
PHYSICAL REVIEW D 72, 042004 (2005)
Improved stack-slide searches for gravitational-wave pulsars

Curt Cutler,* Iraj Gholami,† and Badri Krishnan‡

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany
(Received 24 May 2005; published 23 August 2005)
*Electronic
†Electronic
‡Electronic

1550-7998=20
We formulate and optimize a computational search strategy for detecting gravitational waves from
isolated, previously unknown neutron stars (that is, neutron stars with unknown sky positions, spin
frequencies, and spin-down parameters). It is well known that fully coherent searches over the relevant
parameter-space volumes are not computationally feasible, and so more computationally efficient
methods are called for. The first step in this direction was taken by Brady and Creighton (2000), who
proposed and optimized a two-stage, stack-slide search algorithm. We generalize and otherwise improve
upon the Brady-Creighton scheme in several ways. Like Brady and Creighton, we consider a stack-slide
scheme, but here with an arbitrary number of semicoherent stages and with a coherent follow-up stage at
the end. We find that searches with three semicoherent stages are significantly more efficient than two-
stage searches (requiring about 2–5 times less computational power for the same sensitivity) and are only
slightly less efficient than searches with four or more stages. We calculate the signal-to-noise ratio
required for detection, as a function of computing power and neutron star spin-down-age, using our
optimized searches.
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I. INTRODUCTION

In analyzing data from Earth-based and space-based
gravitational-wave (GW) detectors, we will be computa-
tionally limited in performing certain types of searches—
especially searches for long-lived signals described by
several unknown parameters. For such signals, the number
of templates signals required to discretely cover the pa-
rameter space (at useful resolution) typically increases
rapidly as a function of the observation time. For ground-
based detectors, such as LIGO, a well-known example is
the search for nearly periodic GWs from unknown, iso-
lated, rapidly rotating neutron stars (NSs). We will refer to
NSs that are continuously emitting GWs as ‘‘GW pulsars.’’
By ‘‘unknown,’’ we mean that the GW pulsar’s position on
the sky, frequency, and frequency derivatives are all un-
known, and so must be searched over. (The NS could be
unknown either because it is electromagnetically inactive,
or because its electromagnetic emission does not reach
us—e.g., because we do not intersect its radio pulsar
beam.) Brady et al. [1] showed that straightforward
matched-filter searches for unknown GW pulsars would
be severely computationally limited; for example, searches
for young, fast NSs (NSs with GW frequencies as high as
1 kHz and spin-down ages as short as 40 yr) would be
limited to observation times of order one day. To address
this problem, Brady and Creighton [2] (henceforth referred
to as BC) were the first to consider hierarchical, multistage,
semicoherent searches for GW pulsars. Briefly, a semi-
coherent search is one where a sequence of short data
stretches are all coherently searched, using some technique
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akin to matched filtering, and then the resulting powers
from the different stretches are summed. The method is
only ‘‘semicoherent’’ because powers are added instead of
complex amplitudes; i.e., information regarding the overall
phase of the signal in different stretches is discarded. This
allows one to use a much coarser grid on parameter space
than would be required in a fully coherent search of the
same data. BC developed a ‘‘stack-slide’’ method for sum-
ming the powers along different tracks in the time-
frequency plane, in close analogy to the ‘‘power stacking’’
method (sometimes called the Radon transform) used in
radio pulsar searches. The basic idea of their two-stage
search is to identify a list of ‘‘candidates’’ (basically,
promising-looking regions in parameter space) in the first
stage, using some fraction of the available data, and then to
‘‘follow up’’ those candidates using more data in the
second stage. In their scheme, both the first and second
stages are semicoherent.

In this paper we revisit the problem of constructing
efficient, hierarchical searches for GW pulsars. We build
on the BC treatment, but we also significantly generalize
and otherwise improve upon their work. The most impor-
tant improvements are that we consider searches with n
semicoherent stages (not just 2), with surviving candidates
being winnowed at each stage, and we add on a fully
coherent final stage to verify or debunk any remaining
candidates. We also explicitly account for the unknown
polarization of the source, while this complication was
omitted for in BC, for simplicity. Other important differ-
ences between our work and theirs will be highlighted
below.

This paper is organized as follows. Section II sets up
notation, describes the expected signal from an isolated
GW pulsar, and reviews the stack-slide algorithm. Our
general multistage strategy for searching through large
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parameter spaces for GW pulsars, using a combination of
semicoherent methods and coherent methods, is explained
in Section III. Our general search scheme contains a fair
number of free parameters (the number and duration of the
coherently analyzed stretches in each semicoherent stage,
as well as the coarseness of the discrete grid used to cover
the parameter space of sought-for signals), which we can
adjust to make the search as efficient as possible. Our
general scheme for performing this optimization is de-
scribed in Section III B. Section IV develops all the for-
mulae we need to evaluate the computational cost of any of
our strategies, for any desired sensitivity. More specifically,
Section IVA reviews the template-counting formulae de-
veloped in BC; Section IV B develops the equations relat-
ing the thresholds that candidates must pass at different
stages (to advance to the following stage) to the false
dismissal (FD) rates at those stages, and hence to the
overall sensitivity of the search; and Section IV C derives
estimates for the dominant computational cost of each part
of the search. Section V describes our results: the optimal
strategy (within our general scheme) and its sensitivity.
Section VI concludes with a summary of our main results
and a discussion of open issues and future work.
1Of course an actual search should take into account the so-
called Einstein and Shapiro delays, but these are unimportant for
the question of how the search is most efficiently organized,
which is the focus of this paper.
II. NOTATION AND BASICS

A. The signal from a GW pulsar

Here we briefly review the expected GW signal from a
spinning neutron star. Let x�t� be the output of some
detector. In the absence of any signal, x�t� is just noise
n�t�, which we shall assume to be a stationary, Gaussian
stochastic process with zero mean. In the presence of a
signal, we have

x�t� � n�t� � h�t�; (1)

where the signal h�t� is a deterministic function of time.
We assume that the GW pulsar is isolated and at rest with
respect to us, so that effects due to its motion can be
neglected. (More precisely, we assume these effects can
be absorbed into an overall Doppler shift, and so are
unobservable.) Let tssb be time measured in the Solar
System Barycenter (SSB) frame. The form of h�t� in this
frame is a constant-amplitude sinusoid with phase given by

��tssb� � �0 � 2�f0�tssb � 2�
Xs
k�1

fk
�k� 1�!

��tssb�
k�1;

(2)

where �tssb � tssb � t�0�ssb, with t�0�ssb being a fiducial start
time; �0, f0, and fk are, respectively, the phase, frequency,
and spin-down parameters at the start time, and s is the
number of spin-down parameters that we search over.
Assuming that the pulsar is isolated and emitting GWs
due to a small deviation from axisymmetry, the waveforms
for the two polarizations are
042004
h� �
1

2
h0�1� cos2�� cos��t�; (3)

h� � h0 cos� sin��t�; (4)

where h0 represents the angle-independent amplitude of
the wave, � is the angle between the spin-axis of the pulsar
and the direction of the waves’ propagation, and the fre-
quency f � _�=2� of the emitted GWs is equal to twice
the rotational frequency of the star.

Let n be the unit vector pointing from the Solar System
toward the pulsar, r�t� be the position of the detector in the
SSB frame, and v�t� be its velocity with t being the time in
the detector frame. Ignoring relativistic corrections,1 a
wave reaching the Sun at time tssb will reach the detector
at time

t � tssb �
r�t� � n
c

: (5)

As seen from Eqs. (2) and (5), to a good approximation, the
instantaneous frequency of the signal as seen by the detec-
tor is given by the familiar Doppler shift expression

f�t� � f̂�t�
�
1�

v�t� � n
c

�
; (6)

where f̂�t� is the instantaneous frequency of the signal in
the SSB frame, and is given by

f̂�t� � f0 �
Xs
k�1

fk
k!

��tssb�k: (7)

Equations (6) and (7) describe the frequency modulation of
the received signal. The received signal is also amplitude
modulated by the time-changing antenna pattern of the
detector as it is carried along by the Earth’s rotation. The
received signal h�t� is a linear combination of h� and h�:

h�t� � F��n;  �h��t� � F��n;  �h��t�; (8)

where  is the polarization angle of the signal, and F�;�

are the antenna pattern functions. Because of the motion of
the Earth, the F�;� depend implicitly on time:

F��t� � a�t� cos2 � b�t� sin2 ; (9)

F��t� � b�t� cos2 � a�t� sin2 ; (10)

where the functions a�t� and b�t� are independent of  . (In
these equations, the angle between the arms of the detector
is taken to be �=2.) We refer the reader to [3] for explicit
expressions for a�t� and b�t�.

The modulated frequency is described by the s� 3

parameters consisting of f0 and ~�: � �n; ffkgk�1...s�; we
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shall often denote the pair (f0, ~�) by the boldface symbol
�. Apart from the parameters �, the waveform (8) depends
on other parameters: the pulsar’s orientation �, polarization
angle  , the initial phase �0, and the amplitude h0. The
optimal matched-filter statistic [3] for detecting the wave-
form must, in principle, search over the entire parameter
space (�, �,  , �0, h0). However, it turns out that the
computationally challenging part of the search involves
just the �; the optimization over (�,  , �0, h0) can be
done analytically, by means of the F -statistic defined in
[3]. The F -statistic is the optimal matched-filter statistic
maximized over (�,  , �0, h0). It is therefore only a
function of (f0, ~�) and it is given by

F �f0; ~�� � 4
�
BjFaj

2 � AjFbj
2 � 2CR�FaF

?
b �

�TSn�f0�D

�
; (11)

where Sn�f� is the single-sided power spectral density of
the detector noise n�t�, and

Fa �
Z �T=2

��T=2
x�t�a�t�e�i��t;��dt; (12)

Fb �
Z �T=2

��T=2
x�t�b�t�e�i��t;��dt; (13)

A � �ajja�; B � �bjjb�; (14)

C � �ajjb�; D � AB� C2: (15)

Here we have used the notation

�xjjy� �
2

�T

Z �T=2

��T=2
x�t�y�t�dt: (16)

In cases where the amplitude modulation can be ignored
(e.g., for short data segments, � 1 day long, where the a�t�
and b�t� can be approximated as constant), we see that F is
proportional to the demodulated Fourier transform which
matches just the phase evolution:

F / j ~X�f; ~��j2; (17)

where

~X�f; �� �
Z �T=2

��T=2
x�t�e�i��t;��dt: (18)

The F -statistic is the optimal (frequentist) detection sta-
tistic for GW pulsars, and it is at the core of some algo-
rithms currently used to search for GW pulsars in LIGO
and GEO data [4]. Some important properties of the
F -statistic are reviewed in Section IV B, and a more de-
tailed description can be found in [3].

B. The Stack-Slide algorithm

The stack-slide algorithm is best described with refer-
ence to the Doppler shift formula of Eq. (6). Imagine we
have a data stream x�t� covering an observation time Tused,
042004
and we wish to search for a GW pulsar with some parame-
ters �. We break up the data into N smaller segments of
length �T � Tused=N, and calculate the Fourier spectrum
of each segment. For now we assume each segment is
sufficiently short that the signal frequency remains con-
fined to a single discrete frequency bin. If there is a signal
present, it will most likely be too weak to show up in a
single segment with any significant signal-to-noise-ratio
(SNR). However, we can increase the SNR by adding the
power from the different segments. We must not use the
same frequency bin from each segment, but rather must
follow the frequency evolution given by Eq. (6). Thus, we
‘‘stack‘‘ the power after ‘‘sliding‘‘ each segment in fre-
quency space. Note that the sliding depends on ~�. Thus, in
practice, we choose a grid in the space of ~�’s and the
sliding is done differently at each grid point.

As described above, the sensitivity of the stack-slide
algorithm is restricted due to the length of �T; we should
not take �T to be too large, since then we would lose SNR
due to the signal power being spread over several fre-
quency bins. However, we can gather all the signal power
back into a single bin by taking account of the Doppler
modulation and spin-down while calculating the spectrum
of a segment; i.e., we demodulate each data segment before
summing.

With these concepts at hand, we can now describe the
stack-slide search for the F -statistic. The strategy is very
similar to the power summing method described earlier in
this section. Again we break up the data of length Tused into
N segments, each of length �T � Tused=N. We choose a
point ~�d in parameter space, and demodulate the signal
accordingly. We calculate F �f; ~�d� as a function of the
frequency for each segment and add the F -statistic values
after sliding the different segments in frequency space
appropriately.

As explained in BC, the resolution of sky- and spin-
down-space that suffices for the demodulation is not fine
enough for the stack-slide step. Thus at each stage we have
two grids on parameter space: a coarse one for performing
the short-segment demodulations and a fine one for sliding
and stacking the short-segment results. We refer the reader
to [5] and the appendix of [6] for a detailed derivation of
the formula relating the required amount of sliding to the
parameters ~�d.

III. A MULTISTAGE HIERARCHICAL SEARCH

A. The general algorithm

The stack-slide search algorithm described in the pre-
vious section has two components: 1) calculation of the
F -statistic for data stretches of length �T, 2) summation
of the resulting F values along the appropriate tracks in the
time-frequency plane. (If there are N coherently analyzed
segments, then the sums have N terms.) If we had unlim-
ited computational resources, we would simply do a fully
-3
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coherent search on all the data; i.e., set N � 1 and take �T
to be the entire observation time. However, the number of
templates required for a fully coherent search increases as a
high power of �T, making this impractical for all-sky
searches.

To illustrate this point, consider an all-sky search for
young, fast pulsars, i.e., GW pulsars that have a spin-down
age as short as !min � 40 yr and that emit GWs with
frequency up to fmax � 1000 Hz. Let us assume that we
have 30 days of data available to us. Imagine two different
ways of looking for this pulsar: a full 30-day coherent
integration versus a semicoherent method where the avail-
able data is broken up into 30 equal segments. The formula
for the number of templates required for these searches is
given below in Eq. (30). It turns out that the full coherent
search requires �4:2� 1015 templates if we are to not lose
more than 30% of the signal power. On the other hand, the
semicoherent search requires only �1:5� 1011 templates
for the same allowed fractional loss in signal power. The
ratio of the number of templates required for the two types
of searches increases rapidly with the observation time; for
Analyze each segment
coherently

Select candidates in
parameter space

Analyse candidates
fully coherently

Final follow−up
stage

Combine segments
semi−coherently

(e.g. stack−slide or Hough etc.)

Announce detection
or set upper limits

Read in data

Break up data into
smaller segments

Iterate n times

Read in more data

FIG. 1. A hierarchical scheme for the analysis of large
parameter-space volumes for continuous wave searches. Each
step analyzes only those regions in parameter space that have not
been discarded by any of the previous steps.
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instance, for an observation time of 40 days, the corre-
sponding numbers are �5:5� 1016 and �8:3� 1011 for
the full coherent and semicoherent searches, respectively.

As illustrated by the above example, semicoherent
searches for unknown GW pulsars are a compromise
forced upon us by limited computing power. Such searches
will remain computationally limited for the foreseeable
future, so it behooves us to organize them as efficiently
as possible. In this paper we consider a class of multistage,
hierarchical search algorithms. Since our main ‘‘problem’’
is the large volume of parameter space we need to search
over, the basic idea behind these algorithms is to identify
and discard unpromising regions of parameter space as fast
as possible—without discarding real signals. The type of
scheme we consider is illustrated schematically in Fig. 1.
The first stage is a semicoherent search through some
fraction of the available data. A threshold is set, and
candidates exceeding this threshold are passed to the next
stage. The second stage is similar to the first, but includes
additional data and generally entails a finer resolution of
parameter space. (The latter means that any candidate that
survives the first semicoherent stage gives rise to a little
crowd of nearby candidates that are examined in the sec-
ond semicoherent stage.) Any candidate that exceeds the
second-stage threshold is passed on to the third stage, and
so on. In an �n� 1�-stage search, any candidate surviving
all n semicoherent selections is subjected to a final, coher-
ent search (which we consider the �n� 1�th stage); if the
final, coherent threshold is exceeded, then a detection is
announced. We impose as a constraint that the false alarm
(FA) rate for the entire search must be<1%; i.e., if the data
is actually just noise, then the probability that a detection is
announced must be <1%. For reasons explained below, in
realistic examples this inequality is all too easy to satisfy;
the actual FA rate for our optimized searches is typically
smaller than 1% by many orders of magnitude.

In the end, our search will be able to detect a GW pulsar
signal whose rms strength (at the detector) hRMS exceeds
some threshold value hth (with a false dismissal rate of
10� 15%). We can think of 1=hth as the search’s sensi-
tivity. We will optimize our search to get the maximum
sensitivity for any given computing power or, equivalently,
to find the minimum computer power necessary to attain
any given sensitivity.

The problem of optimizing a semicoherent, hierarchical
search scheme for GW pulsars was first studied by BC. The
present study builds upon the BC formalism, but there are
also some important differences. We call attention to the
following ones:
(1) B
-4
C consider a hierarchical search consisting of ex-
actly two semicoherent stages. In the present work,
we consider a search consisting of an arbitrary
number of semicoherent steps, plus a fully coherent,
‘‘follow-up’’ stage (utilizing all the available data)
to assess the significance of any surviving candi-
dates. The effect of the final, follow-up stage is to
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ensure that the overall false alarm rate (fixed at
exactly 1% by BC) is greatly reduced and, for all
practical purposes, ceases to be a constraint.
(2) I
n BC’s second semicoherent stage, all the data used
in the first stage is reanalyzed, along with some
‘‘fresh’’ (as yet unanalyzed) data. A priori, it is not
clear whether this strategy is more efficient than one
in which each semicoherent stage analyzes only
fresh data. (E.g, the first stage analyzes 20 days of
data and generates candidates, the second semico-
herent stage searches for those candidates in the next
50 days of data and generates a list of candidates
that have still ‘‘survived,’’ these survivors are
searched for again in the next 150 days of data,
etc.) In this paper, we investigate both kinds of
schemes: schemes where previously analyzed data
is always recycled into subsequent stages, and
schemes where each semicoherent stage analyzes
only fresh data.
(3) F
or simplicity, BC ignored the fact that the GWs
have two possible polarizations (in effect pretending
that the detectors measure a scalar wave). This is a
reasonable approximation when estimating the
number of grid-points needed to cover the parameter
space, but not, say, when trying to estimate the FA
and FD rates as a function of the threshold at some
intermediate stage in the search. (Roughly speaking,
scalar waves with the same matched-filter SNR
would be easier to detect than actual GWs, since
with GWs the full SNR is ‘‘split’’ between the two
polarizations, in a way that is unknown a priori.) In
this paper we aim to make realistic estimates of a
GW pulsar’s detectability for a given matched-filter
SNR (and given region of parameter space to be
searched over), so we take polarization into account
wherever it makes a significant difference. In prac-
tice, this just means that we use the F -statistic,
Eq. (11), as our detection statistic.
(4) W
hen estimating computational costs, BC assume
that the demodulations will be done using strobo-
scopic resampling, a method modeled closely on the
fast fourier transform (FFT) algorithm. A different
demodulation method, which we shall refer to as the
SFT method, is currently being used by the GW
pulsar search codes in the LIGO Scientific
Collaboration (LSC) software library [7]. The SFT
method takes as its input a short FFT database
(FFT’ed sets of short-time data stretches), and can
be more efficient than stroboscopic resampling in
cases where only a narrow frequency range of the
demodulated time series is of interest. In this paper
we explore the possibility of using different demod-
ulation methods at different stages of the search, and
attempt to find the most efficient combination. All
the above points will be elaborated on in later sec-
tions of the paper.
042004
B. The general optimization scheme

In this section we further discuss our search algorithm
and its optimization. First we establish some notation. Let
n be the total number of semicoherent stages. Let N�i� be
the number of stacks used in the ith stage and �T�i� be the
length of each stack; the superscript i will always refer to
the ith semicoherent stage. The resolution of the template
grid used to cover parameter space is given in terms of the
maximum fractional mismatch in signal power #�i�

max [8].
Our detection statistic is $�i�, the sum of the F values from
the different stacks (obtained after sliding appropriately):

$�i� �
XN�i�

k�1

F �i�
k : (19)

Denote the distribution of $�i� in the absence of any signal
by p�$�i��. In the presence of a GW signal of amplitude
hRMS, let the distribution of $�i� at the gridpoint nearest the
actual signal be p�$�i�jhRMS; #

�i�
max�. Let $�i�

th be the ith-stage
threshold, which a candidate must exceed to advance to the
next stage. The ith-stage FA rate (per candidate) &�i� and
FD rate (per candidate) '�i� are given by

&�i��$�i�
th � �

Z 1

$�i�
th

p�$�d$; (20)

'�i��$�i�
th ; hRMS; #

�i�
max� �

Z $�i�
th

0
p�$jhRMS; #

�i�
max�d$: (21)

Practically identical formulae apply to the final, coherent
stage as well.

Again, we require of any search algorithm that, at the
very end of the search, it results in a false detection less
than 1% of the time. Given this constraint, we parametrize
the search’s sensitivity by the signal amplitude hth such
that an embedded signal with hRMS > hth would be de-
tected * 85%-90% of the time. We enforce the latter
condition as follows. We set the first-stage threshold hth
such that a signal of amplitude hRMS � hth will pass to the
second stage 90% of the time. At all subsequent stages we
set the threshold such that the same signal with strength
hRMS � hth has a 99% chance of passing to the next higher
stage. That is, we adjust the ith-stage threshold $�i�

th so that
'�1� � 0:10, while '�i� � 0:01 for i > 1, and '�coh� � 0:01
as well. The motivation behind making '�1� lower than '�i�

for i > 1 is the following: We believe that a computation-
ally efficient algorithm will have the property that a true
signal that is strong enough to pass the first-stage threshold
should generally pass over all the others. Any source that is
not sufficiently strong to make it through to the end of the
detection pipeline should be discarded as soon as possible,
so as not to waste computing power. This reflects the basic
idea behind our hierarchical searches: to eliminate un-
promising regions of parameter space as quickly as pos-
sible, so that computational resources can be focused on
-5
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the more promising regions. Basically, the first-stage
threshold determines the sensitivity of the whole search,
and subsequent steps whittle down the number of candi-
dates (i.e., the number of small patches in parameter space
that perhaps contain a true signal) until any remaining
patches can be fully, coherently analyzed.

To fully specify our search algorithm, we have to choose
the parameters ) � �n; fN�i�g; f�T�i�g; f#�i�

maxg; #coh
max�,

where n is the number of semicoherent stages and i �
1; . . . ; n. In doing so, we are subject to certain requirements
or constraints:
(a) T
he total amount of data available is no more than
some Tmax (say, 1 yr).
(b) W
e wish to detect (with �90% FD rate and <1%
overall FA rate) any unknown signal of amplitude
hRMS greater than hth (say, 10�26).
Our task is to choose the parameters ) that minimize the
total required computational power P, subject to the above
constraints. We arrive at a cost function P�hth�, the com-
putational cost of reaching any given sensitivity level.
(Really, P is a function of the product h2thTmax=Sn�f�, but
we are regarding Tmax and Sn�f� as fixed.) We can imme-
diately invert this function to determine hth�P�, the sensi-
tivity achievable for any given computing power.

Let us first deal with the constraint on the total amount of
data. We are going to consider simultaneously two differ-
ent modes of all-sky searches. In ‘‘data-recycling mode,’’
at each stage we start back at the beginning of the data, but
take progressively larger values of N�i��T�i�. Thus the first
stage looks at data in the interval �T0; T0 � N�1��T�1��, the
second stage looks at �T0; T0 � N�2��T�2��, and so on. The
total observation time is thus

Tused � N�n��T�n�: (22)

In ‘‘fresh-data’’ mode, rather than always starting over
from the beginning, we analyze fresh data at each stage.
The first stage looks at data in the range �T0; T0 �
N�1��T�1��, the second stage looks at �T0 �
N�1��T�1�; T0 � N�1��T�1� � N�2��T�2��, etc. The total ob-
servation time is thus

Tused �
Xn
i�1

N�i��T�i�: (23)

In either data-recycling or fresh-data mode, one constraint
is that Tused � Tmax where Tmax is the total amount of data
available. Also, in either mode, at each stage we look only
at portions of parameter space that exceeded the threshold
set at the previous stage.

Next we consider our constraints on the overall FA and
FD rates for the pipeline. The final, coherent follow-up
stage is expected to be much more sensitive than any of the
preceding steps; therefore the overall FA rate is essentially
set by the final stage threshold alone. (The earlier stages
serve only to whittle down the number of candidates Ncoh
042004
that are analyzed in the final coherent stage.) If the thresh-
old in the final follow-up stage is $�coh�

th , then the overall FA
rate is no larger than &�coh��$�coh�

th � times the number of
effectively independent candidates in parameter space. We
approximate the latter, crudely, by �Np�Tmax; 0:2; 1�; in

practice &�coh��$�coh�
th � turns out to be so minuscule that the

crudeness of this approximation is irrelevant.
The overall false dismissal requirement is also easily

handled. Let ~' be the total false dismissal rate of the
multistage search. Each stage has its own threshold $�i�

th

and corresponding false dismissal rate '�i�. If each stage,
including the follow-up stage, were to analyze completely
independent data, we would have

~' � 1�
Yn�1

i�1

�1� '�i�� � '�1� � � � �'�n�1� (24)

(where we use ‘‘'�n�1�’’ interchangeably with '�coh�). In
our fresh-data search mode, the data at different stages are
independent, except for the final, follow-up stage. And in
our recycled-data scheme, the data examined at higher
stages includes all the data examined in earlier stages.
Then when '�1� � 0:1 and

'�2� � '�3� � . . . � '�n� � '�coh� � 0:01; (25)

it is clear that ~' is roughly in the range �10� n� 1�% to
�10� n�%, for fresh-data mode and 10% to �10� n�% for
recycled-data mode. Since n � 3 turns out to be optimal
(see below), we crudely summarize this by saying that our
strategies have an overall FD rate of 10%–15% at the
threshold value of hRMS.

Finally, we turn to the search’s computational cost,
which we wish to minimize. Let us denote the total number
of floating point operations for the ith semicoherent stage
by C�i� and for the final coherent stage by C�coh�.
Expressions for C�i� and C�coh� are given in the next section.
For now, it is sufficient to say the total computational cost
is

Ctotal �

�Xn
i�1

C�i�
�
� C�coh�; (26)

and that if we wish to analyze the data in roughly real time,
the required computational power (operations per unit
time) is

P �
Ctotal

Tused
: (27)

Depending on which mode we are working in, Tused is
given by Eq. (22) or Eq. (23).

Again, our strategy for optimizing the search is to mini-
mize P, subject to the constraints listed above.
-6
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IV. TEMPLATE COUNTING, CONFIDENCE
LEVELS, AND COMPUTATIONAL COST

A. Template-counting formulae

This section gives the template-counting formulae origi-
nally derived by BC using the metric formulation devel-
oped in [8].

For simplicity, the parameter space is covered by spheres
of proper radius

�����������
#max

p
(#max is the maximum allowed

fractional mismatch in the detection statistic [8]) using a
cubic grid. However it is worth keeping in mind that a
cubic grid overestimates the number of required templates
even in two dimensions, and the difference increases rap-
idly with the dimensionality [9].

As mentioned earlier, for each semicoherent stage, we
have a coarse grid for the demodulation and a fine grid for
the stack-slide analysis. Following BC, for simplicity we
shall require that at any given semicoherent stage, the
maximal mismatch #max for the fine grid is the same as
#max for the coarse one. However (unlike BC), we allow
#max to vary from one stage to the next.

The number of templates (or grid points) Np is a func-
tion of the mismatch #max, the coherent time baseline �T,
and the number of stacks N (which is unity for the coarse
grid). BC have derived the following expressions for the
number of grid points, Npc and Npf, in the coarse and fine
grids, respectively:

Npc � Np��T;#max; 1�; (28)

Npf � Np��T;#max; N�; (29)

where Np is given in Eq. (2.22) of BC:

Np � max
s2f0;1;2;3g

�
MsN sGs

Ys
k�0

�
1�

0:3r+k�1!kmin

ck!
���������
Ms

p ��
:

(30)

Here r � 1AU is Earth’s orbital radius, + � 2�=�1 yr�,

N s �
ss=2

�s� 2�s=2
fsmax�T

s�s�3�=2

�#max=s�s=2!
s�s�1�=2
min

; (31)

M s �

�
fmax

1Hz

�
2 �s� 2�

4#max

�
1

A2 �
1

B2 �
1

C2

�
�1=2

; (32)

where

A � 0:014; B � 0:046
�
�T
1 day

�
2
;

C � 0:18
�
�T
1 day

�
5
;

(33)

and the functions Gs are given in Appendix A of BC.
Roughly speaking, the factor Ms counts distinct patches
on the sky as set by the Earth’s daily spin period, N s
counts distinct ‘‘patches’’ in the space of spin-down pa-
042004
rameters, the Gs give the dependence of Np on the number

of stacks N, and the factors of the form �1�
0:3r+k�1!kmin

ck!
������
Ms

p �

effectively account for the increase of search volume re-
quired when the frequency derivative dkf=dtk is dominated
by the Doppler shift from the Earth’s motion around the
Sun rather than by the pulsar’s intrinsic spin-down. In our
numerical work we use the full expressions for the Gs
given in the Appendix A of BC, but for completeness we
note that BC also give the following approximate fits to the
Gs, which are valid when N � 4:

G0�N� � 1; (34)

G1�N� � 0:524N; (35)

G2�N� � 0:0708N3; (36)

G3�N� � 0:00243N6: (37)

The Np results in BC were derived under the assumption
that the observation time is significantly less than 1 yr. As
we shall see below, in the cases where the total available
data covers an observation time of a year or more, it turns
out that for the optimal search, the initial semicoherent
stages typically analyze a few days’ to a few months’ worth
of data. Also, most of the search’s computational cost is
spent on these early stages. (This is especially true for the
young-pulsar search, which is the most computationally
challenging.) Therefore, it seems reasonable for our pur-
poses to simply use the Np formulae from BC for all
observation times. Since the cost-errors we make by using
the BS formulae will be confined to the later stages, and
since the overall sensitivity of the search is effectively set
at the first stage, we believe these errors will not signifi-
cantly affect the total computational cost, for fixed thresh-
old (though they may affect the relative allocation of
resources between the different stage). Of course, the
validity of this assumption can only really be checked by
redoing the calculation using more accurate expressions
for the Np’s, appropriate for yearlong observation times,
but unfortunately such expressions are not currently
available.

Even for short observation times, the Np calculation in
BC used the approximation (17), which neglects the am-
plitude modulation of the signal; however this approxima-
tion is not expected to cause significant errors in estimating
template numbers.

B. False dismissal rates and the thresholds

In this subsection, we discuss the statistical properties of
the stack-slide search and solve the false dismissal con-
straint to obtain expressions for the thresholds.

It is shown in [3] that the distribution of the F -statistic
(or to be more precise, 2F ), for each coherent search, is
given by a noncentral ,2 distribution. The noncentrality
-7
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parameter - is given in terms of the signal h�t� by:

- � 4
�
1�

#max

3

�Z 1

0

j~h�f�j2

Sn�f�
df

�

�
1�

#max

3

�
2h2RMS�T
Sn�f�

; (38)

where ~h�f� is the Fourier transform of h�t�. We have
included a fitting factor of 1�#max=3 to account for the
average loss in power due to the mismatch between the
signal and template. hRMS is the root-mean-square value of
the signal h�t�. We can relate hRMS to the amplitude hRMS

defined in Eqs. (3) and (4), as follows. If one averages hRMS

over all sky-positions as well as over the polarization
parameters � and  , one obtains <h2RMS> � �2=25�h20
(see Eq. (93) of [3]).

More explicitly, the distribution is

p�F j-� � 2,2�2F j-; 4� �
�
2F

-

�
1=2
I1�

�����������
2F-

p
�e�F�-=2;

(39)

where ,2��j-; /� is the ,2 distribution with / degrees of
freedom and noncentrality parameter -, and I1 is the
modified Bessel function of first order. The statistic $ of
interest for the stack-slide search is the sum of the
F -statistic over N stacks. Assuming the F -statistic for
the N stacks to be statistically independent, 2$must follow
a ,2 distribution with 4N degrees of freedom and non-
centrality parameter N-

p�$j-;N� � 2,2�2$jN-; 4N�: (40)

The mean and variance of $ are given, respectively, by

/$ � 2N �
N-
2
; 02

$ � 2N � N-: (41)

Using the distribution p�$�i��, the false alarm rate for the ith

semicoherent stage (defined in Eq. (20)) can be evaluated
analytically:

&�i��$�i�
th � � e�$th

X2N�i��1

k�0

�$�i�
th �

k

k!
: (42)

As discussed earlier, the overall false alarm probability ~&
for the search is set by the final coherent follow-up stage.
For this stage, N � 1 so that if the threshold on $ is $�coh�

th ,
then it is easy to see from the previous equation that:

~& � �1� $�coh�
th �e�$

�coh�
th : (43)

In the presence of a signal, the noncentral ,2 distribution
for $ is a little cumbersome to work with, and it is useful to
replace it by a Gaussian with the appropriate mean and
variance. So we say that the distribution of $ must be
approximately Gaussian with mean and variance as in
Eq. (41):
042004
p�$j-;N� �
1�������������

2�02
$

q e��$� /$�2=202
$ : (44)

This approximation is not valid when N is of order unity.
Then for any given hth, we should set the threshold of the
ith stage, $�i� by the false dismissal requirement:Z $�i�

0
p�$j-�i�

th ; N�d$ � '�i�; (45)

where

-�i�
th

:�
�
1�

#max

3

�
2h2th�T

�i�

Sn�f�
: (46)

Here the factor of 1�#�i�
max=3 accounts for the average

loss in power due to the mismatch between the signal
parameters and nearest gridpoint parameters.
Equation (45) can be solved to find $�i�

th as a function of
hth, �T�i�, and #�i�. Or equivalently, it gives hth �
hth�$

�i�;�T�i�; #�i��. This equation can easily be solved
by using the properties of the complementary error func-
tion. By changing variables in the integral, we can rewrite
the false dismissal rate as

'�i� �
1

2
erfc

�
/$�i� � $�i����

2
p
0�i�
$

�
: (47)

If hth is the smallest value of hRMS for which the false
dismissal rate is no bigger than '�i�, then we have

$�i��hth� � /$�i� �
���
2

p
0�i�
$ erfc�1�2'�i��

� 2N�i�
�
1�

-�i�
th

4

�
� 2erfc�1�2'�i��

�
��������
N�i�

p �����������������
1�

-�i�
th

2

s
: (48)

In practice, we fix one value of hth (our sensitivity goal)
for an entire search, and we then set the threshold $�i� at
each stage by solving Eq. (48), with the false dismissal
rates set by '�1� � 0:1 and '�i� � 'coh � 0:01 for i � 2.
Our rationale for this choice is as follows. At each stage,
one can estimate the signal strength of any successful
candidate. If after the first stage, one can already predict
that a candidate is not strong enough to pass over the
threshold at the second or a higher stage, then one might
as well discard it immediately and so not waste computer
power on a likely failure. Put the other way, an efficient
algorithm should ensure that a true signal that is strong
enough to pass over the first stage is also strong enough to
pass over all subsequent stages. Then the false dismissal
rate for the whole search will be only a little larger than the
FD rate of the first stage alone, or a little more than 10%.
(An overestimate of the total FD rate is the sum of the rates
for each of the stages, or 13% for a three-stage search.)
-8
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C. Computational Cost

Let us begin with the first semicoherent stage. Here, the
number of points in the coarse and fine grids are respec-
tively

N�1�
pc � Np��T�1�; #�1�

max; 1�; (49)
N�1�
pf � Np��T

�1�; #�1�
max; N�1��: (50)

If we are searching in a frequency range from small
frequencies up to fmax, the data must be sampled in the
time domain (at least) at the Nyquist frequency 2fmax. The
minimum number of data points that we must start out with
in the time domain is then 2fmax�T. To calculate the
F -statistic for each stack, we need to first calculate the
quantities Fa and Fb which appear in Eq. (11). We describe
two methods below which may be called the stroboscopic
resampling method and the SFT method. Given Fa and Fb,
the cost of combining them to get F is negligible.

The stroboscopic resampling method: The method sug-
gested in [3] (and also in [2]) is based on the observation
that the integrals in Eqs. (12) and (13) look almost like a
Fourier transform; the difference being the form of ��t� in
the exponential. However, by suitably resampling the time
series, effectively redefining the time variable so that the
spectrum of a real signal would look like a spike in a single
frequency bin, the integral can be written as a Fourier
transform and we can then use the FFT algorithm. Since
the cost of calculating an FFT for a time series containing
m data points is 3mlog2m, the operations cost of calculat-
ing the F -statistic for each stack should be approximately
12fmax�Tlog2�2fmax�T�. Repeating this for N�1� stacks
and for each point in the coarse grid, we see that the total
cost of calculating Fa and Fb, and therefore the F -statistic,
is approximately

12N�1�N�1�
pcfmax�T

�1�log2�2fmax�T
�1��: (51)

We now need to appropriately slide each segment in fre-
quency space and stack them up, i.e. add the F -statistic
values from each stack to get our final statistic $. This has
to be done for each point in the fine grid. The cost of sliding
is negligible and we need only consider the cost of adding
the F -statistic values. Since adding N�1� real numbers
requires N�1� � 1 floating point operations, we see that
the cost of stacking and sliding for all frequency bins and
for all points in the fine grid is approximately

fmax�T�1�N�1�
pf�N

�1� � 1�: (52)

Thus, the computational cost for the first semicoherent
stage is
042004
C�1�
res � fmax�T

�1�N�1�
pc

�
12N�1� log�2fmax�T�1��

log2

�
N�1�
pf

N�1�
pc

�N�1� � 1�
�
: (53)

The subscript res indicates that this result is for the strobo-
scopic resampling method.

The SFT method: An alternative method is to use as
input not the time series, but rather a bank of short time
baseline Fourier Transforms (SFTs). This is in fact the
method currently being used in the search codes of the
LIGO Scientific Collaboration [7]. Here one first breaks up
the data into short segments of length Tsft, and calculates
the Fourier transform of each segment. (These segments,
which are to be combined coherently, are not to be con-
fused with the segments used in the stack-slide algorithm
which are combined incoherently). Tsft should be short
enough so that the signal does not drift by more than half
a frequency bin over this time. Typical values of Tsft are
1800s. The exact method of calculating the F -statistic
from an SFT database is sketched in the appendix, and
the operations count is also derived there. The result is (see
Eq. (A12)):

� 640N�1�N�1�
pcfmax

��T�1��2

Tsft
Flops: (54)

Note that the SFT method of calculating the F -statistic is
O���T�1��2� while for the stroboscopic resampling method
it is O��T�1� log�T�1��.

The total cost of stacking and sliding in the first hier-
archical stage using the SFT method is thus:

C�1�
sft � fmax�T

�1�N�1�
pc

�
640N�1��T�1�

Tsft
�
N�1�
pf

N�1�
pc

�N�1� � 1�
�
:

(55)

When all frequencies are to be searched over, stroboscopic
resampling produces the F -statistic about an order of
magnitude more cheaply than the SFT method, for typical
values of �T�1�. However when previous stages have nar-
rowed the search to a small fraction of the whole frequency
band (for any given ~�), the SFT method can be the more
efficient one. We should also mention here that it is pos-
sible to start with SFTs and combine them in such a way as
to get a O��T�1� log�T�1�� operations count; this is in fact
the method used in [10]. However, in this paper, by the
‘‘SFT method’’ we always mean the method described here
in Appendix B, with the operation count given above in
Eq. (55).

It also seems likely that the resampling method could be
modified so as to be the most efficient one, even when only
wanted to demodulate a small frequency band
-9
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�f � max
�
1;

�T�i�

�T�i�1�


(56)

around every selected candidate. Presumably the first step
would be to heterodyne the data to shift the relevant
frequency range to a neighborhood of zero-frequency.
Then one would filter out frequencies higher than �f,
followed by the usual demodulation. Equation (60) would
then be modified, so that the new cost of demodulating
would be 12N�i��T�i��flog2�2�T

�i��f�. However since
the details of this modified demodulation method have
not yet been worked out, we will not consider it further
in this paper.

This completes our analysis of the first-stage computa-
tional costs for both methods. The analysis for the subse-
quent stages proceeds similarly; the only difference is that
subsequent stages analyze only those regions of parameter
space that have not been discarded by any of the previous
stages. Assuming that almost all the candidates are due to
noise, the false alarm rate is a good estimate of the number
of candidates produced by any stage. Let us denote by F�i�

the number of candidates which survive the ith stage. Since
the false alarm rate for the first stage is &�1�, the number of
candidates produced by the first stage is given by

F�1� � maxf1; fmax�T
�1�N�1�

pf&
�1�g: (57)

Note that we will always have at least one candidate which
makes it through to the next stage. To calculate the cost of a
search, we of course must make some assumptions about
the data to be processed. Basically, we are assuming that
the data consists of Gaussian noise plus one detectable
source. (Though we call F�i� the ‘‘i�th�-stage false alarm
rate’’, it is really the ‘‘false alarm rate or the true-source
survival rate, whichever dominates.’’ In practice, until the
last semicoherent stage, the FA rate always dominates.)

To estimate the computational cost for the ith stage, for
i > 1, recall that each of the F�i�1� candidates produced by
the �i� 1�th stage is in fact a region in parameter space. If
we assume that the ith stage further refines this region, then
we see that the number of ith-stage coarse grid points in this
region must be, on average, N�i�

pc=N
�i�1�
pf (again, assuming

this ratio to be bigger than 1). Thus, using the stroboscopic
resampling method, the number of floating point opera-
tions to calculate the F -statistic in the ith stage is

F�i�1� max
�
1;

N�i�
pc

N�i�1�
pf


12fmax�T�i�N�i�log2�2fmax�T�i��:

(58)

Each candidate produced by the �i� 1�th stage occupies a
frequency band 1=�T�i�1�, and thus corresponds to
�T�i�=�T�i�1� ith-stage frequency bins. Thus the opera-
tions count for the stacking and sliding is
042004
F�i�1� max
�
1;

�T�i�

�T�i�1�


max

�
1;

N�i�
pc

N�i�1�
pf


�
N�i�
pf

N�i�
pc

�N�i� � 1�

(59)

floating point operations. Combining these results, we get
the computational cost for the ith stage (i � 2):

C�i�
res � F�i�1�max

�
1;

N�i�
pc

N�i�1�
pf



�

�
12N�i�fmax�T�i� log�2fmax�T

�i��

log2

�max
�
1;

�T�i�

�T�i�1�

N�i�
pf

N�i�
pc

�N�i� � 1�
�
: (60)

If instead one uses the SFT method for calculating the
F -statistic, it is easy to see the operations count is

C�i�
sft � F�i�1� max

�
1;

N�i�
pc

N�i�1�
pf


max

�
1;

�T�i�

�T�i�1�



�

�
640N�i��T�i�

Tsft
�
N�i�
pf

N�i�
pc

�N�i� � 1�
�
: (61)

After the n semicoherent steps, we have the final coher-
ent follow-up stage where the entire stretch of data of
duration Tused is used. For this stage, we analyze F�n�

candidates and simply compute the F -statistic without
breaking up the data into any smaller stacks. The cost
C�coh� for this using the resampling method is

C�coh�
res � F�n�max

�
1;
N�coh�
p

N�n�
pf


12fmaxTused

log�2fmaxTused�
log2

;

(62)

where Ncoh
pf � Np�Tused; #coh; 1�, and #coh is the #max of

the final, coherent stage. Using the SFT method, we would
have

C�coh�
sft � F�n� max

�
1;
N�coh�
p

N�n�
pf


max

�
1;
Tused
�T�n�


640Tused
Tsft

:

(63)

So far, all results in this section are valid whether we are
working in fresh-data mode or data-recycling mode. The
following formulae, for the number of candidates which
survive a given stage, do however depend on which mode
we are working in. If we operate in fresh-data mode
(analyzing fresh data at every stage—except the last stage,
which is a coherent follow-up of all the searched data), we
clearly have (for i � 2)
-10
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F�i� � &�i� maxfF�i�1�; 1gmax
�
1;

N�i�
pf

N�i�1�
pf

�

�max
�
1;

�T�i�

�T�i�1�

�
: (64)

Again, our count assumes that at least one candidate gets
‘‘promoted’’ to the succeeding stage. We note that Eq. (64)
assumes that the parameter-space resolution improves at
every stage of fresh-data mode (which seems always to be
true for our optimized searches). We also note that Eq. (64)
is basically identical to Eq. (5.2) of BC, but there it is
claimed to be the FA rate for data-recycling mode. That is
not correct, in general, as we discuss further below.

If we are in data-recycling mode (at each step, reanalyz-
ing old data, while also adding on new data), then the
probabilities of a candidate’s randomly surviving the �i�
1�th and ith stages are not independent, and so Eq. (64) is no
longer valid. (To see this, consider the limit where only a
very tiny bit of data is added on, and the resolution is kept
fixed. Then any candidate that survives the �i� 1�th stage
has almost a 100% chance of surviving the ith stage, even if
&�i� is extremely small.) Indeed, the right-hand side (rhs) of
Eq. (64) is clearly a lower bound on the ith-stage false
alarm rate, in data-recycling mode.

We can also place the following upper bound on F�i� for
data-recycling mode:

F�i� � fmax�T�i�N�i�
pf&

�i�: (65)

The rhs of (65) is the number of false alarms that would
result if one performed a semicoherent search of the entire
parameter space with the given (N�i�, �T�i�, #�i�, $�i�) ,
while the left-hand side (lhs) is the false alarms that result
from searching only neighborhoods of the points that
survived the �i� 1�th stage. Thus for data-recycling
mode, we can say that F�i� is somewhere in the range

F�i�1�

� N�i�
pf

N�i�1�
pf

�T�i�

�T�i�1�

�
&�i� � F�i� � fmax�T

�i�N�i�
pf&

�i�:

(66)

Fortunately, when we calculate the total computational
cost of some optimized search in data-recycling mode,
needed to achieve some given sensitivity hth, if we try
plugging in either the upper or lower bound for F�i�, we
find the two final results differ from each other by & 18%
for a young pulsar (!min � 40 year) and & 5% for an old
one (!min � 106 year), which for our purposes is practi-
cally insignificant. Moreover, the optimized search pa-
rameters obtained when we plug in the upper-limit
estimate for F�i� are quite similar to those we find by
plugging in the lower limit instead. Therefore it is safe
for us to choose either the upper or lower limit as an
estimate of F�i�. For concreteness, in the rest of this paper
042004
we always estimate F�i� by its upper limit, which slightly
overestimates the computational cost of the search.

With these results in hand, we are now ready to calculate
the total computational cost of the entire search pipeline.
We have a number of choices to make. At each stage, we
can use either the stroboscopic resampling method or the
SFT method in each stage, and we can work in either the
data-recycling mode or fresh-data mode from the second
stage onwards. For convenience, we somewhat arbitrarily
limit the choices by considering only strategies that use
either data-recycling mode in every stage or fresh-data
mode in every stage. As we shall see below, the efficiencies
of these two sorts of searches turn out to be extremely close
anyway. Therefore we strongly suspect that more general
searches (using fresh-data mode in some stages and data-
recycling mode in others) would not give significant
improvements.

V. RESULTS

A. The optimization method

We next describe our numerical optimization method.
The function we want to minimize, the computational
power of Eq. (27), is a complicated function on a large-
dimensional space. Our chosen method is a simulated
annealing algorithm [11,12] based on the downhill simplex
method of Nelder and Mead [13]. The downhill simplex
method consists of evaluating the function on the vertices
of a simplex and moving the simplex downhill and shrink-
ing it until the desired accuracy is reached. The motion of
the simplex consists of a prescribed set of ‘‘moves’’ which
could be either an expansion of the simplex, a reflection
around a face, or a contraction. This method is turned into a
simulated annealing method by adding a random fluctua-
tion to the values of the function to be minimized, at the
points of the simplex. The temperature of the random
fluctuations is reduced appropriately, or in other words
‘‘annealed,’’ until the minimum is found.

There are no universal choices for the rate of annealing
or the starting point of the simplex; these depend on the
particular problem at hand. For the results presented below,
we have used a variety of different starting points and
annealing schedules to convince ourselves that the optimi-
zation algorithm has converged and that we have indeed
found the best minimum. Let us first discuss the starting
temperature, whose meaning is as follows. If f is the
function to be minimized, then the temperature 4 parame-
trizes the amplitude of random fluctuations f ! f� 2f
added to f at the points of the simplex:

2f � �4logr; (67)

where 0< r< 1 is a uniformly distributed random num-
ber. A simplex move is always accepted if it takes the
simplex downhill, but an uphill step may also be accepted
due to these random fluctuations. In our case, we found that
a starting temperature of 4� 106-109 gives good conver-
-11
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gence; this value is to be compared to the typical value
�1013 of the computational cost near its minimum for
most of the results presented below. We allow a maximum
of 500 iterations of the simplex. If the simplex does not
converge within 500 iterations, we reduce the temperature
by 2%–5% and restart the iterations from the best mini-
mum found up to that point. These steps are repeated until
the simplex converges. The starting point of the simplex
cannot be chosen arbitrarily, and for this purpose, it is
useful to have a rough idea of the location of the minimum.
This requires some experimenting with a sufficiently broad
range of starting points; this is especially important when
the number of variables is large, as is the case for, say, a
search with n > 3. Having found a suitable starting point
for one set of pulsar parameters (fmax and !min), it can be
reused for nearby pulsar-parameter values.

We next describe how we impose the constraint that the
total amount of analyzed data is less than Tmax. One could
imagine trying to do this using the method of Lagrange
multipliers. However this seemed difficult to implement
numerically (for our highly nonlinear function P), and we
found a simpler approach that suffices. The function our
algorithm minimizes is not the total computational power
P (defined in Eq. (27)) itself, but rather

f � P�

�
1� S

�
Tused
Tmax

��
; (68)

where S�x� is a smooth function such that S�x� � 0 for 0<
x< 1 but S�x� is rapidly increasing exponential function
for x > 1. That is, we impose a very steep penalty for
leaving the constraint surface. This works well, and indeed
we found it useful to impose some additional (intuitively
obvious) constraints in this way, such as requiring the N�i�

and �T�i� to all be positive; we again multiply P by factor
that is unity when the constraint is satisfied but is very large
when the constraint is violated. This ‘‘trick’’ is used to find
the location of the minimum, but of course the results we
report are the values of the function P there, not f.

There is one additional technical detail, namely, that our
optimization method is meant for the case of continuous,
real variables, while our variables N�i� are strictly integers.
We handle this by rounding off N�i� to the nearest integer
while calculating the cost function f, every time it is
called. The downhill simplex algorithm still treats N�i� as
a continuous variable, i.e. we allow arbitrarily small
changes to N�i� when the simplex is moving downhill, but
such changes have no effect on f. We have also tried an
alternative approach where N�i� is kept as a continuous
variable throughout, and rounded off only at the very end.
We have found that the two approaches yield consistent
results.

Finally, we cross-checked our results using two different
implementations of the simulated annealing algorithm—
those of [14,15]—and found that they gave basically
equivalent results in our case.
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B. The number of semicoherent stages

The first question we want to answer is: what is the
optimum number n of semicoherent stages to use in the
search? Relatedly, we want to know the most efficient
method to use for the F -statistic calculation (stroboscopic
resampling or SFT method) and best mode to work in
(fresh-data mode or data-recycling mode). To answer
this, we consider an all-sky search for fast/young GW
pulsars, by which we mean a search that goes up to
frequency fmax � 1000 Hz and that can detect pulsars
with spin-down ages !min as short as 40 yr. We assume
the amount of data available is Tmax � 1 yr, and ask what
is the computational power required to detect pulsar signals
whose hRMS is or above hth, given by:

h2th
Sn�f�

� 2:5� 10�5 sec�1: (69)

This signal strength corresponds to
����
-

p
� 39:72 for a full

1-yr observation time with a perfectly matched template.
(Here and below we are implicitly assuming that Sn�f�
hardly varies over the frequency range of the signal.) We
choose the ith-stage FD rates '�i� as given in (and just
above) Eq. (25), which, along with the detection threshold
given by Eq. (69), determines the ith-stage thresholds $�i�.
For simplicity, we set #�coh� � 0:2. While this is a restric-
tion that we simply put in by hand (to slightly reduce the
space of search parameters to be optimized), we believe
this choice has very little effect on the overall optimized
strategy because, as we shall see shortly, the follow-up
stage usually accounts for only a tiny fraction of the total
-12



TABLE I. The optimal search parameters in data-recycling
mode. fmax � 1000 Hz, !min � 40 yr, Tmax � 1 yr, h2th=Sn �
2:5� 10�5 sec�1, and - is defined according to Eq. (38).

Stage �T�i� (days) #�i� N�i� T�i�
used (days)

����
-

p

1 2.58 0.7805 10 25.79 9.08
2 3.51 0.1139 12 42.13 13.23
3 45.66 0.8196 8 365.25 33.86

TABLE III. Same as Table I, but for fresh-data mode.

Stage �T�i� (days) #�i� N�i� T�i�
used (days)

����
-

p

1 2.71 0.7829 9 24.35 8.82
2 4.08 0.0654 6 24.49 10.17
3 45.20 0.8229 7 316.42 31.50
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computational cost [19]. Thus we are left with 3n parame-
ters to be optimized: (�T�i�, #�i�

max, N�i�) for i � 1; . . . ; n,
subject to the constraint that the total amount of data
analyzed, Tused [given by Eq. (22) or (23)] is less than 1 yr.

Plots of the minimum computational cost for different n
and for both the data-recycling and fresh-data modes are
shown in Fig. 2. For each mode, we consider the following
three strategies: (i) Use the SFT method in each stage,
(ii) Use the resampling method in each stage, and (iii) Use
the resampling method in the first and final follow-up
stages, and use the SFT method in all intermediate stages.
Therefore there are 6 curves in Fig. 2.

The most important lessons from Fig. 2 are the follow-
ing: Strategy (iii) turns out to be better than (i) or (ii).
Furthermore, for strategy (iii), there is a significant advan-
tage in a three-stage search as compared to a two-stage or
single-stage search, but there is hardly any improvement in
computational cost in going to four or more semicoherent
stages. Furthermore, these results are the same whether we
use the fresh-data mode or data-recycling mode, and these
two modes give very similar total costs. While Fig. 2
presents results just for young/fast pulsar searches, we
find the same basic pattern for old pulsars, with !min �
106 yr: strategy (iii) is the most efficient for calculating the
F -statistic, data-recycling mode and fresh-data mode are
almost equally efficient, and having three semicoherent
stages is near-optimal (significantly better than two stages,
and practically as good as four). The main difference from
the young/fast pulsar case is that the gain in going from 2 to
3 stages is now only a factor �2 in computational power,
i.e., smaller but still significant.
TABLE II. The computational cost to analyze 1 year of data in
data-recycling mode. The search parameters are the same as
given in Table I. C�i�

coh is the cost for the coherent demodulation
step and C�i�

ss for the stack-slide step, while C�i� is the sum of
these two. Follow-up indicates the computational cost required
for the final follow-up stage.

Stage C�i� (Flop) C�i�
coh (Flop) C�i�

ss (Flop)

1 9:37� 1020 6:21� 1019 8:75� 1020

2 3:16� 1020 2:46� 1020 6:98� 1019

3 1:65� 1019 2:73� 1018 1:37� 1019

Follow-up 6:30� 1015
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In the light of these results, in the rest of this section, we
consider only three-stage searches, with the first stage and
final follow-up stages employing the resampling method
and with the second and third stages employing the SFT
method. We continue to report results for both data-
recycling mode and fresh-data mode.

C. The optimal three-stage search parameters

For the example search described above, (i.e. fmax �
1000 Hz, !min � 40 yr, Tmax � 1 yr, and h2th=Sn � 2:5�
10�5 sec�1) we list the optimal search parameters for the
three-stage search in data-recycling mode in Table I. The
first two stages analyze about 26 days (divided in 10 seg-
ments) and 42 days (divided in 12 segments) of data,
respectively, while the third stage analyzes the entire year-
long data stretch (divided in 8 segments). The total com-
putational cost is 40.2 TFlops. The cost breakdown among
the individual stages, and further cost breakdown into the
demodulation piece C�i�

coh and the stack-slide C�i�
ss piece in

each stage, are given in Table II. There we give the total
count of floating point operations required, not the number
of operations per second.

Our results for fresh-data mode are qualitatively similar,
and are given in Table III. In this case, the optimal search
analyzes about 24 days of data in the first stage (broken up
into 9 segments) and 24 more days in the second stage
(broken into 6 segments). The third stage analyzes the rest
of the year’s worth of data, divided into 7 segments. The
total computational requirement is 34.6 TFlops and its
breakdown is given in Table IV.

We note the following features of these results. First, in
both modes, basically all the data has been analyzed by the
end of the third semicoherent stage. This is not a require-
ment that we put in by hand, but rather it arises from the
optimization: the optimal scheme ‘‘gets through’’ the en-
tire year’s worth of data before the final follow-up stage.
Secondly, in data-recycling mode, 73.8% of the computing
time is spent in the first stage, 24.9% in the second, 1.3% in
TABLE IV. Same as Table II, but for fresh-data mode.

Stage C�i� (Flop) C�i�
coh (Flop) C�i�

ss (Flop)

1 8:11� 1020 6:42� 1019 7:46� 1020

2 2:64� 1020 2:62� 1020 2:67� 1018

3 1:74� 1019 5:54� 1018 1:19� 1019

Follow-up 1:62� 1016
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TABLE VII. Search parameters for fresh-data mode with
fmax � 1000 Hz, !min � 106 yr, Tmax � 1 yr, h2th=Sn � 4:47�
10�6 sec�1, and computational power 34.6 Tflops; - is defined
according to Eq. (38).

Stage �T�i� (days) #�i� N�i� T�i�
used (days)

����
-

p

1 11.77 0.2074 9 105.96 9.04
2 10.97 0.0199 6 65.82 7.13
3 27.64 0.0206 7 193.47 12.22

TABLE VI. The computational cost to analyze 1 year of data
in data-recycling mode. The search parameters are the same as
given in Table V. C�i�

coh is the cost for the coherent demodulation
step and C�i�

ss for the stack-slide step, while C�i� is the sum of
these two. Follow-up indicates the computational cost required
for the final follow-up stage.

Stage C�i� (Flop) C�i�
coh (Flop) C�i�

ss (Flop)

1 7:41� 1020 2:85� 1018 7:39� 1020

2 4:93� 1020 3:77� 1020 1:16� 1020

3 3:82� 1019 1:34� 1019 2:48� 1019

Follow-up 6:18� 1013
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the third, and a negligible fraction in the follow-up. The
results are similar for the fresh-data mode: approximately
74.2% of the computational resources are spent in the first
stage, 24.2% in the second stage, 1.6% in the third stage,
and a negligible amount in the follow-up stage. Finally,
fresh-data mode entails a slightly lower computational cost
than data-recycling mode. However this last fact could be
an artifact either of having slightly different overall FD
rates in the two cases, or of our using an overestimate of
F�i� in the latter case. The bottom line is that, after opti-
mization, the two modes are almost equally efficient.

If instead we consider a search for older pulsars, with
!min � 106 yr instead of 40 yr, then the optimal solution
for both modes are summarized in Tables V, VI, VII, and
VIII. A larger value of !min means a smaller number of
templates, and therefore a more sensitive search for fixed
computational cost.

For data-recycling mode, we have lowered the threshold
hth by a factor 2.35, to the point where the required
computational power is again 40.2 Tflops, as in the ex-
ample of Tables I and II. The results are shown in Tables V
and VI. Compared to the young-pulsar search, the compu-
tational power is now spread more evenly over the first two
stages: the first stage consumes about 58.27% of the power,
the second stage 38.73%, third stage 3.0%, and negligible
for the follow-up stage.

For the case of fresh-data mode, we have lowered the
threshold hth by a factor 2.36, to the point where the
required computational power is again 34.6 Tflops, as in
the example of Tables III and IV. Once again, compared to
the young-pulsar search, the computational costs are
spread more evenly over the first two stages: the first stage
consumes about 31.3% of the power, the second stage
30.4%, third stage 14.0%. In this case, the cost for the
follow-up stage is 24.0%, which is not negligible. This
indicates that, for this case, the earlier stages have not
succeeded in reducing the number of candidates to a low
level. The overall sensitivity, though, is still almost identi-
cal to the data-recycling case.

Let us now discuss the false alarm rate. We require that
the overall FA rate be less than 1%, and we claimed in
Section III B that this is automatically satisfied in typical,
realistic cases. We can now verify this claim. For the
!min � 40 yr search summarized in Tables I, II, III, and
IV, using (38), with #max � #�coh�

max � 0:2, the threshold
TABLE V. Search parameters for data-recycling mode with
fmax � 1000 Hz, !min � 106 yr, Tmax � 1 yr, h2th=Sn � 4:53�
10�6 sec�1, and computational power 40.2 Tflops; - is defined
according to Eq. (38).

Stage �T�i� (days) #�i� N�i� T�i�
used (days)

����
-

p

1 14.84 0.3514 8 118.72 9.06
2 30.06 0.0917 6 180.34 11.70
3 52.18 0.0986 7 365.25 16.63
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corresponds to $�coh�
th � /$�2�-=2�738. By Eq. (43),

this corresponds to ~& � 10�318 (for either mode). Using
Eq. (30), the number of independent templates required for
a full coherent search of the entire parameter space, using
1 yr of data, is fmaxTmaxNp�1 yr; 0:2; 1� � 1034. The over-
all false alarm rate is thus
FA � fmaxTmaxNp ~& � 10�284 � 1%.2

Similarly, for the case !min � 106 yr, h2th=Sn � 4:53�
10�6 (data-recycling mode, Tables Vand VI)), we get - �
286 so that ~& � 10�61. In this case, haveNp � 1017 so that
FA � fmaxTmaxNp ~& � 10�34. If we look at fresh-data
mode (Tables VII and VIII) with !min � 106 yr, h2th=Sn �
4:47� 10�6, we get FA � 10�33. These values are greater
than for the case of young pulsars, but still vastly smaller
than 1%.

The basic point is simply this: For an all-sky search,
sensitivity is limited by computing power, so the detection
threshold hth in practice is substantially higher than what it
would be for infinite computing power. This means that for
a signal to be detectable, it must have quite a high SNR (in
the matched-filter sense)–which means that the FA rate is
TABLE VIII. Same as Table VI, except for fresh-data mode.
The search parameters are those of Table VII.

Stage C�i� (Flop) C�i�
coh (Flop) C�i�

ss (Flop)

1 3:46� 1020 3:07� 1018 3:43� 1020

2 3:35� 1020 3:33� 1020 1:91� 1018

3 1:54� 1020 9:23� 1019 6:19� 1019

Follow-up 2:67� 1020
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exponentially small. Being computationally limited means
that when we do detect something, we can be very con-
fident that it is not simply random noise masquerading as a
signal.3

How accurate are our numerical results? The total com-
putational cost is a complicated function on a 9-
dimensional space and thus is not easy to visualize. We
can, however, take appropriate sections of this function to
examine its behavior near the minimum. Thus, we can ask
whether variations in, say, �T�1� or �T�2� away from their
optimal values, increase the computational cost (as they
should, if we have truly found a minimum). To answer this,
in Fig. 3 we plot the total computational power as a
function of �T�1� and �T�2�, respectively, for the young-
pulsar searches summarized in Tables I, II, III, and IV. All
the other parameters fixed at their optimal values. The
minima of these curves agree precisely with our simulated
annealing results. Similarly, Figs. 4 and 5 carry the same
message, as well as showing the strong dependence of the
computational cost onN�i� and#�i�

max. (It is not so clear from
the plot of P vs #�3�

max that this curve has a minimum in the
range shown, but it does in fact have a very shallow one.)

For the plot of computational cost versusN�3�, we are not
allowed to keep �T�3� fixed, since that could violate the
constraint �T�3�N�3� � Tmax. (Recall that �T�3�N�3� �
Tmax � 1 yr for the optimal three-stage solution, which is
therefore just at the boundary of the constraint region.)
Therefore, we choose to plot the computational cost as a
2Strictly speaking, Eq. (30) for the number of templates is
valid only for observation times which are significantly less than
a year. However, unless the discrepancy is many orders of
magnitude, the numbers obtained show that it is obviously
sufficient for the purposes of this argument.

3Of course, no sensible person would ever claim that he or she
had detected a GW pulsar with FA probability of less than
10�284. In such a case, the ‘‘statistical error’’ is so ridiculously
small that the true FA rate is dominated by the other, hard-to-
quantify factors, such as the probability of having some bug in
the instrumentation or in the data analysis code.
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function of N�3� while simultaneously varying �T�3� ac-
cording to �T�3� � Tmax=N�3�.

A noteworthy feature of these plots is that the computa-
tional power P depends more sensitively on the early-stage
parameters than the late-stage ones; e.g., more sensitively
on N�1� and N�2� than on N�3�. This result should not be
surprising since, as mentioned earlier, for the young-pulsar
search the computational cost of the higher stages is rela-
tively small.

D. The spin-down age and the SNR

How does the (minimum) computational cost depend on
the shortest spin-down timescale that we search over, !min?
Consider again the case where we have 1 yr of data and we
perform an all-sky search up to a frequency of fmax �
1000 Hz. Figure 6 shows the result for both the data-
recycling and fresh-data mode, for two different values
of the 1-year SNR. Note that these results do pass simple
sanity checks: the computational cost decreases as the SNR
increases (since it is easier to look for stronger signals), and
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the computational cost decreases as !min increases (since it
is easier to search through a smaller parameter space).

One can also ask: for a given available computational
power, how does the threshold SNR scale with !min? This is
shown in Fig. 7. The plot is based on the assumption that
we have 1 year’s worth of data and that we have 10 TFlops
of computing power at our disposal. By ‘‘SNR,’’ here we
mean the matched-filter SNR, for a perfectly matched
filter. Figure 7 tells us that a search for unknown GW
pulsars with spin-down ages >106 yr can detect
�85%-90% of pulsars whose SNR is >17 (again, with
FA rate � 1%). In an all-sky search for very young pul-
sars, with !min � 40 yr, the SNR required for detection
(with the same FD and FA rates) increases to �43. In
comparison, for a source where the sky position and fre-
quency are known in advance (from radio observations), an
SNR of only 4.56 is required for detection, with a 10% FD
rate and 1% FA rate [4].

Figure 7 strongly suggests that one would like to simul-
taneously perform at least two different all-sky searches:
one for old GW pulsars and another for young ones, with
comparable (within a factor ten) computer power devoted
to each, but with quite different thresholds. (If one set the
same threshold for both old and young pulsars, then almost
all computing resources would end up being spent on the
young ones.) Clearly, to determine the ‘‘best’’ apportion-
ment of resources between the two types of searches would
require some additional inputs/assumptions, but at least
Fig. 7 seems a good first step towards making an intelligent
allocation.
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VI. CONCLUSIONS

Let us first summarize the main results of this paper. We
have studied general hierarchical strategies for searching
for gravitational waves from unknown, isolated GW pul-
sars. In particular, we have considered multistage hierarch-
ical algorithms where each stage (except the last) consists
of a coherent demodulation of short stacks of data followed
by appropriate sliding and stacking of the F -statistics
results from the different stacks. The successive stages
serve to quickly reduce the number of candidates; they
are followed by a final coherent follow-up stage to fully
analyze the remaining candidates.

We have optimized this strategy by minimizing the
computational cost P subject to the constraints which
specify the total amount of data available and the desired
confidence levels. Of course, P depends on the size of the
parameter space— in particular on the range of frequencies
and spin-down ages that are searched over. Carrying out
the optimization, and varying over the number n of semi-
coherent stages, we found that the advantages of the multi-
stage approach saturate at n � 3 (i.e., n � 4 and 5 are
scarcely better).

The optimized search parameters (N�i�, �T�i�, #�i�) we
report should only be considered a rough guide for carrying
out a search in practice because i) in many places we have
used theoretical estimates of the operations counts instead
of those obtained by profiling existing codes, ii) we have
not considered issues of memory storage or the cost of
performing any Monte Carlo simulations, and iii) the de-
tector noise has throughout been assumed to be Gaussian
and stationary. Furthermore, the template-counting formu-
lae (30) used in this paper are, strictly speaking, valid only
-16
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for observation times significantly less than a year. The
numbers presented in this work must be recalculated when
better approximations become available. In spite of these
limitations, we believe that our results do provide a useful
qualitative guide to what an optimized all-sky search
‘‘looks like.’’ In order to optimize actual search codes,
applied to actual data, one must 1) profile the codes to
determine the actual computational cost of the different
operations, and 2) do Monte Carlo studies to determine the
actual &�i� for different thresholds. (Recall that the formu-
lae given here are based on the assumption stationary,
Gaussian noise.) The latter could require considerable
work, especially if the results are strongly frequency-
dependent, with some bands being much ‘‘better behaved’’
than others.

Finally, we mention some other possibilities for future
work:
(a) I
t would be trivial to extend our work to consider
searches that are less computationally challenging
than all-sky ones, but that are still computationally
limited. E.g., one could consider searches for un-
known NSs in supernova remnants (such as SN
1987A), in which case the sky position is well
known but the frequency and spin-down parameters
must be searched over. Similarly, one could consider
a search over a small fraction of sky, e.g., a portion
containing the Galactic center or the disk.
(b) T
he formulae for operations counts, confidence lev-
els, etc. can also be derived for case when the Hough
transform [6] is used in the semicoherent stages
instead of the stack-slide method; the optimization
of multistage, hierarchical Hough-type searches
would then proceed in the same way as developed
here.
(c) W
e expect that the lessons learned in this paper will
carry over to searches for GW pulsars in low-mass
X-ray binaries, which are also computationaly lim-
ited [16]. However the details are yet to be worked
out.
(d) T
he problem of searching, in LISA data, for the
inspiral signals of stellar-mass compact objects cap-
tured by �106M� BHs in galactic nuclei, is similar
to the GW pulsar search problem, but even more
computationally challenging [17]. We expect that
the lessons learned in this paper will also be very
useful in formulating and optimizing a search algo-
rithm for LISA capture sources.
(e) I
n this paper we have tacitly assumed that the search
is performed by a single computer or computing
cluster. However, at least in the next few years, the
most computationally intensive GW searches will
be directed by Einstein@Home [18], which relies on
tens of thousands of individual participants donating
their idle computing power. In this case, there might
be additional constraints that we have not yet con-
sidered, relating to the rate at which data and inter-
042004-17
mediate results can be sent back and forth between
the Einstein@Home [18] servers and participants’
computers, how much storage is available for use on
participants’ computers, etc. We intend to study
hierarchical searches in this context also, to see
which if any of the lessons learned here must be
modified for the Einstein@Home context.
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APPENDIX: COMPUTATIONAL COST OF THE SFT
METHOD

Here we estimate the computational cost (in floating
point operations) of calculating the F -statistic via the
SFT method. This result is used in Sec. IV C.

We begin by reviewing the details of the SFT method;
our description closely follows that given in the documen-
tation of the software package LIGO Algorithms Library
[7]. Imagine that we wish to compute the F -statistic for a
data stretch of length �T. Divide this data into M shorter
segments of length Tsft � �T=M, each containing N data
points (so there are MN data points within �T). The
sampled values of x�t� can then be written as x&j where 0 �

&<M labels the segment and 0 � j < N labels points
within a segment. Equation (12) can then be discretized as
follows:

Fa��� �
XM�1

&�0

XN�1

j�0

a&jx&je
�i�&j��� (A1)

and similarly for Eq. (13). Let ~x&k be the discrete Fourier
transform of x&j along the index j, so that

x&j �
1

N

XN�1

k�0

~x&ke2�ijk=N: (A2)

Then if we approximate the amplitude modulation function
a�t� as constant over the short-time baseline Tsft, the ex-
pression for Fa becomes

Fa��� �
XM�1

&�0

a&
XN�1

k�0

~x&k

�
1

N

XN�1

j�0

exp
�
2�ijk
N

� i�&j���

��
:

(A3)

The short-time baseline Tsft is generally chosen so that
neither pulsar spin down nor the Doppler effect causes
the signal power to shift by more than, say, half a frequency
bin. Then we can find functions A&� ~�� and B&k��� such
that to a good approximation
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�&j� ~�� �
2�jk
N

� A&� ~�� �
B&k���j
N

: (A4)

Thus we have

1

N

XN�1

j�0

exp
�
2�ijk
N

� i�&j���

�

� e�iA&� ~��
�
1� e�iB&k���

1� e�iB&k���=N

�
: (A5)

Next we assume N is large enough that 1� e�iB&k���=N �
iB&k���=N; then

Fa �
XM�1

&�0

a&e
�iA&� ~��

XN�1

k�0

~x&kP�B&k����; (A6)

where

P�x� �
1

N
1� e�ix

1� e�ix=N
�

sinx
x

� i
1� cosx

x
: (A7)

Now arises the great advantage of the SFT method: the
function P�x� is sharply peaked about x � 0, so the sum
over k can be approximated by retaining only a few terms:

Fa �
XM�1

&�0

a&e�iA&�
~��

XD
k0��D

~x&k0P�B&k0 ����; (A8)

where k0 � k� k? and k? is the value of k such that
B&k?��� � 0, and D is the number of terms that we retain
in the sum on either side of k?. It turns out that D � 16
suffices to calculate the F -statistic to within a few percent.

Equation (A8) is our final approximation for Fa.
Analogous expressions hold for Fb, and the final
F -statistic is calculated from Fa and Fb using Eq. (11).
Thus, with the SFT method, for each point � in parameter
space we need to calculate A&� ~��, B&k���, and the ampli-
tude modulation functions, a& and b&, and then to perform
the sums in Eq. (A8). It is then easy to see that to calculate
the F -statistic for n frequency bins, for a fixed value of ~�,
the number of floating point operations required is roughly
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some constant times nMD. To estimate the constant, let C1

be the cost of calculating P�B&k� for each & and k value.
Since multiplying two complex numbers requires 6 opera-
tions, and adding two complex numbers requires 2 opera-
tions, we see that calculating the sum over k0 in Eq. (A8)
requires

�C1 � 6��2D� 1� � 4D (A9)

operations. Similarly, if C2 is the cost of calculating
a&e

�iA& for every &, then the cost of calculating Fa is

M��C1 � 6��2D� 1� � 4D� �MC2 � 6M� 2�M� 1�:

(A10)

Thus, to find Fa and Fb for every frequency bin requires
� 2� �2C1 � 16�DM operations. Since the cost of com-
bining Fa and Fb to get F is negligible compared to this,
and assuming C1 to be of order unity, we see that the
operation count for calculating the F -statistic for n fre-
quency bins is approximately

�40nMD: (A11)

For the first stage in the hierarchical search, the F -statistic
is evaluated for N�1�N�1�

pcfmax�T bins. So, taking D � 16
and using M � �T�1�=Tsft, the cost is

� 640N�1�N�1�
pcfmax

��T�1��2

Tsft
: (A12)

At higher stages, we evaluate the F -statistic

F�i�1�max
�
1;

N�i�
pc

N�i�1�
pf


max

�
1;

�T�i�

�T�i�1�


N�i� (A13)

times, so the operations count is

F�i�1�max
�
1;

N�i�
pc

N�i�1�
pf


max

�
1;

�T�i�

�T�i�1�


�

�
640N�i��T�i�

Tsft

�
:

(A14)
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