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Study of ���udud�s� in lattice QCD with exact chiral symmetry
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We investigate the mass spectrum of the pentaquark baryon (udud �s) in quenched lattice QCD with
exact chiral symmetry. Using three different interpolating operators for �, we measure the 3� 3
correlation matrix and obtain the eigenvalues A��t� with � parity for 100 gauge configurations generated
with Wilson gauge action at � � 6:1 on the 203 � 40 lattice. For the lowest-lying JP � 1=2� state, its
mass is almost identical to that of the KN s wave, while for the lowest-lying JP � 1=2� state, its mass is
smaller than that of the KN p wave, especially for the regime mu <ms. By chiral extrapolation (linear in
m2

�) to m� � 135 MeV, we obtain the masses of the lowest-lying states: m�1=2�� � 1424�57� MeV and
m�1=2�� � 1562�121� MeV, in agreement with the masses of mK �mN ’ 1430 MeV and ���1540�,
respectively.
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I. INTRODUCTION

The recent experimental observation of the exotic
baryon ���1540� (with the quantum numbers of K�n)
by LEPS Collaboration[1] at Spring-8—and the subse-
quent confirmation [2–8] from some experimental
groups—has become one of the most interesting topics
in hadron physics. The remarkable features of ���1540�
are its strangeness S � �1 and its exceptionally narrow
decay width ( < 15 MeV) even though it is 	100 MeV
above the KN threshold. Its strangeness S � �1 immedi-
ately implies that it cannot be an ordinary baryon com-
posed of three quarks. Its minimal quark content is udud �s.
Nevertheless, there are quite a number of experiments [9]
which so far have not observed ���1540� or any penta-
quarks. This casts some doubts about the existence of
���1540�.

Historically, the experimental search for ���1540� was
motivated by the predictions of the chiral-soliton model
[10], an outgrowth of the Skyrme model [11]. Even though
the chiral solition model seems to provide very close
predictions for the mass and the width of ���1540�, ob-
viously, it cannot reproduce all aspects of QCD, the fun-
damental theory of strong interactions. Now the central
theoretical question is whether the spectrum of QCD pos-
sesses �� with the correct quantum numbers, mass, and
decay width.

At present, the most viable approach to solve QCD
nonperturbatively from the first principles is lattice QCD.
Explicitly, one needs to construct an interpolating operator
which has a significant overlap with the pentaquark baryon
states. Then one computes the time-correlation function of
this interpolating operator, and from which to extract the
masses of its even and odd parity states, respectively.
However, any �udud �s� operator must couple to hadronic
states with the same quantum numbers (e.g., KN scattering
states). It is necessary to disentangle the lowest-lying
pentaquark states from the KN scattering states, as well
as the excited pentaquark states.
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To this end, we adopt the so-called variational method
[12,13]. We use three different interpolating operators for
��udud �s� to compute their 3� 3 correlation matrix and
from its eigenvalues we extract the masses of the even and
odd parity states. This is the first lattice QCD study of ��

with 3� 3 correlation matrix. These three interpolating
operators (with I � 0) are

�O1�x� � 
uTC�5d�xcf�sx�e��5���ux�e��5d�x�c

� �sx�e��5���dx�e��5u�x�cg; (1)

�O2�x� � 
uTC�5d�xcf�sx�e��5���ux�c��5d�x�e

� �sx�e��5���dx�c��5u�x�eg; (2)

�O3�x� � �cde
uTC�5d�xc
uTCd�xd�C�sT�x�e; (3)

where u, d, and s denote the quark fields; �cde is the
completely antisymmetric tensor; x, fc; d; eg and
f�;�;�g denote the lattice site, color, and Dirac indices,
respectively; and C is the charge conjugation operator
satisfying C��C�1 � ��T

� and �C�5�
T � �C�5. Here

the diquark operator is defined as


uT�d�xa � �abc�ux�b���dx�c � dx�b���ux�c�; (4)

where ��� � ����. Thus the diquark transforms like a
spin singlet (1s), color antitriplet (�3c), and flavor antitriplet
(�3f). For � � C�5, it transforms as a scalar, while for � �

C, it transforms like a pseudoscalar. Here O1, O2, and O3

all transform like an even operator under parity.
The operator O1 is similar to the naı̈ve kaon � nucleon

operator which was used by Mathur et al. [14]. The opera-
tor O2 was first considered by Zhu [15] and was adopted by
Csikor et al. [16] in their lattice study. The difference
between O1 and O2 is that, in the latter case, the color
index of the u�d� quark in the kaon is swapped with that of
the d�u� quark in the nucleon such that the ‘‘kaon’’ and the
‘‘nucleon’’ do not appear as color singlets. The operator O3

is motivatied by the Jaffe-Wilzcek (diquark-diquark-
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antiquark) model [17], which was considered by Sugiyama
et al. [18] and Sasaki [19] and was adopted by Chiu and
Hsieh [20] and Ishii et al. [21].

In the Jaffe-Wilzcek model, each pair of 
ud� forms a
diquark which transforms like a spin singlet (1s), color
antitriplet (�3c), and flavor antitriplet (�3f). Then the penta-
quark baryon ��
ud�
ud� �s� emerges as the color singlet in
��3c � �3c� � �3c � 1c � 8c � 8c � 10c and a member (with
S � �1 and I � 0) of the flavor antidecuplet in �3f � �3f �
�3f � 1f � 8f � 8f � 10f. Now, if one attempts to con-
struct a local interpolating operator for 
ud�
ud��s, then
these two identical diquarks must be chosen to transform
differently (i.e., one scalar and one pseudoscalar), other-
wise �abc
ud�xb
ud�xc �sx�a is identically zero since di-
quarks are bosons. Thus, when the orbital angular
momentum of this scalar-pseudoscalar-antifermion system
is zero (i.e., the lowest-lying state), its parity is even rather
than odd. Alternatively, if these two diquarks are located at
two different sites, then both diquark operators can be
chosen to be scalar; however, they must be antisymmetric
in space, i.e., with odd integer orbital angular momentum.
Thus the parity of lowest-lying state of this scalar-scalar-
antifermion system is even, as suggested in the original
Jaffe-Wilzcek model. [Note that all correlated quark mod-
els e.g., Karliner-Lipkin model [22] and flavor-spin model
[23], advocate that the parity of ���1540� is positive.]

Evidently, the diquark operator plays an important role
in constructing sources for pentaquark baryons as well as
3-quark baryons. The possibility of forming multiquark
hadrons through diquark correlations was proposed by
Jaffe in 1977 [24]. Although the idea is essentially based
on the color-spin interaction between the quarks (through
one gluon exchange), its salient features seem to persist
even at the hadronic distance scale where QCD is strongly
coupled. Thus, it is interesting to see whether such multi-
quark hadrons (e.g., pentaquark baryons) do exist in the
spectrum of QCD.

In this paper, we use the optimal domain-wall fermion
[25] to study the pentaquark baryons. The salient features
of optimal lattice domain-wall fermion are (i) the quark
propagator as well as the effective 4D lattice Dirac opera-
tor for internal fermion loops have optimal chiral symme-
TABLE I. Summary of current lattice QCD results for ��. Here a
size (L) are in units of Fermi. The notations for the symbols are W: W
Iwasaki gauge action; mmin

� : the smallest pion mass; N�mu <ms�
m�1=2��: the mass of 1=2� state via chiral extrapolation; S/R: Scatte
have not been listed here due to the lack of information for some o

Ref. Operator Quark Gauge a L mmin
�

[16] O1 � �O2 W W 0.09 1.8 420
[19] O3 W W 0.07 2.2 650
This work fO1;2;3g3�3 Odwf W 0.09 1.8 440
[14] O1 Ov Iw 0.20 2:4=3:2 180
[21] O3 W W 0.18 2.1 656
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try for any Ns (number of sites in the fifth dimension) and
gauge background; (ii) the quark fields and hadron observ-
ables manifest the discrete symmetries of their counter-
parts in continuum; (iii) the quark action is ultralocal on the
five-dimensional lattice, thus the dynamical quark can be
simulated with the standard hybrid Monte Carlo algorithm;
(iv) the quark propagator in gauge background can be
computed efficiently through the effective 4D lattice
Dirac operator.

Before we turn to our results, it is instructive to review
the current status of quenched lattice QCD for ��, as
summarized in Table I. At first sight, current lattice QCD
results for �� seem to disagree with each other. Note that
the different claims listed in the last column of Table I
already cover all possible outcomes. Obviously, some of
the claims in Table I cannot be sustained for a long time, no
matter what is the experimental outcome. Now if one
compares the essential features among these exploratory
lattice studies, one might understand what could be the
causes for these different claims. In the following, we
pinpoint the crucial features which may have direct im-
pacts to these claims.

So far, all lattice QCD simulations are performed at
unphysically large mu, thus it is necessary to chirally
extrapolate to physical mu (or equivalently m� �
135 MeV). Then a crucial question is how good are the
data points used for chiral extrapolation, i.e., how many
data points are obtained with mu < ms (an obviously
physical condition ought to be satisfied), and what is the
smallest mu (or equivalently m�) in these data points.
These two questions are answered in the columns with
headings N�mu <ms� and mmin

� , respectively. Obviously,
if mmin

� is too large, and/or the number N�mu < ms� is too
small, then the chiral extrapolation would tend to over-
estimate the masses, especially for the excited states.

Another important question is whether the interpolating
operator one uses has a significant overlap with the penta-
quark state. If it has little overlap with the pentaquark state,
then the signal might be too weak to be detected. As we
will see below, O1, O2, and O3 all have good overlap with
the lowest-lying negative parity state for the entire range of
mu. However, the lowest-lying negative parity state turns
ll masses are in units of MeV; the lattice spacing (a) and the box
ilson fermion or Wilson gauge action; Ov: overlap fermion; Iw:

: the number of data points satisfying the condition mu <ms;
ring state/Resonance. There are two lattice studies [26,27] which
f the entries.

N�mu <ms� m�1=2��, S/R m�1=2��, S/R Signal/Parity

3 1539(50), R 2710(79) Yes/�
1 1840(80), R 2940(130) Yes/�

10 1433(72), S 1562(121), R Yes/�
13 	1450, S 	1650, S No

0 1750(40), S 2250(120) No
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out to be nothing but the KN s-wave scattering state. On
the other hand, for the positive parity channel, only O3 has
a significant overlap with the lowest-lying positive parity
state, in the regime mu � ms=2. As we will see below, this
positive parity state is ruled out to be KN p wave, KN� s
wave (where N� is the lowest negative parity state of
nucleon), or KN�0 s wave (where �0 is the artifact due
to the quenched approximation).

At the end of this paper, we will return to Table I to
discuss what could be the causes for the different claims in
these exploratory lattice studies.

The outline of the paper is as follows: In Sec. II, we
outline our computation of quark propagators. In Sec. III,
we outline our determination of the lattice spacing a and
the strange quark bare mass ms. In Sec. IV, we present our
results of the masses of the even and odd parity states
extracted from the 3� 3 correlation matrix of O1, O2,
and O3. These are the first lattice QCD results using 3�
3 correlators for ��. In Sec. V, we investigate the KN
scattering states with ‘‘disconnected’’ KN (i.e., without
quark exchanges between K and N) correlation function
and use them to identify the KN scattering states in the
spectrum of 3� 3 correlation matrix. In Sec. VI, we dis-
cuss the current lattice QCD results for �� and conclude
with some remarks. In the appendix, we include our results
of the masses of the even and odd parity states extracted
from the time-correlation functions of O1, O2, and O3,
respectively.
II. COMPUTATION OF QUARK PROPAGATORS

Now it is straightforward to work out the baryon propa-
gator h�x�

��y$i in terms of quark propagators. In lattice
QCD with exact chiral symmetry, quark propagator with
bare mass mq is of the form �Dc �mq�

�1 [28], where Dc is
exactly chirally symmetric at finite lattice spacing. In the
continuum limit, �Dc �mq�

�1 reproduces 
���@� �

iA�� �mq�
�1. For optimal domain-wall fermion with

Ns � 2 sites in the fifth dimension,

Dc � 2m0
1� �5S�Hw�

1� �5S�Hw�
; S�Hw� �

1�
QNs

s�1 Ts
1�

QNs
s�1 Ts

;

Ts �
1�!sHw

1�!sHw
; Hw � �5Dw;

where Dw is the standard Wilson Dirac operator plus a
negative parameter �m0 (0<m0 < 2), and f!sg are a set
of weights specified by an exact formula such that Dc
possesses the optimal chiral symmetry [25]. Since

�Dc �mq�
�1 � �1� rmq�

�1
D�1�mq� � r�;

r �
1

2m0
;

where
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D�mq� � mq � �m0 �mq=2�
1� �5S�Hw��;

thus the quark propagator can be obtained by solving the
system D�mq�Y � 1 with nested conjugate gradient [29],
which turns out to be highly efficient (in terms of the
precision of chirality versus CPU time and memory stor-
age) if the inner conjugate gradient loop is iterated with
Neuberger’s double pass algorithm [30]. For more details
of our scheme of computing quark propagators, see
Ref. [31].

We generate 100 gauge configurations with Wilson
gauge action at � � 6:1 on the 203 � 40 lattice. Then we
compute two sets of (point-to-point) quark propagators, for
periodic and antiperiodic boundary conditions in the time
direction, respectively. Here the boundary condition in any
spatial direction is always periodic. Now we use the aver-
aged quark propagator to compute the time-correlation
function for any hadronic observable such that the effects
due to finite T can be largely reduced [32].

Fixing m0 � 1:3, we project out 16 low-lying eigen-
modes of jHwj and perform the nested conjugate gradient
in the complement of the vector space spanned by these
eigenmodes. For Ns � 128, the weights f!sg are fixed with
.min � 0:18 and .max � 6:3, where .min � .�jHwj� �
.max for all gauge configurations.

For each configuration, (point-to-point) quark propaga-
tors are computed for 30 bare quark masses in the range
0:03 � mqa � 0:8, with stopping criteria 10�11 and 2�
10�12 for the outer and inner conjugate gradient loops,
respectively. Then the chiral symmetry breaking due to
finite Ns�� 128� is less than 10�14,

/ �

��������
YyS2Y

YyY
� 1

��������<10�14;

for every iteration of the nested conjugate gradient, and the
norm of the residual vector for each column of the quark
propagator is less than 2� 10�11,

jj�Dc �mq�Y � 1jj< 2� 10�11:
III. DETERMINATION OF a�1 AND ms

After the quark propagators have been computed, we
first measure the pion propagator and its time-correlation
function and extract the pion mass (m�a) and the pion
decay constant (f�a). With the experimental input f� �
132 MeV, we determine a�1 � 2:237�76� GeV.

The bare mass of strange quark is determined by ex-
tracting the mass of vector meson from the time-
correlation function

CV�t� �
1

3

X3
��1

X
~x

trf���Dc �mq�
�1
x;0���Dc �mq�

�1
0;x g:

At mqa � 0:08, MVa � 0:4601�44�, which gives MV �

1029�10� MeV, in good agreement with the mass of
-3
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3�1020�. Thus we take the strange quark bare mass to be
msa � 0:08. Then we have 10 quark masses smaller than
ms, i.e., mua � 0:03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06,
0.065, 0.07, 0.075. In this paper, we work in the isospin
limit mu � md.
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FIG. 1 (color online). (a) The eigenvalue A��t� of the lowest
positive parity state for mua � 0:03. The solid line is the single
exponential fit for 9 � t � 13. (b) The effective mass Meff�t� �
ln
A�t�=A�t� 1�� of A��t� in Fig. 1(a).
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FIG. 3 (color online). (a) The eigenvalue A��t� of the first
excited state with JP � 1=2� for mua � 0:03. The solid line is
the single exponential fit for 7 � t � 11. (b) The effective mass
of A��t� in Fig. 3(a).
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FIG. 2 (color online). (a) The eigenvalue A��t� of the lowest
negative parity state, for mua � 0:03. The solid line is the single
exponential fit for 11 � t � 17. (b) The effective mass of A��t�
in Fig. 2(a).
IV. THE 3� 3 CORRELATION MATRIX FOR
��udud�s�

Next we compute the propagators h�Oi�x�� �Oj�y$i with

fixed y � �~0; 0�, and their time-correlation functions C�
ij �t�

with � parity

C�
ij �t� �

�X
~x

tr
�
1� �4

2
hOi� ~x; t� �Oj�~0; 0�if

��
U
;

where the trace sums over the Dirac space, and the sub-
scripts f and U denote fermionic average and gauge field
ensemble average, respectively. Then the 3� 3 correlation
matrix C��t� � fC�

ij �t�g can be constructed. Now, with the
variational parameter t0, we diagonalize the normalized
correlation matrix C��t0��1=2C��t�C��t0��1=2 and obtain
eigenvalues fA�

i �t�g, and from which to extract the masses
fm�

i g of the lowest-lying and two excited states for �
parity, respectively. In general, by varying t0, one could
minimize the errors of the masses extracted from the
eigenvalues, as well as to disentangle (optimally) the
lowest-lying states from the excited ones, as shown in
Refs. [12,13]. However, in this case, the relevant quantities
(e.g., the effective masses) extracted from unnormalized
correlation matrix seem to be as good as those of the
normalized ones. Thus we restrict to unnormalized C��t�
in the following. Then the mass m�

i can be extracted by
single exponential fit to A�

i �t�, for the range of t in which
the effective mass Meff�t� � ln
A�t�=A�t� 1�� attains a
plateau.

In Figs. 1– 4, the eigenvalues A��t� corresponding to the
lowest-lying and first excited states with JP � 1=2� are
plotted versus the time slices, for mua � 0:03 (the smallest
quark mass in this study), together with their effective mass
plots. Here we have suppressed any data point which has
error (jackknife with single elimination) larger than its
mean value. In each case, the mass m� can be extracted
by single exponential fit to A��t� for the range of t in which
the effective mass Meff�t� � ln
A�t�=A�t� 1�� attains a
plateau. The results are (in units of a�1):

m�1=2��lowest�lying � 1:034�80�;

m�1=2��1st excited � 1:505�137�;

m�1=2��lowest�lying � 0:8045�23�;

m�1=2��1st excited � 1:190�388�;

where all fits have confidence level greater than 0.6 and
62=d:o:f: < 1. Obviously, the lowest-lying and the first
excited states are disentangled in both parity channels.
034505-4
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FIG. 4 (color online). (a) The eigenvalue A��t� of the first
excited state with JP � 1=2� for mua � 0:03. The solid line is
the single exponential fit for 9 � t � 13. Note that the error
becomes very large for t > 13. (b) The effective mass of A��t� in
Fig. 4(a).
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In Fig. 5, the masses of the lowest-lying states with JP �
1=2� are plotted versusm2

�. An interesting feature emerges
in the positive parity channel. Its mass starts to fall more
rapidly around the regime mua ’ 0:045 (i.e., mu ’ 0:56ms)
signaling the onset of certain attractive interactions which
lower the energy of this pentaquark state. Even taking into
account of the error bar, the signal is unambiguous, as
shown in Fig. 1 for mua � 0:03 (the smallest quark mass
in this study). We suspect that this is the manifestation of
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FIG. 5 (color online). The masses of the lowest-lying states of
��udud �s�, extracted from the eigenvalues of the 3� 3 correla-
tion matrix of O1, O2, and O3. The solid lines are chiral
extrapolation (linear in m2

�) using the smallest four masses.
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diquark correlations when mu;d becomes sufficiently small.
To check, we compare it with the positive parity states
extracted from the time-correlation functions of O1, O2,
and O3, respectively, (see Figs. 9–11 in the appendix).
Then we see that similar phenomenon also happens in
the positive parity channel of O3 (Fig. 11), but not in O1

(Fig. 9) or O2 (Fig. 10). Since O3 is the diquark-diquark-
antiquark operator, it is consistent with our interpretation
that diquark correlations emerge when mua � 0:045 ’
0:56ms. On the other hand, one may wonder whether it
could be an artifact due to low statistics. Our argument is
that if it were due to low statistics, it must also appear in the
positive parity channel of O1 and O2. However, it is not the
case. So we rule out the possibility that this rapid decrease
of the mass of the positive parity state in the regime mua �
0:045 ’ 0:56ms is due to low statistics. In other words, it
suggests that O3 has the largest overlap with the penta-
quark state, and the diquark correlations may play an
important role in forming ��.

The next question is how to perform the chiral extrapo-
lation to the physical limit where m� � 135 MeV (mu;d ’

ms=25). From the viewpoint of chiral perturbation theory,
one should use the set of data points with the smallest mu

(m2
�). Moreover, since our mmin

� is about 440 MeV, which
may not be sufficiently small to capture the chiral log
behavior in chiral perturbation theory, thus we only use
the lowest order terms (i.e., linear in m2

�) for chiral ex-
trapolation. Observing the onset of diquark correlations
around mua ’ 0:45, we naturally pick the smallest
four masses (i.e., with mua � 0:03; 0:035; 0:04; 0:045 ’
0:56ms) for chiral extrapolation linear in m2

�. At
m� � 135 MeV, we obtain the masses of the lowest-
lying states: m�1=2�� � 1424�57� MeV, and m�1=2�� �
1562�121� MeV, which agree with the masses of mK �
mN ’ 1430 MeV and ��1540�, respectively. For the posi-
tive parity state, we also have performed a fully correlated
fit with the smallest four masses, employing the procedure
adopted in Ref. [33]. Our result is 1554(150) MeV with
62
full=d:o:f: � 1:17�24�, in agreement with the result of

uncorrelated fit. By varying the fitting range of t, and the
number of mass points, we estimate the systematic error to
be 180 MeV.
V. DISTINGUISHING THE KN SCATTERING
STATES

Now the question is whether the lowest-lying JP �
1=2� states extracted from the 3� 3 correlation matrix
are scattering states or resonances. In order to obtain the
mass spectrum ofKN scattering states (which excludes any
pentaquark states), we consider the time-correlation func-
tion of KN operator without any exchange of quarks
between K and N in its propagator, i.e., the interaction
between K and N is only through the exchange of gluons.
Explicitly,
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C�
KN�t� �

�X
~x

tr
�
1� �4

2
hN� ~x; t� �N�~0; 0�if

�hK� ~x; t� �K�~0; 0�if

��
U
; (5)

where N � 
uTC�5d�d, and K � �s�5u. Note that the
parity projector has taken into account of the intrinsic
parity of kaon.

The masses of lowest-lying KN scattering states are
plotted in Fig. 6, versus the naı̈ve estimates. Here the
naı̈ve estimates are mK �mN for the s wave, and�������������������������������
m2
K � �2�=L�2

q
�

�������������������������������
m2
N � �2�=L�2

q
for the p wave,

where L is the lattice size in spatial directions, and mK
and mN are masses extracted from kaon and nucleon time-
correlation functions, respectively.

For the JP � 1=2� state, using the smallest four masses
for chiral extrapolation to m� � 135 MeV, we obtain
mKN�1=2�� � 1433�72� MeV, in agreement with mK �
mN ’ 1430 MeV. Further, its mass spectrum is almost
identical to that of the lowest JP � 1=2� state of � in
Fig. 5 for the entire range of mu. Thus we identify the
lowest JP � 1=2� state of ��udud �s� with the KN s-wave
scattering state.

On the other hand, for the JP � 1=2� state in Fig. 6, its

mass is higher than the naı̈ve estimate
�������������������������������
m2

K � �2�=L�2
q

��������������������������������
m2
N � �2�=L�2

q
. This suggests that the KN p wave (in the

quenched approximation) in a finite torus is more compli-
cated than just two free particles with momenta ~pK �
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FIG. 6 (color online). The masses of the lowest-lying KN
scattering states extracted from CKN�t� (5) versus the naı̈ve
estimates (with dotted lines). The solid lines (for JP � 1=2�)
are chiral extrapolations using the smallest four masses.
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� ~pN � 2�êi=L, i.e., their interaction through gluon ex-
changes cannot be ignored. Further, the mass of KN
p-wave scattering state in Fig. 6 is always higher than
the mass of the lowest-lying JP � 1=2� state in Fig. 5.
In particular, for mu < ms, the former is significantly
higher than the latter. This seems to suggest that the lowest
JP � 1=2� state of ��udud �s� is different from the KN
p-wave scattering state.

However, there are other two-hadron scattering states
which also have quantum numbers JP � 1=2� and S �
�1, namely, the s-wave scattering state of KN�0 (where �0

is an artifact due to quenched approximation) and the
s-wave scattering state of KN� (where N� is the negative
parity state of nucleon). In the following, we check
whether the lowest-lying JP � 1=2� state extracted from
the 3� 3 correlation matrix could possibly be any one of
these two-hadron scattering states.

The s wave of KN�0 has JP � 1=2�, and its mass is
estimated to be mK �mN �m� [14]. In Fig. 7, it is clear
that the lowest-lying JP � 1=2� state of � is different
from the s wave of KN�0 ghost state. Otherwise, they
should be almost identical for the entire range of mu, as
in the case of KN s wave and the lowest-lying state with
JP � 1=2� in Fig. 6. So we exclude the possibility that the
lowest-lying JP � 1=2� state extracted from the 3� 3
correlation matrix is due to quenched artifacts. Note that
Mathur et al. [14] has claimed that the quenched artifact
KN�0 (with negative spectral weight) would be seen in the
positive parity channel if m� < 300 MeV for the O1 (K �
�5N) operator. If this claim holds for any cases (gauge
actions, lattice fermions, operators, etc.), then we should
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FIG. 7 (color online). The mass of the lowest-lying JP � 1=2�

state extracted from the 3� 3 correlation matrix versus the s
wave of KN�0 ghost state (with dotted lines).
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not see KN�0, since our smallest pion mass is larger than
400 MeV.

Next, we turn to the swave of KN�, which also has JP �
1=2�, and its mass is estimated to be mK �mN� . In Fig. 8,
it is clear that the mass of KN� s wave is different from the
mass of the lowest JP � 1=2� state extracted from the 3�
3 correlation matrix for the entire range of mu (except at
the crossover mua ’ 0:03). In the physical pion limit, the
mass of the lowest JP � 1=2� state is 1562�121� MeV,
while mK �mN� is 2137�142� MeV. This rules out the
possibility that the lowest-lying JP � 1=2� state extracted
from the 3� 3 correlation matrix is the KN� s-wave
scattering state. Note that this disagrees with the claim of
Ref. [27], which was based on their result obtained with
Wilson quarks at unphysical quark masses. However, there
is no reason to expect that baryon masses computed with
two different lattice (fermion and gauge) actions would
agree with each other, except in the continuum (and infinite
volume) limit with physical quark masses. Thus, it is not
surprising to see that, at unphysically large quark masses,
our result of the mass of the lowest-lying state with even
parity, m�1=2��, is higher than mK �mN� , while the result
of Ref. [27] seems to suggest that m�1=2�� ’ mK �mN� .
Now the emerging problem for Wilson fermion is to check
whether the relationship m�1=2�� ’ mK �mN� remains
valid in the physical pion limit. We suspect that even for
Wilson fermion, it also would exhibit the inequality
m�1=2��<mK �mN� at sufficiently small quark masses,
though the location of the crossover might be different
from that of Fig. 8. At this point, it is instructive to check
the result of Mathur et al. [14] which was obtained with the
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FIG. 8 (color online). The mass of the lowest-lying JP � 1=2�

state extracted from the 3� 3 correlation matrix, versus the KN�

s wave scattering state with mass mK �mN� .
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overlap fermion. From Ref. [14], one can extract m�1=2��,
mK, and mN� , respectively, then one immediately sees that
m�1=2�� is larger than mK �mN� for m2

� > 0:27GeV2, but
becomes smaller than mK �mN� for m2

� < 0:27GeV2, and
it tends to 	1650 MeV in the physical pion limit.
Obviously, the result of Mathur et al. [14] also suggests
that the lowest state with even parity is different from the
KN� s wave, in agreement with our conclusion. Now a
(physically irrelevant) question is where the KN� s-wave
scattering state lies, say, at unphysically heavy quark
masses. Our conjecture is that in a finite torus, the KN� s
wave might turn out to be much heavier than the naı̈ve
estimate mK �mN� (similar to the case of KN p wave
which is much heavier than its naı̈ve estimate, as shown in
Fig. 6), thus it always lies above the lowest JP � 1=2�

state, as one of the excited states in the positive parity
channel.

Now, after ruling out the possibilities of being KN p
wave, KN�0 swave, or KN� s wave, the lowest-lying JP �
1=2� state extracted from the 3� 3 correlation matrix
seems to be nothing but a resonance. If it is identified
with ���1540�, then it predicts that the parity of
���1540� is positive.
VI. DISCUSSIONS AND CONCLUDING REMARKS

Now we return to Table I to discuss what causes the
different claims in these exploratory lattice studies.

Now, back to Fig. 5. If we had not measured any data
points with mu < ms=2, then we could not have seen the
rapid decrease of mass of the positive parity state (in the
regime mua � 0:045) of which we interpret as the mani-
festation of diquark correlations at sufficiently small mu;d.
Consequently, chiral extrapolations using data points
with mu > ms=2 must yield much higher masses, espe-
cially for the positive parity state. For example, if we
use the data points with mua � 0:05; 0:055; 0:06; 0:065<
msa, then we obtain m�1=2�� � 1666�47� MeV, and
m�1=2�� � 2178�104� MeV, with chiral extrapolation
linear in m2

�. Further, if we use the data points
with mua � 0:07; 0:075; 0:08; 0:085�>msa�, then we
obtain m�1=2�� � 1725�52� MeV, and m�1=2�� �
2616�103� MeV. In either one of these two cases, it seem-
ingly rules out the possibility that the positive parity chan-
nel could accommodate any state with mass 1540 MeV.
However, it is only an artifact due to chiral extrapolation
with data points too far away from the physical reality
(mu;d ’ ms=25). This explains why the masses of the posi-
tive parity state in Refs. [19,21] are so high comparing to
our result. Note that, in Refs. [19,21], the total number of
data points is four, in which the number of ‘‘physical’’ data
points (i.e. with mu < ms) is only one and zero (see
Table I). Even though they claimed that the positive parity
channel could not accommodate ���1540�, it is most
likely just an artifact due to their chiral extrapolations
with data points too far away from the physical reality.
-7



2(GeV2)

0.10 0.20 0.30 0.40 0.50 0.60 0.70

M
as

s(
G

eV
)

1.12

2.24

3.36

4.47

1+

2JP=

JP=
1-

2

Lowest-lying states of  O1

mπ

FIG. 9 (color online). The masses of the even and odd parity
states extracted from the time-correlation function of O1. The
solid lines are chiral extrapolation (linear in m2

�) using the
smallest four masses.
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Next, we turn to the claims of Refs. [14,16]. From our
mass spectra of O1 (Fig. 9) and O2 (Fig. 10), one can
explain why Csikor et al. [16] (with O1 and O2) obtained
a rather high mass for the positive parity state, while
Mathur et al. [14] (with O1) did not see pentaquark reso-
nance in the positive parity channel. Namely, the interpo-
lating operators O1 and O2 have little overlap with the
pentaquark state in the positive parity channel. In fact, our
mass spectra of O1 and O2 are consistent with those of
Refs. [14,16].

Finally we discuss the results of this paper. This is the
first lattice QCD study on � with 3� 3 correlation matrix.
Presumably, it should provide a more reliable answer to the
questions of signal/parity of �� than other lattice studies
with only one operator. However, this is a quenched lattice
QCD calculation (like other lattice studies on �� so far),
with only one volume, and one lattice spacing, thus it is
difficult for us to estimate the systematic error. For the
lowest JP � 1=2� state, it is identified with the KN s
wave, by comparing its mass with mN �mK. For the low-
est JP � 1=2� state, by comparing its mass (as a function
of m2

�) to those of two-hadron scattering states having the
same quantum numbers, it seems unlikely to be identified
with any one of the following two-hadron scattering states:
KN p wave, KN�0 s wave, and KN� s wave. However,
before it can be confirmed to be a resonance, it is necessary
to check whether its mass and spectral weight are volume
independent. To this end, we are performing computations
on the 243 � 48 lattice with the same lattice spacing (i.e.,
Wilson gauge action at � � 6:1). If the lowest-lying state
with JP � 1=2� turns out to be a scattering state, then
there is no evidence of pentaquark resonance in our study.
On the other hand, if it turns out to be a resonance, then it
can be identifed with ���1540� since its mass is close to
1540 MeV. Nevertheless, one still has to find out whether
its decay width could be as small as 15 MeV (compatible to
that of ��), which is the most challenging problem per-
taining to ��.
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2(GeV2)mπ

FIG. 10 (color online). The masses of the even and odd parity
states extracted from the time-correlation function of O2. The
solid lines are chiral extrapolation (linear in m2

�) using the
smallest four masses.
APPENDIX

Here we present our results of the masses of the even and
odd parity states extracted from the time-correlation func-
tions of operators O1 (1), O2 (2), and O3 (3), respectively.
034505
In Figs. 9–11, the masses of the J � 1=2� states are
plotted versus m2

�, for O1, O2, and O3, respectively. Here
all mass fits have confidence level greater than 0.6 and
62=d:o:f: < 1. For O1 and O2, their masses vary smoothly
with respect to m2

� in both parity channels. On the other
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hand, the positive parity state of O3 undergoes a rapid
decrease for mua � 0:045, similar to the behavior of the
lowest-lying JP � 1=2� state extracted from the 3� 3
correlation matrix (see Fig. 5). This seems to signal an
onset of certain attractive interactions when the quark mass
mu;d becomes sufficiently small. We conjecture that this is
034505
the manifestation of diquark correlations when mu;d ap-
proaches the physical limit.

Following the same argument in Sec. IV, we pick the
smallest four masses (i.e., with mua � 0:03, 0.035, 0.04,
0.045) for chiral extrapolation (linear in m2

�). At physical
pion mass m� � 135 MeV, we obtain

O1: m�1=2�� � 1430�66� MeV;

m�1=2�� � 2301�134� MeV;

O2: m�1=2�� � 1430�67� MeV;

m�1=2�� � 2346�156� MeV;

O3: m�1=2�� � 1446�71� MeV;

m�1=2�� � 1843�136� MeV:

Note that for the JP � 1=2� state, all three operators
give almost the same mass which coincides with that
[1424(57) MeV] extracted from the 3� 3 correlation ma-
trix of O1, O2, and O3. However, for the JP � 1=2� state,
the operator O3 (the diquark-diquark-antiquark operator
motivated by the Jaffe-Wilczek model) gives the lowest
mass, which is the closest to that [1562(121) MeV] ex-
tracted from the 3� 3 correlation matrix of O1, O2, and
O3. This seems to imply that among fOi; i � 1; 2; 3g, O3

has the largest overlap with the pentaquark state, and the
diquark correlations may play an important role in forming
���1540�.

Further, we observe also that the diagonalization of the
3� 3 correlation matrix indeed disentangles the contribu-
tions of the excited states and gives a smaller mass for the
lowest-lying JP � 1=2� state.
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