use the
Gaussian form, is to calculate the expectation value of
principal values (denoted P.V.) of linearly-divergent quan-
tities rather than the quantities themselves. In the stochastic
model this prescription turns out to be related to imposing
absorbing boundary conditions at R � 0.

After these comments, let us see what we can glean from
Eq. (14). We see that fluctuations increase the expected
number of efolds that a patch undergoes, but only by a
small multiplicative fraction if the energy density starts
low compared to the Planck density. Significant corrections
to the classical result only occur at such high energy
densities that we can have no confidence in the applicabil-
ity of the theory.
VI. THE TOTAL NUMBER OF EFOLDINGS

We would like to investigate in greater depth the diver-
gence of our series for hH�t�i and hN�T�i. In the Fokker-
Planck approach, a natural way to regulate the problem at
R � 0 is to impose the ‘‘absorbing’’ boundary condition,
that the probability is zero at R � 0 [16]. This can be done
for a Gaussian probability distribution by reflecting it
around R � 0 and subtracting the reflected copy off the
original one. This new probability distribution must then
be renormalized. In the Langevin approach this procedure
corresponds to ignoring any paths that reach R � 0. One
could alternatively impose ‘‘reflecting’’ boundary condi-
tions for which the gradient of the probability distribution
at R � 0 is zero, or indeed consider a mixture of the two
conditions. Only the pure absorbing condition ensures that
the probability vanishes at R � 0, and for definiteness we
shall focus on this case here.

From our Langevin approach, we know that before the
boundary condition is imposed R is Gaussian-distributed,
with mean � and variance �2 given above. Applying the
reflect-and-renormalize procedure outlined above, the ex-
pectation value of some function f�R� is given by
-4
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hf�R�iabs �

R
1
0�
dxf�x��e��x���2=2�2

� e��x���2=2�2
�R

1
0�
dx�e��x���2=2�2

� e��x���2=2�2
�

:

(15)

(The subscript ‘‘abs’’ is for absorbing.) We extend the
range of f from the positive reals to the entire real line
by demanding that f is odd. Then we let x! �x in the
second term of the upper integral, and divide top and
bottom by

������������
2��2

p
. The numerator is then the expectation

value of the P.V. of f with respect to the Gaussian we
started with over the entire real line. The denominator is
the error function erf��=�

���
2

p
��� � erf�1=�

���
2

p
X�t���.

Since H�t� � 1=R�t� we can apply this to work out
hH�t�iabs:

hH�t�iabs �

�
P:V:

�
1
R�t�

��

erf
�

1��
2

p
X�t�

� : (16)

To make contact with our asymptotic expansion above, we
write P:V:�1=R�t�� as a Fourier integral and then take its
Gaussian expectation value as discussed earlier. This gives
the numerator as the integral�

P:V:
�

1

R�t�

��
�

1

hR�t�i
�

1

X�t�

Z 1

0
dk sin

�
k
X�t�

�
e�k

2=2:

(17)

If we then continually integrate by parts on the sin we
generate the asymptotic expansion (13).

We still have to consider the denominator. Now erf(1/
(sqrt2X(t))) erf�1=�

���
2

p
X�t��� � 1� erfc�1=�

���
2

p
X�t���, and,

for small X�t�, erfc�1=�
���
2

p
X�t��� �

���������
2=�

p
X�t�e�1=�2X2�t��

(see e.g [21]) which is exponentially small. So the denomi-
nator itself is exponentially close to 1, and the entire
expression is accurately approximated by the asymptotic
expansion (13).

Thus we see that effects coming from imposing bound-
ary conditions at R � 0 are negligible to the extent that
X�t� is small.

Imposing an absorbing boundary condition at R � 0
allows us to go on to investigate the large X regime also.
We may rewrite (15), applied to H�t� � 1=R�t�, as

hH�t�iabs �

R
1
0
dx
x W�x�R

1
0 dxW�x�

(18)

where

W�x� � sinh
�
x�

�2

�
e�x

2=2�2
: (19)

By rescaling the integration variable, one finds that the
expected Hubble constant can be expressed in the form

hH�t�iabs �
�

�2 F��
2=�2�: (20)
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One finds the asymptotic behavior:

F�z� � z; for z
 1; (21)

F�z� �
���������������
��z�=2

p
; for z� 1: (22)

We thus note that hH�t�iabs is finite for all t, as mentioned
below Eq. (14). Using these expressions, one estimates the
expected total number of efoldings hN1iabs �R
1
0 dthH�t�iabs as:

hN1iabs �
1

�r0
�
�2

0

8
; for r0 � 1; (23)

which is just the standard classical result, and

hN1iabs �

�
�2

2�

�
�1=2

�
�
2

�
3=2 1

�
; for r0 
 1; (24)

which up to a numerical constant is ��1=2, just the standard
classical slow-roll result for inflation starting at the Planck
density. Hence we conclude that quantum fluctuations,
treated as stochastic noise, do not qualitatively alter the
expected number of inflationary efoldings beyond the clas-
sical result, for initial densities right up to the Planck
density. We have numerically confirmed that the RHS of
(22) is in fact an upper bound for F�z� for all z, as might be
suspected from inspecting the forms of (21) and (22). Thus
the RHS of (24) is in fact an upper bound for hN1iabs for all
r0. Hence we see, as mentioned below Eq. (14), that with
absorbing boundary conditions the mean number of efold-
ings at late times is bounded and does not diverge.
VII. ‘‘ETERNAL INFLATION’’ FROM STRONG
SELECTION

Imagine we know that at two times the scalar field was
well up the hill within the Hubble volume we are tracking.
What can we say about the likely value of the field at
intermediate times? Did the scalar field roll downhill and
then fluctuate back up, or did it fluctuate up and then roll
down to its prescribed final value?

There are two equivalent ways of calculating such an
effect. One is to use Bayes’ theorem explicitly. The other to
exploit the fact that the noise is Gaussian, which means that
the full probability distribution for multiple events is given
by exponentiating their covariance matrix (this method
cannot be used if the boundary conditions at R � 0 are
important). We shall present the former method here.

Let us take 0< t < T. We denote by p1j1�rtjr0�dr the
probability that, at time t, R lies between rt and rt � dr
given that R�0� � r0; and by p1j2�rtjrT; r0�dr the probabil-
ity that, at time t, R lies between rt and rt � dr given that
R�T� � rT and R�0� � r0.

Then, by Bayes’ theorem,

p1j2�rtjrT; r0� �
p1j1�rtjr0�p1j2�rT jrt; r0�

p1j1�rT jr0�
(25)
-5



FIG. 2. A plot showing the expectation of R � 1=�
���������
�=3

p
�2�

against time for paths constrained to take specified values at two
different times. In the example shown, R � 8 at �t � 0 and
�t � 6 (solid line). Also indicated are one and two sigma
contours for the trajectories (dotted lines), and the noise-free
solution for R that passes through R � 8 at �t � 6 (dashed line).
We have set �2=2� � 1=36 in making this plot.
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and we know what all the terms on the RHS are, since
p1j2�rT jrt; r0� � p1j1�rT jrt�.

If we neglect R � 0 effects, the probability distributions
are Gaussian and we can use our formulas (8) and (9) to
evaluate the means and variances for the RHS. With the
constraints on R at 0 and T we find that at the intermediate
time t, R is again Gaussian-distributed with a t-dependent
mean of

hR�t�icon �
r0 sinh��T � t� � rT sinh�t

sinh�T
: (26)

(The subscript ‘‘con’’ is for constrained.) In the Appendix
we discuss an interesting formal property of hR�t�icon,
which is that it obeys a second order differential equation
related to the original first order Eq. (6) in a simple way.

One can also easily find the variance in R by looking at
the coefficient of the term quadratic in rt in the exponent on
the RHS of (25). It turns out to be:

hhR2�t�iicon �
�2

2�
2 sinh��T � t� sinh�t

sinh�T
: (27)

Interestingly, this is independent of r0 and rT , and attains
its maximum value of ��2=2�� tanh��T=2� at the midpoint
t � T=2. This is less than �2=2�, so the standard deviation
in R here is always bounded by a constant of order unity.
As long as hR�t�icon is always significantly larger than
unity, we expect that we may neglect effects from R � 0.

Furthermore, if the minimum of hR�t�icon is much less
than rT , then, relatively close to T hR�t�icon behaves like
rTe��t�T�, independent of r0. This is the same as the noise-
free slow-roll solution which passes through rT at time T,
and which in the far past would approach arbitrarily small
R and thus large �.

For example, if we take rT � r0, hR�t�icon takes a mini-
mum value of r0= cosh��T=2� at t � T=2. Demanding that
the minimum value is greater than the standard deviation at
that time puts a condition on the values of T for which we
may reliably neglect effects associated with the R � 0
boundary: this condition reads sinh�T < 2=X2

1. Since
X2
1 is typically small if the field starts low down the

potential, we see that as long as T & ln�4=X2
1�=� bound-

ary effects from R � 0 should be unimportant. As long as
this is so, we can now answer the question posed at the
beginning of this section. If the field is known to be at the
same place on the potential at times 0 and T, the Hubble
radius lies at smaller values in the interim, corresponding
to the field being further up the potential. See Fig. 2.

So we have shown that if inflation has lasted a reason-
ably long time (i.e. we know that the field was displaced
well up its potential at two widely separated times), the
field was likely to have rolled up the hill to higher field
values, and then turned round and rolled back down, ap-
proaching the standard slow-roll solution. This behavior
shares many of the characteristics that are commonly
associated with the phrase ‘‘eternal inflation’’.
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As an example, imagine we select paths in which the
scalar field takes a value of order the Planck mass at two
widely separated times. Recall that this is the value for
which the slow-roll approximation fails, near the end of
inflation. The above calculation shows that the expected
trajectory is one in which the field first runs uphill to very
large values before rolling down along a nearly classical
slow-roll path to the final value. For such paths, one would
expect the usual predictions for the observable density
perturbations.

However, by demanding that �T is large we have im-
posed a very strong selection of paths; the vast majority of
paths run downhill. An indication of the strength of this
selection is given by considering the fraction of trajectories
for R�t� in the unconstrained case that happen to end up at
r0 or less at time T. This fraction may be approximated as����������������
X2
1=2�

p
e�1=�2X2

1� � e�C=V��0�, with C some number of
order unity. Unless one selects trajectories starting and
ending at the Planck density, this fraction is an exponen-
tially small number. Of course, in that case one is sensitive
to the boundary conditions at R � 0. For our numerical
example of Fig. 2, one obtains a fraction of order 10�500!

Now let us consider weakening the selection by reducing
the time T between our initial and final states. Even if we
insist upon 50 efoldings of inflation, the likely trajectory is
very different from the classical slow-roll one usually
-6
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considered. In standard inflation where one ignores the
effect of quantum fluctuations on the background, the
density perturbation amplitude is approximately H2= _�.
However, in the selected ensemble the velocity _� of the
scalar field vanishes at an intermediate time. This would
lead one to suspect that for the selected ensemble, density
perturbations which exited the Hubble radius around the
time T=2 would be far larger than those in standard in-
flation. Unless T is chosen to give substantially more than
50 efoldings, the normal predictions of inflationary pertur-
bations will not be obtained.

To conclude this section, we have seen how selection
effects can indeed make a scalar field roll uphill before
rolling roll back along a near-classical slow-roll path. This
is the same type of behavior as that sought from eternal
inflation, but we have obtained it through an imposed ad-
hoc selection, rather than from volume weighting, the
effect to which it is normally attributed. We now turn to
an investigation of volume weighting to see whether it can
indeed produce such behavior.
VIII. ETERNAL INFLATION AS A VOLUME
EFFECT

The usual argument for inflation being eternal to the
future with an inflaton field with an unbounded potential is
summarized and criticized in [22]. The main idea is that
regions of space in which the field fluctuates higher inflate
more rapidly, and thus after a long amount of time the
majority of the physical volume is dominated by inflating
regions at the Planck density. Occasional regions fluctuate
downwards and inflation stops, and we are expected to live
in one of these regions. The main criticism is that this line
of argument is not gauge invariant, i.e. comparisons of
volumes depend on the choice of time-slicing.

We argued above that the stochastic equation really only
follows the evolution of the field inside one physical
Hubble volume. The common supposition is that it rather
describes the average behavior of the field in a fixed
comoving volume. In Fig. 1, this corresponds to assuming
that the field on the constant-time slice through the entire
conformal cylinder is the same as it is on the piece of the
slice inside the cone. In this case, one may then argue that
expectation values of various quantities evaluated at time t
should be calculated by weighting each trajectory by its
volume factor e3N�t�. In this section, we shall explore the
consequences of this suggestion.

We thus define the ‘‘volume-weighted’’ average of some
quantity �. . .� at time t via:

h�. . .�i��3;t �
h�. . .�e3N�t�i

he3N�t�i
: (28)

(The reasoning behind the subscript will become clear
shortly.)
043507
Let us attempt to calculate the volume-weighted number
of efolds hN�t�i��3;t. This is an interesting example be-
cause the usual claim (see e.g. [6]) is that if �0 is above a
critical value of order ��1=6 then the physical volume of
space that is inflating should increase without limit, corre-
sponding to eternal inflation. Thus we would expect to see
a qualitative change in the behavior of hN�t�i��3;t around
this critical starting value.

We start by introducing the formal generating function
Wt��� � lnhe�N�t�i, where � is a number. Differentiating
this with respect to � and then setting � � 3 gives us the
volume-weighted number of efolds, hN�t�i��3;t (hence the
subscript in (28)). We may think of Wt��� as

X1
n�1

�n

n!
hhN�t�nii: (29)

So we can express hN�t�i��3;t in terms of the connected
moments or cumulants of N. The nth cumulant of N can be
obtained as usual from the regular moments of N, which
can be calculated order by order in the noise. (Such a
procedure is described in more detail in the following
section where it is needed for a wider-ranging calculation.)

In the limit t! 1, it turns out that the nth cumulant
goes like Nn

cl times a power series in X2
1 starting at the �n�

1�th power of X2
1. So to order X4

1 we find

hhN1ii � Ncl

�
1�

2

3
X2
1 �

8

5
X4
1 � . . .

�
(30)

hhN2
1ii � N2

cl

�
1

2
X2
1 � 3X4

1 � . . .
�

(31)

hhN3
1ii � N3

cl

�
12

7
X4
1 � . . .

�
(32)

with all higher cumulants being of higher order X2
1.

Following the aforementioned procedure and collecting
terms in X2

1, we find

hN1i��3;1 � Ncl



1�

�
3

2
Ncl �

2

3

�
X2
1

�

�
54

7
N2

cl � 9Ncl �
8

5

�
X4
1 �O�X6

1�

�
: (33)

Thus we obtain the fractional correction to the classical
number of efolds Ncl to fourth order in the noise. One sees
that for Ncl � 1 (but still X2

1 
 1), we in fact seem to
have an expansion in NclX2

1 rather than in just X2
1. So our

formula gives only a small fractional correction to the
number of efolds as long as NclX2

1 
 1.
But NclX

2
1 � �2=�2�2r30� � ��6

0 and so we see that
when �0 * ��1=6 the volume-weighted number of efolds
begins to change substantially from the noise-free result.
This is just the criterion mentioned above that is usually
given for the onset of eternal inflation.
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So our method has established some contact with the
usual approach to eternal inflation. However, we caution
the reader that the assumption that one should volume-
weight is not yet (in our view) well-founded, since the
dynamical equations being used are only following the
value of the field in one Hubble volume.
IX. A CLOSER INVESTIGATION OF
VOLUME-WEIGHTING

In the above section we introduced volume-weighted
averages of quantities defined at a given time, where the
volume-weighting was performed at that time. We used
this to calculate the volume-weighted number of efolds at a
given time t, and then considered taking the limit t! 1.

In this section, we shall consider two sorts of volume
weighting. If one believes in volume-weighting as a physi-
cal spatial averaging, then to compute observables at time t
one might want to weight with the volume at that time. On
the other hand, if one thinks of volume-weighting as a
selection effect for typical observers, one might want to
weight with the ‘‘final’’ volume, at some much later time.
To cover both cases, we shall compute the Hubble parame-
ter as a function of time,H�ta�, weighted by the volume at a
later time t > ta. Taking the limit ta ! t, we obtain the
trajectory of the Hubble parameter with a rolling volume
weighting. If instead t is taken to 1, we obtain the expected
history of the Hubble parameter when selected by final
volume. This gives what a typical late-time volume-
weighted observer should expect to see in his/her past.
(Note that our treatment in the previous section took the
‘‘spatial averaging’’ point of view but focused only on the
final number of efoldings.)

To calculate such averages involving the Hubble pa-
rameter, one needs to generalize the generating function
introduced above, promoting � from a number to a func-
tion of time. Thus one defines the formal generating func-
tional Wt���

Wt��� � lnheMt���i; (34)

where

Mt��� �
Z t

0
dt1��t1�H�t1�: (35)

Now by functionally differentiating with respect to ��ta�,
and then setting � � 3 for all time, one obtains volume-
weighted cumulants involving H�ta�. Different choices for
� correspond to more general forms of weighting, and we
may denote expectation values with respect to them by
hh. . .ii��t0�;t should we wish to use them. Note that � � 0
corresponds to the natural weighting. It can be useful to
take � to be an arbitrary constant at intermediate stages of
the calculation, and only set � � 3 at the very end. Then
one can easily identify any effects coming from the volume
weighting.
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In order to proceed perturbatively in the noise, we again
expand W in terms of the regular (i.e. non volume-
weighted) cumulants of M���:

Wt��� �
X1
n�1

1

n!
hhMn

t ���ii: (36)

These cumulants involve multiple integrals
R
dt1 . . .

R
dtj

over products of the Hs. Each H is written as:

H�ti� �
e��ti

r0
�1� Ii � I2i � I3i � I4i . . .� (37)

where Ii is a shorthand for I�ti� as defined in (12). We use
Wick’s theorem to express higher-order moments of I in
terms of the two-point function hI1I2i, which is given by

hI1I2i � X2
1�1� e�2�min�t1;t2��: (38)

Each power of X1 counts an order of the noise. As in the
previous section, it turns out that the nth cumulant is of
order 2�n� 1� in the noise.

Let us now use the above machinery to calculate
hH�ta�i��3;t to second order in the noise. We need the first
and second cumulants ofM, each evaluated to second order
in the noise. Functionally differentiating the former leaves
us with hH�ta�i, or

e��ti

r0
�1� X2

1�1� e�2�ta��: (39)

Functionally differentiating the latter cumulant yields
2
R
t
0 dt1��t1�hhH�t1�H�ta�ii, or

2
Z t

0
dt1��t1�

e��t1

r0

e��ta

r0
X2
1�1� e�2�min�t1;ta��: (40)

This can be evaluated assuming � to be constant in time.
Utilizing these results and setting � � 3 leads to

hhH�ta�ii��3;t �
e��ta

r0



1� X2

1�1� e�2�ta�

� 3NclX2
1

�
1� e��t �

1� e�3�ta

3

� e�2�ta�e��ta � e��t�
��
: (41)

As discussed above, we are interested in two cases. The
first, involves taking ta ! t. This choice implements a
‘‘rolling volume weighting’’, where at any time the
volume-weighted average is performed using the volume
at that time. This choice would correspond to what one
might usually consider to be a spatial average over physical
volume. We obtain

hhH�t�ii��3;t �
e��t

r0



1� X2

1�1� e�2�t�

� 3NclX2
1

�
1� e��t �

1� e�3�t

3

��
: (42)
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(This result can also be obtained by calculating hN�t�i��3;t

as discussed in the previous section to second order in the
noise and then differentiating with respect to t.) A Taylor
expansion of the correction term coming from the volume-
weighting starts at O���t�2�. This is to be compared with
the O��t� variation coming from the expansion of the e��t

‘‘classical rolling’’ term. One (initial) Hubble time is tH �
1=H0 � r0, so �tH � �r0 � 1=Ncl, which is small if the
classical number of efoldings is large. Thus as long as one
is interested in times up to of order a few Hubble times
from the start, rolling volume-weighting does very little
even if NclX2

1 � ��6
0 � 1. One only starts getting correc-

tions of order NclX2
1 when �t� 1, that is at times for

which, without noise, a substantial fraction of the total
number Ncl of efolds would have occurred. We have
checked that including the fourth order term does not affect
this conclusion, and strongly suspect that neither will
further higher-order terms. Hence we conclude that a roll-
ing volume weighting leads to a monotonically decreasing
Hubble constant, and will not produce the uphill motion
required by the eternal inflation picture.

Now let us consider the second limit. This is to take t!
1. Thus we are weighting trajectories by their final vol-
ume. As discussed above, this in some sense corresponds to
the history of the field that a physical observer at late times
might expect to see in his/her past light cone, assuming that
physical observers are evenly distributed over the final
three-volume. We obtain:
hH�ta�i��3;1 �
e��ta

r0
f1� X2

1�1� e�2�ta�

� 2NclX
2
1�1� e�3�ta�g: (43)
Now the volume-weighting term has a Taylor expansion
that starts at O��ta�, the same order as that from the
classical exponential. So now for large enough Ncl, we
can have the expectation value of the Hubble parameter
increase with time. The requirement is that 6NclX

2
1 > 1, or

�0 * ��1=6, again the criterion for eternal inflation. By
�ta � 1, the fractional correction to the noise-free result is
becoming large and we do not trust our result in the details.
Of course, if the noise is very important we should not
overly trust the t! 1 limit in the first place.

We can investigate the spread in the final-volume-
weighted trajectories by considering the ratio
hhH2�ta�ii��3;1=hH�ta�i2��3;1. The lowest-order term in
the numerator is already O�X2

1�, so we must calculate the
numerator to fourth order to obtain the fractional change in
the ratio due to volume-averaging to second order. Thus we
need the third cumulant of H for the numerator, but the
calculation can be performed. Taking �ta ! 1 to obtain
the late-time behavior and dropping terms down by Ncl we
find
043507
hhH2�1�ii��3;1

hH�1�i2��3;1
� X2

1

�
1�

26

5
NclX2

1

�
: (44)

Thus we see that in the regime of eternal inflation the noise
is playing an important role. One might be tempted to
conclude that for�0 * ��1=6 the volume-weighted system
becomes ‘‘noise-dominated’’ and a ‘‘nonperturbative’’ way
of treating the noise is called for.
X. CONCLUSIONS

We have seen that ��4 inflation with quantum jumps
may be modeled as an upside-down, over-damped har-
monic oscillator with noise. The critical role that selection
effects have on expectations for the field’s observed history
has been clearly demonstrated. In the absence of any
selection effects, we have seen that the presence of sto-
chastic noise hardly alters the motion of the inflaton field
downhill: the total number of inflationary efolds is essen-
tially the same as the classical result. Through strong
selection one can obtain trajectories which travel uphill:
if the field is constrained to lie at a particular inflating value
at two widely separated times we have shown that it is
likely in the interim to be at higher field values. As we saw,
the selection required to achieve this must be exponentially
strong, with only a minute fraction ( � e�C=V��0�) of all
possible paths being chosen.

We also investigated volume-weighting in our approach.
With a rolling weighting, such as might be attributed to
averaging over physical volume, we find no significant
effect on the Hubble parameter’s evolution until late times,
for which inflation would classically have completed a
substantial fraction of its total number of efolds. If, alter-
natively, histories are weighted by the final volume, quali-
tative changes in the mean trajectory of the system can
occur within a few Hubble times of the start. However in
this situation, it is not clear whether the perturbative treat-
ment is valid.

Our techniques might also be applicable for more gen-
eral forms of averaging. For example, one might consider
the possibility of weighting by 4-volume. This would be
the right thing to do if observers spring into being from
inflating regions in a stochastic manner consistent with
Poisson statistics (say by bubble nucleation), and that the
appearance of a region supporting physical observers has a
negligible effect on the background evolution (unlike bub-
ble nucleation). If the 4-volume were finite, the result
would be gauge-invariant and ambiguity-free also. The
generating function could then be lnh

R
1
0 dt1e

�N�t1�i, and
differentiating this with respect to � and then setting � �
3 would give the 4-volume-weighted number of efolds.
The generating function could be calculated order by order
in the noise using our methods. As we have explained,
however, we are not convinced that any particular form of
volume-weighting is physically correct, since the stochas-
-9
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tic equation being used only describes the time evolution of
a single physical Hubble volume.

There are several possible extensions of the work re-
ported here. Numerical simulations could be used to extend
the perturbative treatment we have given and to check the
generality of the behavior found here for other potentials. It
would be interesting to know whether inflation models
with much flatter potentials exhibit the same qualitative
behavior. It would also be interesting to extend the model
to allow the inflaton field to jump back up from its mini-
mum into an inflating regime, a situation referred to by
Garriga and Vilenkin as a ‘‘recycling universe’’ [23] (see
also [24]). In this situation one might hope to find a steady
state solution, although the typical bout of inflation would
involve very small numbers of efolds, and so such a model
would be observationally disfavored.
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APPENDIX: A PROPERTY OF hR�t�icon

In this Appendix we discuss an interesting fact about the
constrained expectation hR�t�icon, which is that it satisfies
the second order deterministic differential equation�

d
dt

� �
��
d
dt

� �
�
hR�t�icon � 0; (A1)
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where the operator appearing is the product of the original
operator in the equation of motion, (6), and its time reverse.
That this should be so is in fact a general consequence of
time-translation invariance of the operator appearing in the
original equation of motion, (6), and of the noise ensemble.
The point is that the constrained expectation hR�t�icon is
proportional to the correlator hR�t�R�T�i, as may be seen by
writing the joint (Gaussian) probability distribution for
R�t� and R�T�. To show the correlator obeys the stated
Eq. (A1), note first that
�
d
dt

� �
��

d
dT

� �
�
hR�t�R�T�i � 0 (A2)
for all t � T, since from the equation of motion (6) this
equals �2hn�t�n�T�i, which is zero at unequal times. Now,
we can write the left hand side as � ddT � �� acting upon
�hn�t�R�T�i. But R�T� is a sum of a particular integral
which does not correlate with the noise, and an integral
�
R
T
0 dt

0G�T; t0�n�t0�, where G�T; t0� is the Green function
of the original operator. So hn�t�R�T�i is just �G�T; t�.
Because of time-translation invariance, the latter is a func-
tion only of the time difference t� T. Therefore, we may
replace d

dT in (A2) with � d
dt , obtaining (A1). The argu-

ments we have used are rather general: it is clear, for
example, that constrained expectation values related to a
second order stochastic differential equation would obey a
fourth order deterministic differential equation.
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