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CP asymmetries and branching ratios of B ! K� in supersymmetric models
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We analyze the supersymmetric contributions to the direct and mixing CP asymmetries and also to the
branching ratios of the B! K� decays in a model independent way. We consider both gluino and
chargino exchanges and emphasize that a large gluino contribution is essential for saturating the direct and
mixing CP asymmetries. We also find that combined contributions from the penguin diagrams with
chargino and gluino in the loop could lead to a possible solution for the branching ratios puzzle and
account for the results of Rc and Rn within b! s� constraints. When all relevant constraints are satisfied,
our result indicates that supersymmetry favors lower values of Rc. Finally, we study the correlations
between the mixing CP asymmetry SK0�0 and mixing CP asymmetries of the processes B! 
K and
B! �0K. We show that it is quite possible for gluino exchanges to accommodate the results of the
observables.
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TABLE I. The current experimental results for the CP aver-
aged branching ratios and CP asymmetries of B! K� decays.

Decay channel BR	 106 ACP Sf
�K0�� 24:1� 1:3 �0:02� 0:034 
 
 


K��0 12:1� 0:8 0:04� 0:04 
 
 


K��� 18:2� 0:8 �0:113� 0:019 
 
 

�K0�0 11:5� 1:0 �0:09� 0:14 0:34� 0:28
I. INTRODUCTION

Recently, the BABAR and Belle Collaborations have
measured the CP averaged branching ratios and the
CP violating asymmetries of B! K� decays [1–3].
These results, in addition to those from B! 
K and B!
�0K, offer an interesting avenue to understand the CP
violation and flavor mixing of the quark sector in the
standard model (SM).

In the SM, all CP violating observables should be ex-
plained by one complex phase �CKM in the quark mixing
matrix. The effect of this phase has been observed in the
kaon system. In order to account for the observed CP
violation in this sector, �CKM has to be of order 1. With
such a large value of �CKM, the experimental results of the
CP asymmetry of B! J= KS are consistent with the SM.
However, the experimental measurements of the CP asym-
metries of B! 
K, B! �0K, and B! K� decays ex-
hibit a possible discrepancy from the SM predictions.
Furthermore, it is well known that the strength of the SM
CP violation cannot generate the observed size of the
baryon asymmetry of the Universe, and a new source of
CP violation beyond the �CKM is needed.

In supersymmetric extensions of the SM, there are addi-
tional sources of CP violating phases and flavor mixings. It
is also established that the supersymmetry (SUSY) flavor
dependent (off-diagonal) phases could be free from the
stringent electric dipole moment constraints [4]. These
phases can easily provide an explanation for the above
mentioned anomalies in the CP asymmetries of B! 
K
and B! �0K [5–7]. We aim in this article to prove that, in
this class of SUSY models, it is also possible to accom-
modate the recent experimental results of B! K� CP
asymmetries and branching ratios.

The latest experimental measurements for the four
branching ratios and the four CP asymmetries of B!
K� [1] are given in Table I. As can be seen from this table,
05=72(3)=035007(19)$23.00 035007
the measured value of the direct CP violation in �B0 !
K��� is ACPK��� � �0:113� 0:019, which corresponds to
a 4:2� deviation from zero, while the measured value of
ACP
K��0 , which may also exhibit a large asymmetry, is quite

small. As we will see in the next section, it is very difficult
in the SM to get such different values for the CP
asymmetries.

Also from these results, one finds that the ratios Rc, Rn,
and R of B! K� decays are given by

Rc � 2
�
BR�B� ! K��0� � BR�B� ! K��0�

BR�B� ! K0��� � BR�B� ! �K0���

�

� 1:00� 0:08; (1)

Rn �
1

2

�
BR�B0 ! K���� � BR� �B0 ! K����

BR�B0 ! K0�0� � BR� �B0 ! �K0�0�

�

� 0:79� 0:08; (2)

R �

�
BR�B0 ! K���� � BR� �B0 ! K����

BR�B� ! K0��� � BR�B� ! �K0���

�
��B
�B0

� 0:82� 0:06: (3)

In the SM, the Rc and Rn ratios are approximately equal;
however, the experimental results in Eqs. (1) and (2)
indicate a 2:4� deviation from the SM prediction. On the
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other hand, the quantity R is consistent with the SM value.
Here ��B =�B0 � 1:089� 0:017. These inconsistencies be-
tween the ACPK� and the Rc � Rn measurements and the SM
results are known as K� puzzles.

These puzzles have created a lot of interest and much
research work has been done to explain the experimental
data [8,9]. It is tempting to conclude that any new physics
contributions to B! K� should include a large electro-
weak penguin in order to explain these discrepancies. In
SUSY models, the Z-penguin diagrams with chargino
exchange in the loop contribute to the electroweak penguin
significantly for a light right-handed stop mass. Also, the
subdominant color suppressed electroweak penguin can be
enhanced by the electromagnetic penguin with chargino in
the loop. Therefore, the supersymmetric extension of the
SM is an interesting candidate for explaining the K�
puzzles.

It is worth mentioning also that new precision determi-
nations of the branching ratios and CP asymmetries of
B! �� have been recently reported [2,3]. However, the
SUSY contribution to B! ��, at the quark level, is due to
the loop correction for the process b! dq �q, while the
SUSY contribution to B! K� is due to the process b!
sq �q. Therefore, these two contributions are, in general,
independent and SUSY could have a significant effect to
B! K� and accommodates the new result, while its con-
tribution to B! �� remains small. Thus, we will focus
here only on SUSY contributions to B! K�.

In this paper, we perform a detailed analysis of SUSY
contributions to the CP asymmetries and the branching
ratios of B! K� processes. We emphasize that chargino
contribution has the potential to enhance the electroweak
penguins and provides a natural solution to the above
discrepancies. However, this contribution alone is not large
enough to accommodate the experimental results and to
solve the K� puzzles. We argue that the gluino contribu-
tion plays an essential rule in explaining the recent mea-
surements, especially the results of the CP asymmetries.
Recall that other supersymmetric contributions such as the
neutralino and charged Higgs are generally small and can
be neglected. The charged Higgs contributions are relevant
only at a very large tan� and small charged Higgs mass.
Therefore, we are going to concentrate on the chargino and
gluino contributions only.

The paper is organized as follows. In Sec. II we study the
CP asymmetries and the branching ratios of B! K� in
the SM. We show that within the SM the K� puzzles
cannot be resolved. In Sec. III we analyze the supersym-
metric contributions, namely, the gluino and chargino con-
tributions, to B! K�. We show that a small value of the
right-handed stop mass and a large mixing between the
second and the third generation in the up-squark mass
matrix are required to enhance the chargino Z penguin.
Also, a large value of tan� is necessary to increase the
effect of the chargino electromagnetic penguin.
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Section IV is devoted to the constraints on SUSY flavor
structure from the branching ratio of b! s�. New upper
bounds on the relevant mass insertions are derived in the
case of dominant gluino or chargino contribution. A cor-
relation between the mass insertions ��dLR�23 and ��uLL�32 is
obtained when both gluino and chargino exchanges are
assumed to contribute significantly. In Sec. V the SUSY
resolution for the Rc � Rn puzzle is considered. We show
that it is very difficult to explain this puzzle with a single
mass insertion contribution. We emphasize that, with si-
multaneous contributions from gluino and chargino, one
may be able to explain these discrepancies.

In Sec. VI we focus on the CP asymmetries in B! K�
processes. We show that with a large gluino contribution it
is quite natural to account for the recent experimental
results of direct CP asymmetries. The SUSY contributions
to the mixing CP asymmetry of B0 ! K0�0 are also
discussed. Finally, Sec. VII contains our main conclusions.
II. B ! K� IN THE STANDARD MODEL

In this section, we analyze the SM predictions for theCP
asymmetries and the branching ratios of B! K� decays.
The effective Hamiltonian of �B � 1 transition governing
these processes can be expressed as

H�B�1
eff �

(
GF���
2

p
X
p�u;c

#p

 
C1Q

p
1 � C2Q

p
2 �

X10
i�3

CiQi

� C7�Q7� � C8gQ8g

!)
� fQi ! ~Qi; Ci ! ~Cig;

(4)

where #p � VpbV
�
ps and Ci are the Wilson coefficients and

Qi are the relevant local operators which can be found in
Ref. [10]. The operators ~Qi � ~Qi�(b� are obtained from
Qi by the chirality exchange � �q1q2�V�A ! � �q1q2�V�A.
Notice that in the SM the coefficients ~Ci identically vanish
due to the V-A structure of charged weak currents, while in
the minimal supersymmetric standard model, they can
receive contributions from both chargino and gluino ex-
changes. The b! s transition can be generated in the SM
through exchange of the W boson. The corresponding
Wilson coefficients can be found in Ref. [10].

The calculation of the decay amplitudes of B! K�
involves the evaluation of the hadronic matrix elements
of the above operators in the effective Hamiltonian, which
is the most uncertain part of this calculation. Adopting the
QCD factorization [11], the matrix elements of the effec-
tive weak Hamiltonian can be written as

h�KjHeffj �Bi �
GF���
2

p
X
p�u;c

#ph�Kj�T p �T ann
p �j �Bi; (5)

where
-2
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h�KjT pj �Bi �
X10
i�1

ai��K�h�KjQij �BiF (6)

and

h�KjT ann
p j �Bi � fBfKf�

X10
i�1

bi��K�: (7)

The term T P arises from the vertex corrections, penguin
corrections, and hard spectator scattering contributions
which are involved in the parameters ai��K�. The
h�KjQij �BiF are the factorizable matrix elements; i.e., if
any operator Q � j1 � j2, then h�KjQij �BiF � h�jj1j �Bi	
hKjj2j0i or hKjj1j �Bih�jj2j0i. The other term T ann

p includes
the weak annihilation contributions which are absorbed in
the parameters bi��K�. Following the notation of
Ref. [11], we write the decay amplitude of B! K� as:

AB�!��K0 �
X
p�u;c

#pA�K

�
�pu�2 � ,p4 �

1

2
,p4;EW

� �p3 � �p3;EW

�
; (8)

���
2

p
AB�!�0K� �

X
p�u;c

#pA�K��pu�,1 � �2� � ,p4 � ,p4;EW

� �p3 � �p3;EW�

�
X
p�u;c

#pAK�

�
�pu,2 �

3

2
,p3;EW

�
; (9)

AB0!��K� �
X
p�u;c

#pA�K

�
�pu,1 � ,p4 � ,p4;EW

� �p3 �
1

2
�p3;EW

�
; (10)
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���
2

p
AB0!�0K0 �

X
p�u;c

#pA�K

�
�,p4 �

1

2
,p4;EW � �p3

�
1

2
�p3;EW

�

�
X
p�u;c

#pAK�

�
�pu,2 �

3

2
,p3;EW

�
: (11)
Here the coefficients of the flavor operators ,pi ��K� and
�pi ��K� are given in terms of the coefficients api ��K� and
bpi ��K�, respectively [11]. The parameter A� �K (A �K�) is
given by i�GF=

���
2

p
�m2

BF
B!��K�
0 fK���. Note that the parame-

ters bi of the weak annihilation and hard scattering con-
tributions contain infrared divergence which are usually
parametrized as
XA;H � �1� /A;Hei
A;H � ln
	
mB

�h



; (12)
where /A;H are free parameters to be of order 1, 
A;H 2
�0; 2��, and �h � 0:5. As discussed in Ref. [5], the ex-
perimental measurements of the branching ratios impose
an upper bound on the parameter /A. If one does not
assume fine-tuning between the parameters / and 
, the
typical upper bound on /A is of the order of /A & 2.

Fixing the experimental and the SM parameters to their
center values, one can determine the explicit dependence
of the decay amplitudes of the B! K� on the correspond-
ing Wilson coefficients. For instance, with � � �=3, and
/A;H and 
A;H are of order 1, the decay amplitude of �B0 !
K��� is given by
A �B0!��K� 	 108 ’ �1:05� 0:02i�C1 � �0:24� 0:07i�C2 � �3:1� 14:5i�C3 � �4:9� 37:7i�C4 � �2:9� 13:1i�C5

� �5:5� 43:7i�C6 � �1:7� 10:4i�C7 � �5:8� 36:5i�C8 � �2:8� 12:7i�C9 � �0:6� 35:5i�C10

� �0:0006� 0:04i�Ceff
7� � �0:04� 2:5i�Ceff

8g : (13)

A similar expression can be obtained for �B0 ! K0�0:

A �B0!�0K0 	 108 ’ ��0:14� 0:3i�C1 � �0:4� 0:2i�C2 � �2:2� 10:5i�C3 � �3:5� 26:7i�C4 � �2:1� 9:3i�C5

� �3:9� 30:9i�C6 � �1:7� 37:02i�C7 � �1:9� 1:7i�C8 � �1:3� 46:6i�C9 � �2:2� 28:8i�C10

� �0:0002� 0:01i�Ceff
7� � �0:03� 1:8i�Ceff

8g : (14)

The amplitude of B� ! K��0 can be written as

AB�!�0K� 	 108 ’ �0:9� 0:06i�C1 � �0:6� 0:3i�C2 � �2:2� 10:5i�C3 � �3:5� 26:7i�C4 � �2:1� 9:3i�C5

� �3:9� 30:9i�C6 � �2:7� 32:4i�C7 � �5:4� 17:8i�C8 � �1:9� 51:6i�C9 � �2:4� 42:8i�C10

� �0:0004� 0:03i�Ceff
7� � �0:03� 1:8i�Ceff

8g : (15)

Finally, the amplitude of B� ! K0�� is given by
-3
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AB�!��K0 	 108 ’ �0:4� 0:4i�C1 � �0:00004� 0:02i�C2 � �3:1� 14:9i�C3 � �4:9� 37:7i�C4 � �2:9� 13:1i�C5

� �5:5� 43:7i�C6 � �3:2� 3:8i�C7 � �10:8� 13:8i�C8 � �1:9� 5:7i�C9 � �0:3� 19:7i�C10

� �0:0003� 0:02i�Ceff
7� � �0:04� 2:5i�Ceff

8g ; (16)

where Ceff
7� � C7� �

1
3C5 � C6 and Ceff

8g � C8g � C5. The SM contributions to the Wilson coefficients of b! s transition,
which are the relevant ones for B! K�, are given by

C SM
1 ’ 1:077; CSM

2 ’ �0:175; CSM
3 ’ 0:012; CSM

4 ’ �0:33; CSM
5 ’ 0:0095; CSM

6 ’ �0:039;

CSM
7 ’ 0:0001; CSM

8 ’ 0:0004; CSM
9 ’ �0:01; CSM

10 ’ 0:0019; CSM
7� ’ �0:315; CSM

8g ’ �0:149:

(17)
From these values, it is clear that, within the SM, the
dominant contribution to the B! K� decay amplitudes
comes from the QCD penguin operator Q4. However, the
QCD penguin preserves the isospin. Therefore, this con-
tribution is the same for all the decay modes. Isospin
violating contributions to the decay amplitudes arise
from the current-current operators Qu

1 and Qu
2 , which are

called the ‘‘tree’’ contribution, and from the electroweak
penguins, which are suppressed by a power ,=,s. As can
be seen from the coefficients of C7–10 in Eqs. (13)–(16),
the electroweak penguin contributions to the amplitudes of
B! K� could be, in general, sizable and nonuniversal.
However, due to the small values of the corresponding
Wilson coefficients in the SM (17), these contributions
are quite suppressed.

Note also that the Q1 contribution to A �B0!��K� and
AB�!�0K� is 1 order of magnitude larger than its contribu-
tion to the other two decay amplitudes. Therefore, in the
SM, the amplitudes A �B0!��K� and AB�!�0K� can be ap-
proximated as functions of C1 and C4, while the ampli-
tudes A �B0!�0K0 and AB�!��K0 are approximately given in
terms of C4 only. It is worth noting that the difference
between the coefficients of C4 in the amplitudes A �B0!��K�

and AB�!�0K� is just due to the factor of
���
2

p
in Eq. (9),

which is the same difference between the corresponding
coefficients in A �B�!��K0 and �AB0!�0K0 .

We are now in a position to determine the SM results for
the CP asymmetries and the CP average branching ratios
of B! K� decays within the framework of the QCD
factorization approximation. The direct CP violation may
TABLE II. The SM predictions for the branchin
with � � �=3.

Branching ratio /A;H � 0 /A;H � 1

BR �K0�� 	 106 31:06 3
BRK��0 	 106 17.31 1
BRK��� 	 106 25.87 2
BR �K0�0 	 106 11.41 1
Rn 1.13
Rc 1.11
R 0.83
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arise in the decay B! K� from the interference between
the tree and the penguin diagrams. The direct CP asym-
metry of B0 ! K��� decay ACPK��� is defined as

ACPK��� �
jA� �B0 ! K����j2 � jA�B0 ! K����j2

jA� �B0 ! K����j2 � jA�B0 ! K����j2
;

(18)

and similar expressions for the asymmetries ACP�K0�� , ACP
K��0 ,

and ACP�K0�0 . Also, the branching ratio can be written in terms
of the corresponding decay amplitude as

BR �B! K�� �
1

8�
jPj

M2
B

jA�B! K��j2
1

�tot
; (19)

where

jPj �
��M2

B � �mK �m��
2��M2

B � �mK �m��
2��2

2MB
:

(20)

The SM results are summarized in Tables II and III. In
Table II, we present the predictions for the branching ratios
of the four decay modes of B! �K. We assume that � �
�=3 and consider some representative values of /A;H and

A;H to check the corresponding uncertainty. Namely,
/A;H � 0; 1; 3 and 
A;H � O�1� are considered. From
these results, one can see that for /A;H 2 �0; 1� the SM
predicted values for the branching ratios of B! K� are
less sensitive to the hadronic parameters. Larger values of
/A;H enhance the branching ratios, and eventually they
g ratios of the four decay modes of B! K�

and 
A;H � 1 /A;H � 3 and 
A;H � 1

3:35 43:92
8.45 23.36
7.98 39.55
2.47 18.66
1.12 1.059
1.106 1.063
0.838 0.9
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TABLE III. The SM predictions for the direct CP asymmetries of the four decay modes of
B! �K with � � �=3.

CP asymmetry /A;H � 0 /A;H � 1 and 
A;H � 1��1� /A;H � 3 and 
A;H � 1��1�

ACP�K0�� 0.007 0.0086 (0.005) 0.0078 (0.001)
ACP
K��0 0.029 0.063 (�0:006) 0.185 (�0:15)
ACPK��� 0.0044 0.057 (�0:049) 0.194 (�0:19)
ACP�K0�0 �0:02 �0:013 (�0:025) �0:019 (�0:002)
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exceed the experimental limits presented in Table I for
/ > 2. It is also remarkable that the SM results for
BR�B� ! �K0��� and BR� �B0 ! �K0�0� are larger than
the experiment measurements, while the results for
BR�B� ! K��0� and BR� �B0 ! K���� are consistent
with their experimental values. This discrepancy does not
seem to be resolved in the SM, even if we consider large
hadronic uncertainties. The parameters Rc and Rn, defined
in Eqs. (1) and (2) as the ratio of the CP average branching
ratios of B! K�, exhibit this deviation from the SM
prediction in a clear way. The results in Table II show
that in the SM Rc ’ Rn > 1. However, the recent experi-
mental measurements reported in Table I imply that Rc � 1
and Rn < 1. It is very difficult to have this situation within
the SM. As emphasized above, in the SM the amplitudes of
B! K� can be approximately written as

A �B0!��K� ’ �a1 � b1i�C1 � �a2 � b2i�C4; (21)

A �B0!�0K0 ’ �
1���
2

p �a2 � b2i�C4; (22)

AB�!�0K� ’
1���
2

p �a1 � b1i�C1 �
1���
2

p �a2 � b2i�C4; (23)

AB�!��K0 ’ �a2 � b2i�C4: (24)

Thus, the parameters Rc and Rn are given by

Rc � Rn �
j�a1 � b1i�C1 � �a2 � b2i�C4j

2

j�a2 � b2i�C4j
2 * 1; (25)

which is consistent with the result given in Table II, using
the full set of Wilson coefficients.

Now we turn to the SM predictions for the CP asymme-
tries of B! K�. Let us start by considering the approxi-
mation that the decay amplitudes for B� ! �K0�� and
�B0 ! �K0�0 are dominated by the pure gluon penguin

operator Q4, while the amplitudes for B� ! K��0 and
�B0 ! K��� are given by Q4 and also by the tree contri-

bution of the current-current operator Q1. In this case, the
following results are expected: The direct CP asymmetries
ACP
K0�� and ACP

K0�0 should be very tiny (equal zero in the
exact limit of this approximation). The direct CP asymme-
035007
tries ACP
K��0 and ACPK��� should be of the same order and

larger than the other two asymmetries.
The SM results of the CP asymmetries for the different

decay modes, including the effect of all local operators Qi,
are given in Table III. As in the case of the branching ratios,
we assume that � � �=3 and /A;H � 0; 1; 3. Respecting
the strong phases
A;H, we take it to be of order 1 as before.
Because of the sensitivity of the CP asymmetry on their
sign, we consider both cases of 
A;H � O��1�. A few
comments on the results of the direct CP asymmetries
given in Table II are in order:
(1) T
-5
he CP asymmetries ACP
K��0 and ACPK��� are sensitive

to the sign 
A (note that 
H is irrelevant for these
processes). On the contrary, the CP asymmetries
ACP
K0�� and ACP

K0�0 are insensitive to this sign.

(2) A
s expected, the results of the CP asymmetries

ACP
K0�� and ACP

K0�0 are very small even with large
values of /A.
(3) T
he value of ACP
K��0 and ACPK��� can be enhanced by

considering a large value of /A and one gets values
for ACPK��� of the order of the experimental result
given in Table I. However, it is very important to
note that, in this case, the CP asymmetry ACP

K��0 is
also enhanced in the same way and it becomes
1 order of magnitude larger than its experimental
value.
While a confirmation with more accurate experimental
data is necessary, the above results of the branching ratio
and the direct CP asymmetries of B! �K show that
within the SM the current experimental measurements
listed in Table I do not seem to be accommodated even if
one considers large hadronic uncertainties. It is worth
stressing that the QCD correction would not play an essen-
tial role in solving this K� puzzle. Furthermore, since we
are interested here in the ratio of the amplitudes, many of
the theoretical uncertainties cancel. So it cannot be the
source of these discrepancies.

Another useful way of parametrizing the decay ampli-
tudes can be obtained by factorizing the dominant penguin
amplitude P, where P is defined as [12]

Pei�P � ,c4 � 1
2,

c
4;EW � �c3 � �c3;EW: (26)

In this case, one can write the above expressions for the
decay amplitude as follows:



SHAABAN KHALIL PHYSICAL REVIEW D 72, 035007 (2005)
AB�!��K0 � #cA�KP�1� rAe
i�Ae�i��;���

2
p
AB�!�0K� � #cA�KP�1� �rAei�A � rCei��e�i� � rEWei�EW �;

AB0!��K� � #cA�KP�1� �rAe
i�A � rTe

i�T �e�i� � rCEWe
i�CEW�;

�
���
2

p
AB0!�0K0 � #cA�KP�1� �rAe

i�A � rTe
i�T � rCe

i�C�e�i� � rCEWe
i�CEW � rEWe

i�EW �;

(27)
where

rAei�A � 7KM��2 � ,u4 � 1
2,

u
4;EW � �u3 � �u3;EW�=P;

(28)

rTe
i�T � 7KM�,1 � 3

2,
u
4;EW � 3

2�
u
3;EW � �2��=P; (29)

rCe
i�P � 7KM�,1 � RK�,2 � 3

2�RK�,
u
3;EW � ,u4;EW��=P;

(30)

rEWei�EW � �32�RK�,
c
3;EW � ,c4;EW��=P; (31)

rCEWe
i�CEW � �32�,

c
4;EW � �c3;EW��=P: (32)

Here we define #u=#c � 7KMe
�i�, RK� � A�K=AK�, and
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�A, �T , �C, �EW, and �CEW as strong interaction phases. The
SM contributions within the QCD factorization lead to the
following results:

�Pei�P�SM � �0:11e0:051i; �rAe
i�A�SM � 0:019e0:26i;

�rCe
i�C�SM � 0:186e2:9i; �rTe

i�T �SM � 0:191e2:9i;

�rEWe
i�EW �SM � 0:13e�0:2i;

�rCEWe
i�CEW�SM � 0:012e�2:5i: (33)

As can be seen from this result, within the SM rA and
rCEW are much smaller than rC, rT , and rEW, so that they can
be easily neglected. In this case, the parameters Rc and Rn
can be expressed by the following approximated expres-
sions:
Rc ’ 1� 2rC cos�C cos�� 2rEW cos�EW; (34)

Rn ’
1� 2rT cos�T cos�

1� 2rT cos�T cos�� 2rC cos�C cos�� 2rEW cos�EW
; (35)
which confirms our previous conclusion that in the SM
Rn � Rc * 1. Explicitly, using the results of Eq. (33), one
finds that

Rc � 1:08�1:45�; Rn � 1:13�1:6�;

R � 0:757�0:673�
(36)

for � � �=3�2�=3�, which is quite close to the full result
that we obtained in Table II, with /A � 1.

Now we would like to comment on the mixing CP
asymmetry of B! K�. CP violation in the interference
between mixing and decay can be observed as time depen-
dent oscillation of the CP asymmetry. The amplitude of the
oscillation in charmonium decay modes provides a theo-
retical clean determination of the parameter sin2� of the
unitary triangle. The SM predicts the B-decay modes,
dominated by a single penguin amplitude such that B!

K, B! �0K, and B! K0�0 have the same time depen-
dent CP asymmetry equal to sin2�. Again, this result
contradicts the experimental measurement given in
Table I. Note that the latest experimental results on the
mixing CP asymmetry of B! 
KS process are given
by [2,3]
S
KS � 0:50� 0:25�0:07
�0:04�BABAR�

� 0:06� 0:33� 0:09�Belle�; (37)

where the first errors are statistical and the second system-
atic. Thus, the average of this CP asymmetry is S
KS �
0:34� 0:20. On the other hand, the most recent measured
CP asymmetry in the B0 ! �0KS decay is found by
BABAR [2] and Belle [3] Collaborations as

S�0KS � 0:27� 0:14� 0:03�BABAR�

� 0:65� 0:18� 0:04�Belle�; (38)

with an average S�0KS � 0:41� 0:11, which shows a 2:5�
discrepancy from the SM expectation. This difference
among S
K, S�0K, SK0�0 , and sin2� is also considered as
a hint for new physics beyond the SM, in particular for
supersymmetry.

III. B ! K� IN SUSY MODELS

As mentioned in the previous section, due to the asymp-
totic freedom of QCD, the calculation of the hadronic
decay amplitude of B! K� can be factorized by the
product of long and short distance contributions. The short
-6
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distance contributions, including the SUSY effects, are
contained in the Wilson coefficients Ci.

The SUSY contributions to the b! s transition could be
dominated by the gluino or the chargino intermediated
penguin diagrams [5]. It turns out that the dominant effect
in both contributions is given by a chromomagnetic pen-
guin (Q8g). However, in the case of B! K�, it was
observed that this process is more sensitive to the isospin
violating interactions [8,9], namely, the contributions from
the electromagnetic penguin (Q7�) and photon- and
Z-penguin contributions to Q7 and Q9. Therefore, in our
discussion we will focus only on these contributions,
although in our numerical analysis we keep all the contri-
butions of the gluino and the chargino.

For the gluino exchange, it turns out that the Z-penguin
contributions to C7;9 are quite small and can be neglected
with respect to the photon-penguin contributions. At the
first order in the mass insertion approximation, the gluino
contributions to the Wilson coefficients C7�;8g, C7, and C9

at SUSY scale MS are given by

C~g
7�MS� � C9�MS� �

2,s,

9
���
2

p
GFm2

~q

1

3
��dLL�23P042�x; x�;

(39)

C~g
7��MS� �

8,s�

9
���
2

p
GFm

2
~q

�
��dLL�23M3�x� � ��dLR�23

	
m~g

mb
M1�x�

�
; (40)

C~g
8g�MS� �

,s����
2

p
GFm2

~q

�
��dLL�23

	
1

3
M3�x� � 3M4�x�




� ��dLR�23
m~g

mb

	
1

3
M3�x� � 3M2�x�


�
; (41)

where x � m2
~g=m

2
q and the functions M1�x�, M2�x�, and

Pijk�x; x� can be found in Refs. [13,14]. The coefficients
~C7�;8g and ~C7;9 are obtained from C7�;8g and C7;9, respec-
tively, by the chirality exchange L$ R. As can be seen
from Eqs. (40) and (41), the term proportional to ��dLR�23 in
the coefficients C7�;8g has a large enhancement factor
m~g=mb. This enhancement factor is responsible for the
dominant gluino effects in B decays, although this mass
insertion is strongly constrained from b! s�. Note also
that, since the photon penguin gives the same contributions
to C7 and C9, and we neglect the Z-penguin contributions,
we have C7 � C9. Finally, it is clear that the coefficient
C7;9 is suppressed with respect to C7�;8g by a factor ,=4�
at least.

It is worth mentioning that the mass insertion ��dLR�23
can be generated by the mass insertion ��dLL�23 as follows :

��dLR�23 � ��dLL�23��
d
LR�33;
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where

��dLR�33 �
mb�Ab �( tan��

m2
~d

�
mb

m2
~d

tan�� 10�2 tan�:

Therefore,

��dLR�23 ’ 10�2 tan���dLL�23:

Hence, for a moderate value of tan� and ��dLL�23 �O�0:1�,
one obtains ��dLR�23 of order 10�2, which can easily imply
significant contributions for the S
K and also account for
the different results between S
K and S�0K. Thus, in our
analysis we define

��dLR�23eff � ��dLR�23 � ��dLL�23��
d
LR�33: (42)

It is important to stress that, in the case of ��dLR�23eff
dominated by double mass insertions, we still call this
scenario as LR contribution. This is due to the fact that
the main SUSY contribution is still through the C8g, which
is enhanced by the chirality flipped factor m~g=mb. In the
literature [16], this contribution has been considered in
analyzing the CP asymmetry of B! 
K and it was called
as LL contribution, as an indication for the large mixing in
the squark mass matrix and dominant effect of ��dLL�23.
However, we prefer to work with the notation LReff to be
able to trace the effective operators that may lead to
dominant contributions for different B decay channels.

The dominant chargino contributions are found to be
also due to the chromomagnetic-penguin, magnetic-
penguin, and Z-penguin diagrams. As emphasized in
Ref. [5], these contributions depend on the up sector
mass insertion ��uLL�32 and ��uRL�32, while the LR and RR
contributions are suppressed by #2 or #3, where # is the
Cabibbo mixing. At the first order in the mass insertion
approximation, the chargino contributions to the Wilson
coefficients are given by [5]

C;7 �MS� �
,
6�

�4C; �D;�; (43)

C;9 �MS� �
,
6�

	
4
	
1�

1

sin2=W



C; �D;



; (44)

C;7� � M�; (45)

C;8g � Mg; (46)

where the functions F � C; (Z penguin), D; (photon
penguin), M� (magnetic penguin), and Mg (chromomag-
netic penguin) are given by [5]

F; � ���uLL�32 � #��uLL�31�R
LL
F

� ���uRL�32 � #��uRL�31�YtR
RL
F : (47)

The functions RLLF and RRLF , F depend on the SUSY
parameters through the chargino masses (m;i), squark
-7
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masses ( ~m), and the entries of the chargino mass matrix. For the Z and magnetic (chromomagnetic) dipole penguins RLL;RLC
and RLL;RL

M��g� , respectively, we have [5]

RLLC �
X
i�1;2

jVi1j
2P�0�

C � �xi� �
X

i;j�1;2

�
Ui1Vi1U

?
j1V

?
j1P

�2�
C �xi; xj� � jVi1j

2jVj1j
2

	
1

8
� P�1�

C �xi; xj�

�
;

RRLC � �
1

2

X
i�1;2

V?i2Vi1P
�0�
C � �xi; �xit� �

X
i;j�1;2

V?j2Vi1�Ui1U?
j1P

�2�
C �xi; xit; xj; xjt� � V?i1Vj1P

�1�
C �xi; xj��;

RLLM�;g �
X
i

jVi1j
2xWiP

LL
M�;g�xi� � Yb

X
i

Vi1Ui2xWi
m;i

mb
PLRM�;g

�xi�;

RRLM�;g � �
X
i

Vi1V
?
i2xWiP

LL
M�;g

�xi; xit�;

(48)
where Yb is the Yukawa coupling of bottom quark, xWi �
m2
W=m

2
;i , xi � m2

;i= ~m
2, �xi � ~m2=m2

;i , and xit � m2
;i=m

2
~tR

.
The loop functions PLL�LR�M�;g

can be found in Ref. [5].
Finally, U and V are the matrices that diagonalize the
chargino mass matrix.

Notice that the terms in RLLM�
and RLLMg

which are en-
hanced by m;i=mb in Eq. (48) lead to the large effects of
chargino contributions to C7� and C8g, respectively. Also,
the dependence of these terms on Yukawa bottom Yb
enhance the LL contributions in C7�;8g at large tan�. In
the case of light stop-right, the function RRLC of the
Z-penguin contribution is largely enhanced. In order to
understand the impact of the chargino contributions in
the B! K� process, it is very useful to present the explicit
dependence of the Wilson coefficients C7;9;7�;8g in terms of
the relevant mass insertions. For gaugino mass M2 �
200 GeV, squark masses ~m � 500 GeV, light stop ~m~tR �

150 GeV, ( � 400 GeV, and tan� � 10, we obtain

C;7 ’ 0:000002��uLL�32 � 0:000011��uRL�31

� 0:000046��uRL�32; (49)

C;9 ’ 0:00000039��uLL�32 � 0:000037��uRL�31

� 0:000165��uRL�32; (50)

C;7� ’ �0:011��uLL�31 � 0:05��uLL�32 � 0:00043��uRL�31

� 0:002��uRL�32; (51)

C;8g ’ �0:0032��uLL�31 � 0:0014��uLL�32 � 0:0003��uRL�31

� 0:0012��uRL�32: (52)

From these results, it is clear that the Wilson coefficient
C;7� seems to give the dominant contribution, especially
through the LL mass insertion. However, one should be
careful with this contribution since it is also the main
contribution to the b! s�, and stringent constraints on
��uLL�32 are usually obtained, especially with large tan�.
Finally, as expected from Eq. (48), only LL contributions
to C;7� and C;8g have strong dependence on the value of
035007
tan�. For instance, with tan� � 40, these contributions are
enhanced with a factor 4, while the result of C;7;9 and LR
part of C;7� and C;8g change from the previous ones by less
than 2%.
IV. ON THE CONSTRAINTS FROM BR�B ! Xs��

In this section, we revise the constraints on SUSY flavor
structure which arise from the experimental measurements
of the branching ratio of the B! Xs� [17]:

2	 10�4 < BR�b! s��< 4:5	 10�4 �at 95% C:L:�:

(53)

In supersymmetric models, there are additional contribu-
tions to b! s� decay besides the SM diagrams with a
W-gauge boson and an up quark in the loop. The SUSY
particles running in the loop are charged Higgs bosons
(H�) or chargino with up quarks and gluino or neutralino
with down squarks. The total amplitude for this decay is
the sum of all these contributions. As advocated in the
introduction, the neutralino contributions are quite small
and can be safely neglected. Also, the charged Higgs
contributions are relevant only at very large tan� and small
charged Higgs mass. Therefore, we consider chargino and
gluino contributions only to analyze the possible con-
straints on the mass insertions ��uAB�32 and ��dAB�23, where
A � L;R.

Although the gluino contribution to b! s� is typically
very small in models with minimal flavor structure, it is
significantly enhanced in models with nonminimal favor
structure [18]. In this class of models, both chargino and
gluino exchanges give a large contribution to the amplitude
of b! s� decay, and, hence, they have to be simulta-
neously considered in analyzing the constraints of the
branching ratio BR�b! s��.

The relevant operators for this process are Q2, Q7�, and
Q8g. The contributions of the other operators in Eq. (4) can
be neglected. The branching ratio BR�b! s��, conven-
tionally normalized to the semileptonic branching ratio
BRexp�B! XceB� � �10:4� 0:4�% [19], is given by [20]
-8
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BRNLO�B! Xs�� � BRexp�B! XceB�
jV�

tsVtbj2

jVcbj2

	
6,em

�g�z�k�z�

	
1�

8

3

,s�mb�

�



	 �jDj2 � A��1� �np�; (54)

with

D � C�0�
7 �(� �

,s�(�
4�

 
C�1�

7 �(� �
X8
i�1

C�0�
i �(�

�
ri�z�

� ��0�
i7 log

mb

(

�!
;

A � �e�,s�(� log��7�2 log��=3� � 1�jC�0�
7 �(�j2 �

,s�(�
�

	
X8
i�j�1

C�0�
i �(�C�0�

j �(�fij���;

where z � m2
c=m

2
b, ( is the renormalization scale which is

chosen of ordermb, and / is photon energy resolution. The
expressions for C�0�

i , C�1�
i , and the anomalous dimension

matrix �, together with the functions g�z�, k�z�, ri�z�, and
fij���, can be found in Ref. [20]. The term �np (of order a
few percent) includes the nonperturbative 1=mb [21] and
1=mc [22] corrections. From the formula above, we obtain
the theoretical result for BR�B! Xs�� in the SM, which is
given by

BRNLO�B! Xs�� � �3:29� 0:33� 	 10�4; (55)

where the main theoretical uncertainty comes from uncer-
tainties in the SM input parameters, namely, mt, ,s�MZ�,
,em, mc=mb, mb, Vij, and the small residual scale depen-
dence. The central value in Eq. (55) corresponds to the
following central values for the SM parameters: mpole

t ’

mMS
t �mZ� ’ 174 GeV,mpole

b � 4:8 GeV,mpole
c � 1:3 GeV,

( � mb, ,s�mZ� � 0:118, ,�1
e �mZ� � 128, sin2=W �

0:23, and a photon energy resolution corresponding to / �
0:9 is assumed.

The SUSY contributions to the Wilson coefficients C7�

and C8g at leading order are given in the previous section.
In general, the SUSY effects in b! s� decay can be
parametrized by introducing R7;8 and ~R7;8 parameters de-
fined at the electroweak scale as

R7;8 �
�C7�;8g � CSM

7�;8g�

CSM
7�;8g

; ~R7;8 �
~C7�;8g

CSM
7�;8g

; (56)

where C7�;8g include the total contribution, while CSM
7�;8g

contains only the SM ones. Note that in ~C7�;8g, which are
the corresponding Wilson coefficients for ~Q7�;8g, respec-
tively, we have set to zero the SM contribution. Inserting
these definitions into the BR�B! Xs�� formula in Eq. (54)
yields a general parametrization of the branching ratio
035007
[18,23]

BR�B! Xs�� � BRSM�B! Xs���1� 0:681Re�R7�

� 0:116�jR7j
2 � j ~R7j

2� � 0:083Re�R8�

� 0:025�Re�R7R
�
8� � Re� ~R7

~R�
8��

� 0:0045�jR8j
2 � j ~R8j

2��: (57)

From this parametrization, it is clear that C7� would give
the dominant new contribution (beyond the SM one) to
BR�B! Xs��. Using the allowed experimental range
given in Eq. (53), one can impose stringent constraints
on C7� and, hence, on the corresponding mass insertions.
It is also remarkable that R7 and ~R7 have different contri-
butions to the BR�B! Xs��; therefore, the possible con-
straints on C7� and, hence, on the LL and LR mass
insertions would be different from the constraints on ~C7�

and, hence, on the RR and RLmass insertions, unlike what
has been assumed in the literature. Furthermore, since the
leading contribution to the branching ratio is due to
Re�R7�, the CP violating phase of C7� will play a crucial
role in the possible constraints imposed by BR�B! Xs��.

Note that the constraints obtained in Ref. [13], namely,
��dLR�23 � 1:6	 10�2 and ��dLL�23 is unconstrained, are
based on the assumption that the gluino amplitude is the
dominant contribution to b! s�, even dominant with
respect to the SM amplitude. Although this a very accept-
able assumption in order to derive conservative constraints
on the relevant mass insertions, it is unrealistic and usually
leads to unuseful constraints. The aim of this section is to
provide a complete analysis of the b! s� constraints by
including the SM, chargino, and gluino contributions.

Let us start first with the gluino contribution as the
dominant SUSY effect to b! s� decay. We assume that
the average squark mass of order 500 GeV, and we consider
three representative values for x � �m~g=m~q�

2 � 0:3, 1, and
4. We also assume that the SM value for BR�B! Xs�� is
given by 3:29	 10�4, which is the central value of the
results in Eq. (55). In these cases, we find that both the
mass insertions j��dLL�23j and j��dRR�23j are unconstrained
by the branching ratio of b! s� for any values of their
phases. The upper bounds on j��dLR�23j and j��dRL�23j from
b! s� decay are give in Table IV. As can be seen from
these results, the limits on j��dLR�23j are quite sensitive to
the phase of this mass insertion, unlike the bounds on
j��dRL�23j. Also, as suggested by Eq. (57), the bounds on
LR coincide with the ones on RL only if arg��dLR�RL��23 �
�=2. Note that in this case Re�R7� vanishes and the ex-
pression of the branching ratio is a symmetric under ex-
change R7 and ~R7.

Now we consider the chargino contribution as the domi-
nant SUSYeffect to b! s� in order to analyze the bounds
on the relevant mass insertions in the up-squark sector.
From the expression of C;7� in Eq. (51), which provides the
leading contribution to the branching ratio of b! s�, it is
-9



TABLE IV. Upper bounds of j��dLR�RL��23j from b! s� decay
for m~q � 500 GeV and arg��dLR�RL��23 � 0 �a�; �=2 �b�; � �c�,
respectively.

x j��dLR�23j j��dRL�23j

(a) 0.0116
0.3 (b) 0.0038 0.0038

(c) 0.0012
(a) 0.02

1 (b) 0.006 0.006
(c) 0.002
(a) 0.006

4 (b) 0.015 0.016
(c) 0.0045
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clear that one can derive strong constraints on ��uLL�32 and
��uLL�31 and much weaker constraints (essentially no con-
straint) on ��uRL�32 and ��uRL�31. The resulting bounds on
��uLL�32 and ��uLL�31 as functions of the gaugino mass M2

and the average squark mass ~m are presented in Table V, for
tan� � 10 and ( � 400 GeV.

The results in Table V correspond to a positive sign of(.
If one assumed a negative sign of (, the constraints on
TABLE V. Upper bounds of j��uLL�32j (left) and j��uLL�31j
(right) from b! s� decay for tan� � 10 and ( � 400 GeV
and arg��u

LL�32�31� � 0�a�; �=2�b�; ��c�, respectively.

M2nm 300 500 700 900

(a) 0.04 0.065 0.095 0.14
150 (b) 0.14 0.24 0.37 0.54

(c) 0.51 0.85 
 
 
 
 
 


(a) 0.053 0.075 0.1 0.15
250 (b) 0.20 0.28 0.4 0.55

(c) 0.70 
 
 
 
 
 
 
 
 


(a) 0.07 0.09 0.12 0.16
350 (b) 0.26 0.33 0.45 0.6

(c) 0.92 
 
 
 
 
 
 
 
 


(a) 0.085 0.105 0.14 0.16
450 (b) 0.33 0.4 0.5 0.6

(c) 
 
 
 
 
 
 
 
 
 
 
 


M2nm 300 500 700 900

(a) 0.17 0.28 0.45 0.65
150 (b) 0.65 
 
 
 
 
 
 
 
 


(c) 
 
 
 
 
 
 
 
 
 
 
 


(a) 0.24 0.34 0.48 0.67
250 (b) 0.86 
 
 
 
 
 
 
 
 


(c) 
 
 
 
 
 
 
 
 
 
 
 


(a) 0.32 0.4 0.52 0.73
350 (b) 
 
 
 
 
 
 
 
 
 
 
 


(c) 
 
 
 
 
 
 
 
 
 
 
 


(a) 0.45 0.48 0.62 0.8
450 (b) 
 
 
 
 
 
 
 
 
 
 
 


(c) 
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j��uLL�32j and j��uLL�31j with arg��uLR�32�31� will be ex-
changed with the corresponding ones with arg��uLL�32�31� �
�. Thus, in Table V, the results of case (a) will be replaced
with the results of (c) and vice versa. For larger values of
tan�, the above constraints will be reduced by the factor
�tan�=10�. Note also that, because of the SU�2� gauge
invariance, the soft scalar mass M2

Q is common for the up
and down sectors. Therefore, one gets the following rela-
tions between the up and down mass insertions:

��dLL�ij � �V�
CKM��

u
LL�VCKM�ij: (58)

Hence,

��dLL�32 � ��uLL�32 �O�#2�: (59)

As a result, the constraints obtained from the chargino
contribution to b! s� transition on j��uLL�32j can be con-
veyed to a constraint on j��dLL�32j which equals to
j��dLL�23j, due to the Hermiticity of �M2

D�LL. This is the
strongest constraint one may obtain on j��dLL�23j, and,
therefore, it should be taken into account in analyzing the
LL part of the gluino contribution to the b! s.

Finally, we consider the scenario in which both gluino
and chargino exchanges are assumed to contribute to b!
s� simultaneously with relevant mass insertions, namely,
��dLR�23 and ��uLL�32. It is known that these two contribu-
tions could give rise to a substantial destructive or con-
structive interference with the SM amplitude, depending
on the relative sign of these amplitudes. Recall that, in the
minimal supersymmetric standard model with the univer-
sality assumptions, the gluino amplitude is negligible,
since ��dLR�23 & O�10�6�, and the chargino contribution
at large tan� is the only relevant SUSY contribution. In
this class of model, depending on the sign of (, the
chargino contribution gives destructive interference with
the SM result.

In a generic SUSY model, the situation is different, and
the experimental results of the branching ratio of b! s�
can be easily accommodated by any one of these contri-
butions. Also, since the gluino and the chargino contribu-
tions are given in terms of the parameters of the up- and
down-squark sectors, they are, in principle, independent
and could have destructive interference between them-
selves or with the SM contribution. We stress that we are
not interested in any fine-tuning region of the parameter
space that may lead to a large cancellation. We are rather
considering the general scenario with large down and up
mass insertions favored by theCP asymmetries of different
B processes. In this case, both gluino and chargino con-
tributions to b! s� are large and cancellation of the order
20%–50% can take place.

Now it is clear that the previous constraint obtained on
��dLR�23 and ��uLL�32 in Tables IVand V will be relaxed. We
plot the corresponding results for the correlations between
��dLR�23 and ��uLL�32 in Fig. 1. Here we consider the relation
��dLL�23 � ��uLL�32 into account and also set ��uRL�32 to
-10



FIG. 1. Contour plot for BR�b! s�� 	 104 as a function of
��dLR�23 and ��uLL�32.
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zero. The phases of ��dLR�23 and ��uLL�32 are assumed to be
of order�=2 as favored by the CP asymmetry of B! 
K.
From this plot, we can see that constraints on these mass
insertions, particularly ��uLL�32, are relaxed.
V. SUSY SOLUTION TO THE Rc �Rn PUZZLE

Now we analyze the supersymmetric contributions to the
B! K� branching ratio. We will show that the simulta-
neous contributions from penguin diagrams with chargino
and gluino in the loop could lead to a possible solution to
the Rc � Rn puzzle. As mentioned in Sec. III, these pen-
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
n

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

R
c

FIG. 2 (color online). Rc � Rn correlation in SUSY models
with j��uLR�32j ’ 1, j��dLR�23j 2 �0:001; 0:01� and j��uLL�32j 2
�0:1; 1�; see the text for the other parameters. The small and
large ellipses correspond to 1� and 2� experimental results,
respectively.
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guin contributions have three possible sources of a large
SUSY contribution to B! K� processes:
(1) G
-11
luino mass enhanced O7� and O8g which depend
on ��dLR�23 and ��dRL�23;
(2) C
hargino mass enhanced O7� and O8g which de-
pend on tan���uLL�23;
(3) R
ight-handed stop mass enhanced Z penguin which
is given in terms of ��uRL�32.
For the same inputs of SUSY parameters that we used
above, m~g � 500 GeV, m~q � 500 GeV, m~tR � 150 GeV,
M2 � 200 GeV, ( � 400 GeV, and tan� � 10, one finds
the following SUSY contributions to the amplitudes of
B! K�:

A �B0!�0 �K0 	 107 ’ �9:82i���dLR�23 � ��dRL�23�

� 0:036i��uLL�32 � 0:02i��uRL�32;

A �B0!��K� 	 107 ’ 14:04i���dLR�23 � ��dRL�23�

� 0:06i��uLL�32 � 0:001i��uRL�32;

AB�!�0K� 	 107 ’ 9:9i���dLR�23 � ��dRL�23�

� 0:04i��uLL�32 � 0:024i��uRL�32;

AB�!��K0 	 107 ’ 13:89i���dLR�23 � ��dRL�23�

� 0:05i��uLL�32 � 0:006i��uRL�32:

It is remarkable that for the amplitudes A �B0!�0 �K0 and
AB�!�0K� , which suffer from a large discrepancy between
their SM values and their experimental measurements, the
SUSY contributions have the following features: (i) the
effect of ��uRL�32 is not negligible as in the other ampli-
tudes; (ii) there can be a distractive interference between
the ��dLR�23 and ��uLL�32 contributions. As we will see
below, these two points are important in saturating the
experimental results by supersymmetry. Also note that
the effect of the gluino contribution through O7� is very
small and the contribution of ��dLR�23 is mainly due to O8g.
However, the chargino effect of O7� can be enhanced by
tan�.

We present our numerical results for the correlation
between the total contributions (SM� SUSY) to the Rn
and Rc in Fig. 2. We have scanned over the relevant mass
insertions: ��uLL�32, ��dLR�23, and ��uRL�32, since we have
assumed ��uLL�32 ’ ��dLL�23 and ��dLR�23 ’ ��dRL�23. We
considered j��uLL�32j 2 �0:1; 1�, j��dLR�23j 2 �0:001; 0:01�,
arg���uLL�32� 2 ���;��, arg���dLR�23� ’ �=3 (which is
preferred by S
KS), and ��uRL�32� � 1 (in order to maximize
the difference between Rn and Rc). As can be seen from the
results in Fig. 2, the experimental results of Rn and Rc at
2� can be naturally accommodated by the SUSY contri-
butions. However, the results at 1� can be obtained only by
a smaller region of parameter space. In fact, the value of Rc
is predicted to be less than one for most of the parameter
space. Therefore, it will be a nice accordance with SUSY
results if the experimental result of Rc goes down.
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In order to understand the results in Fig. 2 and the impact
of the SUSY on the correlation between Rn and Rc, we
extend the parametrization introduced in Sec. II for the
relevant amplitudes by including the SUSY contribution
[8]. In this case, Eqs. (27) can be written as

AB�!��K0 � #cA� �KP�e
i=P � rAei�Ae�i��; (60)

���
2

p
AB�!�0K� � #cA� �KP�e

i=P � �rAei�A � rCei�C�e�i�

� rEWei=EWei�EW�; (61)

AB0!��K� � #cA�KP�e
i=P � �rAei�A � rTei�T �e�i�

� rCEWe
i=EWei�

C
EW �; (62)

�
���
2

p
AB0!�0K0 � #cA�KP�e

i=P � �rAe
i�A � rTe

i�T

� rCe
i=Cei�C�e�i� � rCEWe

i=CEWei�
C
EW

� rEWe
i=EWei�EW �: (63)

The parameters �A; �C; �T; �EW; �CEW and =P; =EW; =CEW are
the CP conserving (strong) and the CP violating phase,
respectively. Note that the parameters P; rEW; rCEW are now
defined as

Pei=Pei�P � ,c4 � 1
2,

c
4;EW � �c3 � �c3;EW;

rEWe
i=EWei�EW � �32�RK�,

c
3;EW � ,c4;EW��=P;

rCEWe
i=CEWei�

C
EW � �32�,

c
4;EW � �c3;EW��=P:

(64)

First, let us include some assumptions to simplify our
formulas. As is mentioned before, ,p4 ; ,

p
3;EW; ,

p
4;EW; �

p
3 ;

�p3;EW; �
p
4;EW receive SUSY contributions through the

Wilson coefficients. The upper index p takes both u and
c; however, the contribution with the u index is always
suppressed by the factor 7KM ’ 0:018 so that its SUSY
contributions can be safely neglected comparing to the one
with the index c. As a result, �rAei�A�, �rCei�C�, and �rTe

i�T �
receive a correction of a factor 1=j1� �PSUSY=PSM�j.

Second, we assume that the strong phase for SM and
SUSY are the same. We found that this is a reasonable
assumption in QCD approximation in which the main
source of the strong phase comes from hard spectator and
weak annihilation diagrams. This leads us to the following
parametrization:

Pei�Pei=P � PSMei�P�1� kei=
0
P�; (65)

rEWe
i�EWei=EW � �rEW�SMei�EW�1� lei=

0
EW �; (66)

rCEWe
i�CEWei=

C
EW � �rCEW�SMei�

C
EW �1�mei=

C0
EW �; (67)

where

kei=
0
P �

�,c4 �
1
2,

c
4;EW � �c3 � �c3;EW�SUSY

�,c4 �
1
2,

c
4;EW � �c3 � �c3;EW�SM

; (68)
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lei=
0
q �

�RK�,
c
3;EW � ,c4;EW�SUSY

�RK�,
c
3;EW � ,c4;EW�SM

; (69)

mei=
0
qC �

�,c4;EW � �c3;EW�SUSY

�,c4;EW � �c3;EW�SM
: (70)

The index SM (SUSY) means to keep only SM (SUSY)
Wilson coefficients in ,pi�;EW�

and �pi�;EW�
. Using these

parameters, we also have

rAei�A �
�rAe

i�A�SM

j1� kei=
0
P j
; rCei�C �

�rCe
i�C�SM

j1� kei=
0
P j
;

rTe
i�T �

�rTei�T �SM
j1� kei=

0
P j
:

(71)

Now let us investigate the Rc � Rn puzzle. We shall
follow the standard procedure to simplify and expand the
formulas. Considering the numbers obtained above, we
shall simplify our formulas by assuming
(1) th
-12
e strong phases are negligible; i.e., �P; �A;
�C; �EW; �

C
EW are all zero;
(2) th
e annihilation tree contribution is negligible; i.e.,
rA ’ 0;
(3) th
e color suppressed tree contribution is negligible;
i.e., rCei�C � rTei�T .
Using these assumptions, we expand Rc, Rn, and Rc � Rn.
We expand in terms of rT and rEW and rCEW up to the second
order. As a result, we obtain

Rc ’ 1� r2T � 2rT cos��� =P� � 2rEW cos�=P � =EW�

� 2rTrEW cos��� =EW�; (72)

Rc � Rn ’ 2rTrEW cos��� 2=P � =EW�

� 2rTr
C
EW cos��� 2=EW � =CEW�: (73)

Now let us find the configuration which leads to Rc �
Rn > 0:2. Looking at Eq. (73), we can find that, in general,
the larger the values of rT , rEW, and rCEW are, the larger the
splitting between Rc and Rn we would acquire. The phase
combinations =P � =EW and =P � � also play an important
role. The possible solution of the Rc � Rn puzzle by en-
hancing rEW, which we parametrize as l, has been inten-
sively studied in the literature [9]. As we will see in the
following, rT can also be enhanced due to the factor kei=

0
P ,

which contributes destructively against the SM and dimin-
ishes P. However, since P is the dominant contribution to
the B! K� process, the branching ratio is very sensitive
to kei=

0
P . Therefore, we are allowed to vary kei=

0
P only in a

range of the theoretical uncertainty of QCD factorization,
which gives about right sizes of the B! K� branching
ratios. As shown in Ref. [8], we would be able to reduce P
at most by 30%, which can be easily compensated by the
error in the transition form factor FB!�;K.
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Considering the tiny effect from the second term in
Eq. (73), in order to achieve Rc � Rn * 0:2, we need
rTrEW larger than about 0.1 or, equivalently, rEW larger
than about 0.5 with rSMT . In Ref. [8], it was emphasized that,
with k � 0, one needs l * 2 to reproduce the experimental
values, while an inclusion of a small amount of k lowers
this bound significantly. For the SUSY parameters that we
have considered above, the following results for our SUSY
parameters k, l, and m are obtained:

kei=P � �0:0019 tan���uLL�32 � 35:0��dLR�23

� 0:061��uLR�32; (74)

lei=q � 0:0528 tan���uLL�32 � 2:78��dLR�23 � 1:11��uLR�32;

(75)

mei=qC � 0:134 tan���uLL�32 � 26:4��dLR�23

� 1:62��uLR�32: (76)

Note that we do not consider ��d23�RL here but it is the same
as ��dLR�23 with an opposite sign (see also [7]). Let us first
discuss the contributions from a single mass insertion
��uLL�32, ��dLR�23, or ��uLR�32 to fk; l; mg; keeping only one
mass insertion and switching off the other two. In this case,
one finds that the maximum value of fk; l;mg with
j��uLR�32j � 1 is fk; l; mg � f0:061; 1:11; 1:62g. Thus, in
this case where k is almost negligible, we would need l ’
2 to explain the experimental data. We have a chance to
enlarge the coefficients for ��uLR�32 by, for instance, in-
creasing the averaged squark mass ~m~q. However, even if
we choose ~m~q � 5 TeV, we find that l is increased only by
20% to 30%. The maximum contributions from ��dLR�23
and ��uLL�32 are found to be fk; l;mg � f0:18; 0:014; 0:13g
and f0:0019; 0:053; 0:13g, which are far too small to ex-
plain the experimental data. The coefficients for ��dLR�23
depend on the overall factor 1= ~m~q and also on the variable
of the loop function x � m~g= ~m~q, and we found that m~g �

~m~q � 250 GeV can lead to a 100% increase. However, the
value of l is still too small to deviate Rc � Rn significantly.
As a whole, it is extremely difficult to have Rc � Rn * 0:2
from a single mass insertion contribution.

Let us try to combine two main contributions, ��dLR�23
and ��uLR�32 terms. Using the previous input parameters and
including the b! s� constraint j��dLR�23j, the maximum
value is found to be fk; l; mg � f0:24; 1:12; 1:48g. In this
case, it is easy to check that the experimental data are not
reproduced very well [8]. As discussed above, for a large
value of the averaged squark masses, l increases while k
decreases. On the contrary, k also depends on the ratio of
gluino and squark masses. Hence, we need to optimize
these masses so as to increase k and l simultaneously. For
instance, withm~g � 250 GeV and ~m~q � 1 TeV, we obtain
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fk; l; mg � f0:30; 1:36; 1:90g, which leads to a result within
the experimental bounds of Rc and Rn. Finally, we consider
the case with the three nonzero mass insertions. The main
feature of this scenario is that we expect a relaxation of the
constraints on j tan�	 ��uLL�32j and j��dLR�23j from the
cancellation between ��dLR�23 and ��uLL�32 contributions to
b! s�. Under this circumstance, we observe much larger
Rc � Rn for various combinations of the phases in this
scenario.
VI. SUSY CONTRIBUTIONS TO THE CP
ASYMMETRY OF B ! K�

We start this section by summarizing our convention for
CP asymmetry in B! K� processes. The time dependent
CP asymmetry for B! K� can be described by

AK��t� � AK� cos��MBdt� � SK� sin��MBd�t; (77)

where AK� and SK� represent the direct and the mixing CP
asymmetry, respectively, and they are given by

AK� �
j �/�K��j2 � 1

j �/�K��j2 � 1
; SK� �

2 Im� �/�K���

j �/�K��j2 � 1
; (78)

where �/�K�� � e�i
B
�A�K��
A�K�� . The phase 
B is the phase of

M12, the B0 � �B0 mixing amplitude. The A�K�� and
�A�K�� are the decay amplitudes for B0 and �B0 to K�,
respectively.

The SM predicts that the mixing and direct asymmetry
of B! K� decay are given by

SK� � sin2�; AK� � 0: (79)

The recent measurements of the CP asymmetries in
B! K�, reported in Table I, show significant discrepan-
cies with the SM predictions. As mentioned above, SUSY
can affect the results of the CP asymmetries in B decay,
due to the new source of CP violating phases in the
corresponding amplitude. Therefore, deviation on CP
asymmetries from the SM expectations can be sizable,
depending on the relative magnitude of the SM and the
SUSY amplitudes. In this respect, SUSY models with non-
minimal flavor structure and new CP violating phases in
the squark mass matrices can generate large deviations in
the B! K� asymmetry. In this section, we present and
discuss our results for SUSY contributions to the direct and
the mixing CP asymmetries in B! K�.

A. SUSY contributions to the direct CP asymmetry in
B ! K�

Using the general parametrization of the decay ampli-
tudes of B! K� given in Eqs. (60)–(63), one can write
the direct CP asymmetries ACPK� as follows:
-13
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ACPK��� ’ 2rT sin�T sin�=P � �� � 2rCEW sin�CEW sin�=P � =cEW� � r2T sin2�T sin2�=P � ��

� 2rTr
C
EW sin��CEW � �T� sin�=

C
EW � �� � 4rTr

C
EW sin�CEW sin�=P � =CEW� cos�T cos�=P � ��

� 4rTr
C
EW sin�T sin�=P � �� cos�cEW cos�=P � =CEW�; (80)

ACP
K0�� ’ 2rA sin�A sin�=P � ��; (81)

ACP
K0�0 ’ 2rCEW sin�CEW sin�=P � =CEW� � 2rEW sin�EW sin�=P � =EW�; (82)

ACP
K��0 ’ 2rT sin�T sin�=P � �� � 2rEW sin�EW sin�=P � =EW� � r2T sin2�T sin2�=P � ��

� 2rTrEW sin��EW � �T� sin�=EW � �� � 4rTrEW sin�EW sin�=P � =EW� cos�T cos�=P � ��

� 4rTrEW sin�T sin�=P � �� cos�EW cos�=P � =EW�: (83)
From these expressions, it is clear that if we ignore the
strong phases, then the direct CP asymmetries would
vanish. However, Belle and BABAR Collaborations ob-
served nonzero values for the ACPK�; thus, we should con-
sider nonvanishing strong phases in this analysis. It is also
remarkable that the leading contributions to the direct CP
asymmetries are given by the linear terms of ri �
rT; rA; rEW; r

C
EW, unlike the difference Rc � Rn which re-

ceives corrections of order rirj. As in the previous section,
we have assumed that the color suppressed contributions
are negligible, i.e., rCei�C � rTei�T , and we have neglected
terms of order r2i except for rT which is typically larger
than rEW, rCEW, and rA.

The rescattering effects parametrized by rA are quite
small �rSMA ’ O�0:01��; therefore, the CP asymmetry in
the decays B� ! K0�� is expected to be very small as
can be easily seen from Eq. (81). This result is consistent
with the experimental measurements reported in Table I.
The sign of this asymmetry will depend on the relative sign
of sin�A and sin�=P � ��. Note that the value of the angle �
is fixed by the CP asymmetry in B! �� to be of order
�=3. The angle =P can also be determined from the CP
asymmetry S
��0�K.

In the SM, the parameters rA; rCEW are much smaller than
rT; rEW and =P � 0; therefore, the following relation
among the direct CP asymmetries ACPK� is obtained:

ACPK��0 * ACPK��� * ACP
K0�0 >ACP

K0�� :

This relation is in agreement with the numerical results
listed in Table III for the direct CP asymmetries in the SM
with /A;H;
A;H ’ 1. To change this relation among the CP
asymmetries and to get consistent correlations with experi-
mental measurements, one should enhance the electroweak
penguin contributions to �B0 ! K��� decay amplitude,
parametrized by rCEW. Furthermore, a nonvanishing value
of =P, which is also required to account for the recent
measurements of S
KS and S�0KS , is favored in order to
obtain ACPK��� >ACP

K��0 . It is worth mentioning that, in the
SM and due to the fact that =P � 0, the second terms in
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Eqs. (80) and (83) gives destructive and constructive inter-
ferences, respectively, with the first terms. Thus, one finds
ACP
K��0 is larger than ACPK��� . In SUSY models, the gluino

contribution leads to a large value of =P, and, depending on
the sign of this angle, the parameter rT could be enhanced
or reduced; see Eq. (71). As will be seen below, in this case
we can explain the CP asymmetry results with moderate
values of the electroweak penguin parameter rCEW. Note
that, in other models studied in the literature, the value of
this parameter is required to be larger than 1 in order to
account for the CP asymmetry results.

Now let us discuss the SUSY contribution to the CP
asymmetries ACPK�. As can be seen from Table I, the experi-
mental measurements of ACP

K0�0 suffer from a large uncer-
tainty. It turns out that it is very easy to have the SUSY
results for this asymmetry within the range of 2�measure-
ments. Thus, this decay mode is not useful in constraining
the SUSY parameter space and can be ignored in our
discussion for the correlation among the CP asymmetries
of B! K� in generic SUSY models.

We will consider, as in the previous section, three sce-
narios with a single mass insertion, two mass insertions,
and three mass insertions. In the first case, if we consider
the contribution due to the mass insertion ��uLR�32, the
maximum values of fk; l;mg are given by f0:061; 1:11;
1:62g, while from ��dLR�23 and ��uLL�32, one finds that the
maximum values of fk; l;mg are f0:18; 0:014; 0:13g and
f0:0019; 0:053; 0:13g, respectively. Note that k is almost
negligible in the case of dominant chargino contribution
which depends on ��uLL�32 and ��uLR�32 and can be signifi-
cantly enhanced by the gluino contribution that depends on
��dLR�23 as emphasized in Ref. [5]. Also from Eqs. (66),
(67), and (71), one finds

rEW � rSMEW�1� l2 � 2l cos=0EW�1=2; (84)

rcEW � �rCEW�SM�1�m2 � 2m cos=C
0

EW�1=2; (85)

rT �
rT

j1� kei=
0
P j
: (86)
-14



CP ASYMMETRIES AND BRANCHING RATIOS OF B! K� . . . PHYSICAL REVIEW D 72, 035007 (2005)
Since �rCEW�SM ’ 0:01, the enhancement of rCEW remains
quite limited in SUSY models and it is impossible to
enhance it to be of order 1. Hence, the contribution of
rCEW to ACPK��� is negligible with respect to the contribution
of rEW to ACP

K��0 . To overcome this problem and get the
desired relation between ACPK��� and ACP

K��0 , a kind of
cancellation between rT and rEW contributions to ACP

K��0

is required. Such a cancellation can be obtained naturally
without fine-tuning the parameters if rT � rEW, i.e., the
total value of rT < rSMT . This could happen if k is not very
small. Therefore, one would expect that the scenarios with
dominant chargino contribution, where k � 0:061 or k �
0:0019, will not be able to saturate the experimental results
of ACPK��� and ACP

K��0 simultaneously. This observation is
confirmed in Fig. 3 (top left), where the results of ACPK���

are plotted versus the results of ACP
K��0 for fk; l;mg �

f0:061; 1:11; 2:62g and the other parameters vary as fol-
lows: �i � ��;�=2, and �. The angles =EW and =CEW 2
���;��. Also, =P is assumed to be in the region
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FIG. 3. CP asymmetry of B! K��� versus CP asymmetry
0:13g; f0:24; 1:12; 1:48g; f0:32; 0:95; 2:26g, respectively, from left to
CP violating phases =EW and =CEW reside between �� and �. Final
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��=4; �=2�. Note that in this plot we have taken the
ACP
K0�� as a constraint. Thus, all the points in the plot

correspond to consistent values of ACP
K0�� with the experi-

mental results.
Now we consider the second scenario with dominant

gluino contribution, i.e., ��dLR�23 ’ 0:005ei�=3, ��uLL�32 �
��uRL�32 � 0. In this case, one finds that the maximum
values of fk; l;mg are give by fk; l;mg �
f0:18; 0:014; 0:13g; hence, rT is reduced from rSMT ’ 0:2
to rT ’ 0:12, while rEW and rCEW approximately remain
the same as in the SM. In Fig. 3 (top right), we plot the
CP asymmetries ACPK��� and ACP

K��0 in this scenario, varying
the relevant parameter as before. It is remarkable that a
large number of points of the parameter space can simul-
taneously accommodate the experimental results of these
CP asymmetries. It is slightly surprising to get the values
of the CP asymmetries ACPK� within the experimental
range, i.e., ACPK��� 2 ��0:075;�0:151� and ACP

K��0 2

��0:04; 0:12�, by just one mass insertion in dominant
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of B! K��0 for fk; l; mg � f0:061; 1:11; 2:62g; f0:18; 0:014;
right and top to bottom. Strong phases �i � ��;�=2; � and
ly, =P is assumed to be in the region ��=4; �=2�.
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gluino models. This is contrary to the Rc � Rn results,
which need gluino and chargino combination in order to
be within the experimental range. This result can be ex-
plained by the cancellation that occurs in ACP

K��0 between
the rT and rEW contributions and the negligible effect of
rCEW to ACPK��� .

To be more quantitative, let us consider the following
example where ��dLR�23 ’ 0:005ei�=3 and ��uLL�32 �
��uRL�32 � 0. In this case, one get rT � 0:12, rEW � 0:13,
and rCEW � 0:01. Therefore, the main contribution to
ACPK��� is due to the linear term in rT , which is
rT sin�T sin�=P � ��. With =P � �=3 and �T ���=4,
this contribution leads to ACPK��� ’ �0:113. Since rT gives
the same contributions to ACP

K��0 , a significant positive
contribution from rEW is required to change the ACP

K��0

and make it positive. With rEW � 0:13, the ACP
K��0

is approximately given by ACP
K��0 ’ �0:113�

0:26 sin�EW sin�=P � =EW�. It is worth mentioning that,
although =0P and =0EW are equal in the case of a single
mass insertion, the values of =P and =EW are different
due to the different values of k and l. In this example, it
turns out that =P � =EW � �=9. Hence, one gets ACP

K��0 ’

�0:113� 0:22 sin�EW. So that for �EW � �=4, one finds
ACP
K��0 ’ 0:04, which is the central value of the experimen-

tal measurements reported in Table I.
We turn to the contributions from two mass insertions:

��dLR�23 and ��uRL�32, which reflect simultaneous contribu-
tions from the penguin diagrams with chargino and gluino
in the loop. Applying the b! s� constraints on these mass
insertions, the maximum values of fk; l; mg are found to be
f0:24; 1:12; 1:148g. In this case, we obtain rT � 0:11,
rEW � 0:54, and rCEW � 0:06. Therefore, the CP asymme-
try ACP

K��0 is dominated by rEW contribution, and, in order
to get ACP

K��0 of order O�0:04�, a small value of the strong
phase �EW should be used. This makes the possibility of
saturating the results of ACPK��� and ACP

K��0 less possible
than the previous case. In Fig. 3 (bottom left), we present
the results of this scenario for the same set of input pa-
rameters used before. This figure confirms our expectation
and it can be easily seen that it has less points of the
parameter space that account for the experimental results
of the CP asymmetries than Fig. 3 (top right). Note also
that with two mass insertions, the phases =0P and =0EW can
be considered independent; hence, the angles =P and =EW
are also independent.
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Finally, we consider the case of three nonvanishing mass
insertions: ��dLR�23, ��uRL�32, and ��uLL�32. Including the
b! s� constraints, we find that the maximum value of
fk; l; mg is f0:32; 0:95; 2:26g. The corresponding values of
ri are rT � 0:10, rEW � 0:48, and rCEW � 0:09. It is clear
that rT and rEW are slightly changed than in the previous
scenario, while rCEW is enhanced a bit. In this case, it will be
easier to accommodate for ACP

K��0 . The numerical results
for this scenario are given in Fig. 3 (bottom right) for the
same set of parameter space used in previous cases. As can
be seen from this figure, the probability of accommodating
the experimental results of different CP asymmetries in
this class of models is higher than in models with two mass
insertions. However, it remains that the model with domi-
nated gluino contributions provides the largest possibility
of saturating the experimental results of CP asymmetries
of B! K�.

B. SUSY contributions to the mixing CP asymmetry in
B ! K0�0

We turn our attention now to the mixing CP asymmetry
of B! K0�0. As mentioned before, this decay is domi-
nated by b! s penguin. Thus, within the SM, the CP
asymmetry SK0�0 should be very close to the value of
sin2� ’ 0:73. However, the current experimental measure-
ments summarized in Table I show that SK0�0 is lower than
the expected value of sin2�, namely,

SK0�0 ’ 0:34� 0:28: (87)

In this section we aim to interpret this discrepancy in terms
of supersymmetry contributions. It is useful to parametrize
the SUSYeffects by introducing the ratio of SM and SUSY
amplitudes as follows:

	
ASUSY

ASM



K�

� R�e
i=�ei�� ; (88)

where R� stands for the absolute value of j�ASUSY�B!
K0�0��=�ASM�B! K0�0��j and the angle =� is the SUSY
CP violating phase. The strong (CP conserving) phase ��
is defined by �� � �SM

� � �SUSY
� . This parametrization is

analogous for those of SK
 and SK�0 [5,7]. Using this
parametrization, one finds that the mixing CP asymmetry
SK0�0 in Eq. (78) takes the following form:
SK0�0 �
sin2�� 2R� cos�� sin�=� � 2�� � R2

� sin�2=� � 2��

1� 2R� cos�� cos=� � R2
�

: (89)

Assuming that the SUSY contribution to the amplitude is smaller than the SM one, i.e., R� � 1, one can simplify the
above expressions as:

SK0�0 � sin2�� 2 cos2� sin=� cos��R� �O�R2
��: (90)

In order to reduce SK0�0 smaller than sin2�, the relative sign of sin=� and cos�� has to be negative. If one assumes that
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sin=� cos�� ’ �1, then R� * 0:2 is required in order to
get SK0�0 within 1� of the experimental range.

In the QCD factorization approach, the decay amplitude
of B! K0�0 is given by Eq. (11). As in the case of B!

��0�K [5], we will provide the numerical parametrization
of this amplitude in terms of the Wilson coefficients Ci and
~Ci defined according to the parametrization of the effective
Hamiltonian in Eq. (4)

H�B�1
eff �

GF���
2

p
X
i

fCiQi � ~Ci
~Qig; (91)
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where the operators basis Qi and ~Qi are the same ones of
Eq. (4). By fixing the hadronic parameters with their center
values as in Table 1 of Ref. [11], we obtain

A�B! K0�0� � �i
GF���
2

p m2
BF

B!K
� f�

	
X

i�1...10;7�;8g

Hi����Ci � ~Ci�; (92)

where
H1��� ’ �0:7� 0:0003i; H2��� ’ �0:21� 0:037i� 0:006XH;

H3��� ’ 0:22� 0:076i� 0:0045XA � 0:0003X2
A � 0:0065XH; H4��� ’ 0:68� 0:078i;

H5��� ’ 0:2� 0:001XA � 0:004X2
A; H6��� ’ 0:68� 0:078i� 0:007XA � 0:014X2

A;

H7��� ’ 0:95� 0:0004XA � 0:0014X2
A; H8��� ’ �0:068� 0:08i� 0:002XA � 0:0047X2

A � 0:009XH;

H9��� ’ �1:16� 0:026i� 0:0015XA � 0:0001X2
A � 0:003XH; H10��� ’ �0:67� 0:08i� 0:0096XH;

H7���� ’ 0:0004; H8g��� ’ �0:045:

(93)
The different sign between Ci and ~Ci appearing in Eq. (92)
is due to the fact that hK0�0jQijBi � �hK0�0j ~QijBi,
since the initial and the final states have different parity.
Comparing the coefficients Hi��� with Hi�
� and Hi��0�
in Ref. [5], one finds that the Wilson coefficients in these
decay amplitudes are different. Thus, it is natural to have
different CP asymmetries SK0�0 , SK
, and SK�0 , unlike the
SM prediction.

In order to understand the dominant SUSY contribution
to the CP asymmetry SK0�0 , it is useful to present a
numerical parametrization of the ratio of the amplitude
R� in terms of the relevant mass insertions. For the usual
SUSY configurations that we have used in the previous
sections, we obtain

R� ’ f0:02	 e�i0:4��dLL�23 � 40:4	 e�i0:01��dLR�23g

� fL$ Rg � 0:15	 e�i0:002��uLL�32

� 0:08	 e�i0:013��uRL�32: (94)

From this result, it is clear that the largest SUSY effect is
provided by the gluino contribution to the chromomagnetic
operator which is proportional to ��dLR�23 and ��dRL�23. For
��dLR�23 ’ 0:006	 ei�=3 and all the other mass insertions
set to zero, one finds SK0�0 ’ 0:34, which coincides with
the central value of the experimental results reported in
Table I. It is important to note that with such a value of
��dLR�23 the gluino contribution can account for the CP
asymmetries SK
 and SK�0 as well [5]. Furthermore, if we
consider the scenario where both chargino and gluino
exchanges are contributed simultaneously, the result of
R� is enhanced and we can get smaller values of SK0�0 .
VII. CONCLUSIONS

In this paper, we have analyzed the supersymmetric
contributions to the direct and mixing CP asymmetries
and also to the branching ratios of the B! K� decays in
a model independent way.

We have shown that, in the SM, the Rc � Rn puzzle
which reflects the discrepancy between the experimental
measurements of the branching ratios and their expected
results cannot be resolved. Also, the direct CP asymme-
tries ACP

K0�� and ACP
K0�0 are very small, while ACP

K��0 and
ACPK��� are of the same order and can be larger. These
correlations among the CP asymmetries are inconsistent
with the recent measurements. Moreover, the mixing CP
asymmetry SK0�0 , which is expected to be sin2�, differs
from the corresponding experimental data. The confirma-
tion of these discrepancies will be a clear signal for new
physics beyond the SM.

We have emphasized that the Z-penguin diagram with
chargino in the loop and the chargino electromagnetic
penguin can enhance the contribution of the electroweak
penguin to B! K�, which is supposed to play a crucial
role in explaining the above mentioned discrepancies. We
found, however, that these contributions alone are not
enough to solve the Rc � Rn puzzle. It turns out that a
combination of gluino and chargino contributions is neces-
sary to account for the results of Rc and Rn within the b!
s� constraints. Nevertheless, our numerical results con-
firmed that the general trend of SUSY models favors that
the experimental result of Rc goes down.

We have also provided a systematic study of the SUSY
contributions to the direct CP asymmetries for B! K�
decays. We found that a large gluino contribution is essen-
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tial to explain the recent experimental data. It is worth
mentioning that a large gluino contribution is also impor-
tant to accommodate other controversial results measured
in the B factories, namely, the mixingCP asymmetries S
K
and S�0K. Unlike the Rc � Rn puzzle, we found that the CP
asymmetries ACPK� can be saturated by a single mass inser-
tion ��dLR�23 contribution. It has been noticed that a large
electroweak penguin is less favored by the CP asymme-
tries ACPK�. Therefore, one needs to optimize the gluino and
the chargino contributions in order to satisfy simulta-
neously the branching ratios and the CP asymmetries of
B! K�.
035007
Finally, we have considered the mixing CP asymmetry
SK0�0 . We found, as in S
K and S�0K, that the gluino
contribution through the LR or RL mass insertion gives
the largest contribution to SK0�0 . On the other hand, it is
quite possible for the gluino exchanges to account for
SK0�0 , S
K, and S�0K at the same time.
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