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Aspects of the tetrahedral neutrino mass matrix
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The four-parameter tetrahedral neutrino mass matrix introduced earlier by the author is studied in two
specific limits, both having only two parameters and resulting in �13 � 0, �23 � �=4, and tan2�12 � 1=2.
One limit corresponds to a recent proposal which predicts a normal ordering of neutrino masses; the other
is new and allows both inverted and normal ordering.
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The non-Abelian discrete symmetry group of the even
permutation of 4 objects has 12 elements and is called A4.
It is also the symmetry group of the tetrahedron and has
been shown to be useful for understanding the family
structure of charged-lepton and neutrino mass matrices
[1,2]. A modified version [3] of this model was proposed
a year ago by the author and has 4 parameters which allow
arbitrary neutrino masses while predicting both �23 and �12
as functions of �13. For 0< jUe3j< 0:16, this implies 1>
sin22�23 > 0:94 and 0:5< tan2�12 < 0:52 respectively. At
that time, the central value of tan2�12 in a global fit of all
neutrino data [4] was near 0.39, but now (with the most
recent SNO analysis [5]) it is given rather by [6]

tan 2�12 � 0:45� 0:05: (1)

This means that the prediction of Ref. [3] is in much better
shape and deserves a second look.

In the basis where the charged-lepton mass matrix is
diagonal, it was shown in Ref. [3] that a particular appli-
cation of A4 results in
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If b � c, then this has the solution
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with

m1 � a� b� d; m2 � a� 2b;

m3 � �a� b� d:
(4)

Hence �13 � 0, �23 � �=4, and tan2�12 � 1=2. This pat-
tern is reminiscent of the �� �� �0 system in hadronic
physics and was conjectured [7] to be applicable in the
neutrino sector as well. It is consistent with all present
neutrino-oscillation data.

Consider now the 3 neutrino mass eigenvalues of Eq. (4).
With the 3 parameters �a; b; d�, it is clear that m1;2;3 may be
chosen to fit whatever experimental values of jm2j

2 �
jm1j

2 and jm3j
2 � jm2j

2 are necessary. In other words,
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this model has no prediction on neutrino masses.
However, there are 2 interesting special cases of Eq. (4)
which have definite predictions: (I) b � 0, and (II) a � 0.

Case (I) has

m1 � a� d; m2 � a; m3 � �a� d; (5)

and was obtained recently in a detailed model [8] which
solves the vacuum alignment problem inherent in the
Higgs sector used to obtain Eq. (2) by appealing to extra
dimensions. It also avoids the problem of setting b � c
which is impossible to maintain by a symmetry if either
parameter is nonzero. Since �m2

sol is much smaller than
�m2

atm experimentally, Case (I) implies that

jdj ’ �2jaj cos�; (6)

where � is the relative phase between a and d. Hence

jm1;2j
2 ’ jaj2; jm3j

2 ’ jaj2�1� 8cos2��; (7)

requiring thus a normal ordering of neutrino masses. The

e kinematical mass is then given by

jm
e
j2 ’ jm1;2j

2 ’
�m2

atm

8cos2�
; (8)

and the effective 
e mass in neutrinoless double beta decay
is

jmeej � ja� �2d=3�j �
1

3
j�m2

atmj
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resulting in the interesting relationship

jm
e
j2 ’ jmeej

2 ��m2
atm=9: (10)

Case (II) has

m1 � �b� d; m2 � 2b; m3 � b� d; (11)

and has not been considered before. It requires

jdj ’ jbj�cos��
����������������������
3� cos2�

q
�; (12)

where � is the relative phase between b and d. Hence
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For cos� � 1, jm3j
2 � jm1;2j

2 ’ 12jbj2 (normal ordering)
and jmeej � 2jbj. For cos� � �1, jm3j

2 � jm1;2j
2 ’

�4jbj2 (inverted ordering) and jmeej � �2=3�jbj. In gen-
eral,
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where �1 refers to cos�> 0 or <0, and
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resulting in the relationship

jm
e j
2 ’ 3jmeej

2 � �2=3��m2
atm: (16)

By choosing cos� near zero, it is clear that the present
experimental upper bound of about 0.3 eV for jmeej may be
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reached, in which case the 3 neutrino masses are nearly
degenerate. This is also possible in Case (I).

In Case (I), b � c � 0 is a natural limit of the symmetry.
In Case (II), a � 0 is a natural limit but b � c � 0 is not.
However for b � c, it was shown in Ref. [3] that the
experimental bound jUe3j< 0:16 limits the deviation of
tan2�12 from 0.5 to only 0.52. In other words, if extended to
allow b � c, Case (II) does not predict all three angles, but
given one, it does predict the other two.

In conclusion, two interesting two-parameter descrip-
tions of the neutrino mass matrix have been discussed, each
with the mixing matrix of Eq. (3). One admits only a
normal ordering of neutrino masses and predicts
Eq. (10); the other allows inverted as well as normal order-
ing and predicts Eq. (16).
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