
PHYSICAL REVIEW D 72, 035018 (2005)
SU�3�c � SU�3�L � U�1�X models for � arbitrary and families with mirror fermions

Rodolfo A. Diaz,* R. Martinez,† and F. Ochoa‡

Universidad Nacional de Colombia, Departamento de Fı́sica, Bogotá, Colombia
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A detailed and general study of the fermionic structure of the 331 models with � arbitrary is carried out
based on the criterion of cancellation of anomalies. We consider models with an arbitrary number of
lepton and quark generations, but which require associating only one lepton and one quark SU�3�L
multiplet for each generation, and at most one right-handed singlet per each left-handed fermion. We see
that the number of quark left-handed multiplets must be 3 times the number of leptonic left-handed
multiplets. Furthermore, we consider a model with four families and � � �1=

���
3

p
where the additional

family corresponds to a mirror fermion of the third generation of the standard model. We also show how to
generate ansatz about the mass matrices of the fermions according to the phenomenology. In particular, it
is possible to get a natural fit for the neutrino hierarchical masses and mixing angles. Moreover, by means
of the mixing between the third quark family and its mirror fermion, a possible solution for the AbFB
discrepancy is obtained.
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I. INTRODUCTION

A very common alternative to solve some of the prob-
lems of the standard model (SM) consists of enlarging the
group of gauge symmetry, where the larger group embeds
the SM properly. For instance, the SU�5� grand unification
model of Georgi and Glashow [1] can unify the interactions
and predicts the electric charge quantization, while the
group E6 can also unify the interactions and might explain
the masses of the neutrinos [2]. Nevertheless, such models
cannot explain the origin of the fermion families. Some
models with larger symmetries address this problem [3]. A
very interesting alternative to explain the origin of gener-
ations comes from the cancellation of chiral anomalies [4].
In particular, the models with gauge symmetry SU�3�c �
SU�3�L �U�1�X, also called 331 models, arise as a pos-
sible solution to this puzzle, since some of such models
require the three families in order to cancel chiral anoma-
lies completely. An additional motivation to study these
kinds of models comes from the fact that they can also
predict the charge quantization for a three-family model
even when neutrino masses are added [5]. Finally, super-
symmetric versions of this gauge theory have also been
studied [6].

Despite the fact that the 331 models could formally
provide an explanation for the number of families, they
cannot explain many aspects that the SM cannot explain
either; it suggests the presence of new physics. In the
current versions of the model it is not possible to explain
the mass hierarchy and mixing of the fermions. On the
other hand, the model is purely left handed, so that it
cannot account for parity breaking. Another point of inter-
est to study in the models is the CP violation, particularly
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the strong CP violation which might allow help us to
understand the values for the electric dipole moment of
the neutron and electron.

Although cancellation of anomalies leads to some con-
ditions [7], such criterion alone still permits an infinite
number of 331 models. In these models, the electric charge
is defined, in general, as a linear combination of the
diagonal generators of the group

Q � T3 � �T8 � XI: (1.1)

As it has been extensively studied in the literature [7–9],
the value of the � parameter determines the fermion as-
signment and, more specifically, the electric charges of the
exotic spectrum. Hence, it is customary to use this quantum
number to classify the different 331 models. If we want to
avoid exotic charges we are led to only two different
models i.e. � � �1=

���
3

p
[7,10].

In the analysis for � arbitrary based on the cancellation
of anomalies, we find many possible structures that contain
the SM at low energies. In the model with two leptonic left-
handed multiplets (N � 2), we get a one-family model in
which one of the multiplets corresponds to the mirror
fermions (MF) of the other, i.e., the quarks and leptons
form vector representations with respect to SU�3�L for
each family. Two additional copies are necessary in order
to obtain the SM at low energies.

The structure for N � 4 families and � � �1=
���
3

p
,

where three of them refer to the generations at low energies
and the other is a mirror family, is a vectorlike model that
has two multiplets in the 3 representation and two multip-
lets in the 3	 representation in both the quark and lepton
sectors. This extension of the 331 model is not reduced to
the known models with � � �

���
3

p
;�1=

���
3

p
[8,10], because

in such models the leptons are in three 3-dimensional
multiplets. From the phenomenological point of view at
low energies, the difference would be in generating ansatz
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for the mass matrices in the lepton and quark sectors.
Models with vectorlike multiplets are necessary to explain
the family hierarchy. Moreover, it is observed that the
neutrinos do not exhibit a strong family hierarchy pattern
as it happens with the other fermions. The mixing angles
for the neutrinos �atm and �sun are not small. Besides, the
quotient ��m2

sun=�m
2
atm� is of the order of 0.02–0.03; these

facts suggest to modify the seesaw mechanism in order to
cancel the hierarchy in the mass generation for the neu-
trinos. Such modifications are usually implemented by
introducing vectorlike fermion multiplets [11].

On the other hand, the deviation of the b-quark asym-
metry Ab from the value predicted by the SM (of the order
of 3�) suggests a modification in the right-handed cou-
plings of Z� with the b quark, by means of particles that
are not completely decoupled at low energies. An alter-
native is the inclusion of MF because they acquire masses
slightly greater than the electroweak scale since their
masses are generated when SU�2�L �U�1�Y is broken
[12]. Further, a model with MF couples with right-handed
chirality to the electroweak gauge fields. Hence, these
couplings might solve the deviations for Ab and AbFB [13].
Since the traditional 331 models are left handed and the
Z� Z0 mixing is so weak ( � 10�3) they do not yield a
contribution for these asymmetries [14]. Another interest-
ing possibility to explain the discrepancy would be to
modify the right-handed couplings of the top quark, which
enter in the correction of the Zbb vertex. They could also
generate deviations for jVtbj, which in turn may give us a
hint about the mass generation mechanism for the ordinary
fermions. The 331 models with N � 3 might in principle
be able to explain such discrepancy and generate right-
handed couplings for the bottom and top quarks.

Furthermore, the introduction of mirror fermions per-
mits one, in a certain sense, to restore the chiral symmetry
lost in the standard model, and in principle could serve to
solve the problem of strong CP violation [15]. The imple-
mentation of these models with more fermions for N � 3
requires a more complex scalar sector that permits one to
generate CP violation in a natural way.

There are some other features that neither SM nor their
ordinary 331 extensions can explain at a cosmological
level, such as the large scale structure in the Universe
[16], galactic halo [17], and gamma ray bursts [18]. They
suggest the existence of physics beyond the ordinary 331
models. In many cases mirror fermions will be useful to
find solutions to these cosmological problems.

Finally, some additional motivations come from grand
unified theories (GUTs). GUTs introduce some non-
natural features such as the hierarchy problem with the
Higgs boson mass, because of the introduction of a new
scale (grand unification scale) much higher than the weak
scale; this is in turn related to the ‘‘grand desert’’ that
apparently exists between the GUT and electroweak scale.
This fact motivates the possibility of considering inter-
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mediate steps in the route from GUT to electroweak scales.
Some versions of the 331 models permit the chain of
breaking GUT ! 331 ! SM, while protecting the phe-
nomenology from fast proton decay [19].

The study of � arbitrary is interesting because it permits
a general phenomenological analysis that could be reduced
to the known cases when � � �

���
3

p
, and � � 1=

���
3

p
[20],

but can also permit the study of other scenarios that could
be the source for solving some of the problems cited here.

Recently we have gotten constraints on 331 models by
examining the scalar sector [21]. In summary, these con-
straints are obtained by requiring gauge invariance in the
Yukawa sector and finding the possible vacuum alignment
structures that respect the symmetry breaking pattern and
provides the fermions and gauge bosons of the SM with the
appropriate masses. By applying gauge invariance to the
Yukawa Lagrangian it is found that the Higgs bosons
should lie in either a triplet, antitriplet, singlet, or sextet
representation of SU�3�L. On the other hand, cancellation
of chiral anomalies demands that the number of fermionic
triplets and antitriplets must be equal [22]. Moreover,
assuming the symmetry breaking pattern

SU�3�c � SU�3�L �U�1�X ! SU�3�c � SU�2�L �U�1�Y

! SU�3�c �U�1�Q;

331 ! 321 ! 1 (1.2)

we see that one scalar triplet is necessary for the first
symmetry breaking and two scalar triplets for the second
to give mass to the up and down sectors of the SM. The
possible vacuum alignments that obey this breaking pat-
tern, as well as giving the appropriate masses in the second
transition, provide the value of the quantum number X in
terms of �. Finally, in some cases it is necessary to
introduce a scalar sextet to give masses to all leptons.

In this paper we intend to make a general analysis of the
fermionic spectrum for � arbitrary, by using the criteria of
economy of the exotic spectrum and the cancellation of
anomalies. The scalar and vector sectors of the model will
be considered as well.

This paper is organized as follows. In Sec. II we describe
the fermion representations and find the restrictions over
the general fermionic structure based on the cancellation of
anomalies. In Sec. III we show the scalar potential and the
scalar spectrum for three Higgs triplets with � arbitrary.
Section IV develops the vector spectrum for � arbitrary,
and Sec. V shows the corresponding Yang-Mills
Lagrangian. In Sec. VI we write down the neutral and
charged currents for the three-family version of the model
with � arbitrary. Section VII describes a new model with
four families where one of them corresponds to a mirror
family; from the vectorlike structure of the model, we try to
solve the problem of the b-quark asymmetries, and gen-
erate ansatz for the fermionic mass matrices. Finally,
Sec. VIII is regarded for our conclusions.
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II. FERMIONIC SPECTRUM AND ANOMALIES
WITH � ARBITRARY

A. Fermion representations

The fermion representations under SU�3�c � SU�3�L �
U�1�X read

 ̂L �

� q̂L:�3; 3; XLq � � �3; 2; XLq � � �3; 1; XLq �;

‘̂L:�1; 3; XL‘ � � �1; 2; XL‘ � � �1; 1; XL‘ �;

 ̂	
L �

� q̂	
L:�3; 3	;�XLq � � �3; 2	;�XLq � � �3; 1;�XLq �;

‘̂	
L:�1; 3	;�XL‘ � � �1; 2	;�XL‘ � � �1; 1;�XL‘ �;

 ̂R �

� q̂R:�3; 1; XRq �;

‘̂R:�1; 1; XR‘ �:
(2.1)

The second equality comes from the branching rules
SU�2�L � SU�3�L. The Xp refers to the quantum number
associated with U�1�X. The generator of U�1�X commutes
with the matrices of SU�3�L; hence, it should take the form
XpI3�3. The value of Xp is related to the representations of
SU�3�L and the cancellation of anomalies. On the other
hand, this fermionic content shows that the left-handed
multiplets lie in either the 3 or 3	 representations.

B. Chiral anomalies with � arbitrary

The fermion spectrum in the SM consists of a set of three
generations with the same quantum numbers; the origin of
these three generations is one of the greatest puzzles of the
model. On the other hand, the fermionic spectrum of the
331 models must contain such generations, which can be
fitted in subdoublets SU�2�L � SU�3�L according to the
TABLE I. Fermionic content of SU�3�L �U�1�X obtained by requ
generation, and no more than one right-handed singlet for each righ
shown in Eqs. (2.1) and (2.2). m and n label the quark and lepton lef
see Eq. (2.2).

Quarks Q 

q�m�
L �

U�m�

D�m�

J�m�

0B@
1CA
L

:3
U�m�
R :1

D�m�
R :1
J�m�
R :1

2
3

� 1
3

1
6 �

��
3

p
�
2

0B@
1CA

1
6

q�m	�
L �

D�m	�

�U�m	�

J�m	�

0B@
1CA
L

:3	

D�m	�
R :1

U�m	�
R :1
J�m	�
R :1

� 1
3

2
3

1
6 �

��
3

p
�
2

0B@
1CA

1
6

Leptons Q 

‘�n�
L �

%�n�

e�n�

E�n�

0B@
1CA
L

:3
%�n�
R :1
e�n�
R :1
E�n�
R :1

0
�1

� 1
2 �

��
3

p
�
2

0B@
1CA

�

‘�n	�
L �

e�n	�

�%�n	�

E�n	�

0B@
1CA
L

:3	

e�n	�
R :1
%�n	�
R :1
E�n	�
R :1

�1
0

� 1
2 �

��
3

p
�
2

0B@
1CA

�
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structure given by Eq. (2.1). Nevertheless, in such models
the number of fermion multiplets and their properties are
related by the condition of cancellation of anomalies. As a
general starting point, we could introduce sets of multiplets
with different quantum numbers; this means that each
generation can be represented as a set of triplets with
particles of the SM plus exotic particles. Even in models
of only one generation the structure of the spectrum could
be complex, appearing more than one triplet with different
quantum numbers [7]. These kinds of models exhibit a
large quantity of free parameters and of exotic charges.
Such free parameters increase rapidly when more than one
generation is introduced; this leads to a loss of predictabil-
ity in the sense that we have to resort to phenomenological
arguments to reduce the arbitrariness of the infinite pos-
sible spectra. In the present work, we intend to study the
331 models keeping certain generality but demanding a
fermionic spectrum with a minimal number of exotic par-
ticles. So we shall take all those models with N leptonic
generations and M quark generations, by requiring to
associate only one lepton and one quark SU�3�L multiplet
for each generation, and at most one right-handed singlet
associated with each left-handed fermion. Based on these
criteria we obtain the fermionic spectrum (containing the
SM spectrum) displayed in Table I for the quarks and
leptons, where the definition of the electric charge,
Eq. (1.1), has been used demanding charges of 2/3 and
�1=3 to the up- and down-type quarks, respectively, and
charges of �1; 0 for the charged and neutral leptons, in
order to ensure a realistic scenario. In general, it is possible
to have in a single model any of the representations de-
scribed by Eq. (2.1), where each multiplet can transform
iring only one lepton and one quark SU�3�L multiplet for each
t-handed field. The structure of left-handed multiplets is the one
t-handed triplets, respectively, while m	, n	 label the antitriplets;

X 
2
3

� 1
3

�
��
3

p
�

2

XL
q�m� � 1

6 � �
2
��
3

p

XR
U�m� � 2

3

XR
D�m� � � 1

3

XR
J�m� � 1

6 �
��
3

p
�

2

� 1
3

2
3

�
��
3

p
�

2

XL
q�m	�

� � 1
6 � �

2
��
3

p

XR
D�m	�

� � 1
3

XR
U�m	�

� 2
3

XR
J�m	�

� 1
6 �

��
3

p
�

2

X 

0
�1
1
2 �

��
3

p
�

2

XL
‘�n� � � 1

2 � �
2
��
3

p

XR
%�n� � 0

XR
e�n� � �1

XR
E�n� � � 1

2 �
��
3

p
�
2

�1
0

1
2 �

��
3

p
�

2

XL
‘�n	�

� 1
2 � �

2
��
3

p

XR
e�n	�

� �1

XR
%�n	�

� 0

XR
E�n	�

� � 1
2 �

��
3

p
�
2
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differently. Indeed, in the most general case, each multiplet can transform as8>>>>>><>>>>>>:

q�m�
L ; q�m	�

L :m � 1; 2; . . . ; k|�����{z�����}
3k triplets

; m	 � k� 1; k� 2; . . . ;M|���������������{z���������������}
3�M�k� antitriplets

‘�n�
L ; ‘

�n	�
L :n � 1; 2; . . . ; j|�����{z�����}

j triplets

; n	 � j� 1; j� 2; . . . ; N|���������������{z���������������}
N�j antitriplets

(2.2)
where the first 3kth multiplets of quarks lie in the 3
representation while the latter 3�M� k� lie in the 3	

representation for a total of 3M quark left-handed multip-
lets. The factor 3 in the number of quark left-handed
multiplets owes to the existence of three colors. Similarly
the first j left-handed multiplets of leptons are taken in the
representation 3 and the latter �N � j� are taken in the 3	
035018
representation, for a total of N leptonic left-handed
multiplets.

Now we proceed to analyze the restrictions over the
fermionic structure of Eq. (2.2) from the criterion of can-
cellation of anomalies. When we demand for the fermionic
SU�3�c representations to be vectorlike, we are left with the
following nontrivial triangular anomalies
�SU�3�c�
2 �U�1�X ! A1 � �3XLq �

X
singlet

XRq ;

�SU�3�L�
3 ! A2 �

1

2
A)�*;

�SU�3�L�
2 �U�1�X ! A3 �

X
r

��XL
‘�r� � � 3

X
s

��XL
q�s� �;

�Grav�2 �U�1�X ! A4 � 3
X
r

��XL
‘�r� � � 9

X
s

��XL
q�s� � � 3

X
singlet

�XRq � �
X

singlet

�XR‘ �;

�U�1�X�
3 ! A5 � 3

X
r

��XL
‘�r� �

3 � 9
X
s

��XL
q�s� �

3 � 3
X

singlet

�XRq �3 �
X

singlet

�XR‘ �3

(2.3)
where the sign � or � is chosen according to the repre-
sentation 3 or 3	. The condition of cancellation of these
anomalies imposes, under some circumstances, relations
between the values of N;M; j; k and the � parameter.
Furthermore, the requirement for the model to be SU�3�c
vectorlike demands the presence of right-handed quark
singlets, while right-handed neutral lepton singlets are
optional.

1. The �SU�3�c�
2 �U�1�X anomaly

When we take into account that the fermionic triplets in
Eq. (2.1) must contain the SM generations, i.e. they contain
subdoublets SU�2�L � SU�3�L, we obtain relations among
the X and � numbers that cancel this anomaly. In Table I,
we write down these relations in the third column, by
assuming that the SU�2�L subdoublets lie in the two upper
components of the triplets.

2. The �SU�3�L�
3 anomaly

The cancellation of the �SU�3�L�
3 anomaly demands for

the number of  ̂L multiplets to be the same as the number
of  ̂	

L ones. Taking into account the number of quark and
lepton multiplets defined in Eq. (2.2), we arrive at the
condition

3k� j � 3�M� k� � �N � j�

or writing it properly
N�2j��3�M�2k�; 0� j�N; 0�k�M: (2.4)

The first inequality expresses the fact that the models are
limited from representations in which all the left-handed
multiplets of leptons transform under 3	 (when j � 0), to
representations in which all left-handed lepton multiplets
transform under 3 (when j � N). An analogous situation
appears for the quarks representations that leads to the
second inequality.

3. The �SU�3�L�
2 �U�1�X anomaly

Applying the definition in Eq. (2.2), we make an explicit
separation between 3 and 3	 representations, from which
this anomaly reads

A3 �
Xj
n�1

�XL
‘�n� � �

XN
n	�j�1

��XL
‘�n	�

� � 3
Xk
m�1

�XL
q�m� �

� 3
XM

m	�k�1

��XL
q�m	�

� � 0:

On the other hand, using the particle content of Table I, the
equation takes the form

�
3

2
M�

3
���
3

p
�

2
�M� 2k� � �

3

2
N �

���
3

p
�

2
�N � 2j�:

(2.5)
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4. The �Grav�2 �U�1�X anomaly

Taking into account Eq. (2.2), this anomaly takes the form

A4 � 3
Xj
n�1

�XL
‘�n� � � 3

XN
n	�j�1

��XL
‘�n	�

� � 9
Xk
m�1

�XL
q�m� � � 9

XM
m	�k�1

��XL
q�m	�

� �
Xj
n�1

�QR
%�n� �QR

e�n� �QR
E�n� �

�
XN

n	�j�1

�QR
%�n	�

�QR
e�n	�

�QR
E�n	�

� � 3
Xk
m�1

�QU�m� �QD�m� �QJ�m� � � 3
XM

m	�k�1

�QU�m	� �QD�m	� �QJ�m	� � � 0;
where the leptonic right-handed charges can be present or
absent. The neutrino has null charge so that the presence
(or absence) of right-handed neutrinos does not affect the
anomalies, but they are important when choosing Yukawa
terms for the masses. On the other hand, e�n� possesses a
charge ��1�, while E�n� and E�n	� can, in general, possess
charges different from zero. We shall call them generically
charged leptons. Since charged singlets affect the anoma-
lies, we should set up a notation to specify whether we
choose charged right-handed leptonic singlets or not.
Taking into account that we permit at most one right-
handed singlet per each left-handed fermion we define

!‘ �

�
1 for models with charged ‘R;
0 for models without charged ‘R:

(2.6)

It is applied to each right-handed leptonic charge, in such a
way that the cancellation of this anomaly leads to the
condition
035018
�
3

2
N �

���
3

p
�
2

�N � 2j� � �j!e�1� � j
�
1

2
�

���
3

p
�
2

�
!E�1�

� �N � j�!e�j�1� � �N � j�

�

�
1

2
�

���
3

p
�

2

�
!E�j�1� ; (2.7)
where we have replaced the values of Q ; X given in
Table I. We should note that Eq. (2.7) is a relation about
!‘; therefore, it imposes restrictions over the possible
choices of right-handed charged leptonic singlets.
Finally, from Eq. (2.7) and Table I, we see that when the
E�n� or E�n	� fields are neutral (i.e. � � �1=

���
3

p
for E�j�1�

and E�1�, respectively), the corresponding singlets do not
contribute to the equation of anomalies like in the case of
the neutrinos.
5. �U�1�X�
3 anomaly

In this case we have

A5 � 3
Xj
n�1

�XL
‘�n� �

3 � 3
XN

n	�j�1

��XL
‘�n	�

�3 � 9
Xk
m�1

�XL
q�m� �

3 � 9
XM

m	�k�1

��XL
q�m	�

�3 � 3
Xk
m�1

��QU�m� �3 � �QD�m� �3 � �QJ�m� �3�

� 3
XM

m	�k�1

��QU�m	� �3 � �QD�m	� �3 � �QJ�m	� �3� �
Xj
n�1

��QR
%�n� �

3 � �QR
e�n� �

3 � �QR
E�n� �

3�

�
XN

n	�j�1

��QR
%�n	�

�3 � �QR
e�n	�

�3 � �QR
E�n	�

�3� � 0:

Using Eq. (2.6) and Table I, we get

�
3

4

�
1

2
N �M

�
�

3
���
3

p
�

8
�N � 2j� �

3�2

4

�
1

2
N �M

�
� 9

�
����
3

p

�
3
�
N � 2j
24

�M� 2k
�

� �j!e�1� � j
�
1

2
�

���
3

p
�
2

�
3
!E�1� � �N � j�!e�j�1� � �N � j�

�
1

2
�

���
3

p
�
2

�
3
!E�j�1� (2.8)
which arises as an additional condition for the presence of
right-handed charged leptonic singlets.

C. General fermionic structure

Equations (2.4), (2.5), (2.7), and (2.8) appear as condi-
tions that guarantee the vanishing of all the anomalies,
obtaining a set of four equations [plus the two inequalities
of Eq. (2.4)] whose variables to solve for areN,M, j, k, and
�. Taking Eqs. (2.4) and (2.5), we find the following
solutions:

N � M; j� 3k � 2N: (2.9)
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TABLE III. Possible representations according to Table II.
Each value of q�i� represents three left-handed quark multiplets
because of the color factor.

N Allowed representations

2
‘�1�:3
‘�2�:3	

q�1�:3
q�2�:3	

3
‘�1�; ‘�2�; ‘�3�:3	

q�1�; q�2�:3
q�3�:3	

‘�1�; ‘�2�; ‘�3�:3
q�3�:3

q�1�; q�2�:3	

4

‘�1�; ‘�2�:3
‘�3�; ‘�4�:3	

q�1�; q�2�:3
q�3�; q�4�:3	

5

‘�5�:3
‘�1�; ‘�2�; ‘�3�; ‘�4�:3	

q�3�; q�4�; q�5�:3
q�1�; q�2�:3	

‘�1�; ‘�2�; ‘�3�; ‘�4�:3
‘�5�:3	

q�1�; q�2�:3
q�3�; q�4�; q�5�:3	

6

‘�1�; ‘�2�; ‘�3�;
‘�4�; ‘�5�; ‘�6� :3	

q�1�; q�2�; q�5�; q�6�:3
q�3�; q�4�:3	

‘�1�; ‘�2�; ‘�3�;
‘�4�; ‘�5�; ‘�6� :3

q�3�; q�4�:3
q�1�; q�2�; q�5�; q�6�:3	

‘�1�; ‘�2�; ‘�3�:3
‘�4�; ‘�5�; ‘�6�:3	

q�1�; q�2�; q�5�:3
q�3�; q�4�; q�6�:3	
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This means that the number of left-handed quark multiplets
(3M) must be 3 times the number of left-handed leptonic
multiplets (N). Moreover, the number of leptonic triplets in
the representation 3 (j) plus the number of quark triplets in
the representation 3 (3k) must be twice the number of left-
handed leptonic multiplets (2N) i.e. an even number. In
addition, we can find, by combining the two equations in
(2.9), that the number of lepton and quark left-handed
multiplets in the 3	 representation must also be equal to
2N. The solutions in Eqs. (2.9) are represented as restric-
tions over the integer values of j and k according to the
number of left-handed multiplets (4N). Table II illustrates
some particular cases.

It is important to note that there are only some possible
ways to choose the number of triplets and antitriplets for
a given number of multiplets. Additionally, there is no
solution for models with N � 1 under the scheme of
using one multiplet per generation; so we have the extra
condition N � 2. In this manner, the possible representa-
tions according to Table II depend on the number of
multiplets 4N, as it is shown in Table III. We can see that
models with N � 2 are possible if the multiplets of quarks
and leptons transform in a different way. For N � 3, we
have two possible solutions. In one of them all the lepton
multiplets transform in the same way; two of the quark
multiplets transform the same and the other transforms
as the conjugate. The second solution corresponds to
the conjugate of the first solution. For N � 4 the quark
and leptonic representations are vectorlike with respect
to SU�3�L as Table III displays. In this case we will
have one exotic fermion family, q�i� and l�i�, which
might be a replication of the heavy or light families of
the SM. Such choice could be useful to generate new
ansatz about mass matrices for the fermions of the SM.
In this way, it is possible to add new exotic generations,
though not arbitrarily, but respecting the conditions of
Table III.

As for the solution (2.8) with N � M, it can be rewritten
as
TABLE II. Solutions of Eqs. (2.9) represented a
�j� and of quark triplets �3k� according to the nu

N 0 � j � N 0 � 3k � 3

1 0, 1 0, 3
2 0, 1, 2 0, 3, 6
3 0, 1, 2, 3 0, 3, 6, 9

4 0, 1, 2, 3, 4 0, 3, 6, 9, 1
5 0, 1, 2, 3, 4, 5 0, 3, 6, 9, 1

6 0, 1, 2, 3, 4, 5, 6 0, 3, 6, 9, 1
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3

4
�1 � �2�

�
�
3

2
N �

���
3

p
�
2

�N � 2j�
�

� �j!e�1� � j
�
1

2
�

���
3

p
�
2

�
3
!E�1� � �N � j�!e�j�1�

� �N � j�
�
1

2
�

���
3

p
�
2

�
3
!E�j�1� ; (2.10)

and using (2.7), we find

j�!e�1� � !E�1� � � �j� N��!e�j�1� � !E�j�1� �: (2.11)
s restrictions on the number of lepton triplets
mber of left-handed multiplets �4N�.

N Solution for j� 3k � 2N

no solution
j � 1; k � 1
j � 0; k � 2
j � 3; k � 1

2 j � 2; k � 2
2, 15 j � 1; k � 3

j � 4; k � 2
2, 15, 18 j � 0; k � 4

j � 3; k � 3
j � 6; k � 2
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TABLE IV. Solutions for Eqs. (2.7) and (2.11) that arise when all possible combinations of !‘ defined by Eq. (2.6) are taken. In the
last column, we mark with � the cases that are ruled out by the criterion of conjugation, while for the cases marked with �, such
criterion does not give additional restrictions.

3
!e�1�!E�1�

3	

!e�j�1�!E�j�1�

Solution for Eq. (2.7) Solution for Eq. (2.11) Combined solutions With conjugation criterion

0 0 0 0 � � � N
N�2j�

���
3

p
8 N, j � � � N

N�2j�
���
3

p
� �

���
3

p
; j � 0

� � �
���
3

p
; j � N

0 0 0 1 � � ��2N�j
j � 1��

3
p N � j � � �

���
3

p
�

0 0 1 0 � � �N�2j
N�2j�

1��
3

p N � j � � �
���
3

p
�

0 0 1 1 � � �
���
3

p
;8 j � 0

8 �; j � 0
8 N, j � � �

���
3

p
;8 j � 0

8 �; j � 0
�

0 1 0 0 � � �3N�j
N�j �

1��
3

p j � 0;8 N � �
���
3

p
�

0 1 0 1 N � 0;8 j; � N � 0;8 j� 8 � �

0 1 1 0 � � �N�j
N�j�

1��
3

p N � 2j � �
���
3

p
�

0 1 1 1 j � 0;8 N;� j � 0;8 N 8 � � � �1=
���
3

p

1 0 0 0 � � �3N�2j
N�2j �

1��
3

p j � 0;8 N � �
���
3

p
�

1 0 0 1 � � ��2N�j
j � 1��

3
p N � 2j � � �

���
3

p
�

1 0 1 0 � � � N
N�2j�

1��
3

p N � 0;8 j� � � 0 �

1 0 1 1 � � �1��
3

p ;8 j � 0

8 �; j � 0

j � 0;8 N 8 � �

1 1 0 0 � �
���
3

p
;8 j � N

8 �; j � N
8 N, j � �

���
3

p
;8 j � N

8 �; j � N
�

1 1 0 1 N � j;8 � N � j 8 � � � 1=
���
3

p

1 1 1 0 � � 1��
3

p ;8 j � N
8 �; j � N

N � j 8 � �

1 1 1 1 8 N; j; � 8 N; j 8 � if j � 0 ) � � �
���
3

p
,

if j � N ) � �
���
3

p

TABLE V. Structure of leptons for the structure of singlets
given by �!e�1� ;!E�1� ;!e�j�1� ;!E�j�1� � � �0; 1; 1; 1�.

Leptons Q 

no triplets 3 no charge
%�n�
R :1 0
E�n�
R :1 � 1

2 �
��
3

p
�
2

‘�n	�
L �

e�n	�

�%�n	�

E�n	�

0B@
1CA
L

:3	

�1
0

� 1
2 �

��
3

p
�
2

0B@
1CA

e�n	�
R :1
%�n	�
R :1
E�n	�
R :1

�1
0

� 1
2 �

��
3

p
�
2
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In this way, the solutions (2.7) and (2.11) represent restric-
tions over the singlet sector that are related with the values
of N, j, and �. All the possible combinations of !‘ that
arise when the definition (2.6) is applied lead to the solu-
tions summarized in Table IV. Nevertheless, not all the 16
cases obtained correspond to physical solutions. First of all
� � 0 is not permitted. Additionally, N � 2, from which
the two solutions marked with � on the fourth column of
Table IV are forbidden. On the other hand, there is another
important criterion to select possible physical models,
which we shall call the criterion of conjugation. The
charged leptons are necessarily described by Dirac’s spin-
ors; thus we should ensure for each charged lepton to
include its corresponding conjugate in the spectrum in
order to build up the corresponding Dirac Lagrangian. In
the case of the exotic charged leptons the conjugation
criterion fixes their electric charges and so the possible
values of �, from which additional restrictions for the
models are obtained. As an example, for
�!e�1� ;!E�1� ;!e�j�1� ;!E�j�1� � � �0; 1; 1; 1� the cancellation
of anomalies leads to j � 0 (see ninth row of Table IV);
then, according to Table I, the structure of charged leptons
is shown in Table V. Since the number of leptons having
035018
nonzero charge must be even, one of the exotic leptons
must be neutral. Therefore, we have the following possi-
bilities: (1) Demanding E�n�

R to be neutral we are led to� �

�1=
���
3

p
; now if we assume the scheme of conjugation

e�n	�
L � e�n	�

R ;E�n	�
L � E�n	�

R no further restrictions are ob-
tained. (2) Assuming E�n	�

L neutral yields � � 1=
���
3

p
, but

all possible combinations of conjugation between the re-
maining charged fields are forbidden. For instance, the
-7



TABLE VI. Solutions for N � 2j � 2k � 2.

!e�1� !E�1� !e�j�1� !E�j�1� Solution

1 0 0 1 � � �
���
3

p

0 1 1 0 � �
���
3

p
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scheme E�n�
R � e�n	�

L ;E�n	�
R � e�n	�

R yields � � 1=
���
3

p
and

� �
���
3

p
, respectively, leading to a contradiction.

(3) Finally, for E�n	�
R neutral we find � � 1=

���
3

p
and no

consistent conjugation structures are possible. In summary,
for this singlet structure the only value of� consistent with
the conjugation criterion is � � 1=

���
3

p
. This restriction

should be added to the ones obtained with cancellation of
anomalies and yields the solutions shown in the ninth row,
last column of Table IV. A similar procedure is done to
obtain the restrictions written in the last column of
Table IV. The cases marked with � in the last column
are forbidden, while for the cases marked with � the con-
jugation criterion provides no further restrictions with
respect to the ones obtained from cancellation of
anomalies.

The solutions that survive in Table IVare combined with
the ones obtained in Tables II and III [or more generally
with Eqs. (2.9)]. The solutions that cancel anomalies and
fulfill the conjugation criterion are summarized in
Tables VI and VII.

These solutions determine the fermionic structure of the
model according to the number of leptonic charged right-
handed singlets. However, cancellation of anomalies does
035018
not impose any restriction about the right-handed neutral
leptonic singlets. Table VI only admits an even number of
left-handed leptonic multiplets (N), while Table VII per-
mits, in principle, any number of them as long as N � 2. It
is observed that there are models that fix the values of�, so
that they are possible only for certain values of the quan-
tum numbers. However, in three of the cases described in
Table VII, there are solutions for � arbitrary.

For the sake of completeness, we shall elaborate about
the complications of making an analysis of the most gen-
eral case where we allow various left-handed multiplets
that transform in an identical way with respect to SU�3�L,
but with different quantum numbers with respect to U�1�X.
In Eq. (2.2), the number of left-handed multiplets is en-
larged to include the fact that each representation of
SU�3�L is formed by a subset of several left-handed mul-
tiplets:
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q�m�:m � 1; . . . ; m1|�����{z�����}
3m1 triplets

1st generation

;m1 � 1; . . . ; 2m1|������������{z������������}
3m1 triplets

2nd generation

; . . . ; . . . ; �k� 1�m1 � 1; . . . ; km1|��������������������{z��������������������}
3m1 triplets
kth generation

q�m	�:m	 � km1 � 1; . . . ; km1 �m	
1|��������������������{z��������������������}

3m	
1
antitriplets

�k�1�th generation

; km1 �m	
1 � 1; . . . ; km1 � 2m	

1|���������������������������{z���������������������������}
3m	

1
antitriplets

�k�2�th generation...

; . . . ;

. . . ; �M� 1�m	
1 � 1; . . . ;Mm	

1|����������������������{z����������������������}
......

3m	
1

antitriplets

Mth generation

‘�n�:n � 1; . . . ; n1|����{z����}
n1 triplets

1st generation

; n1 � 1; . . . ; 2n1|�����������{z�����������}
n1 triplets

2nd generation

; . . . ; �j� 1�n1 � 1; . . . ; jn1|������������������{z������������������}
n1 triplets

jth generation

‘�m	�:m	 � jn1 � 1; . . . ; jn1 � n	
1|������������������{z������������������}

n	
1

antitriplets

�j�1�th generation

; jn1 � n	
1 � 1; . . . ; jn1 � 2n	

1|�������������������������{z�������������������������}
n	
1

antitriplets

�j�2� generation

; . . . ;

. . . ; �N � 1�n	
1 � 1; . . . ; Nn	

1|��������������������{z��������������������}
...

n	
1
antitriplets

Nth generation

(2.12)
where 3m1, 3m	
1, n1, and n	

1 are the total number of triplets
and antitriplets for each generation of quarks (including the
color) and the total number of triplets and antitriplets for
each generation of leptons, respectively. k and j are the
number of generations of quarks and leptons that transform
according to 3, and �M� k�, �N � j� are the number of
generations under 3	. In this way, the number of parame-
ters is increased, havingN,M, n1, n	

1,m1,m	
1, j, k, and� as
free parameters, restricted by only four equations of can-
cellation of anomalies. Since the number of triplets per
generation (characterized by the indices n1; n	

1; m1; m
	
1) has

no upper limit, it is always possible to choose a convenient
number of them to cancel anomalies, allowing the entrance
of an arbitrary number of exotic particles with no reasons
but purely phenomenological ones. Therefore, such models
lose certain naturalness which is precisely what we look for
-8



TABLE VIII. Solutions for � and the fermionic structure with N � 3.

!e�1�!E�1� !e�j�1�!E�j�1� Solution

0 0 0 0 � �
���
3

p
; j � 0; k � 2 � � � �

���
3

p
; j � 3; k � 1 �

0 0 1 1 � � �
���
3

p
; j � 3; k � 1 � 8 �; j � 0; k � 2 �

0 1 1 1 � � �1=
���
3

p
; j � 0; k � 2 �

1 1 0 0 � �
���
3

p
; j � 0; k � 2 } 8 �; j � 3; k � 1 �

1 1 0 1 � � 1=
���
3

p
; j � 3; k � 1 �

1 1 1 1 � � �
���
3

p
; j � 0; k � 2 � � �

���
3

p
; j � 3; k � 1 �

TABLE VII. Solutions for N � j�3k
2 � 2, 0 � k � N.

!e�1� !E�1� !e�j�1� !E�j�1� Solution

0 0 0 0 � �
���
3

p
; j � 0

� � �
���
3

p
; j � N

0 0 1 1 � � �
���
3

p
;8 j � 0

8 �; j � 0
1 1 0 0 � �

���
3

p
;8 j � N

8 �; j � N
0 1 1 1 j � 0, 8 N, � � �1=

���
3

p

1 1 0 1 j � N, � � 1=
���
3

p

1 1 1 1 8 �;8 N; j � 0; N
if j � 0 ) � � �

���
3

p

if j � N ) � �
���
3

p
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when we build up a model from basic principles with a
minimum of free parameters.

For the case N � 3 in Table VII, solutions exist only
for j � 0 or 3 (see Table II). These solutions are displayed
in Table VIII. It should be emphasized that the models
without leptonic right-handed singlets (marked with �)
are divided into two according to the value of j to be 0
or 3, which are precisely the models discussed by Pleitez
and Frampton [8,9], where � � �

���
3

p
. The solutions

marked with � are not discarded by anomalies nor
conjugation, but lead to more than one right-handed singlet
for each left-handed field. On the other hand, the solutions
marked with � and } give no restriction on the number
of right-handed leptonic singlets associated with 3	 and
3 representations, respectively. Finally, the solutions
marked with � are the only ones that permit arbitrary
values of �.

As for the two models with � arbitrary, they exist only if
leptonic singlets associated with all the particles in either
representation are introduced. In the framework of these
two solutions, the particular cases of � � �1=

���
3

p
are

discussed by Long in Refs. [10,23], respectively.
It is interesting to note that, as well as the models of

Pleitez, Frampton, and Long (with � � �
���
3

p
;�1=

���
3

p
),

models with other different values of � arise. On the other
hand, additional models with � � �

���
3

p
;�1=

���
3

p
but with

different structures of right-handed lepton singlets appear
as well.
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III. HIGGS POTENTIAL AND SPECTRUM FOR
� ARBITRARY

A. Potential

The scalar sector of the 331 models has also been
studied in the literature [21,24]. The most important fea-
tures of the scalar potential are [21]
(i) T
-9
he scalars should lie in either the singlet, triplet,
antitriplet, or sextet representation of SU�3�L.
(ii) F
or the first transition 331 ! 321 we could have
triplet, antitriplet, or sextet representations. The
vacuum alignments for triplet and antitriplet repre-
sentations are indicated in Table IX for � �

�1=
���
3

p
. While for the sextet representation, the

vacuum alignment reads

hSiji0 �

0 0 0
0 0 0
0 0 %6

264
375:

These vacuum expectation values (VEVs) induce
the masses of the exotic fermions.
(iii) I
n the second transition 321 ! 31, triplets, antitrip-
lets, and sextets are also allowed. For the particular
case of triplet (or antitriplet) representations we get
that pairs of solutions are obtained according to the
value of �. Both multiplets are necessary to give
masses to the quarks of type up and down, respec-



TABLE
sextets,

�

h/iji0

0@
X/ij �

TABLE IX. Vacuum alignments for the Higgs triplets neces-
sary to get the SSB scheme: 31 ! 21 ! 1 for � � �1=

���
3

p
. In

the case of Higgs antitriplets, we find the same structure but
replacing 1; /; 0 ! 1	; /	; 0	.

1st SSB � � � 1��
3

p

h1i0

0
0
%13

0B@
1CA

X1
���
3

p

2nd SSB h/i0

0
%/2

0

0@ 1A
X/

1
2 � �

2
��
3

p

h0i0

%01

0
0

0@ 1A
X0 � 1

2 � �
2
��
3

p
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tively. So in the second transition, we have to
introduce two triplets (or antitriplets) / and 0
associated with each pair of solutions. We show
in Table IX the vacuum structure of this pair of
triplets for � � �1=

���
3

p
. On the other hand, the

possible vacuum structures for the second transi-
tion with Higgs sextets for � � �1=

���
3

p
;�

���
3

p
are

shown in Table X.

(iv) I
n some scenarios the Higgs sextet is necessary to

give masses to all leptons [4,22]. ���p ���p

In the case of � arbitrary (different from � 3;�1= 3),

and taking a scalar content of three Higgs triplets, the most
general Higgs potential, renormalizable and SU�3�L �
U�1�X invariant, is [21]

VHiggs��2
11

i1i��2
2/

i/i��2
30

i0i�f�1i/j0k"ijk�h:c:�

�41�1
i1i�

2�42�/
i/i�

2�43�0
i0i�

2

�441
i1i/

j/j�451
i1i0

j0j�46/
i/i0

j0j

�471
i0i0

j1j�481
i/i/

j1j�490
i/i/

j0j: (3.1)

As it was mentioned above, in some models the choice of
three triplets is not enough to provide all leptons with
masses [4,22]. Hence, an additional sextet is introduced.
The choice of one of these solutions depends on the
fermionic sector to which we want to give masses. The
introduction of a sextet S leads us to additional terms that
X. Vacuum alignments for the second SSB with Higgs
and for � � �1=

���
3

p
;�

���
3

p
.

� � 1��
3

p ;�
���
3

p

%1 0 0
0 0 0
0 0 0

1A 0 0 %3
0 0 0
%3 0 0

0@ 1A 0 0 0
0 %4 0
0 0 0

0@ 1A 0 0 0
0 0 %5
0 %5 0

0@ 1A
1
2 � �

2
��
3

p � 1
4 � �

4
��
3

p 1
2 � �

2
��
3

p 1
4 � �

4
��
3

p
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should be added to the Higgs potential of Eq. (3.1),

V�S� � �2
5S

ijSij � SijSij�4151
k1k � 416/

k/k

� 4170
k0k� � 4181

iSijS
jk1k � 419/

iSijS
jk/k

� 4200
iSijS

jk0k � 421�S
ijSij�

2 � 422S
ijSjkS

klSli:

(3.2)
B. Mass spectrum for � arbitrary

In this section we analyze the general case for � arbi-
trary (� � �

���
3

p
;�1=

���
3

p
). With three Higgs triplets, it is

obtained the potential given by Eq. (3.1), which correspond
to the solution shown in Table IX for � � �1=

���
3

p
. In

Table XI we show the fields explicitly with their corre-

sponding charges, where Q1 � 1
2 �

��
3

p
�

2 and Q2 � � 1
2 ���

3
p
�

2 refer to the electric charge of the fields, which satisfy
the property Q1 �Q2 � 1. When we apply the minimum
conditions, the following relations are obtained:

�2
1 � �241%21 � 44%2/ � 45%20 � f

%0%/
%1

;

�2
2 � �242%2/ � 44%21 � 46%20 � f

%0%1
%/

;

�2
3 � �243%20 � 45%21 � 46%2/ � f

%/%1
%0

;

and we replace them again in the scalar potential to find the
physical spectrum of the fields and their masses. From the
second derivatives with respect to the fields, we obtain the
mass matrices M2

55 for the imaginary sector, M2
66 for the

scalar real sector, and three decoupled matrices M2
7 for the

scalar charged sector.
In order to obtain the eigenvalues and eigenvectors we

shall suppose that there is a strong hierarchy between the
scales of the first and the second transition, from which it is
natural to assume

h1i0 � h/i0; h0i0 ) j%1j>>j%/j; j%0j: (3.3)

In addition, since some of the Higgs bosons of the first
transition are proportional to f%1 we shall make the as-
sumption

jfj � j%1j (3.4)

where f is the trilinear coupling constant defined in the
scalar potential equation (3.1). This assumption prevents
the introduction of another scale different from the ones
defined by the two transitions. In our approach we shall
keep only the matrix elements that are quadratic in %1, i.e.
the terms proportional to %21; f%1, unless otherwise indi-
cated. Under these approximations, the mass matrices and
eigenvalues are written in explicit form in Eqs. (A1)–(A16)
in Appendix A. Summarizing we get all the scalar bosons
described in Table XII.
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TABLE XII. Spectrum of scalars for � � �1=
���
3

p
;�

���
3

p
.

Scalar fields Square masses Feature

70
2 ’ �51 M2

70
2
� 0 Goldstone associated with Z0

�

70
3 ’ S�5/ � C�50 M2

70
3
� 0 Goldstone associated with Z�

7�
1 � S�/

�
1 � C�0

�
2 M2

7�
1

� 0 Goldstone associated with W�
�

7�Q1
2 ’ 1�Q1

1 M2
7�

2
� 0 Goldstone associated with K�Q1

�

7�Q2
3 ’ �1�Q2

2 M2
7�

3
� 0 Goldstone associated with K�Q2

�

h01 ’ C�5/ � S�50 M2
h01

’ �2f%1�
%0
%/

�
%/
%0

� Higgs

h03 ’ S�6/ � C�60 M2
h03

’ 8
%20�%2/
� �42%

4
/ � 246%

2
/%

2
0 � 43%

4
0�

Higgs

h04 ’ �C�6/ � S�60 M2
h04

’ �2f%1�
%0
%/

�
%/
%0

� Higgs

h05 ’ 61 M2
h0
5

’ 841%
2
1 Higgs

h�Q1
1 � 0�Q1

3 M2
h�
1

’ 47%21 � f%1
%/
%0

Higgs

h�
2 � C�/

�
1 � S�0

�
2 M2

h�
2

’ �f%1�
%0
%/

�
%/
%0

� Higgs

h�Q2
3 � /�Q2

3 M2
h�
3

’ 48%
2
1 � f%1

%0
%/

Higgs

TABLE XI. Quantum numbers of three scalar triplets for any � � �1=
���
3

p
.

Q( Y( X( h(i0

1 �

1�Q1
1

1�Q2
2

61 � i51

0B@
1CA ��12 �

��
3

p
�
2 �

��� 1
2 �

��
3

p
�

2 �

0

0BB@
1CCA �

��
3

p
�

2

�
��
3

p
�

2
0

0BB@
1CCA ���

3
p

0
0
%1

0B@
1CA

/ �

/�
1

6/ � i5/
/�Q2
3

0B@
1CA �1

0
��� 1

2 �
��
3

p
�

2 �

0B@
1CA � 1

2
� 1

2

��� 1
2 �

��
3

p
�
2 �

0B@
1CA 1

2 � �
2
��
3

p

0
%/
0

0@ 1A

0 �

60 � i50
0�
2

0�Q1
3

0B@
1CA 0

�1
��12 �

��
3

p
�
2 �

0B@
1CA � 1

2
� 1

2

��12 �
��
3

p
�
2 �

0B@
1CA � 1

2 � �
2
��
3

p

%0
0
0

0@ 1A
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IV. VECTOR SPECTRUM WITH � ARBITRARY

The gauge bosons associated with the SU�3�L group
transform according to the adjoint representation and are
written in the form

W��W)
�G)

�
1

2

W3
�� 1��

3
p W8

�

���
2

p
W�
�

���
2

p
KQ1
����

2
p
W�
� �W3

�� 1��
3

p W8
�

���
2

p
KQ2
����

2
p
K�Q1
�

���
2

p
K�Q2
� � 2��

3
p W8

�

26664
37775: (4.1)

Therefore, the electric charge takes the general form

QW !

0 1 1
2 �

��
3

p
�

2

�1 0 � 1
2 �

��
3

p
�

2

� 1
2 �

��
3

p
�

2
1
2 �

��
3

p
�

2 0

26664
37775: (4.2)

As for the gauge field associated with U�1�X, it is repre-
sented as B� � B�I3�3 which is a singlet under SU�3�L
and has no electric charge. From the previous expressions
we see that three gauge fields with charges equal to zero are
035018
obtained, and in the basis of mass eigenstates they corre-
spond to the photon, Z and Z0. Moreover, there are two
fields with charges �1 associated with W�, as well as four
fields with charges that depend on the choice of � (denoted
by K�Q1 and K�Q2). Demanding that the model contains
no exotic charges in this sector is equivalent to setting up
� � �1=

���
3

p
[10], and � � 1=

���
3

p
[21]. It is important to

take into account the scalar sector and the symmetry break-
ings to fix this quantum number, which in turn determine
the would-be Goldstone bosons associated with the gauge
fields, with the same electric charge of the gauge fields that
are acquiring mass in the different scales of breakdown.

A. Charged sector

The masses for W�; K�Q1 ; K�Q2 charged gauge fields
read

M2
W� �

g2

2
�%2/ � %20�; M2

K�Q1
�
g2

2
�%21 � %20�;

M2
K�Q2

�
g2

2
�%21 � %2/�
-11
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where the terms proportional to %21 acquire heavy masses
of the order of the first symmetry breaking. The other fields
acquire a mass proportional to the electroweak scale and
correspond to the gauge fields W�. The mass eigenstates
are given by

W�
� �

1���
2

p �W1
� � iW2

��; K�Q1
� �

1���
2

p �W4
� � iW5

��;

K�Q2
� �

1���
2

p �W6
� � iW7

��: (4.3)

B. Neutral sector

The mass matrix is given in Appendix B. This matrix has
null determinant corresponding to the mass of the photon.
After the proper rotation the mass eigenstates become

A� � SWW3
� � CW

�
�TWW8

� �
����������������������
1 � �2T2

W

q
B�

�
;

Z0
� � �

���������������������������
1 � �2�TW�2

q
W8
� � �TWB�;

Z� � CWW3
� � SW

�
�TWW8

� �
����������������������
1 � �2T2

W

q
B�

�
:

(4.4)

The corresponding eigenvalues are

M2
A�

� 0; M2
Z0
�

’
2�g2 � �2g02�

3
%21;

M2
Z�

’
g2

2

�
g2 � �1 � �2�g02

g2 � �2g02

�
�%2/ � %20�

(4.5)

where the Weinberg angle is defined (in terms of �) as

SW � sin�W �
g0������������������������������������

g2 � �1 � �2�g02
p ; (4.6)

and g, g0 correspond to the coupling constants of the
groups SU�3�L and U�1�X, respectively. Further, a small
mixing between the Z� and Z0

� could occur getting
035018
Z1� � Z� cos�� Z0
� sin�;

Z2� � �Z� sin�� Z0
� cos�; tan� �

1

) �
���������������
)2 � 1

p ;

) �
�2SWC

2
Wg

02%21 � 3
2SWT

2
Wg

2�%20 � %2/�

gg0T2
W�3S2W��%20 � %2/� � C2

W�%20 � %2/��
: (4.7)

It is interesting to note that from the definition of the
charge in Eq. (1.1), we obtain a matching condition among
the coupling constants, that in turn leads to the following
expression:

g02

g2
�

S2W
1 � S2W�1 � �2�

:

By running the Weinberg angle through renormalization
group equations, we can find a scale to which a singularity
of this quotient appears. In some models and for certain
values of �, this pole could appear at the TeV scale [25].

We point out that when � � �
���
3

p
, we get the same

definitions and diagonalizations of the model of Pleitez
and Frampton [8,9]. The � parameter can be written ex-
plicitly in terms of the exotic charges as � � �2Q1 �

1�=
���
3

p
� �2Q2 � 1�=

���
3

p
, from which it is obtained that,

in general, Q1 �Q2 � 1, so independently of the model
the difference in charges between the charged gauge fields
will be equal to the unity.

V. YANG-MILLS COUPLINGS

In general, the Yang-Mills Lagrangian for SU�3�L �
U�1�Y is given by

L YM ��
1

4
Wi
�%W

�%
i �

1

2
gfijkWi

�%W�jW%k

�
g2

4
fijkfilmW

j
�W�kWl

%W
%m�

1

4
B�%B

�%; (5.1)

where W�%
i � @�W%

i � @%W�
i . After writing this

Lagrangian in terms of the mass eigenstates, the cubic
couplings read
Lcubic � ef�r� p��g)% � �p� q�%g)� � �q� r�)g%�gA%W
�
) W

�
� �Q1ef�r� p��g)% � �p� q�%g)�

� �q� r�)g%�gA%K
�Q1
) K�Q1

� �Q2ef�r� p��g)% � �p� q�%g)� � �q� r�)g%�gA%K
�Q2
) K�Q2

�

� gCWf�p� q��g)% � �q� r�)g%� � �r� p�%g)�gZ�W
�
) W

�
% �

�
gCW
2

�
�2Q1 � 1�eTW

2

�
f�p� q��g)%

� �q� r�)g%� � �r� p�%g)�gZ�K
�Q1
) K�Q1

% �

�
�gCW

2
�

�2Q2 � 1�eTW
2

�
f�p� q��g)% � �q� r�)g%�

� �r� p�%g)�gZ�K
�Q2
) K�Q2

% �

���
3

p
g

2

����������������������
1 � �2T2

W

q
f�q� p��g)% � �r� q�)g%� � �p� r�%g)�gZ0

�K
�Q1
) K�Q1

%

�

���
3

p
g

2

����������������������
1 � �2T2

W

q
f�q� p��g)% � �r� q�)g%� � �p� r�%g)�gZ0

�K
�Q2
) K�Q2

% :

In passing to the space of momenta we associate @� � �ip� and the following assignments of momenta: p� for the
positively charged fields W�

% , K�Q1
% , and K�Q2

% ; q� for the negatively charged fields, i.e. for W�
% , K�Q1

% , K�Q2
% ; finally, r�
-12
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for the neutral fields A%, Z%, Z0
%. It is assumed that all the momenta enter the vertex of interaction and that the sum of them

vanishes. Note that the coupling Z0
�W

�W� does not appear at tree level, because of the form of the fijk structure constant.
Further, the quartic Hermitian couplings are

Lquartic � g2W�
) W�

�

�
�g)�*�1 �W�

* W�
� � K�Q2

* K�Q2
� � � g)�*�2 �S2WA*A� � C2

WZ*Z� � SWCWA*Z��

�
1

2
g��)*3 K�Q1

* K�Q1
�

�
� g2K�Q1

) K�Q1
�

�
�g)�*�1 K�Q1

* K�Q1
� � g)�*�2

�
S2WQ

2
1A*A� �

C2
W

4
�
���
3

p
�T2

W � 1�2Z*Z�

�
SWCWQ1

2
�
���
3

p
�T2

W � 1�A*Z� �

���
3

p
SWQ1

2

����������������������
1 � �2T2

W

q
A*Z0

� �
3

4
�1 � �2T2

W�Z0
*Z0

�

�

���
3

p
CW
4

����������������������
1 � �2T2

W

q
�
���
3

p
�T2

W � 1�Z*Z0
�

��
� g2K�Q2

) K�Q2
�

�
�g)�*�1 K�Q2

* K�Q2
� � g)�*�2

�
S2WQ

2
2A*A�

�
C2
W

4
�
���
3

p
�T2

W � 1�2Z*Z� �
SWCWQ2

2
�
���
3

p
�T2

W � 1�A*Z� �

���
3

p
SWQ2

2

����������������������
1 � �2T2

W

q
A*Z

0
�

�

���
3

p
CW
4

����������������������
1 � �2T2

W

q
�
���
3

p
�T2

W � 1�Z*Z0
� �

3

4
�1 � �2T2

W�Z0
*Z0

�

�
�

1

2
g��)*3 K�Q2

* K�Q2
�

�

�

���
3

p
g2

2
���
2

p
����������������������
1 � �2T2

W

q
g)�*�2 K�Q2

) K�Q1
� W�

* Z
0
� � h:c:�

g2SW
2
���
2

p ��Q1 �Q2�g
)�*�
2 � g��)*3 � g)�*�1 �

� K�Q2
) K�Q1

� W�
* A� � h:c:�

g2CW���
2

p

�
�
���
3

p
�T2

W � 1�

2
g)�*�2 � g)�*�1

�
K�Q2
) K�Q1

� W�
* Z� � h:c:; (5.2)
where g)�*�1 � �2g)�g*� � g)�g*� � g)*g��, g)�*�2 �
�2g)�g*��g)*g���g)�g�*, and g��)*3 �
�2g��g)* � g)�g*� � g)�g�*. These results are in
agreement with Ref. [26] for � �

���
3

p
and Ref. [27] for

� � �1��
3

p .

VI. MODEL FOR N � 3 WITH � ARBITRARY

In Sec. II C, we found that if � � �
���
3

p
;�1=

���
3

p
, there

are only two solutions for the fermionic structure when
N � 3 (the ones marked with � in Table VIII), where the
solutions are the complex conjugate of each other. Then,
we take the option with j � 3 (three lepton triplets), k � 1
(one quark triplet and two antitriplets) valid for all �.
Applying this solution to the fermionic content given in
Table I, we obtain the fermionic spectrum given in
Table XIII. We should note that for this solution, we
must introduce right-handed leptonic singlets associated
035018
with each left-handed lepton (!e�1� � !E�1� � 1) for
Eqs. (2.7) and (2.11) to be accomplished ensuring the
vanishing of the anomalies.

A. Neutral and charged currents

The Dirac Lagrangian contains the couplings between
gauge bosons and fermions, given by

LF � i L@6  L � g LW6  L � g0 LB6 X
L
p L � i R@6  R

� g0 RB6 XRp R

where the sign is chosen according to the representation 3
or 3	, respectively. Since the mass matrices mix the quarks
among each other, the mass basis is different from the
gauge basis. So when we write the Lagrangian in terms
of mass eigenstates we get
L q � eQqjQj*�A�Qj �
g
CW

Qj*��T3PL �QqjS
2
W�Z�Qj �

g���
2

p diL*��Ui
�j�

	W��ujL �
g���
2

p ujL*�W��Ui
�jdiL

�
g0

2TW
qm	*���2T8 � �Qqm	T

2
W)1�PL � 2�Qqm	T

2
WPR�Z

�0qm	 �
g0

2TW
q3*����2T8 � �Qq3T

2
W)2�PL

� 2�Qq3T
2
WPR�Z

�0q3 �
g���
2

p diL*��Ui
�j�

	�n
	

j K
��Q1Um	

7n	Jm	L �
g���
2

p Jm	L*��Um	

7n	 �	K��Q1�jn	Ui
�jdiL

�
g���
2

p J3L*�K
��Q1 tL �

g���
2

p tL*�K
��Q1J3L �

g���
2

p un	L*�K
��Q2Um	

7n	Jm	L �
g���
2

p Jm	L*��Um	

7n	 �	K��Q2un	L

�
g���
2

p J3L*�K
��Q2�j3U

i
�jdiL �

g���
2

p diL*��Ui
�j�

	�3jK
��Q2J3L: (6.1)

The couplings associated with A� and Z� have been written in a SM-like notation, i.e. Qj with j � 1; 2; 3 refers to triplets
in the 3 representation associated with the three generations of quarks.
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TABLE XIII. Fermionic content for N � 3 with � arbitrary. m	 � 1; 2 and j � 1; 2; 3.

Representation Q X 

qm	L �

d; s
�u;�c
J1; J2

0@ 1A
L

3	
� 1

3
2
3

1
6 �

��
3

p
�
2

0B@
1CA XL

q�m	�
� � 1

6 � �
2
��
3

p

dm	R � dR; sR:1
um	R � uR; cR:1
Jm	R � J1R; J2R:1

� 1
3

2
3

1
6 �

��
3

p

2 �

XR
u�m	�

� 2
3

XR
d�m	�

� � 1
3

XR
J�m	�

� 1
6 �

��
3

p

2 �

q3L �

t
b
J3

0@ 1A
L

:3

2
3

� 1
3

1
6 �

��
3

p
�
2

0B@
1CA XL

q�3� � 1
6 � �

2
��
3

p

u3R � bR:1
d3R � tR:1
J3R � J3R:1

� 1
3

2
3

1
6 �

��
3

p
�
2

XRb � � 1
3

XRt � 2
3

XRJ3 � 1
6 �

��
3

p
�

2

‘jL �

%e; %�; %B
e�; ��; B�

E�Q1
1 ; E�Q1

2 ; E�Q1
3

0@ 1A
L

:3
0

�1
� 1

2 �
��
3

p
�

2

0B@
1CA XL

‘�m� � � 1
2 � �

2
��
3

p

�e�
j �R � e�; ��; B�

R :1

E�Q1
j � E�Q1

1 ; E�Q1
2 ; E�Q1

3 :1
�1

� 1
2 �

��
3

p
�
2

XR
e�m� � �1

XREm � � 1
2 �

��
3

p
�

2
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On the other hand, the couplings of the exotic gauge
bosons with the two former families are different from the
ones involving the third family. It is because the third
family transforms differently (see Table XIII). Con-
sequently, there are terms where only the components
m	; n	 � 1; 2 are summed, leaving the third one in a term
apart. qm	 refers to the two triplets of quarks with q1;2 in the
3	 representation and q3 in the 3 representation. Qqm	 are
their electric charges shown in Table XIII. We define )1 �
diag��1; 1=2; 2� and )2 � diag�12 ;�1; 2�. We also have
035018
used the projectors PR;L � �1 � *5�=2. Flavor mixings
appear owing to the charged gauge bosons W�, K��Q1 ,
and K��Q2 , where the Cabibbo Kobayashi Maskawa
(CKM) matrix U� has been defined with the usual mixing
angles �i of the SM and a matrix U7 with a mixing angle
7c associated with the exotic quarks J1 and J2 (the quark
J3 is decoupled in the mass matrices because of its different
electric charge). Equation (6.1) includes the SM couplings
properly.

As for the leptons, we have for the three families
L‘j � eQ‘j‘j*�A
�‘j �

g
CW

‘j*��T3PL �Q‘jS
2
W�Z�‘j �

g���
2

p %jL*�W
��e�

jL �
g���
2

p e�
jL*�W

��%jL

�
g0

2TW
‘j*����2T8 � �T2

W)3�PL � 2Q‘j�T
2
WPR�Z

�0‘j �
g���
2

p %jL*�K��Q1E�Q1
jL �

g���
2

p E�Q1
jL *�K��Q1%jL

�
g���
2

p e�
jL*�K

��Q2E�Q1
jL �

g���
2

p E�Q1
jL *�K��Q2e�

jL; (6.2)
with ‘j denoting the leptonic triplets shown in Table XIII,
and with Q‘j denoting their electric charges; finally )3 �
diag�1; 1; 2Q1�.

VII. MODEL WITH N � 4 AND � � � 1��
3

p

We consider a model with � � �1=
���
3

p
which is similar

to the model described in Ref. [10] at low energies due to
the electromagnetic charges assigned to different multip-
lets. However, this model is not the same as the one in
Ref. [10] because the multiplets’ structure for the quark
sector is SU�3�C � SU�3�L vectorlike, and the leptonic part
is not necessary to cancel the quark anomalies. The lep-
tonic multiplets are also vectorlike and anomaly free (see
Table XIV). In the models described in the literature, the
quarks’ anomalies are canceled out with the leptonic
anomalies. In the model with N � 4 and � � �1=

���
3

p

there are two 3-multiplets for leptons and two 3-multiplets
for quarks and they generate the two heavy families of the
SM. Two 3	-multiplets for quarks and leptons correspond
to the first SM family; and the other two 3	, q4	L and l4	L ,
correspond to a mirror fermion family of the third SM
family. So with this assignment, it is possible to get mixing
between the bottom quark and its mirror quark dc in order
to modify the right-handed coupling of the bottom quark
with the Z gauge boson which in turn might explain the
-14



TABLE XV. Scalar sector with N � 4 and its VEVs. 1; /; 0
are triplets in the 3 representation, 7 is a multiplet in the adjoint
representation, and S lies in the sextet representation. %1 is of the
order of the first symmetry breaking. %/, %0 are of the order of
the electroweak scale. V is much lower than the electroweak
VEV.

h1i0 � 0 0 %1 �T X1 � �1=3
h/i0 � 0 %/ 0 �T X/ � 2=3
h0i0 �%0 0 0 �T X0 � 2=3
h7i0 %1diag� 1 1 �2 � X1 � 0

hSiji0 V
1 0 0
0 0 0
0 0 1

0@ 1A XS � �1=3

TABLE XIV. Fermionic content of SU�3�L �U�1�X, with N �
4, and m; n � 1; 2. The fourth families which are in the 3	

representation are the mirror fermions of one of the families in
the 3 representation.

Quarks Q X 

q�m�
L �

u�m�

d�m�

J�m�

0B@
1CA
L

:3

2
3

� 1
3

2
3

0B@
1CA XL

q�m� � 1
3

u�m�
R ; d�m�

R ; J�m�
R :1 2

3 ;�
1
3 ;

2
3 XR

q�m� � Qq�m�

q�3	�
L �

d3
	

�u3
	

J3
	

0B@
1CA
L

:3	

� 1
3

2
3

� 1
3

0B@
1CA XL

q3
	 � 0

d3
	

R ; u
3	

R ; J
3	

R :1 � 1
3 ;

2
3 ;�

1
3 XR

q3
	 � Qq3

	

q4
	

L �

~uc
~dc
~Jc

0@ 1A
L

:3	

� 2
3

1
3

� 2
3

0B@
1CA XL

q4
	 � 1

3

~ucR; ~d
c
R; ~J

c
R:1 � 2

3 ;
1
3 ;�

2
3 XR

q4
	 � Qq4

	

Leptons Q X 

‘�n�
L �

%�n�

e�n�

N0�n�

0B@
1CA
L

:3
0

�1
0

0@ 1A XL
‘�n� � � 1

3

%�n�
R ; e

�n�
R :1 0;�1; 0 XR

‘�n� � Q‘�n�

‘3
	

L �
e3

	

�%3
	

E3	�

0B@
1CA
L

:3	

�1
0

�1

0@ 1A XL
‘3

	 � 2
3

e3
	

R ; %
3	

R ; E
3	�
R :1 �1; 0;�1 XR

‘3
	 � Q‘3

	

‘4
	

L �

~%c

~ec
~N0c

0@ 1A
L

:3	

0
1
0

0@ 1A XL
‘4

	 � � 1
3

~%cR; ~e
c
R:1 0, 1, 0 XR

‘4
	 � Q‘4
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asymmetry deviations Ab and AbFB [13]. Such discrepancy
cannot be explained by a model with only left-handed
multiplets such as the SM [28] or the traditional 331
models [14]. The mixing in the mass matrix between the
035018
b quark and its mirror fermion permits a solution because
the mirror couples with right-handed chirality to the Z�
gauge field of the SM. On the other hand, the mirror
fermions in the leptonic sector are useful to build up ansatz
about mass matrices in the neutrino and charged sectors.
For the neutrinos corresponding to SU�2�L doublets, right-
handed neutrino singlets are introduced to generate masses
of Dirac type.

As for the scalar spectrum, three types of representations
are considered. First, we have the three minimal triplets
(whose VEVs are shown in Table XV) that assure the
spontaneous symmetry breaking (SSB) 331 ! 321 ! 31,
and that provide the masses for the gauge fields. Further, an
additional scalar in the adjoint representation is included.
Such multiplet permits a mixing of the mirror fermions
with the ordinary fermions of the SM in order to generate
different ansatz for masses. The adjoint representation
acquires the VEVs displayed in Table XV. Finally, a sextet
representation can also be introduced as shown in
Table XV; it acquires very small VEVs compared with
the VEVs of the electroweak scale %1, %/, and %0 since
they belong to triplet components of SU�2�L and would not
break the relation for -/. They also permit one to generate
Majorana masses for neutrinos.
A. Mass matrix for quarks

The Yukawa Lagrangian for quarks has the form

Lq
Y �

X
(

X
sing:

X2
m;m0�1

hm’qR q
�m�
L qR( �

1

2
qi�m�
L �qj�m

0�
L �c�hmm

0

( "ijk(k � hmm
0

S Sij� � h3(qR q
�3	�
L qR(	 � h4(qR q

�4	�
L qR(	

�
1

2
q�3	�
iL �q�3	�

jL �c�Y33
( "ijk(

k � Y33
S Sij� �

1

2
q�4	�
iL �q�4	�

jL �c�Y44
( "ijk(

k � h44S Sij� �
1

2
q�3	�
iL �q�4	�

jL �c�Y34
( "ijk(

k � Y34
S Sij�

�
1

2
q�4	�
iL �q�3	�

jL �c�Y43
( "ijk(

k � Y43
S Sij� �

1

2
hn37 q

i�n�
L �q�3	�

jL �c7i
j �

1

2
h3n7 q

�3	�
iL �qj�n�L �c7j

i �
1

2
hn47 q

i�n�
L �q�4	�

jL �c7i
j

�
1

2
h4n7 q

�4	�
iL �qj�n�L �c7j

i � h:c:; (7.1)

with ( being any of the 0, /, 1 multiplets, while 7 and S correspond to the scalar adjoint and the sextet representation of
SU�3�L, respectively. The third and fourth families are written explicitly, since the fourth one corresponds to a mirror
-15



RODOLFO A. DIAZ, R. MARTINEZ, AND F. OCHOA PHYSICAL REVIEW D 72, 035018 (2005)
fermion. The constants hmm
0

( and Y34
( are antisymmetric. It

should be noted that all possible terms with scalar triplets,
adjoints, and sextets are involved. When we take the VEVs
from Table XV, the mass matrices are obtained.

For the mixing among up-type quarks in the basis
�u3	 ; u1; u2; ~u; J1; J2; ~J� we get

Mup �
MU MJU

MUJ MJ

� �
; (7.2)

where

MU �

%/h
3/
u3 %/h

3/
u1 %/h

3/
u2 h431 %1

%0h
10
u3 %0h

10
u1 %0h

10
u2 h147 %1

%0h
20
u3 %0h

20
u1 %0h

20
u2 h247 %1

0 0 0 %0h
40
~u

0BBBBBBB@

1CCCCCCCA;

MJ �

%1h1ß
J1

%1h1ß
J2

�2h147 %1

%1h
2ß
J1

%1h
2ß
J2

�2h247 %1

0 0 %1h
4ß
~J

0BBB@
1CCCA;

MUJ �

%1h
1ß
u3 %1h

1ß
u1 %1h

1ß
u2 0

%1h
2ß
u3 %1h

2ß
u1 %1h

2ß
u2 0

0 0 0 %0h
40
~J

0BBB@
1CCCA;

MJU �

%/h
3/
J1

%/h
3/
J2

h340 %01

%01
h10J1 %01

h10J2 0

%01
h20J1 %01

h20J2 0

0 0 %1h
41
~u

0BBBBBBB@

1CCCCCCCA"

and �u3	 ; u1; u2� correspond to the three families of the SM,
~u refers to the mirror fermion of either u1 or u2, and
J1; J2; ~J are the exotic quarks with 2/3 electromagnetic
charge.

For down-type quarks in the basis �d3	 ; d1; d2; ~d; J3	 �, the
mass matrix yields

Mdown �

%0h
30
d3

%0h
30
d1

%0h
30
d2

Y34
1 %1 %0h

30
J3

%/h
1/
d3

%/h
1/
d1

%/h
1/
d2

h147 %1 %/h
1/
J3

%/h
2/
d3

%/h
2/
d1

%/h
2/
d2

h247 %1 %/h
2/
J3

0 0 0 %/Y
4/
~d

0

%1h
3ß
d3

%1h
3ß
d1

%1h
3ß
d2

Y43
0 %0 %1h

3ß
J3

0BBBBBBBB@

1CCCCCCCCA
:

(7.3)

�d3	 ; d1; d2� are associated with the three SM families, ~d is
a down-type mirror quark of either d1 or d2, and J3	 is an
exotic down-type quark. When the adjoint representation
of the scalar fields is not taken into account, the mixing
between q�m� and the quark mirrors q�4	� does not appear.
Such mixing is important to change the right-handed cou-
pling of the b quark with the Z� gauge field, and to look for
a possible solution for the deviation of the asymmetries Ab
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and AbFB of the SM with respect to the experimental data. If
the mixing with the mirror quarks were withdrawn and the
exotic particles were decoupled, the mirror quarks would
acquire masses of the order of the electroweak scale %/h

4/
~d

,

%0h
4/
~u for the up and down sectors, respectively.

B. Mass matrix for leptons

The Yukawa Lagrangian for leptons keeps the general
form shown in Eq. (7.1) for the quarks. However, Majorana
terms could arise because of the existence of neutral fields.
By taking the whole spectrum including right-handed neu-
trino singlets, Dirac terms are obtained for the charged
sector while Dirac and Majorana terms appear in the
neutral sector.

By including all the possible structures of VEVs, the
charged sector in the basis �e3	 ; e1; e2; ~e; E�

3	 � has the fol-
lowing form:

M‘� �

%0h
30
e3 %0h

30
e1 %0h

30
e2 h341 %1 %0h

30
J3

%/h
1/
e3 %/h

1/
e1 %/h

1/
e2 h147 %1 %/h

1/
J3

%/h
2/
e3 %/h

2/
e1 %/h

2/
e2 h247 %1 %/h

2/
J3

0 0 0 %/h
4/
~e 0

%1h
3ß
e3 %1h

3ß
e1 %1h

3ß
e2 h430 %01

%1h
3ß
E3

0BBBBBBBB@

1CCCCCCCCA
;

the first three components ei correspond to the ordinary
leptons of the SM, ~e is a mirror lepton of e1 or e2, andE3	 is
an exotic lepton. Like in the case of the quark sector, direct
mixings are obtained between all the fields ‘�n�; ‘3

	
and the

mirrors ‘4
	

by means of the scalars 1;/; 0 and the adjoint
7. The mass matrix of charged leptons is similar to the
mass matrix of the down-type quarks.

For the neutral lepton sector, we take the following basis
of fields:

 0
L � �%3L; %1L; %2L; �~%R�

c; N0
1L; N

0
2L; � ~N

0
R�
c�T;

 0
R � �%3R; %1R; %2R; �~%L�c�T;

(7.4)

where %iL are the SM fields, and %iR are sterile neutrinos
and the right-handed components of SM neutrinos. With
these components the Dirac mass matrix is constructed like
the up quarks’ mass matrix; �~%L;R�c are mirror fermions,
and N0

iL are exotic neutral fermions. The mass terms are
written as

L 0
Y � � 0

L; � 
0
R�
c�

ML mD
mT
D MR

� �
� 0

L�
c

 0
R

� �
� h:c:; (7.5)

where very massive Majorana terms MR have been intro-
duced between the singlets  0

R, corresponding to sterile
neutrinos with right-handed chirality. We shall suppose
that in this basis the mass matrix MR is diagonal. Such
terms can be introduced without a SSB because they are
SU�3�L �U�1�X invariant. Besides, they correspond to
heavy Majorana mass terms for the sterile heavy neutrinos.
The Majorana contribution ML takes the form
-16
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ML �
1

2
M% MN%

M%N MN

� �
; (7.6)

where

M % �

0 0 0 �h341 %1
0 Vh11S Vh12S h147 %1
0 Vh21S Vh22S h247 %1

h431 %1 h147 %1 h247 %1 Vh44S

0BBBB@
1CCCCA:

The entries of the upper 3 � 3 submatrix correspond to
Majorana masses for the ordinary neutrinos of the three
SM families, which are generated with the six-dimensional
representation of the scalar sector. If such VEVs were
taken as null, or if we chose discrete symmetries to forbid
these terms, they can be generated through the seesaw
mechanism of the form my

DM
�1
R mD. The other mass ma-

trices are given by

M N �

Vh11S Vh12S �2h147 %1
Vh21S Vh22S �2h247 %1

�2h147 %1 �2h247 %1 Vh44S

0B@
1CA;

M %N �

0 h11/ %/ h12/ %/ 0
0 h21/ %/ h22/ %/ 0

�%01
h430 0 0 h44/ %/

0B@
1CA;

M N% �

0 0 h340 %01

�h11/ %/ �h12/ %/ 0
�h21/ %/ �h22/ %/ 0

0 0 �h44/ %/

0BBB@
1CCCA;

where we have taken into account the VEVs of the scalar
triplets 1; /; 0, the adjoint 7, and the sextet S. The adjoint
VEVs ensure the direct mixings between ‘�n� and the
mirrors ‘�4	�. The Dirac terms of (7.5) are

mD �
1

2

%/h
3/
%3 %/h

3/
%1 %/h

3/
%2 %/h

3/
~%

%0h
10
%3 %0h

10
%1 %0h

10
%2 %0h

10
~%

%0h
20
%3 %0h

20
%1 %0h

20
%2 %0h

20
~%

%0h
40
%3 %0h

40
%1 %0h

40
%2 %0h

40
~%

%1h
11
%3 %1h

11
%1 %1h

11
%2 %1h

11
~%

%1h
21
%3 %1h

21
%1 %1h

21
%2 %1h

21
~%

%1h
41
%3 %1h

41
%1 %1h

41
%2 %1h

41
~%

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
: (7.7)

When the quarks and leptons spectra are compared (see
Table XIV), it is observed that they are equivalent in the
sense that both introduce the same quantity of particles in
the form of left-handed triplets and right-handed singlets
(singlet components of neutrinos are taken). Nevertheless,
the Yukawa Lagrangian (and hence the mass matrices) of
quarks and leptons are not equivalent because the quarks
have different values of the X quantum number with re-
spect to the leptons; this fact puts different restrictions on
the terms of both Yukawa Lagrangians.
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In the limit %/; %0 $ %1 and V � 0, the physics beyond
the SM could be decoupled at low energies leaving an
effective theory at low energies similar to a two Higgs
doublet model (2HDM) with the fermionic fields of the SM
and the right-handed neutrinos that we introduced in the
particle content %1R; %2R; %3R to generate Dirac type masses
and could be able to relate the neutrino sector with the up
quark sector. It allows one to give a large mass to the up
quark sector and the mass pattern for the neutrinos. In this
limit, the mass matrices that are generated would be similar
to the ansatz proposed in Ref. [29]. Considering the upper
3 � 3 submatrix of mD in Eq. (7.7) and imposing discrete
symmetries, it can be written in the form

mD �
1

2

%/h
3/
%3 %/h

3/
%1 0

%0h
10
%3 %0h

10
%1 %0h

10
%2

0 %0h
20
%1 %0h

20
%2

0BB@
1CCA: (7.8)

Considering the same Yukawa couplings within each gen-
eration (i.e. the same hn(%m for each pair of n(), we can
write the matrix (7.8) as

mD �
%0���
2

p
ct� ct� 0
�b b b
0 a a

0@ 1A; (7.9)

where t� � %/=%0 is the scalar mixing angle given by
(A3), and � is a real parameter that is fitted in agreement
with the neutrino oscillation data. If the third generation is
%3, the second is %1 and the first is %2, and taking MR �

Mdiag�EM3; EM2; EM1�, we obtain the same mass ansatz and
mixing as in Ref. [29]. Thus, from the seesaw mechanism
we get

m% � �my
DM

�1
R mD � m0

%

�2E�! �E�! �E
�E�! E�! E
�E E E

0B@
1CA;

(7.10)

with m0
% � %20=2M, E � �a2=EM1

� � �b2=EM2
�, E �

b2=EM2
, ! � c2t2�=EM3

, tan2�23 � 2r!=�E��2 � r��,

tan2�12 � 2g
f , �13 � �E��� r��=�23=2r!�, m1 � Em0

%f1 �

g sin2�12 � fsin2�12g, m2 � Em0
%f1 � g sin2�12 �

fcos2�12g, m3 � 2!m0
%, r � E

E ; g � jr��j��
2

p
r

, and f � ��2 �

2�� r�=2r. As it is discussed in Ref. [29], if m3 ���������������
-m2

atm

p
, m2 �

������������
-m2

sol

q
, and taking t� � %/=%0 � O�1�,

it is possible to obtain a natural fit for the observed neutrino
hierarchical masses and mixing angles. This result shows
the good behavior of the model.

C. The mixing between the bottom quark and its mirror

In order to look for a solution to the deviation from the b
asymmetries, let us assume that the exotic quarks with
charge 1/3 acquire their mass in the first SSB and that
they are basically decoupled at electroweak energies. On
-17
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the other hand, let us suppose that the mass matrix of the
three generations of down quarks is approximately diago-
nal. In this way the mixing between the down quark of the
third generation (b quark) and its corresponding mirror can
be written as [see Eq. (7.3)]

0d2
0~d

 !
LM

d2
~d

� �
R
; M �

h2/d2 %/ h247 %1
0 Y4/

~d
%/

 !
:

(7.11)

The eigenvalues of this mass matrix M that correspond to
the masses of the b-quark and the mirror fermion are h2/d2 %/
and Y4/

~d
%/, respectively. To diagonalize the mass matrix

the following rotation is proposed:

b
~b

 !
L�R�

� Vy
L�R�

d2
~d

� �
L�R�

(7.12)

where b and ~b are the mass eigenstates for the bottom
quark and its mirror fermion, respectively. VL and VR are
2 � 2 matrices of rotation obtained from the matrices
MMy and MyM, respectively [see Eq. (7.11)]. We shall
assume that the rotation angle of the left-handed quarks
(�L) is small enough, since it would be tightly restricted by
the electroweak processes. For the right-handed angle we
get

tan2�R �
2h247 %1Y

4/
~d
%/

�Y4/
~d
%/�

2 � �h2/d2 %/�
2 � �h247 %1�

2
�

2MZ0MF

M2
F �M2

Z0

:

(7.13)

In the last line the b-quark mass was neglected and the
VEV %1 was approximated to MZ0 .

When writing the neutral currents for the d2 and its
mirror ~d we get

L NC
b �

g
2CW

d2*�

��
1 �

2

3
S2W

�
PL �

2

3
S2WPR

�
Z�d2

�
g

2CW
0~d*�

��
1 �

2

3
S2W

�
PR �

2

3
S2WPL

�
Z� ~d:

(7.14)

After making the rotations for left- and right-handed com-
ponents of d2, ~d quarks, and taking �L � 0, we can write
the right-handed current of the quark bottom mass eigen-
values as

g
2CW

b*�

�
sin2�R �

2

3
S2W

�
PRZ

�b (7.15)

and the electroweak right-handed coupling is modified by a
factor

�gR � sin2�R: (7.16)

By making a combined fit for the CERN LEP and Slac
Linear Collider measurements in terms of the left and right
035018
currents of the b quark, and subtracting the central value of
the SM it is obtained that [30]

�gR � 0:02: (7.17)

This means that in order to solve the problem of the
deviation of the anomaly Ab, it is necessary for the right-
handed mixing angle to be of the order of sin�R � 0:1.
Replacing this value in Eq. (7.13) we find that MZ0 �
10MF. This is a reasonable value if the mirror fermions
lie at the electroweak scale and the first breaking of the 331
model is of the order of the TeV scale.
VIII. CONCLUSIONS

We have studied the fermionic spectrum of the 331
models with � arbitrary by the criterion of cancellation
of anomalies. In order to minimize the exotic spectrum we
assume that only one lepton and only one quark SU�3�L
multiplet is associated with each generation, and that there
is no more than one right-handed singlet associated with
each left-handed fermion field. By considering models
with an arbitrary number of lepton and quark generations
we find the constraints that cancellation of anomalies
provides for the possible fermionic structures. After as-
suming that the fermionic SU�3�c representations are vec-
torlike, and that the SM fermion representations must be
embedded in the triplet 331 representations, we obtain five
conditions from the vanishing of anomalies. The first con-
dition becomes trivial when the SM is embedded in the 331
model. Two of them restrict the structure of the left-handed
fermionic multiplets, while the other two restrict the struc-
ture of right-handed charged leptonic singlets. The right-
handed neutral leptonic singlets are left unconstrained by
the equations of anomalies. Under the assumptions made
above, the number of left-handed quark multiplets must be
3 times the number of left-handed leptonic multiplets
because of the color factor. Besides, models with only
one lepton multiplet are forbidden. In addition, the Higgs
and vector spectra, as well as the Yang-Mills Lagrangian,
are calculated for � arbitrary.

The interest for studying the case of � arbitrary is
twofold. On one hand, it permits a general phenomeno-
logical analysis that could lead to the cases studied in the
literature. On the other hand, it also permits the study of
other scenarios that could be the source for solving some of
the problems of the SM.

In particular, we studied models with three and four
lepton multiplets (N � 3; 4). Models with N � 3 are al-
lowed even if no right-handed charged leptonic singlets are
introduced (models of Pleitez and Frampton i.e. � �

�
���
3

p
) as it is indicated in Table VIII. However, for arbi-

trary values of �, the three-family versions require the
introduction of right-handed charged leptonic singlets in
order to cancel anomalies, and only two types of solutions
are possible (see Table VIII).
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The version with N � 4 and � � �1=
���
3

p
is a vectorlike

model consisting of three triplets containing the SM fer-
mions plus one triplet containing mirror fermions of one of
the SM families. We choose the mirror fermions to be
associated with the third family of the SM. This N � 4
model is different from similar 331 versions considered in
the literature, and possesses strong phenomenological mo-
tivations: the right-handed coupling of the b quark with the
Z� gauge boson could be modified and may in turn explain
the deviation of the b asymmetries with respect to the SM
prediction. In order to solve the Ab puzzle, the right-handed
mixing angle should be of the order of sin�R � 0:1, which
in turn leads to MZ0 � 10MF with MZ0 and MF denoting
the masses for the exotic neutral gauge boson and the
mirror fermion, respectively; this relation is reasonable if
MF lies in the electroweak scale and the breaking of the
331 model lies at the TeV scale. On the other hand, vector-
like models are necessary to explain the family hierarchy.
From the phenomenological point of view, the model
provides the possibility of generating ansatz for masses
at low energies in the quark and lepton sector. It is worth
saying that the physics beyond the SM could be decoupled
at low energies leaving an effective theory of two Higgs
doublets with right-handed neutrinos, and that the mass
matrices generated are similar to the ansatz proposed by
Ref. [29]. From such ansatz, a natural fit for the neutrino
hierarchical masses and mixing angles can be obtained.

Finally, this general approach opens a window to ana-
lyze other possible 331 versions. For instance, we can
analyze the model with N � 4 but with the mirror fermion
associated with another SM family. Moreover, several
models with N � 4, with more mirror fermions, could be
studied from phenomenological grounds (see Table III). In
particular, we observe from Table III that N � 6 contains
models that are vectorlike with respect to SU�3�L in the
quark and lepton sectors.
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APPENDIX A: SCALAR MASSES WITH �
ARBITRARY

1. Imaginary sector

The mass matrix is built up in the basis 51; 5/; 50:

M2
55 � �2f

%0%/
%1

%0 %/
%0

%0%1
%/

%1
%/ %1

%1%/
%0

26664
37775: (A1)

The eigenvalues and eigenvectors are given by

P1 � P2 � 0; P3 � �2f%1

�%0
%/

�
%/
%0

�
%0%/
%21

�
;

70
2 � N0

72
��%151 � %050� � �51;

70
3 � N0

73
��%1%2051 � %/�%21 � %20�5/ � %21%050�

� S�5/ � C�50;

h01 � C�5/ � S�50;

(A2)

obtained by using the approximations in Eqs. (3.3) and
(3.4). The scalars 70

2 and 70
3 are the would-be Goldstone

bosons corresponding to the gauge fields Z0
� and Z�,

respectively. N denotes normalization factors. The mixing
angle is defined by

t� � tan� �
%/
%0
: (A3)
2. Real sector

The basis is 61; 6/; 60:

M2
66 �

841%21 � 2f
%0%/
%1

444%1%/ � 2f%0 445%1%0 � 2f%/
444%1%/ � 2f%0 842%2/ � 2f

%0%1
%/

446%0%/ � 2f%1
445%1%0 � 2f%/ 446%0%/ � 2f%1 843%

2
0 � 2f

%1%/
%0

26664
37775: (A4)
Keeping only quadratic terms in %1 in the matrix (A4), we
obtain
M2
66 ’

841%21 0 0
0 �2f

%0%1
%/

2f%1
0 2f%1 �2f

%1%/
%0

2664
3775; (A5)
where we get the following decoupled matrices:

M2
6/60

’
�2f

%0%1
%/

2f%1
2f%1 �2f

%1%/
%0

24 35; M2
6161

! 841%
2
1:

(A6)

The submatrixM2
6/60

written in Eq. (A6) has the follow-

ing eigenvalues:
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P2 � 0; P3 � �2f%1

�%0
%/

�
%/
%0

�
:

The first eigenvalue is zero because of the approximation
made in (A4). If the approximation is not considered, the
matrix in (A6) takes the form

M2
6/260

�
842%

2
/ � 2f

%0%1
%/

446%0%/ � 2f%1
446%0%/ � 2f%1 843%20 � 2f

%1%/
%0

24 35;
(A7)

and the corresponding eigenvalues are different; they are

P2 �
8�42%4/ � 43%40 � 46%2/%20�

%20 � %2/
;

P3 � �2f%1

�%/
%0

�
%0
%/

�
;

(A8)

and the eigenvectors read

h05 � 61; h03 � S�6/ � C�60;

h04 � �C�6/ � S�60:
(A9)

3. Charged sector

The basis is 1�Q1
1 ; 0�Q1

3 :

M2
7�Q1

�
47%

2
0 � f

%0%/
%1

47%1%0 � f%/
47%1%0 � f%/ 47%

2
1 � f

%1%/
%0

24 35: (A10)

The mass matrix in the basis 1�Q2
2 ; /�Q2

3 is

M2
7�Q2

�
48%

2
/ � f

%0%/
%1

48%1%/ � f%0
48%1%/ � f%0 48%21 � f

%1%0
%/

24 35: (A11)

The mass matrix in the basis /�
1 ; 0

�
2 reads

M2
7� �

49%
2
0 � f

%1%0
%/

49%0%/ � f%1
49%0%/ � f%1 49%2/ � f

%/%1
%0

24 35: (A12)

It is found that the matrices are singular; it is that

det�M2
71�� � det�M2

72�� � det�M2
73�� � 0; (A13)

RODOLFO A. DIAZ, R. MARTINEZ, AND F. OCHOA
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giving a total of six would-be Goldstone bosons. For the
matrix M2

7�Q1
of Eq. (A10) the corresponding eigenvalues

and eigenvectors are found to be

P1 � 0; P2 � 47�%20 � %21� � f%/

�%1
%0

�
%0
%1

�
;

7�Q1
2 � NQ1

72
��%11

�Q1
1 � %00

�Q1
3 � � �1�Q1

1 ;

h�Q1
1 � N�Q1

h1
�%01

�Q1
1 � %10

�Q1
3 � � 0�Q1

3 ;

(A14)

where the approximations of Eqs. (3.3) and (3.4) have been
taken into account, getting two would-be Goldstone bosons
7�Q1

2 associated with the gauge fields K�Q1
� and two

massive Higgs bosons h�Q1
1 .

For M2
7�Q2

, from Eq. (A11), we find

P3 � 0; P4 � 48�%2/ � %21� � f%0

�%1
%/

�
%/
%1

�
;

7�Q2
3 � NQ2

73
��%11

�Q2
2 � %//

�Q2
3 � � �1�Q2

2 ;

h�Q2
3 � NQ2

h3
�%/1

�Q2
2 � %1/

�Q2
3 � � /�Q2

3 :

(A15)

Again we have used the approximations in Eqs. (3.3) and
(3.4), obtaining two would-be Goldstone bosons 7�Q2

3

associated with the gauge fields K�Q2
� and two massive

Higgs bosons h�Q2
3 .

Finally, for M2
7� and from Eq. (A12) we have

P5 � 0; P6 � 49�%
2
/ � %20� � f%1

�%0
%/

�
%/
%0

�
;

7�
1 � S�/�

1 � C�0�
2 ; h�

2 � C�/�
1 � S�0�

2 ;

(A16)

where 7�
1 give mass to W�

� .

APPENDIX B: THE MASS MATRIX FOR THE
NEUTRAL GAUGE SECTOR

The basis for the mass matrix for the neutral gauge
sector is W3;W8; B:
g2

2 �%20 � %2/�
g2

2
��
3

p �%20 � %2/�

gg0

2

�
�%20

�
1 � ���

3
p

�
�%2/

�
1 � ���

3
p

��
g2

2
��
3

p �%20 � %2/�
g2

6 �%20 � %2/ � 4%21�
gg0

6 ��%20�
���
3

p
� ��

�%2/�
���
3

p
� �� � 4%21��

gg0

2

�
�%20

�
1 � ���

3
p

�
�%2/

�
1 � ���

3
p

�� gg0

6 ��%20�
���
3

p
� ��

�%2/�
���
3

p
� �� � 4%21��

g02

6 �%20�
���
3

p
� ��2

�%2/�
���
3

p
� ��2 � 4%21�2�

26666666666666666664

37777777777777777775

: (B1)
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