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Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to
solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP
violating phases are associated to the vacuum expectation values of flavor violating SUSY-breaking fields.
As a consequence, phases appear at tree level only in the soft supersymmetry-breaking matrices. Using a
U(2) flavor model as an example we show that it is possible to generate radiatively the first and second
generation of quark masses and mixings as well as the Cabibbo-Kobayashi-Maskawa (CKM) CP phase.
The one-loop supersymmetric contributions to electric dipole moments are automatically zero since all the
relevant parameters in the Lagrangian are flavor conserving and as a consequence real. The size of the
flavor and CP mixing in the SUSY-breaking sector is mostly determined by the fermion mass ratios and
CKM elements. We calculate the contributions to �, �0 and to the CP asymmetries in the B decays to  Ks,
�Ks, 	0Ks and Xs�. We analyze a case study with maximal predictivity in the fermion sector. For this
worst case scenario the measurements of �mK, �mB and � constrain the model requiring extremely heavy
squark spectra.
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I. INTRODUCTION

It was suggested a few years ago that the huge number of
possible string theory vacua in combination with eternal
inflation may allow us to understand the smallness of the
cosmological constant from an anthropic point of view
[1,2]. Although there is no current general framework for
examining these metastable vacua in string theory [3] some
particular methods have been proposed [4]. It is still an
open debate whether the landscape does or does not predict
high scale supersymmetry (SUSY) [5,6]. Statistical analy-
sis of the vacuum of certain string theories has derived
formulas for the distribution of vacua, which support the
idea of a very high scale of supersymmetry breaking [7]. It
has been pointed out that these considerations may also be
relevant to understand the gauge hierarchy problem [8].
This has motivated the recent interest in field-theoretic
realizations of models with large numbers of vacua [9] as
well as in the analysis of the collider, cosmological and
other phenomenological implications of supersymmetric
models with very heavy supersymmetric spectra [10].

In this paper we would like to revisit, under the light of
these new considerations, certain supersymmetric flavor
models that are not usually considered in the literature
because it is naively expected that they require a very
heavy supersymmetric spectra to be compatible with ex-
perimental constraints on flavor changing processes
(FCNC). In particular we will show that supersymmetric
flavor models for the radiative generation of fermion
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masses generate very predictive Yukawa textures and at
the same time offer a new insight in the SUSY CP and
flavor problems.

After more than 30 years of its observation, the violation
of the CP symmetry is poorly known in its origin in the
present particle physics paradigm, despite its relevance in
nature. The presence of CP violating phases in particle
physics models can be tested, for instance, through preci-
sion measurements of the electric dipole moments (EDMs)
in the leptonic sector (electron and muon) and in the
quark sector (neutron and deuteron). At present there are
very stringent upper limits [11], which are expected to
improve by several orders of magnitude in the near future
experiments. It is known that the standard model contribu-
tion to the neutron EDM, in the absence of a theta term,
is approximately 10�30e c.m., which is still more than
4 orders of magnitude below the reach of the current
experiments.

In the context of an unconstrained minimal supersym-
metric standard model (MSSM) [12] the generic contribu-
tion to the electric dipole moments is several orders of
magnitude larger than the SM contribution. This serious
violation of the current experimental constraints is known
as the SUSY CP problem. Several possible explanations
have been considered in the literature to account for the
suppression of the supersymmetric contributions to EDMs
and other CP violating observables. Some of them are (1)
CP suppression, (2) cancellations, (3) alignment, (4) sfer-
mion decoupling, and (5) flavor off-diagonal CP violation.
(i) T
-1
he CP suppressed scenario assumes that all the CP
phases are suppressed [13] because CP is an ap-
proximate symmetry of the full theory.
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(ii) T
he cancellation scenario is based on the existence
of certain regions of the SUSY parameter space
where different contributions to EDMs cancel
[14,15].
The first possibility is nowadays ruled out. The CP sup-
pressed scenario would imply that all SM contributions to
CP asymmetries are small, which we know today not to be
the case in the B system [16]. The cancellation scenario is
known to be ruled out in scenarios with universal soft
masses if constraints from electron, neutron and mercury
atom EDMs are imposed simultaneously [17]. On the other
hand in the context of scenarios with nonuniversal soft
masses it is possible to satisfy simultaneously all the
EDM constraints through the cancellation mechanism
[18]. Nevertheless we would like to point out that there
seems to be no symmetry that can guarantee such cancel-
lations.
(iii) I
n the CP alignment case the phases associated to
the relevant parameters are somehow related in
such a way that the combinations contributing to
EDMs cancel.
(iv) D
ecoupling entails that the sfermion masses are
heavy enough to strongly suppress the supersym-
metric contributions even tough the CP phases can
be arbitrarily large [19].
The alignment scenario could arise naturally in the context
of models that generate exact soft universality as gauge
mediated supersymmetry-breaking models [20] or in mod-
els with approximate horizontal Abelian flavor symmetries
[21]. The decoupling scenario is very plausible. It requires
sfermion masses of the order of several TeV, which implies
the existence of fine-tuning in the soft supersymmetry-
breaking sector.
(v) T
he scenario with flavor off-diagonal CP violation
assumes that the origin of the CP violation is closely
related to the origin of flavor structures in such a
way that the flavor blind quantities as the � term,
soft bilinear terms gaugino masses are real and only
flavor off-diagonal CP phases are nonzero.
We find that the scenarios with flavor off-diagonal CP
phases are especially interesting. The models of this kind
proposed in the literature to date [22–24] assumed that
flavor violating Yukawa matrices and soft terms are both
generated simultaneously at tree level at very high ener-
gies. Thus, they require that Yukawa matrices and soft-
trilinear matrices are Hermitian, which forces flavor-
diagonal phases to vanish (up to small renormalization
group equation corrections). We would like to propose a
new idea similar to the flavor off-diagonal scenario which
has not been considered before.
(vi) W
e propose that the underlying supersymmetric
theory is exactly CP conserving while CP phases
are only carried by flavor violating SUSY-breaking
fields.
At first sight one may be tempted to think that this scenario
cannot account for the observed CP violation in the SM,
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especially the large mixing in the B- �B system, and there-
fore conclude that CP violation must be present in the
superpotential. We will show in this paper that this is not
the case and certain models for the radiative generation of
first and second generation fermion masses and mixings
recently proposed [25,26] allow us to generate radiatively
the Cabibbo-Kobayashi-Maskawa (CKM) phase and offer
an alternative solution for the SUSY CP problem.

In this model flavor and CP violation appear at tree level
only in the soft supersymmetry-breaking parameters and
are transmitted to the fermion sector at one loop through
low-energy finite threshold corrections. CP violating
phases could appear originally in the vacuum expectation
values (VEVs) of certain flavor violating SUSY-breaking
fields. These VEVs break spontaneously both flavor and
the CP symmetry generating at tree-level flavor and CP
violating soft mass matrices. This class of models makes
use of the presence of soft supersymmetry-breaking terms
for the radiative generation of quark and lepton masses
through sfermion-gaugino loops, as originally suggested
by Buchmuller and Wyler [27,28] and later analyzed in
more detail in Refs. [29–35]. The gaugino mass would
provide the violation of fermionic chirality required by a
fermion mass while the soft breaking terms provide the
violation of flavor and CP symmetries.

In this paper we have chosen to analyze a case study that
as we will show is the worst case scenario from the point of
view of FCNC constraints. We analyze a model of this kind
because it achieves maximal predictivity in the quark
sector. This case study, as we will see, tends to generate
important contributions to some flavor changing processes,
especially �mK, �md and �, which can only be avoided if
both the squark and the gluino spectra are very heavy.

This paper is organized as follows. We begin in Sec. II
by describing the model we propose for the radiative
generation of first and second generation fermion masses
and mixing angles. In Sec. III we analyze the radiative
generation of Yukawa couplings in this model. In Sec. III A
we study the predictions and constraints for quark mass
ratios. In Sec. III B we study the radiative generation of the
SM CKM phase and the predictions and constraints arising
from measured CKM elements and CP phases. In Sec. IV
we analyze in detail the calculation of the soft matrices in
the SuperCKM basis. In Sec. V we argue that the contri-
butions to EDMs are exactly zero in this model. In Sec. VI
we study the contributions to direct and indirect CP vio-
lation in the K- �K system. In Sec. VII we study the con-
tributions to CP asymmetries in the B- �B system.
II. THE MODEL

In this section we will consider a realistic three genera-
tion model based in a horizontal U�2�H symmetry [36].
This is a generalization of the model proposed in Ref. [25].
We will assume the usual MSSM particle content where
third generation matter superfields,
-2
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Q 3;D3;U3;L3; E3; (1)

and up and down electroweak Higgs superfields, H u and
H d, are singlets under U�2�H. We will denote them ab-
breviately by ��L and �R. Let us assume that first and
second generation left-handed superfields,

��Q �
Q1
Q2

� �
; ��L �

L1
L2

� �
; (2)

as well as the first and second generation right-handed
superfields,

�U �
U1

U2

� �
; �D �

D1

D2

� �
; �E �

E1

E2

� �
;

(3)

transform as covariant vectors under U�2�H, We will de-
note them abbreviately by ��L

a and �R
a . We will introduce a

set of supersymmetry-breaking chiral superfields,

S ab; Aab; F a �a; b � 1; 2�; (4)

that transform under U�2�H contravariantly as a symmetric
tensor, an antisymmetric tensor and a vector, respectively.
We will assume that only the auxiliary components of the
flavor breaking superfields are nonzero, The most general
form for the VEVs of the flavor breaking fields is

hSi �
vse

i�s 0
0 VSei	S

� �
�2; (5)

hAi �
0 vae

i�a

�vaei�a 0

� �
�2; (6)

hF i �
vfei�f

VF e
i	F

 !
�2; (7)

where the vs, VS , va, vf and VF are real parameters. We
will assume the following particular hierarchy in the flavor
breaking VEVs:

�vf; va; VS; VF � � ��2; �2; �; 2��MF ~m: (8)

We will also assume that vs � VS and for practical pur-
poses set vs � 0. Here � is a flavor breaking perturbation
parameter, MF is the flavor breaking scale. We note that ~m
is a new mass scale linked to the flavor violating SUSY-
breaking fields. We do not have yet a predictive model for
the U�2�H breaking, which is a relevant point under current
investigation. The proposed VEVs in Eq. (8) are intro-
duced ad hoc. These ad hoc assumptions will prove
a posteriori to be very successful in reproducing fermion
masses and mixings. Furthermore, in the case that U�2�H is
a gauge symmetry broken spontaneously we expect the
U�2�H-gauge fields to get masses of the order of the flavor
breaking scale which can be very heavy in this scenario.
Therefore any other phenomenological effects in the low-
energy model beyond the flavor structure it gives rise to in
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the soft supersymmetry-breaking sector would be very
suppressed.

We will assume that the superpotential of the model is
CP and U�2�H symmetric. Therefore the only couplings
allowed in the renormalizable superpotential by the SM
SU�3�C 	 SU�2�L 	 U�1�Y vertical symmetry, the U�2�H
horizontal symmetry and CP conservation are the third
generation ones and the so-called � term,

�tQ3U3H u 
 �bQ3D3H d 
 �$L3E3H d


�H uH d: (9)

We note that, in principle, two other couplings could be
allowed in the superpotential: L3H u and Q3L3D3.
There are different ways to remove these unwanted cou-
plings. They could be forbidden imposing R-parity conser-
vation defined as R � ���3B
L
2S, where B is the baryonic
number, L the leptonic number and S the spin. A third
possibility would be to extend the U�2�H symmetry to the
maximal U�3�H horizontal symmetry. The breaking of the
U�3�H symmetry in the direction of the third generation
would leave us with our U�2�H symmetry; in such a case
this bilinear interaction would not be allowed by the U�3�H
symmetry. We also note that the couplings in the renorma-
lizable superpotential cannot carry complex phases since
CP is an exact symmetry at this level. Therefore, at tree
level the Yukawa matrices are generically of the form,

Y �

0 0 0
0 0 0
0 0 y

264
375: (10)

Additionally, trilinear soft supersymmetry-breaking terms
are generated by operators generically of the form,X

Z�S;A

1

MF

Z
d2�Zab ��L

a�
R
bH &; (11)

1

MF

Z
d2��F a ��L

a�R 
 ��LF a�R
a �H &; (12)

where MF is the flavor breaking scale, a � 1; 2 are flavor
indices, and H & �& � u; d� represents any of the Higgs
superfields. Soft supersymmetry-breaking mass matrices
can receive diagonal flavor conserving contributions of
the form,

1

M2
F

Z
d4�

 X
Z;Z0�S;A

ZyZ0 
F yF

!
��y�
�y��:

(13)

Additionally nondiagonal flavor violating contributions
arise from operators generically of the form,

1

M2
F

Z
d4�

 X
Z;Z0�S;A

�yaZy
acZ0cb�b 
�yaF y

aF b�b

!
;

(14)
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where a � b. Flavor violating supersymmetry-breaking
fields cannot generate masses for the gauginos. Therefore
we need to introduce at least one flavor-singlet chiral
superfield, G, whose F-term component gets a nonzero
VEV giving masses to gauginos from operators of the
form,

1

M

Z
d2�G ~� ~� : (15)

We note that hGi breaks supersymmetry but not the flavor
symmetry. We will identify M with the usual
supersymmetry-breaking messenger scale. We note that
the messenger scale is in general different from the flavor
breaking scale even though the flavor breaking fields are
supersymmetry-breaking fields themselves. The gaugino
mass generated is given by m~� � hGi=M. The flavor-
singlet superfield responsible for generating gaugino
masses, G, will couple to matter fields too generating
soft trilinear couplings,

(
M

Z
d2�G�L�RH &; (16)

where ( is a real dimensionless coupling determined by
some unknown underlying renormalizable theory. For
practical purposes we will assume that ( can take arbitrary
values. Soft masses would also be generated by operators
generically of the form,

	

M2

Z
d4�GyG��y�
�y��; (17)

	0

MMF

Z
d4�Gy�yF�: (18)

Here flavor indices have been omitted. 	 and 	0 are also
real dimensionless couplings determined by the unknown
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underlying renormalizable theory. Regarding the possible
appearance of D terms in the scalar potential, D terms
would appear when a local symmetry is spontaneously
broken by scalar fields, which is not the case for the model
under consideration. After the U�2�H flavor and the CP
symmetry are broken spontaneously by the supersymmetry
breaking fields defined in Eq. (7) the following boundary
conditions for the soft-trilinear matrices are generated at
the scale MF:

A � A
0 +�2ei�a +�2ei�f

�+�2ei�a +�ei	S 2+�ei�F

+�2ei�f 2+�ei�F 1

264
375; (19)

where A � (m~� and the dimensionless parameter + is
defined by + � ~m=A. The mass parameter ~m, defined in
Eq. (8), is a new mass scale introduced in the problem by
the flavor violating SUSY-breaking fields. We note that
only one combination of the complex phases in Eq. (19)
will be transmitted to the Yukawa matrices. For conve-
nience one can remove some of them from the soft-trilinear
matrix through a redefinition of the phases of the matter
fields, even though they will appear in the soft mass
matrices. Without any loss of generality we can adopt a
flavor basis where the soft-trilinear matrix takes the fol-
lowing form:

A � A
0 +�2 +�2e�i�

�+�2 +� 2+�
+�2e�i� 2+� e�i�

264
375: (20)

The phases � and� are related to the phases in Eq. (19) by
� � ���f 
	S ��a �	F� and � � �2	F �	S�.
After the U�2�H flavor breaking flavor violating soft mass
matrices are also generated. In the flavor basis adopted in
Eq. (20) they take the following form:
~M 2
L;R � ~m2

f

1
 5,�2 ,�3�2e�i� � e�i�
0
� ,0�2e�i�����

,�3�2ei� � ei�
0
� 1
 5,�2 2,0�ei�

,0�2ei����� 2,0�e�i� 1
 5,�2

264
375; (21)
where, ~m2
f � 	m2

~�
and �0 � ��
�a � 2	F�. , and ,0

are dimensionless parameters defined by , � ~m2= ~m2
f and

,0 � �	0=	�� ~m= ~m~��. We note that in this scenario the
amount of flavor violation in the soft mass matrices is
determined not only by the powers of � in the off-diagonal
entries but also by the parameters +, , and ,0. We note that
in the limit ~m! 0 all the flavor violation will be sup-
pressed. There are other interesting limits: if 	0 ! 0 the
mixing between the third and first or the second generation
in the soft mass matrices is suppressed; if ~m� ~mf the
flavor mixing between the first and the second generation
in the soft mass matrices is also suppressed and the sfer-
mion masses will be nearly universal. In the case A ’ ~m�
~mf only the contributions from soft masses to flavor vio-
lating processes would be suppressed while the flavor
violation in the soft-trilinear matrices could be sizable.

III. RADIATIVE GENERATION OF YUKAWA
COUPLINGS

In the presence of flavor violation in the soft sector, the
left- and right-handed components of the sfermions mix.
For instance, in the gauge basis the 6	 6 down-type
squarks mass matrix is given by

M 2
D �

~M2
DL


 v2c2-Y
y
DYD �Ay

Dc- ��YDs-�v

�ADc- ��Yy
Ds-�v

~M2
DR


 v2c2-YDY
y
D

" #
;

(22)
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where ~M2
DR

and ~M2
DL

are the 3	 3 right-handed and left-
handed soft mass matrices (including D terms), AD is the
3	 3 soft-trilinear matrix, YD is the 3	 3 tree-level
Yukawa matrix. tan- is the ratio of Higgs expectation
values in the MSSM, � is the so-called � term and v �

sWmW=
������������
2/&e

p
� 174:5 GeV. ~M2

D is diagonalized by a
6	 6 unitary matrix, ZD. The presence of flavor violating
entries at tree level in the soft supersymmetry breaking
matrices will generate one-loop contributions to the
Yukawa matrices. In general, the dominant finite one-
loop contribution to the 3	 3 down-type quark Yukawa
matrix including CP phases [37] is given by the gluino-
squark loop,

�YD�
rad
ab �

&s
3/

m�
~g

X
c

ZD
acZ

D�
�b
3�cB0�m~g; m~dc

�; (23)

where ~dc (c � 1; . . . ; 6) are mass eigenstates and m~g is the
gluino mass. B0 is a known function that can be found
elsewhere in the literature. The radiatively corrected 3	 3
down-type quark mass matrix is given by

m D � vc-�YD 
Yrad
D �: (24)

We note that the effective supersymmetric model proposed
generates an approximately degenerate squark spectra. In
the squark degenerate case one obtains a simple expression
for Yrad

D ,

Y rad
D �

2&s
3/

m�
~g�AD ��YD tan-�F�m~b; m~b; m~g�; (25)

where the function F�x; y; z� is a form factor of the particles
in the loop with units of �Mass��2. F�x; y; z� is defined in
Eq. (A2) of the Appendix. For the soft-trilinear texture in
Eq. (19) predicted by our model one obtains a simple
expression for the radiatively corrected down-type quark
mass matrix,

m D � m̂b

0 !�2 !�2e�i�

�!�2 !� 2!�
!�2e�i� 2!� 1

264
375; (26)

where ! encodes the dependence on the supersymmetric
spectra. For the case m~b � m~g, we obtain

! � c-

�
v
m̂b

2&s
3/

��m~g

m~b

��
~m
m~b

�
: (27)

We emphasize that ~m is not any squark mass scale but a
new mass scale introduced in the problem by the VEVs of
the flavor violating SUSY-breaking fields; see Eqs. (5)–(7).
The parameter m̂b defined as

m̂ b � vc-

�
yb 
!b

�
e�i� �

�
Ab
yb tan-

��
(28)

is approximately the running bottom mass. !b �

!m̂b=�vc-�. The phase e�i� is an overall phase absorbed
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in the definition of m̂b in Eq. (28), which has no observable
implications.

A. Quark masses

The implications for fermion masses arising from a
matrix similar to the one in Eq. (26) were studied in
Refs. [25,26,38]. In this subsection we briefly summarize
results included in those references. Although not diagonal
in the gauge basis, the matrix mD can be brought to
diagonal form in the mass basis by a biunitary diagonal-
ization, �V d

L�
ymDV

d
R � �md;ms;mb�. The down-type

quark mass matrix given by Eq. (26) makes the following
predictions for the quark mass ratios to leading order:

md

ms
� �2 
O��4�;

ms

mb
� !�
O��4�: (29)

We can relate � and ! with dimensionless fermion mass
ratios. To first order,

� �

�
md

ms

�
1=2
; ! �

�
m3
s

m2
bmd

�
1=2
: (30)

Using these relations and the running quark masses deter-
mined from experiment, see Ref. [38] for details, we can
determine � and ! given by � � 0:209� 0:019 and ! �
0:109� 0:030. We observe that constraints on the super-
symmetric spectra can be derived from the parameter!. To
assess the viability of the model we must check if it is
possible for ! to reach the values required by the observed
quark masses. From Eq. (37) we obtain the following
unequality for m~g � m~b:

! � c-

�
v
m̂b

2&s
3/

��
~m
m~b

��m~g

m~b

�
: (31)

Using the measured values v � 174:5 GeV, mb�mb�MS �
4:2� 0:2 and &s � 0:117 we obtain

! � 1:5c-

�
~m
m~b

�
: (32)

Therefore the values of ! required by the measured quark
masses can be easily reached without any ad hoc tuning in
the supersymmetric parameter space. Let us examine with
some detail the case m~g � m~b. For large tan-, tan- � 50,
we obtain

! � 0:03
�

~m
m~b

�
;

which would require ~m � 3m~b. On the other hand in the
opposite gluino mass limit, m~g > 2m~b, one obtains

! � c-

�
v
m̂b

2&s
3/

��
~m
m~b

�
ln
�m~g

m~b

�
: (33)

For the large tan- case, tan- � 50, we obtain similar
results,
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! � 0:03
�

~m
m~g

�
ln
�m~g

m~b

�
:

If ~m ’ m~g we would need m~g ’ 20m~b. This would imply
~m ’ 20m~b. The mass matrix in Eq. (26) is very successful
in reproducing the down-type quark mass ratios, but it
cannot explain correctly the measured mass ratios in the
up-type quark sector. We will propose a simple solution.
Let us assume that down- and up-type quark fields trans-
form differently under certain Z2 symmetry. If this was the
case the fields S, A and F would not generate any mixing
in the up-type quark sector. Let us assume that there is an
extra U�2�H symmetric tensor, S0, that gets a VEV of the
form,

hS0i �
�6 0
0 �2

� �
�2: (34)

If the couplings of S0 with the up-type quark fields are
allowed by the Z2 symmetry they would induce a soft-
trilinear matrix of the form,

A U � At
+�6 0 0
0 +�2 0
0 0 1

264
375: (35)

We note that we do not show any phases in the matrix AU.
Possible phases in the diagonal entries of AU are not
physical to leading order since they can be absorbed
through a redefinition of the phases of the matter fields.
Masses for the up and charm quarks are generated radia-
tively. One can perform an analysis similar to the analysis
in the down-type quark sector and obtain a simple expres-
sion for the radiatively corrected up-type quark mass ma-
trix,

m U � m̂t

!�6 0 0
0 !�2 0
0 0 1

264
375; (36)

where ! for m~t � m~g is given in this case by

! � s-

�
v
m̂t

2&s
3/

��m~g

m~t

��
~m
m~t

�
; (37)

and m̂t is the normalized top quark mass given by

m̂ t � vs-

�
yt 
!t

�
1�

�
At
yt cot-

��
; (38)
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with !t � !m̂t=�vs-�. For the soft-trilinear texture under
consideration in Eq. (35) one obtains the following pre-
dictions for the up-type quark mass ratios:

mu

mc
� �4 
O��6�;

mc

mt
� !�2 
O��5�: (39)

Again we can relate � and ! with dimensionless quark
mass ratios, to first order,

� �

�
mu

mc

�
1=4
; ! �

�
m3
c

m2
t mu

�
1=2
: (40)

Using the running quark masses determined from experi-
ment, see Ref. [38] for details, we obtain � � 0:225�
0:015 and ! � 0:071� 0:018. We note the similarity in
the values for � and ! calculated in the up- and down-type
quark sectors from Eqs. (30) and (40). Let us examine with
some detail the case m~g � m~t. Using the measured top
quark mass, mt � 178 GeV, we obtain the condition,

! � 0:02s-

�
~m
m~t

�
:

For instance, for large tan-, tan- � 50 we obtain

! � 0:02
�
~m
m~t

�
:

This constraint is compatible with the analogous constraint
arising from the down-type quark sector, which was ! �
0:03� ~m=m~b�; see Eq. (32). Therefore no important splitting
between the sbottom and stop quark masses is required for
the viability of the model. Indeed both constraints could be
satisfied simultaneously for m~b ’ 1:5m~t, which is a non-
trivial consistency check both of the model and the ad hoc
VEVs introduced in Eqs. (5)–(7).

B. Radiatively generated CP phase and CKM elements

Finally, one can calculate the CKM mixing matrix. This
is defined by V CKM � V uy

L V d
L. We have seen in the

previous section that in the simple model here proposed
the up-type quark mass matrix is diagonal. Therefore the
CKM matrix is given by V CKM � V d

L. The diagonaliza-
tion of the down-type quark mass matrix in Eq. (26) leads
us to the following expression for V CKM to leading order
in powers of �:
1
 2is��!� �2=2 ���1
!��4
 2is��� !�2e�i�

���1
 4!�� 1
2 ��

2 
 4!2�2� � 1 2!�
!�2�2� ei�� 2!� 1� 2!2�2

264
375: (41)
It is easy to check that this CKM matrix is unitary to order
�3, i.e. V y

CKMV CKM � I 
O��3�. We note that the
model predicts that to leading order jVusj � �. The mea-
sured value of jVusj, jVusjexp � 0:220� 0:0026, agrees
perfectly with the value of � as calculated from quark
mass ratios in Eqs. (30) and (40). The model also predicts
that to leading order ! � jVcbj=2jVusj. Using the mea-
sured value for jVcbj, jVcbjexp � 0:0413� 0:0015, we ob-
-6
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tain that ! � 0:093� 0:005. We note that this value of !
is surprisingly consistent with the value calculated from
quark mass ratios from Eqs. (30) and (40). Finally using
these values of � and ! we can predict jVubj to be jVubj �
!�2 � 0:0045� 0:0003, which is consistent with the
measured value, jVubjexp � 0:003 67� 0:000 47. Using
again the previous values of � and ! calculated from
jVusj and jVcbj we find the following predictions for jVcsj
and jVtbj, jVcsj � 0:9795� 0:0007 and jVtbj � 0:9991�
0:0001, which are also in agreement with experiment. It is
a trivial check to prove that the angle � introduced in the
parametrization of the CKM matrix given in Eq. (41) co-
incides with the standard definition for � � �2,

� � arg
�
�
VudV

�
ub

VcdV
�
cb

�
: (42)

The angle �1 is defined as usual by

�1 � arg
�
�
VcdV�

cb

VtdV�
tb

�
: (43)

We note that we are using the notation�1 and not the usual
- to avoid any confusion with the supersymmetric parame-
ter tan-, the ratio of the Higgs VEVs in the MSSM. The
angle & � �3 can be obtained from �&
�1 
 �� � /.
Using our parametrization for the CKM matrix we obtain
to leading order in powers of � a simple relation between
the angles �1 and �,

�1 � arg�2� e�i��: (44)

Using the measured value of the �1 phase, �exp
1 �

23:3� � 3:2� �2+� we predict to leading order the phase
� to be within the range �theo � 103� � 13�. This is far
from the current 1+ global fit value for �, �fit � 61� �
12�. To find better agreement with the experimental con-
straints on � it is crucial to include in Eq. (44) the next to
leading order (NLO) corrections to the unitarity of the
CKM matrix. We find that the only relevant correction
which affects the prediction for � is the correction to the
element Vtd,

VNLO
td � �2�1
 5!�� � ei��!�2: (45)

Including this correction we predict the phase � to be
within the range �theo � 91� � 18�, which intersects
with the current 1+ global fit value for �. For this range
of �, jVtdj is predicted to be jVtdj � 0:0043� 0:0005.
Finally jVudj is predicted to be jVudj � 0:9765� 0:0006.
To sum up, in this model not only the first and second
generation fermion masses but also the CKM phase can be
generated radiatively in perfect agreement with current
measurements.
IV. SUPERCKM BASIS

Overcoming the present experimental constraints on
supersymmetric contributions to flavor changing and CP
035003
violating processes is a necessary requirement for the
consistency of any supersymmetric model [39]. In our
scenario, as a consequence of the approximate radiative
alignment between Yukawa and soft-trilinear matrices
there is an extra suppression of the supersymmetric con-
tributions to some of these processes. Therefore for calcu-
lational purposes it is convenient to rotate the squarks to
the so-called superCKM (SCKM) basis where this radia-
tive alignment mechanism is manifest.

The superCKM basis is the basis where gaugino vertices
are flavor diagonal [40– 42]. In this basis, the entries in the
soft-trilinear matrices are directly proportional to the cor-
responding contributions to flavor changing processes. For
instance, the soft-trilinear matrix AD in the superCKM
basis is given by

A SCKM
D � �V d

L�
yADV

d
R; (46)

where V d
L;R are the down-type quark diagonalization ma-

trices. The soft-trilinear matrix AD is given by Eq. (20),
The Yukawa diagonalization matrices are given by V d

L �
V CKM in Eq. (41) while V d

R is completely determined to
obtain real mass eigenvalues after the diagonalization of
mD. We obtain, to leading order in �,

Im �ASCKM
D � � ���Ab

0 2!s�+�3 s�+�2

2s�+!�3 0 2s�!�
s�+�

2 2s�!� s�

264
375;

(47)

while the real part, Re�ASCKM
D �, is given by

Ab

+�3 4+!�3�c� � 1� +�2�c� � 2�
4+!�3�c� 
 1� �+ 2��c�!� +�
+�2�c� 
 2� 2��c�!� +� c� 
 8!+�2

264
375:

(48)

We note that the entries �2; 1� and �1; 2� contain an addi-
tional suppression factor !� compared with the soft-
trilinear matrix in the flavor basis; see Eq. (20). This
suppression is a consequence of the radiative alignment
between Yukawa and soft-trilinear matrices. It is conve-
nient when calculating supersymmetric contributions to
flavor violating processes to use the parameters �7dij�LR
defined as

�7dij�LR �
vc-�ASKM

D �12

m2
~q

: (49)

For consistency we also need to calculate the down-type
squark soft mass matrices in the SCKM basis. For instance,
for the left-handed soft mass matrix we obtain

� ~M2
DL
�SCKM � �V d

L�
y� ~M2

DL
�V d

L; (50)

and analogously for the right-handed soft mass matrix.
Assuming the soft-trilinear texture from Eq. (21) we obtain
for Re�� ~M2

DL
�SCKM�, to leading order in �,
-7
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m2
~dL

1 y�3 y0�2

y�3 1 �2c�,0�
y0�2 �2c�,0� �1
 �8c�,0!� 5+�2��2�

264
375:
(51)

Here m2
~dL

, y and y0 are defined as

m2
~dL
� m2

~f
�1
 �1
 5,��2�; (52)

y � �4,0!�c�c� � 2c�� 
 ,�c2�0 � 2c���; (53)

y0 � �c����� � 2c��,0: (54)

We note that if the gluino mass is of the same order as the
squark masses, m~� ’ ~mf, ~mf ’ ~m and 	0 ’ 	, we expect
that , ’ ,0. In that case the coefficient y simplifies to y �
,�c2�0 � 2c�� since ! � 2�2. Furthermore if ,0=, �

�	0=	�� ~m2
f= ~mm~�� the limit ,0 � , would correspond to

	0 � 	 or ~m� ~m2
f or m~� � ~m2

f; if this is not the case we
would expect the , term to dominate. The imaginary
component, Im��M2

DL
�SCKM�, is given to leading order in

� by

m2
~dL

0 �z�3 �z0�2

z�3 0 �2s�,0�
z0�2 2s�,0� 0

264
375; (55)

where

z � �4,0!c�s� 
 ,�s2�0 � 2s���; (56)

z0 � �2s� � s������,0: (57)

If , ’ ,0 the coefficient z reduces to z � ,�s2�0 � 2s��
since ! � 2�2. Assuming the soft-trilinear texture from
Eq. (21) we obtain for Re��M2

DR
�SCKM�, to leading order in

�,

m2
~dR

1 r�3 r0�2

r�3 1 �2c�,
0�

r0�2 �2c�,0� �1
 �8c�,0!� 5+�2��2�

264
375:
(58)

Here

m2
~dR

� m2
~f
�1
 �1
 5,��2�; (59)

r � �4,0!�c����� 
 2c�� 
 ,�c2�0 � 2c���; (60)

r0 � �c����� 
 2c��,0: (61)

Again if , ’ ,0 the coefficient r reduces to r � ,�c2�0 �

2c�� since ! � 2�2. The imaginary component,
Im��M2

DR
�SCKM�, is given to leading order in � by
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m2
~dR

0 �t�3 �t0�2

t�3 0 �2s�,0�
t0�2 2s�,0� 0

264
375; (62)

where

t � �s2�0 � 2s��,; (63)

t0 � �s����� � 2s��,0: (64)

It is also convenient when calculating supersymmetric
contributions to flavor violating processes to use the cou-
plings �7dij�LL defined by

�7dij�LL �
� ~M2

DL
�SCKM
ij

m2
~dL

: (65)

One can define analogously the �7dij�RR couplings.

V. SUPPRESSED CONTRIBUTIONS TO EDMS

In an unconstrained MSSM the generic contribution to
the neutron EDM [13,27,43] is around 8 orders of magni-
tude larger than the SM contribution, i.e. about 4 orders of
magnitude above the current experimental constraint [44].
This is the so-called SUSY CP problem or to be more
specific the flavor conserving SUSY CP problem. The
disparity between the current experimental constraint and
the generic supersymmetric contribution in the MSSM is
due to the, in principle, allowed presence of CP phases in
the superpotential and in the soft supersymmetry-breaking
sector. Numerous papers have examined this topic in the
context of supersymmetric models [45] and a few solutions
have been proposed, which were summarized in the
Introduction. We will explain with some detail how generic
supersymmetric models for radiative mass generation can
ameliorate this problem. We will analyze separately the
one-loop, two-loop and higher order contributions to
EDMs.

Interestingly, the one-loop supersymmetric contribu-
tions to EDMs always appear as combinations of six
possible physical phases of the generic form [14,46,47],

arg�A�m~��; arg�B��m~��; (66)

where A are first generation flavor-diagonal trilinear soft
supersymmetry-breaking parameters, m are gaugino
masses, B is the bilinear soft supersymmetry-breaking
term and � is the superpotential bilinear term. In the
special case of universal soft supersymmetry-breaking
terms these reduce to only two physical phases. First let
us focus our attention on the term arg�B��m~��. The tree-
level gaugino masses are flavor conserving parameters
generated by the supersymmetry-breaking flavor-singlet
field G as we explained before and as a consequence
cannot carry complex phases, which are linked to flavor
breaking VEVs. The � term is allowed in the CP conserv-
ing superpotential at tree level. This parameter is linked to
-8
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the flavor blind operator H uH d, which obviously cannot
carry CP phases at tree level. For the same reason the
bilinear soft supersymmetry-breaking term, B, is also a
real parameter since the term huhd in the scalar potential
is also a flavor singlet.

Regarding the contributions of the form arg�A�m~��, in
the case of the neutron and mercury EDMs the relevant
terms arise from the up, down and strange quark EDMs
which are generically of the form arg�A�

um~��, arg�A
�
dm~��

and arg�A�
sm~��. We have seen that in our model the 3	 3

matrix AU is diagonal; see Eq. (35). The diagonal entries
carry no CP phases. Even if they existed they could have
been absorbed in a redefinition of the phases of the up-type
matter fields. Furthermore, the entries (11) and (22) of the
3	 3 soft-trilinear matrix in the down-type squark sector
corresponding to Ad and As in Eq. (47) are in general real.
Therefore all the one-loop contributions to the EDMs in
this model are exactly zero.

Regarding the two-loop contributions to EDMs, it has
been pointed out that the two-loop supersymmetric con-
tributions can also constrain the supersymmetric parameter
space, even though not so severely as the one-loop contri-
butions [48–51].

For instance, there is a two-loop contribution to the
quark EDMs of the purely gluonic dimension six operator
[52], which is of the form f&-�G&�,G

,
-=G��+��=�+ where

f&-� are the Gell-Mann matrices, ��=�+ is the totally
antisymmetric tensor and G&�, is the gluon field strength.
Supersymmetry-breaking terms generate a contribution to
this operator [14,51]. In the case under consideration, since
the matrix AU is diagonal and can be brought to real form
through redefinition of the quark fields, only the complex
phase in the term Ab can give a contribution. For instance,
using dimensional analysis the dimension six gluonic con-
tribution to the neutron EDM will be given by
�
dn
e

�
G

2-loop
� 3

�
gs
4/

�
5m2

bjAbjMC

m5
~g

H�z~t1 ; z~t2 ; zt� sin� (67)
where MC � 1:19 GeV is the chiral symmetry breaking
scale, zi � m2

i =m~g and H�x; y; z� is a dimensionless form
factor, whose full expression can be found in Ref. [51].
Sizable radiative contributions to fermion masses require
m~g ’ m~q. If Ab � m~q this contribution will be much be-
low the current constraint even for sin� � 1. Nevertheless,
in the worst case scenario, when sin� � 1 and Ab ’ m~q

(maximal sbottom mixing), we would obtain that this con-
tribution is below the current experimental constraint,
jdnj< 10�25e c.m., for squark masses above * 1 TeV.

Another well-known two-loop contribution to dd is the
Barr-Zee-type diagram with exchange of stops and the
CP-odd Higgs. This contribution is of the form [48],
035003
�
dd
e

�~t
2-loop

�
�&e
77/3

mdmt

v2

� sin�2�t�

s2-m
2
A

sin7tC�~t1;~t2; A�

(68)

where 7t � arg�At 
 cot-���, �t is the stop mixing, v �
175 GeV, A is the CP-odd Higgs and C stands for a
dimensionless two-loop form factor which can be found
in Ref. [48]. For the large tan- case under consideration
7t � arg�At� � 0 since At and � are real parameters. On
the other hand there is an analogous contribution from
bottom squarks that is proportional to Im�Abei7b� with
7b � arg�Ab 
 tan-���. For the large tan- case under
consideration the second term in 7b would dominate in
general and we obtain that the contribution is proportional
to �Ab sin�, as can be seen from Eq. (47). If the sbottom
mixing is small, sin�2�b� � 0:1, this contribution would
be below the experimental constraint for CP-odd Higgs
masses above 250 GeV. Nonetheless in the worst case
scenario, if sin� � 1 and the sbottom mixing is maximal
Ab ’ m~q, the experimental constraint requires the CP-odd
Higgs mass to be * 1 TeV.

Some of the two-loop gluino contributions to the neutron
EDM have been recently studied, neglecting all other
possible sources of flavor violation except those related
to the CKM matrix [53]. For the model under considera-
tion, where the only source of a CP phase is the sbottom
soft-trilinear term, these contributions are always smaller
than the two-loop contributions analyzed previously.

One may wonder if the previous arguments for the
cancellation of the one-loop contribution to EDMs could
be extended in a variant of this model to not only suppress
but cancel the two-loop contributions. We note that if the
flavor model generates Hermitian soft-trilinear matrices
the two-loop contributions, which are proportional to the
phases of Ab and At, would be zero. It may be possible in
principle that small phases are generated in the ‘‘flavor
conserving’’ parameters in the Lagrangian, as the � term,
the B parameter or the gaugino masses. Nonetheless, we
note that many of the higher order operators which could
contribute to the radiative corrections to the� term have to
be flavor conserving operators of the form / ZyabZab
(Z � S;A) or / F yaF a, etc., . . .. After the breaking of
the flavor symmetry these operators cannot generate com-
plex phases since the presence of a complex phase would
be an indication of flavor violation.

To sum up, because of the intrinsic flavor off-diagonal
nature of the CP violating phases in this model, the one-
loop contributions to EDMs are zero. The constraints
imposed by the two-loop contributions depend on the
parameter space of the model. In the worst case scenario,
with maximal sbottom mixing, the dimension six gluonic
operator imposes the strongest constraint requiring mA *

1 TeV. Nevertheless, if the sbottom mixing is small the
two-loop contributions can be below the current experi-
mental constraint without requiring a heavy squark spectra.
-9
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VI. CONTRIBUTIONS TO DIRECT AND INDIRECT
CP VIOLATION IN THE KAON SYSTEM

A. �

The measure of indirect CP violation in the kaon system
is given by the parameter � defined by

� �
A�KL ! //�
A�KS ! //�

�
ei/=4���
2

p
�mK

Im�M12� (69)

where �mK is the KLKS mass difference, M12 �
M�K0� � hK0jH �S�2

eff j �K0i is the K0 �K0 mixing amplitude
and H �S�2

eff is the effective �S � 2 Hamiltonian. The
parameters �mK and j�j have received considerable atten-
tion in supersymmetric models since their measured values
have been known with good precision for a long time
[40,54,55]. We will separate the SM and supersymmetric
contributions to the mixing amplitude in the form M12 �
MSUSY

12 
MSM
12 . We define �� and �0

� as the phases of
the SM and the supersymmetric contributions, respec-
tively, MSUSY

12 � jMSUSY
12 jei�

0
� and MSM

12 � jMSM
12 jei�� .

It is also convenient to introduce the ratio RK �
jMSUSY

12 j=jMSM
12 j. This ratio and the complex phase �0

�

are constrained by the experimental measurements of �mK
and j�j. We can expand in powers of RK to obtain the
following expression for the new physics contributions to
�mK and j�j:

�mK � �mSM
K

�mSM
K

� RK
cos�2�0

��

cos�2���
; (70)

j�j � j�SMj

j�SMj
� RK

sin�2�0
��

sin�2���
: (71)

We note that �mK has been measured with an uncertainty
of approximately 0.2%, �mexp

K � �3:490� 0:006� 	
10�12 MeV. In the SM roughly 70% of the measured
�mK is described by the real parts of the box diagrams
with charm quark and top quark exchanges. Some non-
negligible contribution comes from the box diagrams with
simultaneous charm and top exchanges while approxi-
mately the remaining 20% of the measured �mK is attrib-
uted to long distance contributions. On the other hand these
are potentially sizable and up to date incalculable. While a
precise prediction is not possible, the observation is
roughly compatible with the SM expectation. Assuming
that the supersymmetric contribution saturates one-half of
the experimental measurement and using Eq. (70) we can
obtain an approximate upper constraint on RK,

RK cos�2�0
�� &

1

2
cos�2���: (72)

j�j has been measured with an uncertainty of approxi-
mately 0.6%. A fit to the K ! // data yields j�j �
�2:284� 0:014� 	 10�3. The calculation of j�j is also
affected by large distance corrections. It is usual when
035003
calculating j�j to input the experimental measurement for
�mK in the denominator of Eq. (69). We will allow again
for the supersymmetric contribution to saturate one-half of
the experimental measurement. The resulting constraint on
RK and �0

� can be expressed in the form,

RK sin�2�0
�� &

1

2
sin�2�0

��: (73)

Using the usual Wolfenstein parametrization of the CKM
matrix to second order in powers of � we obtain that
the dominant SM contribution to M12 is proportional
to �VcsV�

cd�
2. This is given by VcsV�

cd � ���1� �2

2 ��1


A2�4�,� i	��. This can be written as VcsV�
cd � ���1�

�2

2 �e
�i�� where �� is defined as �� � tan�1�	A2�4�. This

is a very small number. Using updated extractions of A, 	
and � we obtain �� � 0:03�. Therefore the constraints
from Eqs. (72) and (73) can be written in the form,

RK cos�2�0
�� & 0:5; (74)

RK sin�2�0
�� & 6	 10�4: (75)

Next we need to calculate the expressions for RK and�0
� in

our model. We will see that �0
� in the model under con-

sideration is completely determined given the measured
value of � and the quark mass ratios. Therefore the pre-
vious constraints in Eqs. (74) and (75) will translate into
lower bounds on the squark mass spectra. The supersym-
metric contribution to M12 contains contributions
proportional to the different 7 couplings in the soft
supersymmetry-breaking sector. There are qualitatively
four different contributions to MSUSY

12 that in our model,
to leading order in powers of �, take the following values:

�7dLR�
2
12 
 �7dRL�

2
12 � 2712

LR

�
5

4
c2� 


11

4
� is2�

�
; (76)

�7dLR�12�7
d
RL�12 � 712

LR

�
5

4
c2� �

5

4
� is2�

�
; (77)

where

712
LR � 8!2�6c2-

v2

m2
~b

~m2

m2
~b

; (78)

and

�7dLL�
2
12 
 �7dRR�

2
12 � 2712

LL�e
�2i�0

� 2e�i��2; (79)

�7dLL�12�7
d
RR�12 � 712

LL�e
�2i�0

� 2e�i��2; (80)

where

712
LL � ,2�6: (81)

For instance, we noted in Sec. III A that for large tan- and
m~g � m~b the parameter ~m (new mass scale introduced by
the flavor violating SUSY-breaking fields) is required to be
approximately ~m � 3m~b. Therefore the LR couplings in
-10
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our model have an important additional suppression factor,
72
LR=7

2
LL / c2-!

2v2=m2
~b
. As a consequence in this model

the 7LL and 7RR couplings dominate the contribution to
MSUSY

12 . All the 7LL and 7RR contributions to the Wilson
coefficients can be added up in a simple expression. We
obtain

M SUSY
12 �

&2
smKf2KX

2
K

60m2eb ���7dLL�
2
12 
 �7dRR�

2
12�D�x�

� �7dLL�12�7
d
RR�12C�x��: (82)

Here X2
K is a dimensionless factor defined as X2

K �
m2
K=�ms 
md�

2, numerically XK � 4:07, fK is the
K-meson decay constant and x is the gluino-squark mass
ratio squared, x � m2

~g=m
2
~b
. C�x� and D�x� are given by

C�x� � Cff�x� 
 Cgg�x� and D�x� � Dh�x� where f�x�,
g�x� and h�x� are dimensionless form factors defined in
Eqs. (A3)–(A5), of the Appendix. The functions f�x�, g�x�
and h�x� have been conveniently normalized so that in the
limit m~g � m~b they tend to 1. We note that in our approach
the constant coefficients Cf, Cg and D absorb the depen-
dency on the method of calculation of the hadronic matrix
elements as well as the renormalization effects on the
Wilson coefficients. Following Ref. [55], where lattice
QCD methods were used to calculate the relevant hadronic
matrix elements and including NLO renormalization ef-
fects to the Wilson coefficients, we obtain the following
numerical values, Cf � 9:13, Cg � 0:75 and D � 0:002.
We note that the naive vacuum insertion approximation at
tree level gives the values Cf � 1:8, Cg � 0:067 and D �

0:0055, which are significantly different. We also note that
these constant parameters, Cf, Cg and D, do not depend on
the flavor mixing structure in the soft supersymmetric
breaking sector. From the numerical values of these coef-
ficients we note that the contribution of the form 7LL7RR in
Eq. (80) dominates the supersymmetric contribution.
Finally, using the well-known expression for the SM con-
tribution to the amplitude, see for instance Eq. (3.39) in
Ref. [56], we can write the ratio of the supersymmetric
contribution over the SM amplitude in the form,

RK � 2
	2
K

m2eb f�x�,
2�6

�
5

4
� cos��� 2�0�

�
1=2
; (83)

where

	K �
&s/XKC

1=2
f���

5
p
GFVcsVcdB

1=2
K 	1=2

1 mc

� 666 TeV: (84)

Here B̂K � 0:85� 0:15 is a renormalization group invari-
ant form of the B parameter arising from the hadronic
matrix element, mc is the charm quark mass and 	1 is a
short distance QCD correction factor, at NLO 	1 is given
by 	1 � 1:38� 0:20 [56]. Using for � the value deter-
mined from CKM elements, � � 0:22, and for � the 1+
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global fit �fit � 61� � 11� we obtain

RK �

�
~m
m~b

�
4
�
10 TeV

m~b

�
2
h�x�: (85)

The phase of the supersymmetric contribution, �0
�, can be

calculated from Eq. (80). This phase depends strongly on
the phase�0, which is not constrained by the CKM matrix.
For instance, for �0 � 0 we obtain

tan��0
�� �

s��1� 2c��

�14 � c� � c2��
: (86)

For � � 60� we would obtain �0
� � 0. If this was the case

the measurement of j�j would not constrain the supersym-
metric spectra; see Eq. (75). The only phase independent
constraint comes from the �mK measurement; see
Eq. (74). Let us analyze with more detail the large tan-
case. For tan- � 50 and m~g � m~b we noted in Sec. III A
that for the hierarchy of flavor breaking VEVs postulated
in Eqs. (5)–(7) we need to have ~m � 3m~b, i.e. , � 9.
Therefore using Eqs. (74), (75), and (83) we obtain for
tan- � 50 the constraints,

m~b * 130 TeV; �mK; (87)

m~b * 3670 TeV; j�j ��0 � 0�: (88)

To obtain the second constraint we assume that the phase
�0 is arbitrary. If this phase was zero as we mentioned this
second constraint would not be effective. We would like to
emphasize that these constraints are nongeneric. They only
apply for the case large tan- case study and the particular
texture considered in this paper. This case study must be
considered a worst case scenario for these kinds of models.
Several variants of this model may allow us to lower
considerably these bounds. For instance we could lower
the bounds at the price of less predictivity in the fermion
sector by increasing the number of parameters in the flavor
breaking sector.

B. �0=�

The measure of direct CP violation in the kaon system is
given by the parameter �0=�. DirectCP violation originates
from direct transitions of the CP-odd state into the
CP-even // final state. The direct CP violation in the
neutralK ! // decays can be described through the ratio,

�0

�
� ei	

w���
2

p
j�j

�
ImA2

ReA2
�

ImA0

ReA0

�
(89)

where A0;2 are the isospin amplitudes for the �I �
1=2; 3=2 transitions. ImA0;2 are calculated from the general
low-energy effective Hamiltonian for �S � 1 transitions
[57]. w � ReA2=ReA0 and 	 is a strong phase shift dif-
ference between the two amplitudes. In 1999 the NA48
experiment [58] at CERN and the KTeV [59] experiment at
FNAL demonstrated that this observable is actually differ-
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ent from zero as expected in the SM. The present world
average is [60]

Re
�
�0

�

�
exp

� �16:6� 1:6� 	 10�4: (90)

There is no simple approximate expression for the SM
contribution to �0=�. This calculation is affected by large
hadronic uncertainties. It has been recently pointed out
[61] that to lowest order (in 1=Nc and in the chiral expan-
sion) Re��0=�� is governed by the competition between two
different decay topologies and suffers from a strong can-
cellation between them. Nevertheless to higher orders
chiral loops generate an enhancement of the isoscalar
amplitude and a reduction of A2. Taking this into account,
and following Ref. [61], the latest SM prediction is

Re
�
�0

�

�
SM

� �19
17
�18� 	 10�4: (91)

Therefore even though the SM prediction is consistent with
the measurement, it does not allow us at present to perform
stringent tests of the CKM mechanism of CP violation. For
a 2003 review of several calculations see Ref. [62].

Since the 1999 measurements, the parameter �0=� has
received considerable attention in the context of super-
symmetric theories [63]. The dominant supersymmetric
contributions to �0=� come from the chromomagnetic op-
erators like Og, Og � gs=�16/

2�dL+
�=tAsRG

A
�=. The

Wilson coefficient Cg corresponding to this operator is
given by

Cg � ���
&s/
2m~d

�
4ms

m~d
N�x��7dLL�12 
M�x��7dLR�12

�
; (92)

where N�x� and M�x� are dimensionless form factors de-
fined in Eqs. (A7) and (A8) of the Appendix. Taking into
account that the relevant hadronic matrix element is given
by

h�//�I�0jOgjK
0i �

���
3

2

s
11

16/2

hq �qi

F3
/
m2
/BG; (93)

with F/ � 131 MeV and where the BG factor is not well
known, BG � 1–4 we obtain that the total LR supersym-
metric contribution to Re��0=��, can be conveniently writ-
ten as

Re
�
�0

�

�
LR
RL

�

�
	�0

m~b

�
jIm��7dLR�21 � �7dLR�

�
12�jN�x�;

(94)

where

	�0 �
11

���
3

p

64/
w

j�jReA0

m2
Km

2
/

F/�ms 
md�
&s�m~b�	BG: (95)

We used for w and ReA0 experimental values w � 1=22
and ReA0 � 3:326	 10�4 MeV. For the rest of the pa-
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rameters we usedmK � 490 MeV,m/ � 140 MeV. 	 is a
well-known dimensionless strong coupling renormaliza-
tion factor defined in Ref. [64]. Taking into account the
important uncertainties in the current determination of the
BG factor and the lighter quark masses we obtain the
estimate 	�0 � 100–600 TeV. We note that for the model
under consideration

Im ��7dLR�12� � Im��7dLR�21� � ���2!s�c-�3 v
m~b

~m
m~b

:

For the worst case scenario, 	�0 � 600 TeV, and assuming
that the supersymmetric contribution saturates the experi-
mental measurement we obtain the constraint,

s�c-

�
~m
m~b

��
220 GeV

m~b

�
2
N�x� & Re

�
�0

�

�
exp
: (96)

For the large tan- case, tan- � 50 with m~g � m~d, exam-
ined in Sec. III A, the hierarchy ~m � 3m~b was required. In
this case using for � and ! the values determined from the
CKM elements and for �, � � 60� we obtain

m~b * 1:3 TeV ��0=��: (97)

Let us analyze separately the size of the LL and RR
contributions. We see that because of an extra ms=m~b
suppression factor the LL
 RR contribution to �0 is
much smaller than the LR contribution. If the gluino
mass is of the same order as the squark masses (which is
required to maximize the loop generated quark masses),
and , ’ ,0 we obtain a simple approximate expression for
the LL and RR couplings,

Im ��7dLL�12� � Im��7dRR�21� � �2s� � s2�0 ��3 ~m2

m2
~d

:

The total LL
 RR supersymmetric contribution to
Re��0=�� can be conveniently written as

Re
�
�0

�

�
LL
RR

�

�
4ms	�0

m2
~b

�
Im��7dRR�21 � �7dLL�

�
12�M�x�:

(98)

Using for � the value determined from the CKM elements
and assuming that the supersymmetric contribution satu-
rates the experimental measurement, we obtain the con-
straint,

�2s� � s2�0 �

�
~m
m~b

�
2
�
1:7 GeV

m~b

�
2

& Re
�
�0

�

�
exp
: (99)

For the large tan- case, tan- � 50, with m~g � m~b and
~m � 3m~b we obtain m~b * 220 GeV.
VII. CONTRIBUTIONS TO CP ASYMMETRIES IN
THE B SYSTEM

The CP violation measured in neutral K meson decays,
taking into account current experimental and theoretical
-12



SOLVING THE SUPERSYMMETRIC CP PROBLEM WITH . . . PHYSICAL REVIEW D 72, 035003 (2005)
uncertainties, can be simply explained with the CKM
phase. B factories have verified, especially through mea-
surements of the CP asymmetry in the Bd !  KS decay
[65,66], that the CP symmetry is significantly violated in
the B sector, in agreement with standard model predictions,
providing a confirmation of the so-called CKM paradigm
[67,68]. This fact does not rule out the possibility that the
effects of CP phases of a different origin, as for instance
the phases in the soft supersymmetry-breaking sector [69–
71], could manifest in the near future [72] through other
CP violating observables, especially penguin dominated
amplitudes such as B! �K0; 	0Ks. In this section we will
study the constraints that the currents measurements of CP
asymmetries in several B decays impose on the model
under consideration.

A. CP asymmetry in B!  KS

The B0 �B0 mixing amplitude is defined by the matrix
element of the effective �B � 2 Hamiltonian as Mb �
M12�B

0
d� � h �BdjH

�B�2
eff jBdi. The phase of the mixing am-

plitude is related with the mixing CP asymmetry in the
decay B!  Ks by

S Ks � sin�arg�Mb��: (100)

According to the most recent averaged experimental re-
sults of BABAR and Belle S Ks � 0:736� 0:049. This can
be simply accounted to date with the CKM phase. If future
measurements reduce considerably the experimental un-
certainty in S KS , there is hope that deviations from the SM
prediction could be elucidated. It is convenient to separate
the SM and supersymmetric contributions to the mixing
amplitude in the form Mb � MSM

b 
MSUSY
b . We also

find it convenient to define �1 and �0
1 as the phases of the

SM and supersymmetric component of the amplitude,
respectively, i.e. MSM

b � ei2�1 jMSM
b j and MSUSY

b �

ei2�
0
1 jMSUSY

b j. Since the SM prediction can account per-
fectly for the experimental result we expect that the super-
symmetric contribution is a small correction and expand
the expression for the CP asymmetry in powers of the ratio
R � jMSUSY

b j=jMSM
b j. To leading order,

S Ks � sin2�1�1� sin�2��1 ��0
1��R � 
 sin�2�0

1�R :

(101)

It is known that in the absence of new physics contributions
the SM CP phase can account for the present experimental
results for S Ks . From Eq. (101) we can obtain constraints
on R and �0

1. Assuming that the new physics contribution
saturates 50% of the experimental uncertainty we obtain to
leading order in R ,

R sin�2��0
1 ��1�� & 0:5: (102)

We note that even in the limit where the complex phase of
the SUSY amplitude goes to zero the mixing CP asymme-
try, S KS , is affected by the SUSY contributions through
035003
their effects on the absolute value of the amplitude, S Ks �
sin2�SM

1 �1� sin�2�SM
1 �R �. The mass difference in the

Bd �Bd system, �md � 2Abs�Mb�, also puts a stringent
constraint on R . �md is an observable well known ex-
perimentally, to the level of 1.5%. The experimental mea-
surement yields �md � �3:22� 0:05� 	 10�10 MeV. The
SM prediction for �md is about �mSM

d � �2:9� 2:2� 	
10�10 MeV. We note that even though the theoretical
uncertainty is about 75% the central value is only 10%
from the central experimental value. Assuming that the
supersymmetric contribution saturates 50% of the experi-
mental measurement and expanding Mb in powers of R 
we obtain the constraint,

R cos�2��0
1 ��1�� & 0:5: (103)

We note that we have assumed that ��1 ��0
1� � �/=4. If

this was not the case, then the second order term in the
expansion would be dominant and we would obtain a
milder constraint, R2

 & 0:5.
Next we need to calculate the expressions for R and�0

1

in our model. The previous constraints in Eqs. (102) and
(103) will translate into lower bounds on the squark mass
spectra. Again, we identify four qualitatively different
contributions to MSUSY

b , that in our model, working to
leading order in powers of �, take the following values:

�7dLR�
2
13 
 �7dRL�

2
13 � 2713

LR�3
 2c2� � 2is2��; (104)

�7dLR�12�7
d
RL�12 � 713

LR�2c
2
� � 5� is2�� (105)

where

713
LR � �4c2-

v2

m2
~b

~m2

m2
~b

; (106)

and

�7dLL�
2
13 
 �7dRR�

2
13 � 2713

LLe
2i������1
 4e2i��; (107)

�7dLL�13�7
d
RR�13 � 713

LLe
2i������1� 4e2i��; (108)

where

713
LL � ,02�4: (109)

We see that in this model the LL and RR delta couplings in
general are expected to dominate the contribution to
Im�MSUSY

b � since the LR couplings contain an additional
suppression factor, c2-v

2=m2
~b
. It is possible to add all the

dominant 7LL and 7RR contributions to the Wilson coef-
ficients to give a simple approximate expression for the
supersymmetric contribution to Mb. We obtain

M SUSY
b �

&2
smBf2BX

2
B

60m2
~b

���7dLL�
2
13 
 �7dRR�

2
13�D�x�


 �7dLL�13�7
d
RR�13C�x��: (110)
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Here X2
B is a dimensionless factor defined as X2

B �
m2
B=�mb�mb� 
md�mb��

2, numerically XB � 1:08. x is de-
fined as x � m2

~g=m
2
~b
. C�x� and D�x� are dimensionless

form factors which were already introduced previously in
Sec. VI A as C�x� � Cff�x� 
 Cgg�x� and D�x� � Dh�x�.
f�x�, g�x� and h�x� are dimensionless form factors defined
in Eqs. (A2)–(A4) of the Appendix. The constant coeffi-
cients Cf, Cg and D, like in the �S � 2 case, absorb the
dependency on the method of calculation of the hadronic
matrix elements as well as the renormalization effects on
the Wilson coefficients. We have evaluated Cf, Cg and D
following Ref. [73] where lattice QCD methods were used
to calculate the relevant hadronic matrix elements. We
obtain that D� Cg � Cf and Cf � 7:33. Had we used
the naive vacuum insertion approximation at tree level we
would obtain Cf � �48X2

B 
 9�=�27X2
B� � 2:06 which

would imply an underestimation of the dominant term by
a factor of order 1=10. The coefficients Cf, Cg and D also
depend on the scale of the supersymmetric spectra. We
have calculated our numerical values at the scale MS �
1 TeV using the renormalization factors given in Ref. [73].
The contribution of the form 7LL7RR in Eq. (109) clearly
dominates the supersymmetric contribution. We use the
well-known expression for the SM contribution to the
amplitude Mb, see for instance Eq. (3.60) in Ref. [56],

M SM
b �

G2
F

12/2 	BB̂Bdf
2
BmBdm

2
W jVtdV

�
tbj

2S�xt�; (111)

where 	B � 0:55�1� is a QCD correction factor, B̂Bd is a
renormalization group invariant parameter available in the
literature [74], B̂Bd � 1:30� 0:12, and S�xt� is a dimen-
sionless form factor given by S�xt� �
2:46�mt=170 GeV�1:52. We can write the ratio of the super-
symmetric contribution over the SM amplitude in the form,

R jLL
RR �
	2
 

m2
~b

,02�4f�x��17� 8c2��
1=2; (112)

where

	 �
&s/XBC

1=2
f���

5
p
GFjVtdVtbjB

1=2
B 	1=2

B mWS1=2�xt�
� 78 TeV:

(113)

We will substitute in the expression (112), the value of �
determined from the quark data and for � we will use the
central value of the 1+ global fit. � � 60�. For the large
tan- case, tan- � 50, examined in Sec. III A, assuming
that ,0 ’ , � 9 and m~g � m~b. The constraints in
Eqs. (102) and (103) reduce to�

700 TeV

m~b

�
2
c2��0

1��1�
& 0:5; (114)
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�
700 TeV

m~b

�
2
s2��0

1��1�
& 0:13: (115)

The phase�0
1 can be calculated from Eq. (108). We obtain

tan�2�0
1� �

4s2� 
 s2�����
4c2� � c2�����

: (116)

The phase � is not constrained by the quark masses and
mixings. The value of�0

1 depends strongly on the phase�.
For � � 0 and � � 60� we obtain �0

1 � 10:9� while for
� � 30� and � � 60� we obtain �0

1 � 70:9�. When
cos�2��0

1 ��1�� � 1 the strongest phase independent
constraint on the squark spectra comes from Eq. (114),

m~b * 1000 TeV ��md �0
1 � �1�; (117)

m~b * 1000 TeV �S Ks �0
1 � �1 � /=2�: (118)

On the other hand if ,0 � 1 these constraints on the squark
spectra would be milder. This will happen for instance
when 	0 � 	.

B. CP asymmetry in B! 
KS

The latest results from the Belle Collaboration for the
time dependent CP asymmetry coefficient S�K derived
from the combined�K0 data set are [75] SBelle

�K � 
0:06�
0:42 while the latest results from the BABAR Collaboration
for the same coefficient are [76] SBABAR�K � 
0:50� 0:32.
Combining the results from both experiments one obtains
the world average, SBABAR
Belle

�K � 
0:34� 0:21 [68].
Taking into account that the SM prediction for the time
dependent CP asymmetry is S�K � sin�2�1� � 0:726�
0:037 (here we used the world averaged CP asymmetry
determined from charmonium final states) the current
world average seems to differ from the SM expectation
by about a 2+ level. Therefore this process is one of the
best candidates for the manifestation of new physics in the
quark sector. S�K in the context of supersymmetric theo-
ries has received considerable attention recently
[69,70,77–90] since any clear deviation from the SM
prediction would imply the existence of new CP phases
other than the CKM phase.

The total decay amplitude, A�KS � h�KSjH
effy
�B�1jB

0i

can be written in the form, A�KS � ASM
�KS


 ASUSY
�KS

.
Additionally one can parametrize the SM and supersym-
metric contributions to the amplitude in the form, ASUSY

�KS
�

jASUSY
�KS

jei�NPei7SUSY and ASM
�KS

� jASM
�KS

jei7SM , where �NP is
the CKM-like complex phase of the supersymmetric con-
tribution and 7SM and 7SUSY are the SM and supersym-
metric CP conserving strong phases, respectively.
Assuming that the SUSY contribution to the amplitude is
smaller than the SM one, and expanding in powers of the
ratio R� � jASUSY

�KS
j=jASM

�KS
j it is possible to obtain approxi-

mate expressions for the direct and mixing CP asymme-
-14



SOLVING THE SUPERSYMMETRIC CP PROBLEM WITH . . . PHYSICAL REVIEW D 72, 035003 (2005)
tries [78,91]. To leading order in R�,

S�KS � s2�1

 2s�NP

c7c2�1
R�; (119)

where 7 is the difference of supersymmetric and SM CP
conserving strong phases, 7 � �7SM � 7SUSY�. We will
constrain the supersymmetric contribution to S�KS assum-
ing that this contribution accounts for the difference be-
tween the experimental measurement and the SM
prediction, i.e.,

2s�NP
c7c2�1

R� & 0:40� 0:26; (120)

where for s2�1
we used the experimental value of S KS ,

S KS � 0:736� 0:049. There are two basic contributions
to the supersymmetric amplitude: the contributions coming
from the 7LR couplings and the contributions coming from
the 7LL and 7RR couplings. We will first obtain a simple
expression for the 7LR contributions. We note that at the
SUSY scale there is only one Wilson coefficient which
contains the coupling �7dLR�23, the chromomagnetic opera-
tors like Og, Og � gs=�16/2�dL+�=tAbRGA

�=. The Wilson
coefficient Cg corresponding to this operator at the SUSY
scale is given by

Cg�m~b� � ���
&s/
2m~b

�
4mb

m~b
N�x��7dLL�23 
M�x��7dLR�23

�
:

(121)

Here x is defined as x � m2
~g=m

2
~d
. M�x� and N�x� are

invariant dimensionless form factors that we have conven-
iently normalized so that M�x�, N�x� � 1 when x! 1, see
Eqs. (A7) and (A8) of the Appendix. When calculating the
supersymmetric contributions to the asymmetry one has to
take into account the renormalization of the Wilson coef-
ficients from the SUSY scale down to the bottom mass
scale. Following Ref. [92] we have included the NLO
corrections using the generalized factorization approach
assuming that m~b ’ 1 TeV. We note that all the 7LR con-
tributions to the low-energy effective Wilson coefficients
arise originally from the Wilson coefficient Cg�m~b� in
Eq. (121). Therefore all the contributions to each effective
Wilson coefficient coming from the flavor violating soft
SUSY-breaking trilinear couplings (i.e. 7LR couplings) can
be added up since they are proportional to the same gluino-
squark form factor M�x�. The resulting contribution can
always be written in the form,

ASUSY
�KS

jLR
RL �
&2
sf�KM�x�

18mbm~b
��7dLR�23 
 �7dLR�

�
32�: (122)

In our notation the coefficient f�K absorbs the dependency
on the method of calculation of the hadronic matrix ele-
ments. We have calculated f�K using the generalized
factorization approach, following Ref. [92]. f�K is pa-
rametrized in the form f�K � fqX�, fq is a factor asso-
ciated with the momentum carried by the gluon in the
035003
corresponding penguin diagram, fq � mb=
���������
hq2i

p
(in the

rest of the paper we will assume that fq �
���
2

p
). X� arises

from the hadronic matrix elements. It is given by X� �

2FB!K
1 �m2

��f�m��pK � ���. The numerical value of the
parameter X� is irrelevant for our purposes because it
cancels with the same factor coming from the SM contri-
bution. The coefficient f�K could be calculated using other
more recent and precise approaches which are available in
the literature: as the perturbative QCD approach [93] or the
QCD factorization approach [94]. Nevertheless it has
been pointed out that in that case one would obtain slightly
different values for the relevant coefficients [80,85,86,89].
Therefore for our purpose, which is to obtain a good
estimate of the constraint on the new physics contributions,
the generalized factorization approach is precise enough.

The contributions to the supersymmetric amplitude
coming from the 7LL and 7RR couplings can also be written
in a similar fashion,

ASUSY
�KS

jLL
RR �
&2
sX�L�x�

47m2
~g

��7dLL�23 
 �7dRR�23�: (123)

L�x� is a dimensionless polynomial conveniently normal-
ized such that L�x� ! 0 when x! 0 and L�x� � 1 when
x! 1. We note that in this case, since there are 7LL and
7RR contributions coming from different Wilson coeffi-
cients, the coefficients of the polynomial L�x� depend on
the method used to evaluate the hadronic matrix elements
and to a lesser extent on the scale of the supersymmetric
spectra but they do not depend on the flavor mixing struc-
ture in the SUSY-breaking sector. We have evaluated the
coefficients of L�x� numerically using the generalized
factorization approach following Ref. [92]. We obtain
approximately,

L�x�GF � c0 
 c1�x� 1�; c0 � 1; c1 � �
���
3

p
;

(124)

in the limit x! 1. Additionally, if one is interested in the
limit x ’ 0, i.e. m~g � m~q, L�x� is approximated by

L�x�GF � ���4x�d0 
 d1 lnx�; d0 � 18; d1 � 7;

(125)

where the coefficients c0;1 and d0;1 shown here are good
approximations to the actual values calculated numerically.
The expressions in Eqs. (122) and (123) are practical
expressions of general interest irrespective of the form of
the matrices 7LR, 7LL and 7RR. We see from Eqs. (122) and
(123) that one naively expects that the 7LR contributions
dominate since the 7LL and 7RR contributions receive in
general an additional suppression factor of the order
mb=�5m~b�. Nevertheless for the model under consideration
we obtain
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�7dLR�23 
 �7dLR�
�
32 � 4�

�
c�!�

~m
Ab

�
vAb
m2

~b

c-; (126)

�7dLL�23 
 �7dRR�23 � �4ei�,0�: (127)

We note that the total 7LR contribution to S�KS is zero since
Im��7dLR�

�
23 
 �7dLR�32� � 0. Therefore in our model we

find that only �LL
 RR� couplings contribute to S�KS .
We find the following simple expression for the ratio of
the dominant supersymmetric contribution to the ampli-
tude over the standard model contribution,

R�jLL
RR �

�	2
�

m2
~q

�
L�x�j�7dLL�23 
 �7dRR�23j (128)

where 	� is a coefficient independent of the supersym-
metric parameter space given by

	2
� �

���
2

p
&2
s

45GFjV�
tbVtsjh�

� �189 GeV�2: (129)

Here h� parametrizes the dependence of the SM contribu-
tion on the Wilson coefficients and hadronic matrix ele-
ments. We used the value for h� calculated numerically in
Ref. [92] using the generalized factorization approach (GF)
. For instance if m~q � 500 GeV we obtain jR�jLL
RR �

0:14L�x�j�7dLL�23 
 �7dRR�23j, which agrees with previous
numerical calculations [78,90]. We note that Eq. (128)
provides some analytical insight in the dependency of the
supersymmetric contributions on the supersymmetric spec-
tra, especially on the gluino-squark mass ratio through the
form factor L�x�.

Finally we will use the expression for ��7dLL�23 

�7dRR�23� in our model given in Eq. (127) and the general
expression for the amplitude A�KS given in Eq. (128) to
rewrite the constraint from Eq. (120). Using for �, � �
0:22, we obtain

,0s�NP
c7

�
212 GeV

m~b

�
2
L�x� & 0:40� 0:26: (130)

We note that the phase �NP as well as the strong phases
difference 7 is not constrained by the data on quark masses
and mixings. If �NP � 0 this contribution to the asymme-
try S�K would cancel. Let us assume in the worst case
scenario that �NP � /=2, 7 � /=2 and ,0 � , � 9
(which is the value for the large tan- scenario analyzed
in Sec. III A). We would obtain only a mild constraint on
the squark mass scale, of the order m~b * 1 TeV.

Finally we would like to mention that, as it has been
pointed out, in the case when the 7LR contribution is much
smaller than the 7LL or 7RR contributions, the chargino
contributions to the amplitude may be relevant since they
could be of the same order as the 7LL and 7RR gluino
contributions [81–84,89,90]. A more precise calculation
would require the inclusion of these contributions.
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C. CP asymmetry in B! �0KS

Recent results on the measurements of the CP asymme-
tries on the b! s processes have reported possible anoma-
lies not only in B! �Ks but also in other processes,
including B! 	0Ks. The latest results from Belle [75]
and BABAR [76] Collaborations for the time dependent
CP asymmetry coefficient S	0Ks , �SBelle

	0K ��2004 
0:06�

0:42 and �SBABAR	0K ��2004 
0:50� 0:32, seems to differ
from the SM expectation. Combining the results from
both experiments one obtains the world average,
�SBABAR
Belle
	0K ��2004 
0:41� 0:11 [68]. This has moti-

vated the recent interest in the supersymmetric contribu-
tions to the CP asymmetry in the decay B! 	0Ks versus
B! �Ks [90,95] as well as in correlations with other
supersymmetric processes [89,96]. It is known that because
vector mesons ��;,; . . .� and pseudoescalar mesons
�/;K;	0; . . .� have opposite parity the B decays to these
two final states will be sensitive to different combinations
of the relevant Wilson coefficients [97]. For instance, in
supersymmetric theories the gluino loop effects coming
from 7LR couplings will contribute by a factor proportional
to ��7LR�23 
 �7LR��32� in the vector case and to ��7LR�23 �
�7LR�

�
32� in the pseudoscalar case, respectively. For the

model under consideration, the contributions from 7LR
couplings, which exactly cancel for the S�Ks asymmetry,
not only do not cancel but dominate the CP asymmetry in
the decay B! 	0Ks. We can obtain an expression for the
7LR contribution to A	0Ks similar to A�Ks in Eq. (122) with
the change ��7LR�23 
 �7LR��32� ! ��7LR�23 � �7LR��32�.
Using the resulting expression we obtain the following
simple formula for the supersymmetric contribution to
S	0Ks ,

S	0Ks � 4c-!�s�M�x�
�
3:4 TeV

m~b

�
2
�
Ab
m~b

�
: (131)

Using the values of � and! determined from quark masses
and mixings, and assuming that Ab � m~b we obtain the
following constraint on S	0K:

js�c-c2�1
s7j
�
1 TeV

m~b

�
2
M�x� & 0:33� 0:16: (132)

We note that the phase � as well as 7, the difference
between strong phases, is not constrained by the data. If
� � 0 this contribution to the asymmetry would cancel. In
the worst case scenario, assuming that x ’ 1,� � /=2 and
7 � /=2 the constraint depends strongly on the value of
tan-. For large tan-, tan- � 50, we would obtain a mild
lower constraint on the squark mass scale, m~b * 250 GeV.

D. CP asymmetry in B! Xs�

The CLEO Collaboration has set a range on the
direct CP asymmetry in the b! s� decay, Ab!s�CP , at
90% C.L. as Ab!s�CP � ��3:5� 13:5�% [98] while the
-16
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Belle Collaboration also set a range as Ab!s�CP � ��0:8�
10:7�% [99]. According to the SM theoretical prediction
Ab!s�CP is smaller than 1% [100]. Therefore Ab!s�

CP is an
observable potentially sensitive to the presence of new
physics. Furthermore it is expected that the experimental
uncertainty will be reduced to less than 1% at a super B
factory. Ab!s�

CP in supersymmetric theories has received
considerable interest recently [79,89,96,101]. It is known
that a CP violating phase in the entries �7dLR;RL�23 or
�7dLL;RR�23 will generate CP violation in the decay B!

Xs� [97,102]. The direct CP asymmetry in b! s� decay
can be written in terms of the effective Wilson coefficients
of the low-energy effective weak Hamiltonian [97],

Ab!s�CP �
1

jCL7 j
2 
 jCR7 j

2 �a27 Im�C2�CL�7 
 CR�7 ��


 ag7 Im�CLgCL�7 
 CRgCR�7 �


 a2g Im�C2�CL�g 
 CR�g ���; (133)

where CL7 � CLeff7 �mb�, CLg � CLeffg �mb� and C2 multiply
the chromomagnetic dipole operators, O7 �
e

16/2 �sL+�=F
�=bR, Og � �gs=16/

2� �sL+�=G
�=bR, and the

current-current operator, O2 � �sL��qL �qL��bL, respec-
tively. CR7 and CRg are the corresponding coefficients of
the nonstandard dipole operators involving right-handed
light-quark fields, which appear in supersymmetric theo-
ries. We will use the numerical values of the coefficients aij
as computed using the parton model in Ref. [97]: a27 �
0:0123, ag7 � �0:0952 and a2g � 0:0010. In order to
explore the implications of supersymmetric flavor models
it is useful to express the effective coefficients in terms of
the new physics contributions to the Wilson coefficients at
the scale mW . To this end numerical expressions were
given in Ref. [97] including NLO renormalization effects
from mW down to the mb mass scale,

C7 � C0
7 
 	77C7�mW� 
 	7gCg�mW�; (134)

Cg � C0
g 
 	gCg�mW�: (135)

Here 	77 � 0:67, 	7g � 0:09 and 	g � 0:70. The super-
symmetric contributions to CLg were given in Eq. (121).
CL7 �m~q� is given by

CL7 �m~d� �
&s/
2m~b

�
mb

3m~b
M3�x��7

d
LL�23 


1

10
M1�x��7

d
LR�23

�
;

(136)

where M1�x� and M3�x� are dimensionless form factors
defined in Eqs. (A11) and (A12) of the Appendix. M1�x�
andM3�x� have been normalized to 1 when x! 1. We note
that for simplicity we have defined C7 as the whole coef-
ficient accompanying the operator O7. Therefore in our
notation the SM contribution to the Wilson coefficient CL7
at mW is given by CSM

7 �mW� � �
���
2

p
mbGFV�

tsVtbK�xt�,
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where xt � mt=mW and K�x� is a dimensionless form
factor given in Eq. (A13) of the Appendix. The super-
symmetric contributions to C2 are negligible. We will use
the SM value, C2�mb� � 1:11	GFV

�
tsVtb=

���
2

p
. It is

straightforward to obtain CRg and CR7 by the exchange L$

R in the expressions for CL7 and CLg . Barring cancellations
between 7LR and 7LL terms we will obtain an approximate
bound from the LR contribution. We can see from
Eq. (133) that the total 7LR contribution is proportional
to a coupling of the form ��7LR�

�
23 
 �7LR�

�
32�. We obtain

the following approximate expression for the asymmetry:

Ab!s�CP jLR
RL � ���
&s/
2m~b

C2 Im��7LR��23 
 �7LR��32�A�x�

jCSM
7 j2

:

(137)

For the 7LL;RR couplings we will obtain a similar expres-
sion proportional to the coupling ��7LL��23 
 �7RR��32�. Here
A�x� is a dimensionless form factor defined by

A�x� �
�
a27	77

1

3
M1�x� 
 a2g

�
	7g

1

3
M1�x� 
 	gM�x�

��
:

(138)

For the model under consideration,

�7dLR�
�
23 
 �7dLR�

�
32 � ���4�s�!

vAb
m2

~b

c-: (139)

The SM contribution to the effective coefficient C0
7 is

related to the Wilson coefficient at the mW scale by a
renormalization factor, C0

7 � 	bWC
SM
7 , which can be ex-

tracted from Ref. [97]. Assuming that x � 1, i.e.m~g � m~b,
and using the values of � and ! as determined from quark
masses and mixings we obtain the constraint,

Ab!s�CP jLR
RL � s�c-

�
40 GeV

m~b

�
2
�
Ab
m~d

�
& 0:1: (140)

In the worst case scenario, assuming that s� � 1, Ab �
m~d, tan- � 1 the current experimental bound requires
m~b * 230 GeV. On the other hand, for large tan- one
would obtain a milder constraint. We would like to point
out that the phase � is not constrained by the CKM phase.
If s� � 1 the squark masses would not be constrained by

Ab!s�CP . One would naively expect that the 7LR gives the
dominant contribution to Ab!s�

CP because of the mb=v sup-
pression factor of the 7LL contributions to C7 and Cg.
Nevertheless for the model under consideration the con-
tributions coming from 7LL;RR couplings are of the same
order of magnitude. For the model under consideration,

�7dLL�
�
23 
 �7dRR�

�
32 � �4�,0e�i�: (141)

We obtain a similar expression,

Ab!s�CP jLL
RR � s�,
0

�
30 GeV

m~b

�
2

& 0:1: (142)
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The constraint on the squark spectra depends on the value
of ,0. For the large tan- case we noted in Sec. III A that
, � ~m2=m2

~b
� 9. If ,0 � ,we would obtain the constraint

m~b * 300 GeV. This constraint could be avoided if� � 0
or 	0 � 1.

E. ��b! s��

The supersymmetric contributions to the b! s� decay
are indirectly correlated with the CP asymmetries in B!
�Ks and b! s� decays since the same flavor mixing
couplings contribute to the relevant Wilson coefficients.
The b! s� decay rate is also proportional to the C7

Wilson coefficients,

8�b! s�� / �jCL7 j
2 
 jCR7 j

2�: (143)

The current world average of the CLEO [103] and Belle
[104] results is given by B�b! s��exp � �3:3� 0:4� 	
10�4, which can perfectly be accounted for the SM theo-
retical prediction, B�b! s��theo � �3:29� 0:33� 	 10�4

[105], which leaves a small window open for new physics.
There is no SM contribution to CR7 . A full expression for
the main supersymmetric contributions, i.e. gluino ex-
change, to this branching ratio were first given in
Ref. [106]. Further improvements in the calculation as
chargino diagrams and QCD corrections were subse-
quently included [107]. Therefore if the supersymmetric
contribution is just a correction to the SM one we can
expand in powers of Rs� � jCLSUSY

7 =CSM
7 j and obtain to

leading order,

8�b! s��

8�b! s��SM
� 1 � 2Rs�: (144)

Allowing the supersymmetric contribution to saturate the
2+ experimental uncertainty we obtain to leading order in
Rs� the constraint,

Rs� &
��Br�b! s��jexp�

Br�b! s��jexp
& 0:12: (145)

Using the expression for the supersymmetric contribution
to CL7 from Eq. (136) we obtain for the 7LR contribution to
Rs� the expression,

Rs�jLR �
	s�
m~q

j�7dLR�23jM3�x�: (146)

Here 	s� is a coefficient independent of the supersymmet-
ric parameter space with mass units. Using the SM expres-
sion for CL7 and the expression for �7dLR�23 that our model
predicts for x � 1,

j�7dLR�23j � 2�c-
v
m~b

~m
m~b

;

we obtain the constraint,
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c-

�
130 GeV

m~b

�
2
�

~m
m~b

�
& 0:12: (147)

For the large tan- case with m~g � m~b examined in
Sec. III A, tan- � 50, ~m was required to be ~m � 3m~b. In
this case we obtain the following constraint on the squark
mass scale, m~b * 370 GeV. An analysis with similar re-
sults can be implemented for the 7�LL
RR� contribution to
8�b! s��. In this case,

j�7dLL�23j � 2�,0:

We obtain the constraint,

,0

�
16 GeV

m~b

�
2

& 0:12: (148)

For the large tan- case with m~g � m~b examined in
Sec. III A, tan- � 50, , was required to be , � 3. If ,0 �
, we would obtain the following lower bound on the
squark mass scale, m~b * 140 GeV.

VIII. CONCLUSIONS

We have shown that generic supersymmetric flavor
models exist for the radiative generation of fermion
masses, mixings and CP phases. We have studied in detail
the phenomenological implications of a particular super-
symmetric flavor model for the radiative generation of first
and second generation quark masses, focusing our atten-
tion especially in the CP violating phenomenology. The
basic idea underlying this kind of flavor models is that the
flavor breaking fields are also supersymmetry-breaking
fields.

We have shown that these models generically solve the
SUSY CP problem in a very simple fashion. The one-loop
contributions to EDMs are exactly zero due to the real
character of the relevant parameters in the calculation
while in the worst case scenario the two-loop contributions
are suppressed below current experimental constraints for a
supersymmetric spectra above * 1 TeV.

Our main goal was to present a flavor model as predic-
tive as possible. To this end we have proposed a particular
implementation of this scenario using a U(2) flavor sym-
metry where the required hierarchy of flavor breaking
VEVs is expressed in powers of a single parameter, �.
As a consequence the model generates quark Yukawa
matrices that contain only three parameters, �; �; � and
can fit the data with precision. Therefore the quark masses
and mixings determine the amount of flavor violation in the
soft sector requiring a very heavy SUSY spectra especially
to overcome the constraints on �mK, � and �md.

We would like to emphasize that this case study can be
considered the worst case scenario from the point of view
of FCNC constraints. Between the extreme case study here
and the usual models with scalar flavor breaking VEVs
there is a continua of possibilities which would ameliorate
the FCNC constraints. For instance, we could increase the
-18
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number of parameters in the flavor breaking sector, use a
different flavor symmetry or generate radiatively only the
first generation of fermion masses. If that was the case one
could lower considerably the constraints on the sfermion
spectra, probably at the price of decreasing the predictivity
of the flavor model.

We believe these models are a scenario worthy of a more
dedicated exploration. They generically allow us to sim-
plify the ‘‘flavor vacuum,’’ or in other words the hierar-
chies of the flavor breaking VEVs, through the introduction
of a natural hierarchy, the loop factor, and they offer a new
insight in the SUSY CP and flavor problems.
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APPENDIX

For completeness we include expressions for the dimen-
sionless form factors that were used in the main text. The
form factor F�x; y; z� is defined as

F�x; y; z� �
��x2y2 lny

2

x2

 y2z2 lnz

2

y2

 z2x2 lnx

2

z2
�

�x2 � y2��y2 � z2��z2 � x2�
: (A1)

f�x�, g�x� and h�x� are given by

f�x� �
10x
3

�
�x2 � 8x� 17�

�x� 1�4



6�1
 3x� ln�x��

�x� 1�5

�
; (A2)

g�x� � 10
�
�x2 
 10x
 1�

�x� 1�4
�

6x�1
 x� ln�x��

�x� 1�5

�
; (A3)

h�x� �
11g�x� � 6f�x�

5
: (A4)

These functions appear in the calculation of the supersym-
metric contributions to the Wilson coefficients The func-
tions f�x�, g�x� and h�x� have been conveniently
normalized so that in the limit x! 1 they tend to 1.
Approximate expressions in the limits x! 0; 1 are given
by
f�x� �
�
1� 1

3 E 
O�E2�; x! 1; �E � x� 1�;
� 10x

3 �17
 6 ln�x�� 
O�x2�; x! 0;
(A5)
g�x� �
�
1� E 
O�E2�; x! 1; �E � x� 1�;
10�1
 2x�3 ln�x� 
 7� 
O�x2�; x! 0:

(A6)
N�x� and M�x� are dimensionless form factors given by

N�x� �
�
�x2 
 172x
 19�

36�x� 1�4
� x ln�x�

�x2 � 15x� 18�

6�x� 1�5

�
;

(A7)

M�x� �
���
x

p
�
�54x4 
 216x3 � 287x2 � 8x
 1�

9�x� 1�4

� 2x2 ln�x�
�36x2 � 19x� 21�

3�x� 1�5

�
: (A8)

In the limit x ’ 1 M�x� is given by

M�x� � a0 
 a1�x� 1� 
O��x� 1�2�;

a0 �
31

30
; a1 �

233

180
: (A9)

If one is interested in the limit x ’ 0, i.e. m~g � m~q, it is
also possible to obtain an approximate expression for
M�x�,
M�x� �
1

9

���
x

p
�b0 
 b1x
O�x2��;

b0 � 1; b1 � �4: (A10)

The functions M1�x� and M3�x� are defined by

M1�x� �
12x2 ln�x�

�1� x�4



6�1
 5x�

�1� x�3
; (A11)

M3�x� �
10

���
x

p

3

�
�1� 8x� 17x2�

�x� 1�4

 ln�x�

�18x2 
 6x3�

�x� 1�5

�
:

(A12)

Here M1�x� and M3�x� have also been ‘‘normalized’’ so
that in the limit x! 1 they tend to 1. Finally the dimen-
sionless form factor K�x�, which appears in the SM con-
tribution to the Wilson coefficient C7, is given by,

K�x� �
x

2�x� 1�

�
�8x2 
 5x� 7�

12
�

�
2x2

3
� x

�
ln�x�
�x� 1�

�
:

(A13)
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