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Nulling tomography with weak gravitational lensing
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We explore several strategies of eliminating (or nulling) the small-scale information in weak lensing
convergence power spectrum measurements in order to protect against undesirable effects, for example,
the effects of baryonic cooling and pressure forces on the distribution of large-scale structures. We
selectively throw out the small-scale information in the convergence power spectrum that is most sensitive
to the unwanted bias, while trying to retain most of the sensitivity to cosmological parameters. The
strategies are effective in the difficult but realistic situations when we are able to guess the form of the
contaminating effect only approximately. However, we also find that the simplest scheme of simply not
using information from the largest multipoles works about as well as the proposed techniques in most,
although not all, realistic cases. We advocate further exploration of nulling techniques and believe that
they will find important applications in the weak lensing data mining.
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I. INTRODUCTION

Progress in cosmology in the last decade has been
dramatic, and there is reason to believe that we will
make further advances on key questions in the coming
years. Key to this progress is the ability to confront precise
data with highly accurate theoretical predictions. Gravi-
tational lensing illustrates both the potentials and difficul-
ties of this era of cosmological research. In principle,
lensing can constrain the properties of the dark energy
causing the accelerated expansion of the universe and
constrain both the cosmic geometry and the growth of
large-scale structure (e.g. [1–9]). But one of the main
challenges for future weak lensing surveys will be control-
ling the theoretical systematic errors involved in predicting
the lensing signal at small, nonlinear scales of � 1 degree.
These errors include numerical artifacts in computing the
nonlinear power spectrum (see e.g. [10–13]) and complex
baryonic processes that are difficult to model accurately
[14,15] and make semianalytic predictions of nonlinear
power unreliable.

Many of the difficulties in making theoretical predic-
tions come in at small physical scales. In this paper we
explore one approach to protect against theoretical biases
at small scales. We suggest selectively throwing out the
small-scale information and ‘‘nulling’’ the bias while at the
same time retaining useful cosmological information.
What makes us optimistic in this regard is that the infor-
mation contained in the weak lensing convergence esti-
mated in different redshift slices is strongly overlapping,
essentially because of the width of the lensing kernel.
Therefore, dropping a reasonably small subset of the tomo-
graphic information leads to small degradations in overall
cosmological constraints. This has been used by Takada
05=72(4)=043002(7)$23.00 043002
and White [16] to propose dropping the autospectra in
order to protect against unwanted biases due to intrinsic
alignments of galaxies. We take this general idea further
and propose identifying specific linear combination of the
cross-power spectra that are most sensitive to a given
nonlinear effect, and then dropping them in the analysis
in order to null out the effect while ideally preserving most
of the sensitivity to cosmological parameters.

In the next section we describe the fiducial assumptions
about the survey and small-scale bias. In Sec. III we
describe and explore several nulling tomography tech-
niques. We discuss the results and comment on future
prospects in Sec. VI.

II. METHODOLOGY AND SMALL-SCALE BIAS
MODEL

Assume a weak lensing survey with the ability to divide
source galaxies in Ns redshift bins. Let P�ij�‘� be the
convergence cross-power spectrum in ith and jth tomo-
graphic bin at a fixed multipole ‘—for definitions and
details, see e.g. Ref. [3]. The observed convergence power
is

C�ij�‘� � P�ij�‘� � 	ij
h
2

inti

ni
; (1)

where h
2
inti

1=2 is the rms intrinsic shear in each component
which we assume to be equal to 0.22, and �ni is the average
number of galaxies in the ith redshift bin per steradian.

For definiteness we assume a SNAP-type survey [17]
covering 1000 sq. deg. with the galaxy distribution of the
form n�z� / z2 exp�	z=z0� that peaks at 2z0 � 1:0. We
assume 100 usable galaxies per arcmin2. We use informa-
tion from the wide range of scales corresponding to multi-
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poles 100 
 ‘ 
 10 000. We have a set of six cosmologi-
cal parameters: energy density and equation of state of dark
energy �DE and w, spectral index n, matter and baryon
physical densities �Mh2 and �Bh2, and the amplitude of
mass fluctuations �8. Throughout we assume a flat uni-
verse. For our fiducial results, we let these six parameters
vary without any priors since the fiducial survey alone is
powerful enough to determine the cosmological parame-
ters to a good accuracy. The cosmological constraints can
be computed using the standard Fisher matrix formalism.

To be definitive, let us now consider systematic bias in
the matter power spectrum P�k� of the form

P�k; z� � �P�k; z��1� af�k��; (2)

where �P�k; z� is the true, unbiased power spectrum, and a is
the coefficient that we use to ‘‘turn on’’ the bias f�k� whose
functional form is, we assume for a moment, precisely
known. [Note that realistic biases f�k� may be redshift
dependent as well, perhaps increasing at late times during
the nonlinear structure formation, but we ignore this issue
since it is unimportant in the following discussion.] In
order to use weak lensing to measure the cosmological
parameters, we are forced to fit for the parameter a as well,
otherwise our results will be biased. Our goal here is to
minimize the sensitivity of the data on parameter a, since
the results would thus become less sensitive to the particu-
lar bias in the power spectrum from Eq. (2). At the same
time, we hope not to significantly weaken the sensitivity to
other cosmological parameters, such as the equation of
state of dark energy w.

For the bias in the matter power spectrum, our fiducial
model is as in Eq. (2) with a � 1:0 and f�k� � �k=k
�

�.
This model phenomenologically describes the baryonic
effects if we further set �� 3 and k
 � 10h Mpc	1

[12,14] and these are the values we use, although we ex-
plored a range of other values and found similar results.
Finally, to compute the bias in the cosmological parameters
due to the small-scale bias, we follow the standard formal-
ism that uses the Fisher matrix described in e.g. Ref. [13].
III. 1-POINT NULLING

Let us first consider using Ns specific linear combina-
tions of shears in individual redshift bins, specificallyPNs
j�1Qij
j���, where the coefficients Qij are independent

of the angular position of the galaxy. In other words, each
linear combination gives equal weight to all galaxies in the
jth redshift bin. Our goal is to find specific linear combi-
nations that are most sensitive to the nuisance parameter a
and simply throw them out. The nice feature of this prob-
lem is that it is tractable analytically.

Let us fix the multipole ‘ and define ~
�‘;m�;i to be the
spherical harmonic coefficient of the shear map in redshift
bin i. The only things we really need to know about ~
�‘;m�;i

are its mean and variance
043002
h~
�‘;m�;ii � 0; h~
�‘;m�;i ~
�‘0;m0�;ji � 	‘‘0	mm0C�ij�‘�:

(3)

Now consider the linear combinations

ui �
XNs
j�1

Qij ~
�‘;m�;j; (4)

where hereafter we drop the subscript �‘;m� from ui. The
covariance matrix of those combinations is

huiuji �
X
k;l

QikQjlCkl � q�i�TCq�j�; (5)

where the column vector q�i� is defined as the ith row of the
matrix Q, and the matrix C has elements C�kl �
h~
�‘;m�;k ~
�‘;m�;li. Say we only had a measurement of a single
ui � u. The likelihood for u (in the Fisher matrix approxi-
mation) is gaussian

L /
1����
R

p exp
�
	u2

2R

�
; (6)

where hu2i � R � qTCq: and we suppressed the index i
on q as well. Then we want to determine the q by max-
imizing the error in a, or minimizing (after a bit of algebra)

Faa �
�
	
@2

@a2
lnL

�
�

1

2R2

�
@R
@a

�
2
: (7)

We now need to solve the following problem: find the
column vector q that maximizes Faa in Eq. (7), given the
Ns � Ns covariance matrix C. Fortunately, this problem is
well known and can be solved using standard techniques
(e.g. [18,19]). The solution is to consider

�
L	1 @C

@a
�L	1�T

�
�LTq� � "�LTq�; (8)

where L is a lower triangular matrix satisfying C � LLT.
Equation (8) is an eigenvalue-eigenvector relation for LTq
which we can solve to obtain q. It can easily be shown that
the error in a from measurement of any single combination
ui is

���
2

p
=j"ij, and that huiuji � 	ij. Therefore, we get the

whole spectrum of uncorrelated combinations of shear
ordered by their sensitivity to the small-scale parameter
a. Again, recall that we need to repeat the same procedure
at every multipole ‘ (or, multipole bin centered at ‘).

We find that the Fisher information on the parameter a is
heavily dominated by one (or a few) particular combina-
tions of shears. For example, for the multipole bin centered
at ‘ � 1100 and 4-bin tomography, the eigenvalues " are:
7:0 � 10	6, 4:2 � 10	5, 3:3 � 10	4, and 1:3 � 10	2. Clearly,
by far the most information about the nuisance parameter a
is carried in the eigenvector corresponding to the fourth
eigenvalue. This eigenvector is (after adjusting the unim-
portant overall normalization for clarity) ~
1 	 5:3~
2 �
10:2~
3 � 5:8~
4. Therefore, this combination of shears at
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‘ � 1100 is most sensitive to the parameter a and would be
the one to drop.

Figure 1 shows dC�ij=d lnk and dhuiuji=d lnk at multi-
pole ‘ � 1100, now for a 10-bin tomography, where C�ij
are the original cross-power spectra and huiuji are the
covariances of the linear combinations of shears ui defined
in Eq. (4). It is clear that the covariances of the ui have a
more differentiated wavenumber dependence than the
original C�ij. However, because of the width of the gravi-
tational lensing kernel, the weights dhuiuji=d lnk, shown in
the bottom panel, are still strongly overlapping.

First, consider the fiducial case where we keep all infor-
mation in the survey, but add a single new parameter a
describing the small-scale effect. If the form of the small-
scale effect is known exactly, we find that the additional
degeneracy introduced by the new parameter a is negli-
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FIG. 1. Derivatives dC�ij=d lnk (top panel) and dhuiuji=d lnk
(bottom panel) at multipole ‘ � 1100. Here C�ij are the original
cross-power spectra and huiuji are the covariance of the new
combinations of shear, defined in Eq. (5). Note the coverage in k
for the new eigenmodes; the ones that have most of their weight
at high wavenumbers are most sensitive to the parameter a. The
overall normalization in each panel is arbitrary, but the relative
size of the modes is not.
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gible, and marginalized errors in cosmological parameters
increase by only a few percent relative to the case when a is
fixed. This is not surprising, as the parameter a enters the
observables in a different way than the cosmological pa-
rameters, and the fiducial survey is powerful enough to
determine them all without substantial loss of accuracy.

Let us now drop the combination ui that is the most
sensitive to parameter a. We find that the marginalized
error on the parameter a increases by several orders of
magnitude while increasing the cosmological parameter
accuracies only by several tens of percent. While this
sounds like fantastic news, we should remember that we
optimistically assumed that we were able to exactly
guess—and parametrize—the form of the small-scale ef-
fect f�k�. In reality, we will be able to guess f�k� only
approximately, and the difference between the true and
guessed f�k� will lead to biases in the measured cosmo-
logical parameters. The real figure of merit is the ratio of
the bias due to the incorrectly guessed f�k� and the fiducial
accuracy in any given cosmological parameter. Clearly, our
goal should be to strike balance between the systematic
bias and the statistical precision, minimizing the former
while not increasing the latter by more than a few tens of
percent.

Table I shows the errors and biases in w when between
zero and two combinations of shear, out of ten total, were
dropped, and alternatively, when multipoles ‘ > ‘max were
dropped. While our 1-point nulling works impressively
well, the cut in multipole space is as, and perhaps even
more, impressive. For example, to achieve the same statis-
tical error as in 1-point nulling with one combination of
shears dropped (error * 100% bigger than the fiducial one)
we can alternatively cut all multipoles at ‘ > 1000, but
then the bias with cutting in ‘ is more than 2 times smaller
than the bias with nulling! We have checked that these
TABLE I. Nulling out shear combinations that are most sensi-
tive to a vs. simply cutting measurements at some ‘max for a 10-
bin tomography case. The nulled 	P�k� was assumed to go as k3

(with k
 � 10h Mpc	1), the actual one as k3:5. While nulling in
principle works well, it leads to degradation in statistical errors
that are about 150% or larger, and therefore too large to tolerate.
On the other hand, simply throwing out power beyond some ‘max

is surprisingly efficient; for example, restricting to ‘max � 1000
leads also to a similar * 100% increase in ��w�, but with the
bias in w that is smaller than with 1-point nulling. More
importantly, cutting in ‘ can be done gradually, while the 1-
point nulling necessarily leads to jumpy changes in the statistical
error and bias.

1-point Nulling Cutting above ‘max

Skipped ��w� 	�w� ‘max ��w� 	�w�

0 0.054 0.085 10 000 0.054 2.630
1 0.130 0.023 3000 0.073 0.101
2 0.291 0.003 1000 0.117 0.010
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results are qualitatively unchanged with a different choice
of both the actual and the guessed bias.
IV. 2-POINT NULLING

Inspection of Table I shows that one problem with 1-
point nulling is that it does not have enough resolution in
choosing how much of the small-scale structure to null. For
example, dropping the single combination of shears that is
most sensitive to the parameter a increases the error in w
by about 150%, which is too much to tolerate regardless of
the success in nulling out the unwanted bias in P�k; z�. The
lack of ability to perform nulling more gradually is not too
surprising, as there are only Ns linear combinations to
choose from.

Ideally we would like to have a better resolution in the
eigenvalues "i and thus obtain a better leverage in control-
ling the cosmological parameter degradations as a function
of the nulling efficiency. One way to remedy that is to form
linear combinations of the convergence power spectra C�ij,
as there are N � Ns�Ns � 1�=2 of them

vi �
XN
j�1

~QijC
�
j �‘�; (9)

where ~Qij are coefficients (different from Qij in the pre-
vious section) and we denote a pair of redshift bins by a
single subscript; here i and j take values from 1 to N. The
goal is to find the linear combination(s) vi that produce the
largest Fisher matrix element Faa. While the 1-point pro-
cedure can be repeated, the optimization problem, sadly,
cannot be solved analytically as before because hC�j i � 0,
and we needed that assumption for the expression for Faa,
Eq. (7), to take its simple form. Therefore, we choose to
find the optimal combinations of the convergence power
spectra by brute force. Using Powell’s minimization
method [20], we find the linear combination v1 that has
maximal Faa. Using the Gram-Schmidt algorithm, we then
project to the �N 	 1� dimensional subspace, perform the
maximization again, and find the second most sensitive
combination, v2. And so on, until we find all combinations
of the power spectra ordered by their sensitivity to the
small-scale effect. As with the 1-point function, we apply
this algorithm at every ‘ separately, where ‘ is the center of
the corresponding band power window in multipole space.

We indeed find that the resolution in nulling is greater
with 2-point nulling than with 1-point; for example, throw-
ing out the most sensitive combination increases ��w� by
about 40%, and not 150%. However, we found two prob-
lems with 2-point nulling. First, as before we find that
simple cutting in ‘ works about as well or better. In
addition, we find that the biases in cosmological parame-
ters are substantially suppressed only if the form of the bias
is nearly precisely known, and not in more realistic situ-
ations when the bias is guessed incorrectly. These conclu-
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sions are unchanged even after trying different forms of
f�k�, looking at different cosmological parameters, differ-
ent values of k
, and different numbers of survey redshift
bins. Therefore, unless our 2-point procedure is substan-
tially improved in some way, 1-point nulling is the more
effective approach.
V. CUTTING IN WAVENUMBER k

Another simple strategy is to simply throw out contri-
butions to the band powers coming from wavenumbers
greater than some (comoving) cutoff kcut. Assume that
the Limber’s approximation integral over the large-scale
structures is discretized, with Np (rather than infinitely
many) lens planes. Then, assigning a single subscript i
for any of the N cross-power spectra, we have

C�i �‘� �
XNp
j�1

WijP�kj; zj�; (10)

where W are suitably defined weights that depend on the
lensing geometry and the distribution of galaxies and
P�kj; zj� is the matter power spectrum evaluated at some
wavenumber kj � ‘=r�zj� and redshift zj of the lens plane
in question. We now form a N � Np matrix with the �i; j�
entry equal to WijP�kj; zj�; we have N � 10 (correspond-
ing to Ns � 4 redshift bins) and Np � 59. Then we simply
transform this matrix to the lower triangular form. The
rows now represent linear combinations of the convergence
power spectra, and new matrix entries are their weights. Of
course, all N rows still contain the same information as
before, as we simply performed a linear operation on the
C�s. However, by considering the first M rows only (M<
N), we can avoid using any information coming from
wavenumbers greater than the wavenumber on �Np 	
M�th lens plane. As before, we repeat the procedure at
each multipole band centered at ‘. For simplicity we hold
kcut independent of ‘, and then higher ‘ implies higher kj
for a fixed lens plane—therefore, more combinations will
be cut at higher ‘, until some multipole ‘ ’ kcutr�zmax�
where no information at k > kcut will be left. Note too that,
unlike the 1 and 2-point nulling, cutting in k does not
require a guess of the offending small-scale effect as all
information beyond kcut, ‘‘good’’ and ‘‘bad’’, is thrown out.

To explore the efficacy of this type of nulling, we
perform it for a variety of values kcut, then compare to
the ‘‘gold standard’’ of dropping multipole power spectra
above a fixed ‘max. Overall, we find that cutting in k works
better than cutting in ‘, as expected since our small-scale
contamination is defined in k. However, the two methods
are essentially equally powerful unless the small-scale
effect enters at very large scales (i.e. if k
 is small), and
in that case the k cut can be significantly more powerful;
see Fig. 2. This is easy to understand as, from the relation
k ’ ‘=r�z�, we see that even if stringent cutting in ‘ is
-4
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FIG. 2 (color online). Comparison of the cutting in wavenum-
ber k vs the cutting in multipole ‘. Top panel: evolution of error
vs. the (absolute) bias in �DE with increased aggressiveness in
cutting in k space (solid black curve) or ‘ space (dashed blue
curve). The cut is increasingly more severe going from bottom
right to top left. Here we use a 4-bin tomography case with the
small-scale effects going as �k=k
�

3 with k
 � 10hMpc	1. For
orientation, we show one value each of ‘max and kcut on the
curves along which they vary; these are roughly the points where
the bias is reduced to a fraction ( � 0:5) of the statistical error,
and in this case the total error with the k cut is about 50% smaller
than that with the ‘ cut. Bottom panel: statistical error in �DE

after cutting as a function of the scale at which the small-scale
bias enters, k
, for the k and ‘ cutting. With each method and for
each value of k
, just enough cutting is performed so that the
remaining bias in �DE is equal to one half of its statistical error.
Note that the two methods are comparable if the bias enters at
small scales (high k
), but if the bias affects much larger scales
the k-cutting is clearly more effective as it leads to a smaller final
error in �DE.
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performed, some amount of high k modes, corresponding
to low-redshift structures, will be left in the data—and
these high k modes can be extremely damaging if k
 is
small since the bias in the observables goes as a power law
in k=k
. It is also interesting to note that cutting in k is
equivalent to removing the low-redshift structures from the
043002
data—in other words, instead of cutting above some kcut,
one could equivalently choose not to use lens galaxies with
(photometric) redshifts less than zcut where r�zcut� �
‘=kcut. Which of these two possibilities is more feasible
in practice is an interesting question, but outside the scope
of this work.

Current estimates indicate that the effective scale of
various small-scale effects is anywhere from a few to a
few tens of hMpc	1 (e.g. [12,14,15]). If k
 is closer to the
lower end of this range for any of these effects, cutting out
the high wavenumbers (or low-redshift structures) may
prove extremely beneficial.
VI. DISCUSSION AND CONCLUSIONS

We have described and explored three different strat-
egies for nulling out small-scale information in weak lens-
ing power spectrum measurements, with the idea of
protecting against uncertain, approximately known con-
tamination while preserving most of the sensitivity to
cosmological parameters.

The 1-point nulling tomography uses select linear com-
binations of shear in different redshift bins so as to maxi-
mally reduce the survey’s sensitivity to small-scale bias.
The algorithm for achieving this is well known and largely
analytic, and it produces the desired linear combinations
ordered by how sensitive they are to the parameter a
describing the small-scale bias. Figure 1 shows that, as
expected, the combination that is most sensitive to the
small-scale bias has weight at smaller scales than the other
combinations. Since in a realistic situation we will only
have approximate understanding of the true bias, we test
the performance of 1-point nulling by assuming the fidu-
cial bias is a power law in wavenumber, while the fit bias,
normalized by the parameter a, is a different power law.
We find that even as just one linear combination of shear is
dropped from the analysis (the one most sensitive to the
parameter a) the biases in cosmological parameters are
sharply reduced. However, in that case the increase in
cosmological parameter errors is about 150%. Whether
that is too large to tolerate depends on the fiducial power
of the survey and on the deleterious effect of other, unre-
lated systematic errors.

The problem of large initial degradation can in principle
be ameliorated by 2-point nulling, where we form linear
combinations of the cross-power spectra (rather than
shear). Because the number of cross-power spectra is of
order the number of redshift bins squared, we have many
more observables at our disposal and can achieve a finer
resolution in the amount of nulling performed, and hence
in cosmological parameter error degradation. Unfortu-
nately 2-point nulling does not have a nice analytic solu-
tion and linear combinations of power spectra that are most
sensitive to the small-scale bias need to be found by brute
force. We find that the method works well in cases when
the functional form of the bias can be guessed accurately. If
-5
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the exact form for the bias is guessed incorrectly, however,
2-point nulling produces biases in cosmological parame-
ters that do not decrease as the most sensitive combinations
are dropped. We conclude that 1-point nulling is more
effective than the 2-point approach, and this is unlikely
to change unless a substantial improvement to our 2-point
procedure is found in the future.

While both 1 and 2-point nulling are effective, we found
that they are not significantly better than the simplest
strategy of dropping the highest multipoles of the conver-
gence power spectra. [This may not be too surprising in
retrospect: decreasing ‘max from 10 000 to 3000, for ex-
ample, increases the cosmological parameter error bars by
only �30% while having a tremendous impact in removing
a variety of small-scale contaminations—in other words,
the price to pay with dropping the highest multipoles is
relatively small, and this procedure is already reasonably
effective.] This motivated us to explore yet another, but
very different, method for removing the small-scale biases.
We proposed a method of removing all information above
some wavenumber kcut or, roughly equivalently, removing
structures below some redshift from the data. This ap-
proach is different from the previous two in that the func-
tional form of the bias need not be known, and all
information above kcut, useful or not, is thrown out. This
works the best of all methods, leading to cosmological
parameter errors that are 10%–50% percent smaller than
those with the ‘ space cut, and by up to a factor of 2 if the
small-scale effect enters at sufficiently large scales. Given
that weak lensing shear data is likely to be biased by large
nearby structures (e.g. a large cluster of galaxies at low
redshift), some form of cutting in wavenumber will surely
be beneficial to protect against biases.

All of the aforementioned techniques require rough
knowledge of the cosmological model so that the fiducial
convergence power spectra (i.e. those not including the
small-scale bias) are known to a good accuracy, and can
be manipulated to null out the unwanted effects. This
043002
should not be a problem in the future, as the cosmological
parameters are already reasonably well determined with
the combination of cosmic microwave background, type Ia
supernovae and large-scale structure constraints. However,
systematic errors in weak lensing measurements are a
bigger concern. While the study in this paper was precisely
concerned with removing biases due to a class of system-
atics—uncertain theoretical predictions on small scales—
there will be other systematics in weak lensing measure-
ments that can roughly be divided into redshift errors and
additive and multiplicative errors in measurements of shear
[21]. Those errors are likely to depend on numerous factors
(e.g. observational season, galaxy morphology, etc.) and
are uncertain at this time. We do not believe that the
systematics will significantly affect the nulling techniques
described in this paper since the systematics, provided they
are small, should be a lower-order contribution to our
observables (which are linear or quadratic in shear).
Nevertheless, just as with all other applications of weak
lensing in the next generation experiments, incorporating
the systematics into the nulling tomography will be an
important and challenging task.

In conclusion, we strongly believe that the strategies that
we described will find application in weak lensing data
mining. We only considered the convergence power spec-
trum information here. Other aspects of weak lensing, such
as mapping of dark matter, depend more critically on the
small-scale information, and it might be that nulling-type
techniques will reach their full potential in precisely those
applications. It is likely that these interesting possibilities
will be considered in the future.
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