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Five-dimensional gauged supergravity black holes with independent rotation parameters
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We construct new nonextremal rotating black hole solutions in SO�6� gauged five-dimensional
supergravity. Our solutions are the first such examples in which the two rotation parameters are
independently specifiable, rather than being set equal. The black holes carry charges for all three of
the gauge fields in the U�1�3 subgroup of SO�6�, albeit with only one independent charge parameter. We
discuss the BPS limits, showing that these include the first examples of regular supersymmetric black
holes with independent angular momenta in gauged supergravity. We also find nonsingular BPS solitons.
Finally, we obtain another independent class of new rotating nonextremal black hole solutions with just
one nonvanishing rotation parameter, and one nonvanishing charge.
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Constructing nonextremal charged rotating black hole
solutions in gauged supergravity is quite a complicated
problem. This is because, unlike the case of ungauged
supergravity, there are no known solution-generating tech-
niques that could be used to add charges to the the already-
known neutral rotating black hole solutions found in four
dimensions in [1], five dimensions in [2], and D � 6
dimensions in [3,4]. Aside from the four-dimensional
Kerr-Newman-AdS black holes, which were found in [5],
the known nonextremal charged rotating black hole solu-
tions comprise recently-discovered examples in five-
dimensional gauged supergravities in [6,7]; in four-
dimensional gauged supergravity in [8]; and in seven-
dimensional gauged supergravity in [9]. In the five and
seven-dimensional cases, the problem was simplified
greatly by taking the a priori independent rotation
parameters of the orthogonal 2-planes in the transverse
space to be equal. This reduces the problem to studying
cohomogeneity-1 metrics, with nontrivial coordinate de-
pendence on only the radial variable, rather then metrics of
cohomogeneity 2 or cohomogeneity 3.

In this paper, we shall present some new results on
nonextremal rotating black holes in five-dimensional
gauged supergravity, in which the two rotation parameters
a and b can be independently specified. Our black holes
can be viewed as solutions in N � 8 gauged SO�6� super-
gravity, with three charge parameters associated with the
gauge fields of the U�1�3 abelian subgroup. They can also
be viewed as solutions in N � 2 gauged supergravity
coupled to two vector multiplets.

After presenting the solutions, we then calculate the
charges, angular momenta, angular velocities, electrostatic
potentials, temperature and entropy. From these, we follow
the procedure that was used in [10], and more recently in
[11], for calculating the energy by integration of the first
law of thermodynamics. Then, we study the conditions
under which supersymmetric limits will arise, by looking
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for zero eigenvalues of the Bogomol’nyi matrix arising
from anticommutators of the supercharges. We obtain by
this means families of supersymmetric configurations,
characterized by a mass parameter and the two indepen-
dent rotation parameters. In general these BPS solutions
have naked closed timelike curves (CTC’s) lying outside
an horizon. (More precisely, the CTC’s lie outside a ‘‘pseu-
dohorizon,’’ which we define later in the paper.) However,
for a particular choice of the mass, we obtain completely
regular black holes with no singularities or closed timelike
curves on or outside the horizon. These are similar to the
regular black holes of five-dimensional gauged supergrav-
ity that were found in [12,13], except that in our new
solutions the two angular momenta can be independently
specified. Indeed, the rotating BPS black holes that we find
in this paper are the first such examples with independent
rotation parameters. We also find other special cases, de-
scribing completely regular solitons.

We also obtain a further class of new nonextremal
rotating black hole solutions of five-dimensional gauged
supergravity, in which only one rotation parameter is non-
vanishing, and only one of the three U�1� charges is turned
on. These solutions are therefore independent of any found
previously in this paper or elsewhere. We again study the
thermodynamics and obtain expressions for the conserved
energy, angular momentum and charge. From the BPS
limit we again obtain supersymmetric solutions. In this
case, unlike the one discussed above, there are no regular
BPS black holes or solitons, but only solutions with
naked CTC’s.

The rotating black hole metrics that we shall construct
arise as solutions of SO�6� gauged five-dimensional super-
gravity. The first class we construct are charged under all
three U�1� factors in the Cartan subgroup of SO�6�, with
specific relations between the three charges. The two rota-
tion parameters can be specified independently. The rele-
vant part of the supergravity Lagrangian that describes
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these solutions is given by
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The three U�1� gauge fields Ai� are labeled by the upper
triplet index.
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In what follows, we shall first construct the nonextremal
rotating metrics, and then calculate their associated con-
served quantities, namely, their mass E, their angular mo-
menta Ja and Jb, and the three electric chargesQi. Next, by
using the BPS conditions derived from the AdS super-
algebra, we determine the restrictions on the parameters
of the solutions that lead to supersymmetry. We investigate
the global structure of these BPS limits, showing, in par-
ticular, that there exist regular supersymmetric black holes
with no naked singularities or closed timelike curves.

We find that the following provides a solution of the five-
dimensional gauged supergravity equations:
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where s � sinh+ and c � cosh+.
The gauge potentials and scalar fields are given by
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(4)

The solution reduces to the uncharged Kerr-AdS metric of
[2] if the charge parameters are set to zero, and it reduces to
a special case of the solutions in [7] if instead the two
rotation parameters are set equal. Various special cases in
the BPS limit are discussed later.

It should be noted that the solution above is presented in
a coordinate frame that is rotating at infinity. One can pass
to coordinates that are asymptotically static by making the
redefinitions # � ~#� ag2t and  � ~ � bg2t. It is help-
ful to make this transformation in order to simplify the
calculation of the thermodynamic quantities. One might
think from the expressions for the gauge potentials in (4)
that there are just two nonvanishing (and equal) charges,
since A3 has no electric component. However, this is a
somewhat misleading artefact of the original rotating co-
ordinate system. After transforming to the asymptotically
nonrotating frame, one finds that A3 also has an electric
component, and indeed, as we shall see below, the third
electric charge is nonzero too.

It is straightforward to calculate the temperature,
entropy, angular velocities on the horizon, and the electro-
static potentials on the horizon, referred to the asymptoti-
cally static frame. We find

T �
2g2r6� � 	1� g2�a2 � b2 � 4ms2�
r4� � a2b2

2.r�	r4� � �a2 � b2 � 2ms2�r2� � a2b2

;

S �
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2
a
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;
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r4� � �a2 � b2 � 2ms2�r2� � a2b2
;

�b �
b	g2r4� � �a2 � 2ms2�g2r2� � a2


r4� � �a2 � b2 � 2ms2�r2� � a2b2
;

�1 � �2 �
2mr2�sc

r4� � �a2 � b2 � 2ms2�r2� � a2b2
;

�3 �
2mabs2

r4� � �a2 � b2 � 2ms2�r2� � a2b2
; (5)
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where r�, the largest root of the metric function X�r�, is the
location of the outer horizon.

The two angular momenta can be evaluated from the
(convergent) Komar integrals

J �
1

16.

Z
S3
�dK; (6)

where K is the 1-form obtained by lowering the index on
the angular Killing vector @=@# or @=@ . The charges are
given by Gaussian integrals
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1

16.

Z
S3
�X�2

i � Fi � Aj ^ Fk�; (7)

where �j; k� � �2; 3�; �3; 1�; �1; 2� for i � 1; 2; 3 respec-
tively. With these angular momenta and charges, we can
now integrate the first law of thermodynamics

dE � TdS��adJa ��bdJb �
X
i
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in order to obtain the energy E of the black hole solution.
Our results for the conserved quantities are
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As discussed recently in [11], the BPS limit of the
nonextremal solution can conveniently be discussed by
studying the eigenvalues of the Bogomol’nyi matrix that
arises from the anticommutator of the supercharges of the
AdS superalgebra. Thus the BPS limit of nonextremal five-
dimensional gauged supergravity solutions is attained
when E� gJa � gJb �

P
iQi � 0 (modulo unimportant

sign choices). Substituting our expressions for the con-
served mass, angular momenta and charges given in (9),
we find that the BPS condition is satisfied if the parameter
+ is chosen so that

e2+ � 1�
2

�a� b�g
: (10)

It is interesting to note that with a and b as indepen-
dently specificable parameters, we can make contact with
previous results in two inequivalent special cases. Firstly, if
we take a � b, the solutions we have obtained in this paper
reduce to particular cases of the 3-charge rotating black
holes with equal angular momenta that were found in [7].
In particular, the BPS condition (10) reduces to one that
was found for the a � b solutions in [11]. An inequivalent
special case arises if instead we take a � �b. Now, the
BPS condition (10) reduces to the condition that e2+ ! 1,
which also arose, as a disjoint case, in the analysis in [11];
it again can be viewed as a situation with ‘‘equal angular
041901
momenta,’’ after making an orientation reversal. Because
in the present work we have the possibility to specify a and
b independently, we can actually describe a continuous
interpolation between two BPS limits that were seen as
disjoint possibilities in the earlier work.

To analyze the global structure of the metric (3), we first
rewrite it in the form

ds2 � H2=3
�
�

r2X
"sin
22"

4
a
bH
2B#B 
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�
dr2

X
�
d"2


"

�

� B �d � v1d#� v2dt�2 � B#�d#� v3dt�2
�
:

(11)

The functions B , B#, v1, v2 and v3 can be read off
straightforwardly by comparing (11) with (3), and we shall
not present them explicitly here because their detailed
forms play no essential role in the following discussion.
From (11), it is evident that there is an outer Killing
horizon located at r � r�, the largest root of X�r�. There
is a velocity of light surface (VLS), located at the boundary
r � rL of the region where B B# changes sign from
positive (at large r) to negative. Inside the VLS, the metric
develops closed timelike curves (CTC’s). If r� > rL, then
the Killing horizon lies outside the VLS, and so the Killing
horizon is an event horizon. In these circumstances, the
solution describes a regular black hole, in which there are
neither curvature singularities nor CTC’s outside the hori-
zon. If the largest root r� is inside the VLS, the solution
instead describes a naked time machine.

In the supersymmetric limit, there is a Killing vector

‘ �
@
@t

� g
@

@ ~#
� g

@

@ ~ 
(12)

that has a spinorial square root, in the sense that ‘�
�78�7@�, where 7 is the Killing spinor. (See [11] for a
recent detailed discussion of this.) This Killing vector is
necessarily nonspacelike, and in fact we find that the
explicit expression for its norm is a manifestly nonpositive
quantity. From this, we find the identity

�
X
"sin

22"

4
a
bH2B B#
� B �v2 � g� bg2

� v1�g� ag2��2 � B#�v3 � g� ag2�2

� �

�
�1� ag� bg��1� agcos2"� bgsin2"�

�1� ag��1� bg�H

�
agcos2"
1� bg

�
bgsin2"
1� ag

�
2
; (13)

where the right-hand side comes from the evaluation of ‘2

in the metric (3), and the left-hand side is obtained from
evaluating ‘2 in the form (11) for the metric.

It follows from (13) that at least one of B# and B will
be negative at the largest root r � r� where X�r� vanishes.
Furthermore, since the determinant of the metric is given
-3
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pass through zero as X�r� approaches zero, it follows that
the spacetime signature is unchanged, and hence only one
of B# or B changes sign. Which of the two changes sign
depends on the choice of the parameters. Suppose, for
example, that it is B that changes sign. Inside the VLS,
@ is timelike, while the first term in (11) is positive. The
metric on the quotient of (11) by the SO�2� action of @ is
therefore positive definite inside the VLS, and spacetime
comes to an end at r � r� where X�r� vanishes. This is
therefore not an horizon, but more like an origin of polar
coordinates in a Euclidean-signature space. We shall, for
convenience, refer to it as a ‘‘pseudohorizon.’’ As dis-
cussed in [11], in general one must identify t with an
appropriate (real) periodicity in order to avoid a conical
singularity on the pseudohorizon. Similar remarks apply,
mutatis mutandis, if it is B#, rather than B , that changes
sign inside the VLS.

As in the cases discussed in [11], there are two ways of
avoiding such naked CTC’s. The first is if the parameters
are chosen so that right-hand side of (13) vanishes at r �
r� � r0. This occurs if

m �
�a� b�2�1� ag��1� bg��2� ag� bg�

2�1� ag� bg�
: (14)

When this condition is satisfied, the function X becomes

X �
�r� r0�

2��ab� r0�
2r2 � a2b2�a� b�2�

�a� b�2r40r
2 ; (15)

and there is a double root at r � r0, where r0 is given by

r20 �
ab

1� ag� bg
: (16)

It is straightforward to verify that the VLS lies inside the
Killing horizon at r � r0, and so it is an event horizon.
Thus the solution describes a supersymmetric black hole
that is regular on and outside the event horizon. The fact
that X�r� has a double root at r � r0 implies that the
Hawking temperature is zero. This is the first example of
a supersymmetric black hole with two independent angular
momenta in gauged supergravity. If a and b are set equal,
the solution reduces to a special case of the regular black
holes found in [13]. (Note that a black hole is not possible
if a� b � 0. As we discussed earlier, it corresponds to a
BPS limit that was also studied in [11], which was asso-
ciated with BPS solutions found in [14,15]. The solutions
in [14,15] all describe configurations with naked CTC’s, or,
as shown in [11], a nonsingular soliton; there is no solution
in that family that describes a regular black hole.) The
rotation parameters a and bmust in general be restricted to
an appropriate range, in order to ensure that B# and B 
remain positive and hence that there are no CTC’s outside
the horizon.
041901
The other way to avoid the naked CTC’s of the generic
supersymmetric solutions is by restricting the parameters
so that B B# goes to zero at the same radius as X goes to
zero, i.e. so that rL � r�. This occurs when the parameter
m is given by

m �
�a� b��1� ag��1� bg��2� ag� bg�

2g�1� ag� bg�2

� �1� 2ag� bg��1� ag� 2bg�: (17)

The solution then describes a smooth finite-energy con-
figuration of the type that was called a topological soliton
in [11]. It is a completely nonsingular globally stationary
spacetime, with no horizon, defined on the product of time
with a spatial manifold having the nontrivial topology of an
IR2 bundle over S2. Defining R � r2 � a2b2g2=�1� ag�
bg�2, the coordinate R runs from 0 to 1. Requiring no
conical singularity at R � 0, where B# � 0, implies the
quantisation condition

1 �
1� 3�a� b�g� �3a2 � 5ab� 3b2�g2

bg�1� ag��1� ag� bg��1� 2ag� bg�

�
�a� b��a2 � b2�g3 � ab�a2 � 4ab� b2�4

bg�1� ag��1� ag� bg��1� 2ag� bg�
: (18)

In the special cases a � b or a � �b, these topological
solitons are encompassed within the soliton solutions ob-
tained in [11]. The rotation parameters a and b must in
general be restricted to an appropriate range, in order to
ensure that B# and B remain positive and hence that there
are no CTC’s for all R � 0.

Aside from the above two possibilities, the supersym-
metric solutions have naked CTC’s in general. As in the
examples in [11], a conical singularity at the pseudohor-
izon can be avoided by periodically identifying the asymp-
totic time coordinate t with an appropriate period. If the
pseudohorizon is associated with a double root of X�r�,
then such an identification is unnecessary.

To close, we obtain another new solution describing a
nonextremal rotating black hole in gauged five-
dimensional supergravity. In this case, just one of the two
rotation parameters is nonzero, and only one of the three
gauge fields in the U�1�3 subgroup of SO�6� is turned on.
This solution is therefore not a special case of the solution
obtained above, nor indeed of any other previously-
obtained solutions. Having presented the solution, we
then evaluate the conserved mass, angular momentum
and charge, and from this we study the BPS limit.

Again, we shall omit the details of the lengthy process of
conjecture and verification whereby we arrived at the
solution, and just present our final result here. We find
that the metric for the five-dimensional black hole with one
nonvanishing rotation parameter and one charge is given
by
-4
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where again c � cosh+, s � sinh+, and the constant w,
which satisfies c2w2 � s2w
 � 1, is given by

w �

s2 �

������������������������������������
4�1� s2� �
2s4
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The gauge potentials and scalar fields are given by
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A2 � A3 � 0; X1 � H�2=3; X2 � X3 � H
1
3:

(21)

We find that the conserved energy, angular momentum
and charge for this black hole solution are given by

E �
.m	
� w�2�
� � w2
�1�
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4
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.ma

�����������������
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w

p
�
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:

(22)

The supersymmetry condition (i.e. a vanishing eigen-
value of the Bogomol’nyi matrix) is now given (modulo
equivalent sign choices) by E� gJ�Q � 0. Using our
expressions (22) for the conserved energy, angular momen-
tum and charge, this BPS condition implies

a2g2 �
1� w

w2 : (23)

Alternatively, it can be expressed as ag � c
s2

.
To analyze the global properties of the solution, it is

helpful to rewrite the metric as
041901
ds2 � H1=3
�
�

Y
"sin
2"dt2

�1� a2g2�2HB#
�
�2dr2

Y
�
�2d"2


"

� B#�d#� vdt�2 � r2cos2"d 2

�
; (24)

where again, we shall not need the detailed expressions for
the metric functions. This expression is valid both in the
BPS limit and in the nonextremal case. In the supersym-
metric limit there exists a Killing vector ‘ � @=@t�
g@=@ ~#� g@=@ with a spinorial square root, where ~# �

#� ag2wct, and � ~#; � are asymptotically nonrotating
coordinates. From the norm of ‘, which is manifestly
nonpositive, we can read off the identity

�H�1 � �
Y
"sin

2"

�1� a2g2�2HB#
� B#�v� ag2wc� g�2

� g2r2cos2": (25)
Thus in general, when Y � 0 either B# or r2 is negative,
implying the existence of naked CTC’s. It is straightfor-
ward to verify that, unlike the solutions we presented ear-
lier, here naked CTC’s are unavoidable when there is only
one charge and one nonvanishing rotation. The BPS solu-
tions therefore all describe naked time machines.
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