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Optimal estimation of non-Gaussianity
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We systematically analyze the primordial non-Gaussianity estimator used by the Wilkinson Microwave
Anisotropy Probe (WMAP) science team with the basic ideas of estimation theory in order to see if the
limited cosmic microwave background (CMB) data is being optimally utilized. The WMAP estimator is
based on the implicit assumption that the CMB bispectrum, the harmonic transform of the three-point
correlation function, contains all of the primordial non-Gaussianity information in a CMB map. We first
demonstrate that the signal-to-noise �S=N� of an estimator based on CMB three-point correlation
functions is significantly larger than the S=N of any estimator based on higher-order correlation functions;
justifying our choice to focus on the three-point correlation function. We then conclude that the estimator
based on the three-point correlation function, which was used by WMAP, is optimal, meaning it saturates
the Cramer-Rao inequality when the underlying CMB map is nearly Gaussian. We quantify this restriction
by demonstrating that the suboptimal character of our estimator is proportional to the square of the fiducial
non-Gaussianity, which is already constrained to be extremely small, so we can consider the WMAP
estimator to be optimal in practice. Our conclusions do not depend on the form of the primordial
bispectrum, only on the observationally established weak levels of primordial non-Gaussianity.
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I. INTRODUCTION

The origin of the cosmological perturbations which led
to the observed cosmic microwave background (CMB)
temperature anisotropies and large scale structure is one
of the outstanding questions in cosmology. Unfortunately
there are only a limited number of independent ways we
can constrain the mechanism that produced these pertur-
bations. Windows into the production mechanism of cos-
mological perturbations include a spectrum of primordial
gravity waves, departures from a scale-invariant curvature
power spectrum, isocurvature primordial perurbations and
non-Gaussianity statistics of the primordial curvature per-
turbations. While each of these features of the primordial
perturbations will change the observed CMB anisotropies
and provide insight into the production mechanism of the
primordial perturbations, we will focus on the non-
Gaussian characteristics of the CMB anisotropies in this
paper.

The standard theory of inflation robustly predicts that the
primordial curvature perturbations, and therefore the re-
sulting CMB anisotropies, should be nearly Gaussian [1].
By Gaussian we mean that all odd n-point correlation
functions exactly vanish and all even n-point correlation
functions can be completely expressed as the combination
of two-point correlation functions. A non-Gaussian pri-
mordial curvature perturbation field would violate one of
the above criteria. The degree to which any given
Gaussianity criterion is violated can be characteristized
by forming a natural ratio between the particular non-
Gaussian correlation function and the appropriate combi-
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nation of two-point corellation functions [2]. Since we will
ultimately perform calculations with a non-Gaussian
probability distribution function (PDF) (from which all
n-point correlation functions can be calculated), below
we will provide a natural quantity that describes the degree
of non-Gaussianity in terms of quantites of the PDF. Then
we can define the condition nearly Gaussian to mean that
this natural quantity is much less than one. Even though the
standard calculation within inflation predicts extremely
small amounts of non-Gaussianity, there are several viable
mechanisms that can produce substantial non-Gaussian
primordial curvature perturbations (see [3] and references
there within). These processes not only predict different
amplitudes of the total non-Gaussianity but also different
functional forms [4]. Through linear gravitational and
hydrodynamical evolution these curvature perturbations
will produce CMB anisotropies with statistical properties
that mirror the statistical properties of the primordial per-
turbations. Therefore it is possible to learn about primor-
dial non-Gaussianity by studying higher-order n-point
correlation functions of the CMB anisotropies.

There are more potential sources of non-Gaussianity in
the CMB than just primordial non-Gaussianity. The non-
linearities in the gravitational and hydrodynamical equa-
tions of motion for the baryon-photon fluid prior to
recombination can produce non-Gaussianity [5–7].
Secondary anisotropies, such as, the thermal and kinetic
Sunyaev-Zeldovich effects, gravitational lensing and the
Ostriker-Vishniac effect can all produce non-Gaussianity
in the CMB [8–10]. However we are most interested in an
observation of primordial non-Gaussianity in the CMB
because this would require new ideas for the production
of the primordial curvature perturbations and may give a
-1  2005 The American Physical Society
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glimpse into beyond the standard model physics. It has
been demonstrated that the primordial non-Gaussian signal
can be separated from non-Gaussian secondary anisotro-
pies on scales relevant for WMAP and Planck [11].

As stated above we expect the non-Gaussianity of the
CMB to be extremely small. Instead of trying to detect
individual modes of a non-Gaussian correlation function1,
which would allow us to the examine the functional de-
pendence of momentum wavevectors and better under-
stand the mechanisms that produced the non-Gaussianity
[4], it is customary to parameterize the primordial non-
Gaussianity with a model. Thus we will be able to combine
many bispectra modes and therefore increase the statistical
significance of our conclusions. The standard model for
primordial non-Gaussianity is the ‘‘local model’’; the pri-
mordial curvature perturbations in real-space are expressed
as

��x� � ��x� � fNL���x�2 � h��x�2i	; (1)

where ��x� is a Gaussian field with zero mean and covari-
ance matrix C. The ‘‘local model,’’ even though an ideal-
ization, has a strong physical motivation; during inflation
the nonlinear couplings of general relativity will produce
‘‘local model’’ terms in the bispectrum, the harmonic
transform of the connected three-point function [1].
Standard measures of the similarity of two bispectra imply
that the ‘‘local model’’ and the standard inflationary cal-
culation are nearly identical [4]. Moreover, models where
nonlinearities develop outside the horizon, such as the
curvaton model [12] and the inhomogeneous reheating
models [13,14], will produce bispectra identical to the
‘‘local model.’’ This model will allow us to place limits
on the cumulative amplitude of all bispectrum modes and a
method has been developed to translate these constraints
into constraints on other models of primordial non-
Gaussianity [4].

The characteristic amplitude of non-Gaussianity can be
found by rescaling� to have unit variance. The coefficient
of the rescaled quadratic term, fNLh��x�2i1=2, is the natural
measure of the amplitude of non-Gaussianity. Below we
will find that the signal-to-noise of estimators constructed
out of non-Gaussian three-point correlation functions will
always contain this factor (or related quantities for higher-
order non-Gaussian n-point correlation functions). The
best current data constrains fNLh��x�2i1=2 
 3:5� 10�3

(95% C.L.) [15]. The smallness of this expansion parame-
ter not only allows us to truncate the expansion of the
definition of the non-Gaussian field, Eq. (1), but it also
implies that the characteristic amplitude of the bispectrum
will be much larger than the characteristic amplitude of the
trispectrum, the harmonic transform of the connected four-
point function. By rescaling arguments analogous to above,
1By individual mode, we mean the correlation function eval-
uated for a particular configuration of Fourier wavevectors.
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the characteristic amplitude of the trispectrum, either due
to an additional cubic term (f3��x�3) or from the quadratic
piece (fNL��x�2), would be proportional to �f2NL � f3��
h��x�2i. So unless f3 is much larger than fNL, the charac-
teristic amplitude of the bispectrum will be much larger
than the characteristic amplitude of the trispectrum.

We are not simply interested in the characteristic ampli-
tude of a higher-order correlation function, but in the
cummulative signal-to-noise �S=N� of an estimator based
on that higher-order correlation function. The number of
relevant graphs grows quickly as the order of the correla-
tion function increases, for example, the number of tris-
pectrum quadrilaterals is much greater than the number of
bispectrum triangles. As demonstrated in the appendix, if
the primordial power spectrum of the Gaussian field is
scale-invariant, then the �S=N�2 of a non-Gaussianity esti-
mator based on any non-Gaussian correlation function,
regardless of order, will simply scale with the number of
observed pixels (Npix), not the number of graphs. Ignoring
combinatorial factors we find, for an estimator constructed
out of the nth-point correlation function, that

�S=N�n � �fn�1 � f2n�2 �    � fn�22 �h��x�2i�n�2�=2

�
���������
Npix

q
: (2)

Since h��x�2i1=2 � 10�5 the estimator based on the three-
point correlation function (fNL � f2) will dominate over
all higher-order estimators. This implies that the three-
point correlation function is the most effective means to
constrain fNL and that it will be significantly easier to
constrain fNL than any higher-order fn. Thus we should
begin to explore primordial non-Gaussianity by constrain-
ing the amplitude of the bispectrum.

These conclusions depend upon the naturalness argu-
ment that fNL � f3 � fn, which implies the S=N of the
various estimators will be supressed by increasing factors
of h��x�2i1=2, which we believe to be approximately 10�5.
There are several reasons to be cautious. First of all, there
might be some reason due to symmetry that fNL � 0, then
the primordial bispectrum will vanish. Also in the inho-
mogeneous reheating models, inefficiency in the produc-
tion of the gravitational potential could equally supresses
all terms in expansion of the non-Gaussian field; therefore
Eq. (1) would become

��x� � A���x� � fNL���x�2 � h��x�2i		; (3)

where A< 1 [16]. This mutual suppression would increase
the inferred value of h��x�2i1=2 and cause the suppression
of the S=N of higher-order estimators to be less drastic.
However within the standard slow-role single field infla-
tionary scenario [1] our conclusions are quite robust.

The standard inflationary scenario for the generation of
primordial curvature perturbations predicts that these per-
turbations were quantum mechanically produced. While it
is impossible for us to predict the primordial curvature
-2
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fluctuation at any point in the universe, it is possible to
predict the statistical properties of these perturbations.
With these statistical properties we can create a PDF
from which we can generate random realizations of the
non-Gaussian curvature perturbations. Since the CMB an-
isotropies were generated through the linear gravitational
and hydrodynamical evolution of these primordial curva-
ture perturbations, the statistical properties of the CMB
anisotropies will mirror the statistical properties of the
primordial curvature perturbations. Therefore we can
view the data from a given CMB experiment as random
samples drawn from the appropriate CMB PDF derived
from the local model PDF.

We have an explicit expression for the primordial cur-
vature perturbations, Eq. (1), so we can write down the
exact PDF for this random field

P��jfNL;C� �
Z
dN��N����x� ���x� � fNL���x�

2

� h��x�2i	�P��jC�; (4)

and we also include the assumption that � has a Gaussian
distribution

P��jC� �
e��

TC�1�=2������������������������
�2��N detC

p : (5)

Here we have adopted standard notation for functionals
and compactly written the quadratic form of functionals in
vector notation. Depending on the particular situation, the
quantity�TC�1� could either be a sum over a discrete set
of eigenfunctions (for example, observations of CMB an-
isotropies �TC�1� �

P
lma

�
lmalm=Cl ) or an integral over

a continuous set of eigenfunctions (for example, observa-
tions of primordial curvature perturbations �TC�1� �R
d3k���k���k�=P�k�). Assuming that the local model is

correct and the PDF in Eq. (4) properly represents nature,
we can ask how well the data sample will allow us to
constrain the underlying parameters of the PDF (fNL;C).
There are standard tools from the field of statistical esti-
mation theory that will help us rate estimation procedures
and determine the smallest possible error bars we can place
on a parameter with a given set of data [17–21].

The purpose of the paper is to determine what are the
smallest error bar possible to place on fNL with a given
data set and which estimation procedure will allow us to
place these constraints. The entire set of measured n-point
correlation functions contains all observable information
on the underlying PDF contained in the given data set. It
may be possible to find a simple estimator which retains all
of the available information without undergoing the time
consuming process of measuring all n-point correlation
functions. Currently researchers are using several different
techniques to estimate the non-Gaussianity of a CMB map.
An estimator based on the CMB three-point correlation
function has been used to constrain the non-Gaussianity
043003
(fNL) of the results from the Wilkinson Microwave
Anisotropy Probe (WMAP) [15,22], Very Small Array
(VSA) [23] and MAXIMA [24] CMB experiments. In
addition, Minkowski functionals [25] and the correlations
of Fourier phases (see [26,27] and references within) have
been used to characterize non-Gaussianity. We will dem-
onstrate, that for weak levels of non-Gaussianity, the esti-
mator based on the three-point function contains all
possible information on fNL. In particular we will show
that the exact estimator used by WMAP is an optimal
estimator. Therefore the procedure adopted by WMAP
will, in principle, provide the best possible error bars on
fNL. By using this estimator none of the information
potentially contained in the higher order n-point functions
is lost. This conclusion is equivalent to the statement that
an estimator based on the two-point correlation function
contains all possible information on the power spectrum,
even though higher-order even n-point correlations func-
tions also contain information on the power spectrum.
Finally we will argue that our conclusion does not depend
on any characteristic of the local model, just on the obser-
vationally established weak levels of non-Gaussianity, so
the amplitude of any primordial bispectrum can be opti-
mally constrained by estimators based on the CMB three-
point correlation function.

The calculations in this paper assume that the CMB map
is free of both instrument noise and Galactic foreground
contamination. It is straightforward to include the effects
of noise in our estimator for fNL. However the statistical
estimation of individual bispectrum modes is very compli-
cated for maps with inhomogeneous noise or a Galactic sky
cut. The simple calculation of individual bispectrum modes
by combining the appropriate coefficient of the spherical
harmonic decomposition of the observed CMB map will
result in suboptimal estimates for the bispectrum modes
and therefore suboptimal estimates for fNL. An optimal
estimator for individual bispectrum modes, including the
effects of inhomogeneous instrument noise, has been de-
veloped [28]. In this paper we treat the part of the problem
which involves the estimation of fNL from measured bis-
pectrum modes.

In Sec. II we introduce the notion of an optimal estima-
tor and the Cramer-Rao Inequality and show how they are
related to the maximum likelihood estimator. In Sec. III we
analyze a Poisson random field with the appropriate local
model non-Gaussian PDF as a simple example of the
essential ideas. In Sec. IV we extend our analysis to the
scale-invariant distribution predicted by inflation and gen-
eralize our results to arbitrary primordial bispectrum in
Sec. V. In Sec. VI we summarize our results.
II. ESTIMATION THEORY

Estimation theory is the branch of statistics developed in
order to analyze the procedures used to constrain the
underlying continuous parameters of a PDF. Assuming
-3
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that a given data set is drawn from a known PDF with
unknown fixed parameters it allows us to determine the
minimum error bars attainable on those parameters using
the data. In the following subsections we develop a simple
sufficient and necessary condition for a PDF to admit an
estimator that saturates the famous Cramer-Rao inequality.

Then for completeness we will discuss the relationship
between these concepts and the popular maximum like-
lihood estimator (MLE). We will only outline necessary
concepts, the interested reader should consult [17–21] for
more details.

A. Cramer-Rao inequality

In this subsection we discuss the Cramer-Rao Inequality,
which determines the lower bound for error bars that we
can place on a parameter with a given data sample. These
minimum errors bars derived from the Cramer-Rao in-
equality are valid only for the ‘‘frequentist,’’ and not the
Bayesian, understanding of statistical estimation (see [17–
21] for a discussion of these differing understandings of
probability and estimation). An estimator that saturates this
inequality is dubbed optimal since it weights the data in the
best possible manner. Unfortunately for a general PDF no
optimal estimator will exist. In order to develop some
intuition regarding the information content of a data sam-
ple we will derive the Cramer-Rao inequality for a scalar
parameter. The generalization to multiple parameters is
conceptly straightforward, but requires linear algebra
which obscures some of the essential insights.

We let��x� be an unbiased estimator of �, the parameter
we are trying to estimate from our data sample. Assuming
the regularity conditionZ @ lnp�xj��

@�
p�xj��dx � 0; (6)

which holds when we can interchange the order of inte-
gration and differentiation, we can use this property to
derive the following identityZ

���x� � ��
@ lnp�xj��

@�
p�xj��dx � 1: (7)

Using the Schwarz Inequality, �A B�2 
 �A A��B  B�
in the notation of linear algebra, we find�Z

���x� � ��
@ lnp�xj��

@�
p�xj��dx

�
2




�Z
���x� � ��2p�xj��dx

�

�

�Z 	
@ lnp�xj��

@�



2
p�xj��dx

�
: (8)

Now defining the Fisher information as

F��� �
Z 	
@ lnp�xj��

@�



2
p�xj��dx; (9)
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and using Eq. (7) we obtain the Cramer-Rao inequality

Var���x�� �
�Z

���x� � ��2p�xj��dx
�
�

1

F���
: (10)

The Cramer-Rao inequality states that no estimator of �
can produce error bars smaller than 1=F���.

More importantly we can identify a necessary and suffi-
cient condition for the variance of ��x� to saturate the
Cramer-Rao inequality. It is clear that the Schwarz inequal-
ity in Eq. (8) will be saturated if and only if

@ lnp�xj��
@�

� F������x� � ��; (11)

thus the PDF must be able to be written in this form if it
will admit an optimal estimator. In what follows, we will
analyze the local model PDF to determine if it can be
expressed in this form.

There is a multiparameter generalization of the Fisher
Information defined in Eq. (9),

F ij �
Z @ lnp�xj��

@�i

@ lnp�xj��
@�j

p�xj��dx: (12)

If we define Cij as the covariance matrix of the set of
parameters, the Cramer-Rao Inequality becomes the state-
ment that C�F is a positive semidefinite matrix. This
implies the more familiar statement

Var��i� � Cii � F�1
ii : (13)

If all off diagonal terms in Cij vanish then we can inde-
pendently estimate all �i and the multiparmeter Cramer-
Rao Inequality reduces the single parameter case.

B. Relationship with the maximum likelihood estimator

Previous work on the analysis of data focused on the
maximum likelihood estimator (MLE). Here we will dis-
cuss the relationship between the more familiar MLE and
the optimal estimator that we introduced above. The basic
principle of the MLE is to consider the observed data as
fixed and consequentially choose � in order to maximize
the probability of observing the fixed data. When we take
this approach the PDF will be refered to as the likelihood
function. We must choose � in order to maximize the
likelihood function, so equivalently we demand

@ lnp�xj��
@�

j���ML � 0; (14)

then �ML is the estimated value of �. Notice that this
equality is true for all data realizations and not just for
ensemble averages. In general Eq. (14) will be a compli-
cated nonlinear equation, but there are standard techniques
to solve such equations. The most popular is the Newton-
Raphson method which is widely used in cosmology for
likelihood estimation of the CMB power spectrum from
observed CMB maps [29,30].
-4
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This approach is widely used in practice because it is
always possible to implement, whereas the approach de-
scribed above often does not yield an estimator. In addi-
tion, the MLE is asymptotically optimal and unbiased,
meaning that as the amount of data increases the MLE
approaches the correct answer with error bars equal to
those predicted by the Cramer-Rao inequality. Whenever
an optimal estimator exists, the optimal estimator is also
the MLE. This is clear from the necessary and sufficient
condition for the existence of an optimal estimator,
Eq. (11), which automatically satisfies the definition of
the MLE, Eq. (14). However the converse does not hold
and in general, for finite amounts of data, the MLE is not
optimal.
III. POISSON DISTRIBUTIONS

In order to gain intuition we will first analyze a Poisson
random field with the appropriate non-Gaussian PDF. This
implies that each point in space is uncorrelated with one
another and will be independently sampled from the non-
Gaussian local model PDF. Since we measure N indepen-
dent and identically distributed (IID) random variables we
can simply scale the single pixel Fisher matrix by N. With
these assumptions, the PDF for the single pixel primordial
curvature perturbation, Eq. (4), becomes

P��jfNL;�� �
Z
d������ fNL��2 ��2	�

�
e��

2=2�2�������������
2��2

p ; (15)

where �2 � h�2i. Given an observed � there are two
possible values of the underlying �

�� �
1

2fNL

�
�

������������������������������������������������
1� 4fNL��� fNL�2�

q
� 1

�
: (16)

Integrating over the delta-function the PDF becomes

P��jfNL;�� �
1�������������
2��2

p �
e��

2
�=2�

2

1� 2fNL��

�
e��

2
�=2�2

1� 2fNL��

�
:

(17)

In the weakly non-Gaussian limit, fNL�� 1, the con-
tribution from �� is exponentially suppressed so we will
ignore it in what follows; we can then write

logP��jfNL;�� � �
�2�
2�2

� ln�1� 2fNL��� � ln�;

(18)

which can be expanded in a power series
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logP��jfNL;����
�2�2�2 ln�2

2�2
�
fNL
�2

��3�3�2��

�
f2NL
2�2

�5�4�5�4�14�2�2�

�O�f3NL�: (19)

If we rewrite logP such that the power series is expressed
in terms of �=�, which is a random variable with unit
variance, then we discover that we are actually expanding
in the quantity fNL�. Doing so we can write Eq. (19) as

logP��jfNL;�� � �I0��=�� � fNL�I1��=�� �
1

2

��fNL��2I2��=�� �O�f3NL�
3�;

(20)

where I0; I1 and I2 are defined with respect to Eq. (19). The
expectation value of the first-order piece is

hI1i � 6fNL��O�f3NL�
3�; (21)

and the second-order piece is

hI2i � 6� 272f2NL�
2 �O�f4NL�

4�: (22)

Thus it is necessary to keep the second-order term, I2, in
the expansion of logP. However we can ignore the non-
Gaussian piece of hI2i, which is a factor of f2NL�

2 smaller
than the Gaussian piece of hI2i. Our conclusions will
depend on this approximation, which is equivalent to the
weakly non-Gaussian approximation typically made in the
literature.

If we view the PDF as a likelihood function, as described
above, only I1 contains information on fNL to O�f4NL�

4�.
Since we only need to calculate I1 from the observed data
to specify the likelihood we can regard this quantity as an
estimator for fNL; we will address the need to specify I2
below. Now we will analyze the statistical properties of this
estimator.

After choosing the normalization in order to unbias the
estimator we find

f̂ NL �
1

6�4
��3 � 3�2��: (23)

Once we include all N independent observations, this
estimator becomes

f̂ NL �
1

6�4N

XN
i

��3i � 3�
2�i�; (24)

which has the variance

Var�f̂NL� �
1

6�2N
�
22f2NL
N

�O�f4NL�
4�: (25)

The PDF defined in Eq. (15) satisfies the regularity
condition, Eq. (6), for both fNL and � so we can use the
Cramer-Rao inequality to give the lower bound on the error
-5
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bars of these parameters. This lower bound will be differ-
ent than the variance of f̂NL if the PDF does not satisfy the
appropriate necessary and sufficient condition for a PDF to
admit an optimal estimator, Eq. (11). Simple inspection of
the single pixel PDF, Eq. (15)

@ lnp��jfNL�
@fNL

� 6�2
�
f̂NL��� �

fNL
6
I2��=��

�
�O�f2NL�

2�; (26)

shows that the necessary and sufficient condition of
Eq. (11) is strictly met only if fNL � 0. Thus our estimator
f̂NL��� is only optimal for setting non-Gaussian limits on
Gaussian maps.

The PDF does not satisfy the appropriate conditions for
the existance of an optimal estimator because the function
I2��=�� multiplies fNL. When we evaluate hI2i, we find
that there is a leading order Gaussian piece and a non-
Gaussian piece, suppressed by a factor of f2NL�

2. If we
replace I2 with its expectation value, ignoring the non-
Gaussian piece, we find

@ lnp��jfNL�
@fNL

� 6�2�f̂NL��� � fNL	; (27)

which is exactly the condition for an optimal estimator to
exist. While our original conclusion, that �3 � 3�2� is
only optimal for underlying Gaussian distributions, is still
true; we can clearly see that within the weakly non-
Gaussian limit our estimator is optimal. If the estimator
was optimal its variance would exactly equal the bound
derived from the Fisher matrix. For the non-Gaussian
underlying distribution (the inverse of) the Fisher matrix,
Eq. (26), and the estimator variance, Eq. (25), differ by
terms proportional to f2NL�

2. This is precisely the type of
term that can be ignored within the weakly non-Gaussian
approximation. Therefore assuming this approximation is
valid, the estimator�3 � 3�2� is optimal even for under-
lying non-Gaussian distributions.

This is not a coincidence, but a direct consequence of the
regularity condition, Eq. (6), and the weakly non-Gaussian
approximation. Since the regularity condition must hold
for all values of fNL, we can require it to hold term-by-term
in our expansion in fNL. The first-order terms in the
regularity condition are hI1iNG � fNLhI2iG, where G and
NG denote the Gaussian and non-Gaussian expectation
values, respectively. Since we know the first-order terms
must vanish, we can infer hI1iNG � fNLhI2iG. Thus if we
can replace I2 with its Gaussian expectation value then
f̂NL � I1=hI2iG will be an unbiased optimal estimator with
variance 1=hI2iG.

Our argument depends on being able to replace I2 with
its expectation value, clearly when the sample size grows
the error introduced by making this assumption vanishes.
Now we will calculate conditions on the sample size for
this property to hold. The expectation value will have a
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variance which decreases inversely with the sample size,
N,

Var
	
I2��=��
6



�
287

9N
; (28)

thus we need N � 287=9 for our estimator to be optimal.
This number is simply due to combinatorial factors and
therefore we do not expect it to drastically change when we
consider the full problem with radiative transfer and a
scale-invariant distribution. Moreover WMAP observes
approximately 106 pixels, so we expect this approximation
to be quite good.

To check our conclusions, we should still calculate the
Fisher matrix elements and compare them with the vari-
ance of f̂NL. After scaling our results, since we have N IID
samples, we find to O�f3NL�

3�

F � N
6�2 � 368f2NL�

4 �8fNL�
�8fNL� 2=�2 � 20f2NL

	 

; (29)

where � � �fNL;��. The errors on the parameters are
given by the inverse of the Fisher matrix

F�1 �
1

N
1=6�2 � 28f2NL=3 2fNL�=3

2fNL�=3 �2=2� 7f2NL�
4=3

	 

;

(30)

thus the Cramer-Rao bound on fNL is smaller than the
variance of f̂NL except when our underlying map is
Gaussian.

The fractional discrepancy caused by underlying non-
Gaussianity is

Var�f̂NL� � �Fff�
�1

Var�f̂NL�
� 170f2NL�

2 
 2:3� 10�3 (31)

assuming, fNL� 
 3:5� 10�3, which is the best current
constraint. Clearly we are justified in ignoring the
O�f2NL�

2� corrections and in considering the three-point
function to be optimal even when the underlying non-
Gaussianity is nonzero.

We can extend this discussion by removing the assump-
tion that � is known a priori, then we must simultaneously
estimate fNL and �. Dropping this assumption we will
search for an estimator of fNL that jointly estimates �.
Actually it is most natural to estimate � � fNL�

4, using
this variable we find that the coupled unbiased estimator is

�̂ �
1

6

N
N � 3

	
1

N

X
i

�3i �
3

N2
X
ij

�2i�j



; (32)

with variance

Var��̂� �
�6

6N
N2 � 3N � 12

�N � 3�2
: (33)

At N � 100, the variance of �̂ is increased by just 3% with
respect to f̂NL. In general the simultaneous estimation of
-6
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parameters that are correlated will increase the estimator
variance. However the variance will asymptotically ap-
proach the single parameter estimator variance as the size
of the data sample grows.
IV. SCALE-INVARIANT LOCAL MODEL
NON-GAUSSIAN DISTRIBUTIONS

The purpose of this section is to determine whether an
optimal estimator for fNL exists when we change the
underlying distribution from Poisson to scale-invariant.
Observations of the CMB and large scale structure imply
that the primordial spectrum of curvature perturbations is
scale-invariant; therefore, we must adapt the discussion of
the previous section. The Poisson distribution covariance
matrix is diagonal in all bases; however, the real-space
basis is convenient because the ‘‘local model’’ definition
of the non-Gaussian field does not mix different modes in
this basis. Therefore in the real-space basis we were able to
analyze a single pixel and appropriately scale the final
results. For a scale-invariant distribution the covariance
matrix is no longer diagonal in a real-space basis, but
only in a Fourier basis. Moreover we observe the primor-
dial curvature perturbations projected on the sky as CMB
anisotropies after hydrodynamical and gravitational evolu-
tion. The covariance matrix of the CMB anisotropies is
diagonal in a spherical harmonic basis.

Taking these features into account we will determine if
the bispectrum, the three-point correlation function in the
spherical harmonic basis, contains all of the non-Gaussian
information of a CMB map. This problem will be divided
into two parts: (1) We will analyze a 2D scale-invariant
distribution without radiative transfer in a spherical har-
monic basis; (2) We will include the effects of radiative
transfer and show that the WMAP non-Gaussianity esti-
mator is an optimal estimator for fNL.

A. Sachs-Wolfe effect

At first we will ignore the effects of radiative transfer
and consider scale-invariant primordial curvature pertur-
bations projected onto the sky. This essentially occurs on
large angular scales where the Sachs-Wolfe effect directly
maps the curvature perturbations onto temperature anisot-
ropies. However, the main purpose of this subsection is
simply to show the changes in the PDF as we switch from
an underlying Poisson distribution to a scale-invariant one.

The two-point correlation function of the projected
Gaussian curvature field is

C � h��
lm�l0m0 i � l;l0m;m0

2

�

Z
k2dkP�k�

j2l �k!D�
9

;

(34)

where !D is the distance to the surface of last scattering.
For a scale-invariant power spectrum, P�k� � A=k3, can be
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exactly evaluated as

h��
lm�l0m0 i � l;l0m;m0Dl � l;l0m;m0

A
9�

1

l�l� 1�
: (35)

Now defining the Gaunt integral as

G l1l2l3
m1m2m3 �

Z
d2n̂Yl1m1�n̂�Yl2m2�n̂�Yl3m3�n̂� (36)

�

��������������������������������������������������������
�2l1 � 1��2l2 � 1��2l3 � 1�

4�

s 	 l1 l2 l3
0 0 0




�

	 l1 l2 l3
m1 m2 m3



; (37)

and the average of the quadratic curvature fluctuation as

h�2�x�i � �2 �
Z d3k

�2��3
P�k�; (38)

we can follow the above steps to expand the non-Gaussian
PDF in powers of fNL�. However, we must first calculate
the Jacobian transformation of the delta-function

Jlm;ab �
@glm
@�ab

� �l;am;b � fNL��1�m
X

l1;l2;m1;m2

Gll1l2mm1m2

�
@

@�a;b
�l1m1�l2m2 ; (39)

� �l;am;b � 2fNL��1�m
X
l1;m1

Gll1a�mm1b
�l1m1

�O�f2NL�
2�; (40)

where glm is the argument of the delta-function, used to
define the local model PDF in Eq. (4), expressed in a
spherical harmonic basis.

For the local model non-Gaussian PDF we find

logP��jfNL;C� � �
�TC�1�

2
� fNL�

TC�1��2 ��2�

� logdet
@g���
@�

�O�f2NL�
2�; (41)

which expressed in a spherical harmonic basis is

logP��jfNL;C� � �
1

2

X
lm

��
lm�lm

Dl
� fNL

X
�l;m�

Gl1l2l3m1m2m3

�
�l1m1

Dl1
�l2m2�l3m3 � fNL

�2�00
D0

� logdet
@g���
@�

�O�f2NL�
2�: (42)

The notation �l;m� is meant to imply that the sum is over
all three li and mi. It is clear that rotational invariance,
enforced through the Gaunt integral selection rules, forces
-7
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the terms linear in � to only contain the monopole term,
�00.

We can simplify matters by examining the derivative of
the expression in Eq. (41); using the standard matrix
identity, logdetA � Tr logA, to rewrite the term that
comes from the Jacobian transformation of the delta-
function, we find

@ logP��jfNL;C�
@fNL

� �TC�1��2 ��2�

� Tr
�
J�1

@J
@fNL

�
�O�fNL��;

(43)

which expressed in the spherical harmonic basis is

@ logP��jfNL;C�
@fNL

�
X
�l;m�

Gl1l2l3m1m2m3

�l1m1

Dl1
�l2m2�l3m3

�
�2�00
D0

� 2�00 �O�fNL��:

(44)

Using our intuition from the Poisson case we can identify

fNL��� �
X
�l;m�

Gl1l2l3m1m2m3

�l1m1

Dl1
�l2m2�l3m3

�
�00
D0

�2�2 �D0�; (45)

as the scale-invariant generalization of the estimator for
fNL. There are notable differences between the scale-
invariant case and the Poisson case. Fundamentally, these
differences are a result of expressing the PDF in a spherical
harmonic basis instead of a real-space basis. The assump-
tion of scale-invariance only affects the form of Dl.

Rotational invariance forces the linear terms to be pro-
portional to the monopole anisotropy modes. Recall that
the CMB monopole anisotropy is unmeasurable in princi-
ple and the primordial dipole anisotropy is dominated by
the Doppler effect due to the local kinematic motion of the
galaxy, so these modes are typically removed from the
data. Labelling the original data as �0 and the new data
with the monopole and dipole modes eliminated as�1, the
projection operator will change the PDF of the original
data as

P��1� �
Z
dN�0�N�4���1 �M�0�P��0�; (46)

where M is the relevant projection matrix. For all non-
monopole and dipole modes the effect of the functional
integration will simply be to replace�0 with�1. Since the
projection matrix eliminates the monopole and dipole
modes in the argument of the delta-function, the monopole
and dipole terms are simply integrated out. This functional
043003
integration simply eliminates the term in P��� which is
linear in �00.

Moreover this functional integration also removes all
terms from the cubic piece that contain any �00 or �1m
modes. It is clear that any term linear or cubic in a mono-
pole or dipole mode will vanish. However it is possible that
terms such as�00�00�lm or�11�1�1�lm, which survive
the functional integration, might introduce a new linear
term containing higher modes. Fortunately the symmetry
properties of the Gaunt integral eliminate these terms since
Glll

0

m�m0 / l00 (see Appendix B of [11]). Therefore the
projection of the monopole and dipole eliminates all terms
from the PDF which contain any monopole or dipole
modes and importantly does not introduce a new linear
term. After performing this projection the new estimator is

fNL��� �
X
�l;m�

Gl1l2l3m1m2m3

�l1m1

Dl1
�l2m2�l3m3 ; (47)

where now the sum excludes all modes with li 
 1.
We must decide whether this estimator contains all the

information of the modified PDF. In analogy to the Poisson
case, the f2NL term is an even function of the �lm modes.
Therefore its expectation value will have a purely Gaussian
piece which is fixed by the regularity condition to be
precisely the correct value for the scale-invariant PDF to
satsify Eq. (11) and admit an optimal estimator. Again we
conclude that fNL��� is an optimal estimator in the weakly
non-Gaussian limit.

B. Radiative transfer

Now we will include the effects of radiative transfer and
we will find that the 2D CMB version of our optimal
estimator is the Weiner filter estimator used by the
WMAP science team [22]. The process of radiative transfer
alters the amplitudes of the 3D curvature perturbations and
projects them onto 2D CMB temperature anisotropies. This
process will relate the CMB PDF to the local model PDF as

P�ajfNL� �
Z
dN��M��alm

�
Z
r2dr(l�r��lm�r��P��jfNL�; (48)

where M<N because of the projection. The additional
spurious degrees of freedom, which do not affect the ob-
servable CMB anisotropies, can be integrated out. Here we
define

(l�r� �
2

�

Z
k2dkjl�kr��l�k�; (49)

where�l�k� is the standard radiation transfer function [31].
We can connect the present discussion with previous case
of the Sachs-Wolfe effect by noting that the formulae of the
previous subsection can be reproduced by choosing
-8
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(l�r� �
2

�

Z
k2dkjl�kr�

1

3
jl�k!D�: (50)

By substituting this expression in the following equations
the results in the previous subsection can be derived. This
formula is valid on large angular scales when the wave-
length of the relevant primordial curvature perturbation is
much larger than the size of the sound horizon.

To calculate this functional integral we will use the
exponentiated form of the delta-function

�M��alm �
Z
r2dr�l�r��lm�r��

�
Z
dMBe

�i
P
lm

��1�mBl�m�alm�
R
r2dr(l�r��lm�r��

; (51)

here Blm is simply a ‘‘dummy variable.’’ Using this repre-
sentation we can ‘‘complete the square’’ and perform the
functional Gaussian integrations.

First we must find the 3D local model PDF, the covari-
ance matrix between two primordial 3D curvature pertur-
bations can be calculated as

C � h��
l1m1

�r1��l2m2�r2�i � l1;l2m1;m2Dl1�r1; r2� (52)

� l1;l2m1;m2
2

�

Z
k2dkP�k�jl1�kr1�jl1�kr2�: (53)

Since we will need the inverse of C in order to express the
PDF of �, we can symbolically define the inverse of
Dl�r1; r2� asZ

r2drDl�r1; r�D
�1
l �r; r2� �

�r1 � r2�

r21
: (54)

Using these definitions the non-Gaussian PDF can be ex-
panded as

logP��jfNL;C� � logPG��jfNL;C�

� logPNG��jfNL;C� (55)

��
1

2

X
l;m

Z
r21dr1r

2
2dr2��1�

m�l�m�r1�D�1
l �r1; r2��lm�r2�

� fNL
X
�l;m�

Z
r21dr1r

2
2dr2G

l1l2l3
m1m2m3�l1m1�r1�D

�1
l1
�r1r2�

��l2m2�r2��l3m3�r2� �O�f2NL�
2�;

where we have ignored the irrelevant constant piece and
the linear terms since they will ultimately vanish when we
project out the monopole mode.

At this point it will be convenient to introduce the
following function

*l�r� �
2

�

Z
k2dkP�k�jl�kr��l�k�; (56)

which is defined such that
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Z
r2dr(l�r�*l�r� � Cl: (57)

Using the definition of D�1
l �r1; r2� we can show that

(l�r1� �
Z
r22dr2D

�1
l �r1; r2�*l�r2�; (58)

*l�r1� �
Z
r22dr2Dl�r1; r2�(l�r2� (59)

these properties will be very useful in what follows. Note
that the functions (l�r� and *l�r� are equivalent to blinl �r�
and bnll �r� defined in [32].

Now we are ready to perform the functional integration
and find the non-Gaussian CMB PDF. We must ‘‘complete
the square’’ of the following term

�
1

2

X
l;m

��1�m�
Z
r21dr1r

2
2dr2��1�

m�l�mD�1
l �r1;r2��lm�r2�

�2iBl�m
Z
r2dr(l�r��lm�r�	: (60)

This can be rewritten as

�
1

2

X
l;m

��1�m�
Z
r21dr1r

2
2dr2��l�m�r1�

� +l�m�r1��D�1
l �r1; r2���lm�r2� � +lm�r2��

� Bl�mBlmCl	; (61)

where

+lm�r� � �i*l�r�Blm: (62)

Once more we must ‘‘complete the square’’ for the follow-
ing term

�
1

2

X
l;m

��1�m�ClBl�mBlm � 2iBl�malm	: (63)

This can be rewritten as

�
1

2

X
l;m

��1�m
�
Cl�Bl�m � ,l�m��Blm � ,lm� �

al�malm
Cl

�
(64)

where

,lm�r� �
ialm
Cl
: (65)

Thus we are left with the correct Gaussian piece for the
CMB PDF. Performing the two Gaussian functional inte-
grations is equivalent to performing the substitution

�lm�r� !
*l�r�
Cl

alm: (66)

into the non-Gaussian cubic portion of the PDF.
-9
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This substitution is equivalent to the Weiner filter solu-
tion proposed by [22] in order to estimate the underlying
curvature perturbations from an observed CMB anisotropy
map. The process of projection and radiative transfer is not
invertible, but nevertheless we can regularize the inversion
process by requiring that the reconstructed potential mini-
mizes the variance. This approach was adopted in [22],
where it was shown that the optimal inversion procedure
was to Weiner filter the CMB map as
043003
�lm�r� �
*l�r�
Cl

alm: (67)

Here we have demonstrated that a straightforward func-
tional integration of the local model PDF gives the same
result.

Performing the functional integration, or equivalently
substituting the Weiner filter solution for � into Eq. (55),
we find that the non-Gaussian cubic term in the PDF
logPNG�ajfNL;C� �
X
�l;m�

Gl1l2l3m1m2m3

Z
r21dr1r

2
2dr2�l1m1�r1�D

�1
l1
�r1; r2��l2m2�r2��l3m3�r2�

�
X
�l;m�

Gl1l2l3m1m2m3

al1m1al2m2al3m3
Cl1Cl2Cl3

Z
r21dr1r

2
2dr2*l1�r1�D

�1
l1
�r1; r2�*l2�r2�*l3�r2�

�
X
�l;m�0

Gl1l2l3m1m2m3

al1m1al2m2al3m3
Cl1Cl2Cl3

bl1l2l3 ; (68)
where we define the reduced CMB Bispectrum as

bl1l2l3 � 2
Z
r2dr�(l1�r�*l2�r�*l3�r� � *l1�r�(l2�r�*l3�r�

� *l1�r�*l2�r�(l3�r�	; (69)

and the prime indicates that we restrict the sum over li such
that l1 
 l2 
 l3. It is standard to separate the piece of the
CMB three-point correlation function fixed by rotational
invariance. We do this by introducing the Gaunt integral,
Eq. (36), and the reduced CMB bispectrum, which are
related to the CMB three-point correlation function as

hal1m1al2m2al3m3i � Gl1l2l3m1m2m3bl1l2l3 : (70)

Combining these results we find that the scale-invariant
non-Gaussian PDF for the CMB anisotropies, ignoring the
constant piece, is

logP�ajfNL� � �
1

2

X
l;m

a�lmalm
Cl

� fNL
X
�l;m�0

Gl1l2l3m1m2m3bl1l2l3
Cl1Cl2Cl3

� al1m1al2m2al3m3 �O�f2NL�
2�: (71)

Again this has the correct form to admit an optimal esti-
mator, within the weakly non-Gaussian approximation,
which is

f̂ NL�a� �
1

Snorm

X
�l;m�0

Gl1l2l3m1m2m3bl1l2l3
Cl1Cl2Cl3

al1m1al2m2al3m3 ; (72)

where the normalization constant is

Snorm �
X
�l;m�0

�2l1 � 1��2l2 � 1��2l3 � 1�
4�

�

	 l1 l2 l3
0 0 0



2 b2l1l2l3
Cl1Cl2Cl3

: (73)
A procedure based on this estimator has been imple-
mented by the WMAP science team in their analysis of
primordial non-Gaussianity. Their interpretation of the
estimator is in terms of Weiner filtered estimates of the
primordial curvature. First the Weiner filter *l�r�=Cl is
used to estimate the primordial curvature fluctuation
�lm�r� from the CMB anisotropy alm, as in Eq. (67).
Then the two estimates of the primordial curvature pertur-
bations are used to estimate the quadratic piece of the
primordial curvature field according to the definition of
the local model and (l�r� is used to calculate the CMB
temperature anisotropy due to this quadratic piece. This
quadratic CMB template is correlated with the observed
CMB anisotropies to give an estimate, once properly nor-
malized, of the non-Gaussianity of the observed CMB
anisotropies. We have shown that this intuitive procedure
results in an estimator that is optimal.

V. GENERAL NON-GAUSSIAN MODELS

In the previous section we applied the basic ideas of
estimation theory to show that the local model non-
Gaussian CMB PDF admitted an optimal estimator in the
weakly non-Gaussian limit. As mentioned in the
Introduction the local model is a physically motivated
idealization, however most primordial bispectra calculated
within models of the early universe contain additional
terms. Starting with the definition of the local model,
Eq. (1), we derived the resulting CMB PDF. Since it is
not possible to find the general non-Gaussian PDF which
corresponds to a general non-Gaussian bispectrum, we are
unable to retrace the above steps in order to extend our
analysis. However we will argue that the non-Gaussian
CMB PDF in Eq. (71) is simply the Edgeworth expansion,
which holds for arbitrary non-Gaussian CMB PDF, and
therefore our conclusion that the bispectrum estimator is
optimal holds for arbitrary model of the primordial non-
-10
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Gaussianity. Because of the arguments in the Introduction
we assume that a model for primordial non-Gaussianity is
best characterized by its bispectrum and that we should try
to constrain the amplitude of the bispectrum. We choose to
define the amplitude of a general bispectrum as the coef-
ficient of the bispectrum evaluated in the equilateral con-
figuration (see [4] for a full discussion of this point).

The Edgeworth expansion is a way to express the non-
Gaussianity of a PDF in the form of a series expansion (see
[2] and references there within). This allows one to explic-
itly write down a non-Gaussian PDF if its lowest order
moments or correlation functions are known. The
Edgeworth expansion of a 1D PDF is a simple expansion
in Hermite polynomials; a multivariate generalization has
been found [33,34]. Adopting the notation relevant for
CMB anisotropies the Edgeworth expansion is

P�a� �
�
1�

X
�l;m�0

hal1m1al2m2al3m3i
@

@al1m1

@
@al2m2

@
@al3m3

�

�
Y
lm

e�
a�
lm
alm

2Cl������������
2�Cl

p ; (74)

where hal1m1al2m2al3m3i can still be decomposed into the
gaunt integral and the reduced bispectrum. Here the gen-
eral reduced bispectrum can be calculated as

bl1l2l3 �
	
2

�



3 Z

k21dk1k
2
2dk2k

2
3dk3

�
Z
x2dxjl1�k1x�jl2�k2x�jl3�k3x�

� B�k1; k2; k3��l1�k1��l2�k2��l3�k3�; (75)

where B�k1; k2; k3� is the general primordial bispectrum
[4]. When the primordial bispectrum is calculated accord-
ing to the local model the CMB reduced bispectrum is
given by Eq. (69).

Performing the functional differentiation in the
Edgeworth expansion we find

P�a��
Y
lm

e�
a�
lm
alm

2Cl������������
2�Cl

p

�
1�

X
�l;m�0

bl1l2l3G
l1l2l3
m1m2m3

�al1m1al2m2al3m3
Cl1Cl2Cl3

���1�m3
	 al1m1
Cl1Cl3

l2;l3m2;�m3�
al2m2
Cl2Cl3

l1;l3m1;�m3

�
al3m3
Cl2Cl3

l1;l2m1;�m2


��
: (76)

Again the properties of the gaunt integral force the linear
terms to be proportional to the monopole anisotropy mode,
a00. After projecting out the monopole anisotropy the form
of the non-Gaussian cubic term in the Edgeworth expan-
sion is identitical to the form of non-Gaussian cubic term in
the local model CMB PDF, Eq. (71).

In the previous section we argued that estimators based
on the bispectrum are optimal if the PDF can be expressed
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as in Eq. (71). This form is not unique to the local model,
but is simply part of the Edgeworth expansion which is
relevant regardless the form of primordial bispectrum. The
only necessary condition is that the level of non-
Gaussianity is small. Thus we conclude that estimators
based on the bispectrum are optimal for any form of
primordial non-Gaussianity characterized by its bispec-
trum provided the amplitude of the non-Gaussianity is
sufficiently small.
VI. DISCUSSION

We analyzed the standard model for primordial non-
Gaussianity with the tools of estimation theory and found
that the estimator constructed out of the CMB three-point
correlation function is an optimal estimator for fNL, the
amplitude of the primordial non-Gaussianity. Our conclu-
sion is only true within the weakly non-Gaussian approxi-
mation, which implies that we ignore non-Gaussian
contributions to four-point correlation function compared
to the much larger Gaussian contributions. In our calcu-
lations this is equivalent to ignoring terms proportional to
f2NLh��x�2i, which is already constrained by the WMAP
data to be extremely small. Therefore we can consider the
standard WMAP estimator, which is based on the CMB
three-point correlation function, to be optimal in practice.
This property only depends on the weak level of non-
Gaussianity, not on any assumed form for the primordial
bispectrum. Therefore we argued that the amplitude of a
general primordial bispectrum can be optimally estimated.

Our calculations demonstrated that the WMAP estima-
tor was optimal to constrain fNL and therefore contained
all the information in the observed data on this parameter.
Future work can now focus on practical implementations
of this optimal estimator. Some of the practical concerns
that affect the implementation of an estimator for fNL
include biasing due to non-Gaussianity from secondary
anisotropies, nonuniform instrument noise and the need
to jointly estimate fNL and the basic cosmological parame-
ters from the same data which will degrade the perform-
ance of the estimator. While we demonstrated that the
WMAP estimator is optimal for the estimation of fNL,
there still is a need to find a quick method to optimally
estimate individual three-point correlation function modes
from CMB maps with Galactic foreground contamination
and inhomogeneous instrument noise [24,28]. We implic-
itly assumed that the three-point correlation function
modes could simply be calculated from observed CMB
maps. For maps with inhomogeneous noise, this procedure
results in suboptimal error bars on the individual bispectra
modes. An optimal procedure, which is quite slow for large
data sets, has been developed [28]; a quicker procedure
must be found if it can be realistically applied to the
WMAP and Planck data sets.

Also, the non-Gaussianity of secondary anisotropies is
not well known on the arcminute scales relevant for current
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and future CMB experiments. Fortunately on intermediate
scales there is little contamination of the primordial non-
Gaussianity estimator by secondary anisotropies; however
we simply do not know if this is true on the extremely small
scales relevant for upcoming CMB experiments. Also we
do not know how errors in the basic cosmological parame-
ter, from which we calculate the radiation transfer func-
tions and the Weiner filters, will affect this analysis. This
topic should also be investigated.

While much progress has been made in both the theo-
retical understanding and practical analysis of the signa-
tures of primordial non-Gaussianity in CMB maps, there
still is much more work needed to be done before the field
will become fully developed. However the tremendous
potential for insight into the production mechanism of
the primordial curvature perturbations makes this work
worthwhile.
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APPENDIX: SIGNAL-TO-NOISE RATIO OF
HIGHER-ORDER ESTIMATORS

In this appendix we demonstrate the features of the S=N
of an estimator based on an nth-order correlation function
needed to argue that the estimator based on the three-point
correlation function would have the largest S=N. We will
do our calculation within a toy model that should retain all
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of the important features of the problem. In what follows
we ignore radiative transfer and the curvature of the sky, so
we will simply observe the underlying modes within the
flat-sky approximation [35].

Extending the basic idea of the ‘‘local model’’ we will
assume that the observed non-Gaussian field � can be
expanded in the Gaussian field � as

� � �� f2��2 � h�2i	 � f3��3 � h�3i	 �   

� fn��
n � h�ni	 �    : (A1)

The various n-point correlations function of � can be
calculated by substituting our definition of �, Eq. (A1),
and using Wick’s theorem. It is important to note that we
are interested in connected correlation functions, which
contain a single delta-function. In what follows we ignore
all O�1� factors.

Working within our model, the power spectrum is eval-
uated as [35]

C�l� �
A

l2
; (A2)

and the connected nth-order correlation function as

T�l1; l2;    ; ln� � �fn�1 � f2n�2 �    � fn�ss

�    fn�22 �An�1
l21 � l

2
2 �    � l2n
l21l
2
2    l

2
n

; (A3)

where A is the amplitude of the primordial curvature power
spectrum, P�k� � A=k3. Note that there is no contribution
to nth-order correlation function from fn.

We also define the total �S=N�2 of the estimator as
	
S
N



2
�

Z
d2l1d

2l2    d
2ln

��2��l1 � l2 �    � ln�T�l1; l2;    ; ln�	2

C�l1�C�l2�   C�ln�
(A4)
Substituting the results for Cl and T�l1; l2;    ; ln� into
Eq. (A4) we find	
S
N



2
�fskyf

2
totA

n�2
Z
d2l1d

2l2 d
2ln

�2�

��l1�l2��ln�
�l21� l

2
2�� l2n	

2

l21l
2
2 l

2
n

; (A5)

where fsky is the fraction of the observed sky and ftot �
fn�1 � f

2
n�2 �    � fn�ss �    fn�22 is the total cou-

pling cofficient that results from considering all contribu-
tion to a given correlation function.

The upper bound of integration for all li is lmax so we can
rescale the integral to be ‘‘dimensionless,’’ then we find
	
S
N



2
� fskyf

2
totA

n�2l2max � f2totA
n�2Npix; (A6)

where we defined Npix to be the total number of observed
pixels. In addition to numerical factors, the integral may
also contribute factors of the ‘‘Coulomb logarithm,’’ i.e.
ln�lmax=lmin�, as found in the bispectrum calculation [35].
These additional correction are small, so we can argue that
to O�1�, the S=N is simply the product of the characteristic
amplitude and the square-root of the number of observed
pixels. We have established the necessary results used in
the Introduction where we argued that the S=N of the
estimator constructed out of the three-point correlation
functions will be dominant.
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