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Localization properties of lattice fermions with plaquette and improved gauge actions
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We determine the location �c of the mobility edge in the spectrum of the Hermitian Wilson operator in
pure-gauge ensembles with plaquette, Iwasaki, and DBW2 gauge actions. The results allow mapping a
portion of the (quenched) Aoki phase diagram. We use Green function techniques to study the localized
and extended modes. Where �c > 0 we characterize the localized modes in terms of an average support
length and an average localization length, the latter determined from the asymptotic decay rate of the
mode density. We argue that, since the overlap operator is commonly constructed from the Wilson
operator, its range is set by the value of ��1

c for the Wilson operator. It follows from our numerical results
that overlap simulations carried out with a cutoff of 1 GeV, even with improved gauge actions, could be
afflicted by unphysical degrees of freedom as light as 250 MeV.
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FIG. 1. A schematic representation of the Aoki phase diagram.
The lightly shaded area is the supercritical region. Phase B is the
(massless) Aoki phase, while phases A and C are massive.
Depending on the action in the theory, each of the thin fingers
where the Aoki phase touches the line g0 � 0 could alternatively
be replaced by a line of first-order phase transition [41]. Recent
numerical results support the latter scenario in the case of
dynamical Wilson fermions [42]. The phase diagram is sym-
I. INTRODUCTION

Domain-wall and overlap fermions reconcile chiral sym-
metry with the lattice, allowing for exact chiral symmetry
at finite lattice spacing in the euclidean path-integral for-
mulation [1–5]. While chiral symmetry can be achieved for
a range of nonzero bare coupling g0, problems arise if the
bare coupling is too large. For domain-wall fermions,
chiral symmetry cannot be maintained in the strong-
coupling limit [6]. For overlap fermions, the built-in
(modified) chiral symmetry is exact, but at strong coupling
one loses either locality [7,8] or control over the number of
species [4,9].

In any numerical simulation it is important to stay away
from the dangerous regions of the phase diagram. The
lattice Dirac operators of domain-wall fermions (DWF)
and overlap fermions are both based on a Wilson operator
with a negative, supercritical bare mass m0.

1 Locality and
chirality in these formulations are controlled by the spec-
tral properties of this underlying Wilson operator.

The outstanding features of the supercritical Wilson
operator are best illustrated in a theory with two dynamical
flavors of Wilson fermions. Here the absence of a spectral
gap in part of the phase diagram implies the existence of
propagating, light degrees of freedom. Moreover, a non-
zero spectral density for vanishing eigenvalue signals
spontaneous symmetry breaking, as follows from the
Banks-Casher relation [10]. For Wilson fermions there is
no chiral symmetry to be broken, so the spontaneously
broken symmetry is vectorial. As discovered by Aoki
[11], the pions become massless if the bare Wilson-quark
mass m0 is lowered from positive values towards a critical
value m0 � mc�g0�< 0. For m0 <mc�g0� the curvature of
critical region is �8< am0 < 0. Outside of this
lson operator cannot have zero eigenvalues.
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the effective potential for pions becomes negative at the
origin; a pionic condensate forms which breaks spontane-
ously isospin and parity. This is the Aoki phase. Inside the
Aoki phase the condensing pion is massive, while the other
two pions are Goldstone bosons of the spontaneously
broken isospin generators. See Fig. 1 for a schematic
representation of the phase diagram.
metric under the replacement am0 ! ��8� am0�, which can be
undone by redefining the fields. Dotted lines indicate where we
performed our numerical analysis.
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2See also Ref. [15], in particular, Fig. 2 therein.
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For DWF or overlap fermions one aims for a big gap, of
order 1=a, in the spectrum of the Wilson operator. Simply
speaking, a bigger gap in the spectrum of the Wilson
operator improves both the chiral symmetry of DWF (at
fixed, finite extent of the fifth dimension) and the locality
of overlap fermions. (As we will shortly see, in reality any
such gap can be mostly, but not completely, devoid of
eigenvalues.) Assuming that the phase diagram of the
underlying Wilson operator remains qualitatively the
same as in Fig. 1, this requires being inside one of the C
phases. In practice, the rightmost C phase is used which,
for g0 ! 0, coincides with the interval �2< am0 < 0. In
this interval, one lattice domain-wall (or overlap) field
gives rise to one quark in the continuum limit.

When one studies the spectral properties of the Wilson
operator as a kernel for DWF or overlap fermions, one is in
fact considering a quenched Wilson-fermion theory, be-
cause the Boltzmann weight is derived from a different
fermion operator. Usually, quenching means leaving out
the fermion determinant altogether, but we will also con-
sider the more general sense that the fermion determinant
is that of DWF or the overlap operator. In this paper, we
will study the spectrum of the Wilson operator for a variety
of pure-gauge theories, but we will take our results as
indicative of what might arise in a theory with dynamical
fermions.

The Goldstone theorem connects spontaneous symmetry
breaking with the appearance of massless poles in corre-
lation functions. Quenching the Wilson fermions, however,
opens the door to a new dynamical possibility. Considering
again a two-flavor theory, let us suppose that all the corre-
lation functions of the two (quenched) Wilson flavors
decay exponentially. (As we will see, this is indeed the
case well inside the C phases.) In the quenched theory, this
does not preclude a nonzero pion condensate: The isospin
symmetry can be broken spontaneously without creating a
Goldstone boson. It was shown in [7,12] how this can be
reconciled with the usual Ward-identity argument for the
existence of a Goldstone pole.

There is now solid numerical and semianalytical evi-
dence [13,14] for the existence of zero modes of the Wilson
operator throughout practically the entire supercritical re-
gion. The Banks-Casher relation again leads to a nonzero
pion condensate. In particular, the pion condensate is non-
zero for parameter values in the C phase that yield good-
quality DWF and overlap-fermion simulations. Despite the
condensate, all the Wilson-fermion correlation functions
are short ranged.

Reference [7] provides a theoretical explanation of this
situation. The low-lying eigenvectors of the Hermitian
Wilson operator may be either extended or (exponentially)
localized. In the first case, the condensate must be accom-
panied by Goldstone bosons. In the second case, there is an
alternative mechanism for saturating the relevant Ward
identity, and all correlation functions can be (and, in fact,
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are) short ranged. This gives the following physical picture
for the quenched Wilson-fermion phase diagram.2 In the
entire supercritical region there is no gap in the spectrum of
the Wilson operator, and the pion condensate is nonzero.
For eigenvalues � above a certain mobility edge �c, the
eigenvectors of the Wilson operator are extended. If �c >
0, eigenvalues j�j< �c correspond to localized eigen-
modes. In this case the pion condensate is nonzero, but
there are still no long-range correlations. When �c � 0, on
the other hand, the condensate arises from extended eigen-
modes, and there are Goldstone pions.

The quenched Aoki phase is identified with the region
where Goldstone pions exist; that is, it is defined by �c �
0. With this definition, the quenched phase diagram could
be qualitatively similar to that depicted in Fig. 1. Early
numerical evidence supporting this quenched phase struc-
ture may be found in Ref. [16]. The weak-coupling region
may also be studied via an effective Lagrangian [17].

As far as DWF and overlap fermions are concerned, the
requirement of a gap in the Wilson spectrum should be
replaced by the requirement that �c > 0 [7]. In other
words, one must work outside of the (quenched) Aoki
phase, in one of the C phases. It is therefore important to
map out the Aoki phase on any ensemble used for DWF or
overlap-fermion numerical simulations. Furthermore, for
practical reasons, one should not be too close to the Aoki
phase. How close is ‘‘too close’’ depends on the underlying
Boltzmann weight and on the construction of the fermion
operator. We will discuss this very practical point at some
length in our conclusions.

In this paper we study the spectral properties of the
Wilson operator HW via calculation of its resolvent �HW �
z��1 and correlation functions derived from it. The theo-
retical framework developed in Ref. [7] is directly appli-
cable, and guides us in the numerical implementation. We
measure the spectral density as well as properties that
characterize the shape and size of the localized eigen-
modes. The resolvent gives us these quantities much
more economically than would the direct study of the
eigenvalues and eigenvectors of HW . The correlation func-
tions address the Ward identities and the Banks-Casher
relation directly.

The resolvent allows simultaneous treatment of local-
ized and extended modes. In any volume, the eigenvalues
corresponding to localized modes are random. When the
resolvent is averaged over the gauge ensemble, the single-
configuration spectral density, V�1P

n���� �n�, is
smeared. Thus the ensemble-averaged spectral density is
a continuous function of the eigenvalue for localized as
well as extended modes. The essential physics of the
localized modes lies not in their discreteness but in the
compactness of their wave functions.
-2
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Our measurements are carried out on pure-gauge ensem-
bles (which is the usual meaning of quenching). We com-
pare the spectral properties for three different pure-gauge
actions: the standard plaquette action and the Iwasaki
[18,19] and DBW2 [20,21] actions, two gauge actions
motivated by renormalization-group considerations.
These gauge actions have been used in quenched [22,23]
and dynamical [24] DWF simulations, and in quenched
overlap simulations [25,26].

This paper is organized as follows. In Sec. II we give
basic definitions and derive the relevant Ward identities. In
Sec. III we review the Banks-Casher relation as well as the
localization alternative to Goldstone’s theorem. A twisted-
mass term [11,27] provides the ‘‘magnetic field’’ that
determines the direction of the pion condensate. Careful
study of the vanishing twisted-mass limit reveals that, if the
low-lying eigenmodes are localized, the two-point function
of the would-be Goldstone pions diverges linearly with the
inverse twisted mass. This enables the relevant Ward iden-
tity to be saturated without a Goldstone pole.

We then turn to our numerical investigations, starting
with the standard plaquette action for the gauge field. In
Sec. IV we present results for the simplest quantity, the
spectral density. In Sec. V we define the localization length
and use it to determine the mobility edge �c for several
points �g0; m0� in the phase diagram. Extrapolations of �c
to zero allow us to map out a part of the boundary of the
Aoki phase. We then proceed to detailed study of the
localized modes. In Sec. VI we extend the investigation
to the Iwasaki and DBW2 gauge actions. We conclude in
Sec. VII with a discussion of the implications of our results
for domain-wall and overlap fermions. The results of
Sec. V yield several quantities that help locate regions of
the phase diagram to be avoided in simulations.

A concise account of this work, not including the im-
proved gauge actions, has already been given [28].

II. DEFINITIONS

A. Fermion action

The Wilson-Dirac operator is defined as

D�m0� �
1

a
�W � am0� �C

Cy �W � am0�

� �
; (2.1)

where

Cxy �
1

2

X
�

	�x��̂;yUx� � �x��̂;yU
y
y�
�� (2.2)

comes from the naive Dirac operator, and

Wxy � 4�xy �
1

2

X
�

	�x��̂;yUx� � �x��̂;yU
y
y�
 (2.3)

is the Wilson operator that breaks chiral symmetry while
preventing species doubling. Here �� � ��; i�, where �k
are the three Pauli matrices; we are using a chiral basis for
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the Dirac matrices, where �5 is diagonal. Ux� is the SU�N�
matrix representing the gauge field. We study the spectrum
of the Hermitian Wilson-Dirac operator,

HW�m0� � D�m0��5: (2.4)

The corresponding eigenvalue equation (in a given gauge
field) is

HW�m0�
n � �n
n; (2.5)

and we normalize the eigenvectors according to
a4
P
xj
n�x�j

2 � 1.
Previous studies of the spectrum of HW [13,29,30] were

based on the calculation of individual eigenfunctions and
eigenvalues. We find it more economical to calculate the
Green function

G�z� � 	HW�m0� � z
�1; (2.6)

where z � �� im1, in order to extract information about
the spectrum. G��� im1� is well defined in finite volume
provided m1 � 0. It has the spectral representation

G�x; y;�� im1� �
X
n


n�x�

y
n �y�

�n � �� im1
: (2.7)

B. Two flavors and twisted mass

As mentioned in the Introduction, the spectral properties
of HW have profound effects on the realization of continu-
ous symmetries when there is more than one flavor. Thus
we will add an isospin index to the fermion field and
consider the two-flavor theory defined by

SF �  �HW � �� 0 �  �D� ��5� ; (2.8)

where  0 � �5 . Spontaneous breaking of the flavor sym-
metry (and of parity) will be connected with the conden-
sation of the ‘‘pion’’ field,

 ��x� � i �x��5!� �x�;  3�x� � i �x��5!3 �x�;

(2.9)

where !� � �!1 � i!2�=2. The parameter � has been in-
troduced into Eq. (2.8) in order to shift the focus from zero
to nonzero eigenvalues of HW . In order to control the
isospin orientation of the condensate, we add to the action
a ‘‘magnetic field’’ in the guise of a twisted-mass term,
giving finally

SF �  	HW � ��� i!3m1�
 0

�  	D� ��� i!3m1��5
 :
(2.10)

m1 will be used as a regulator to avoid the singularities of
G�z� along the real axis.

C. SU(2) flavor symmetry and Ward identities

For m1 � 0, the fermion action (2.10) has a (vector)
SU(2) flavor symmetry. For m1 � 0, the Ward identity of
-3
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the broken symmetry is obtained by performing a local
flavor transformation,

 �x� !  �x� � "�x��� �x�; (2.11)

and similarly for � �x�, where

�� �x� � i!� �x�; �� �x� � �i �x�!�: (2.12)

We find for any operator O that

@
�hJ
�
� �x�O�y�i � 2m1h ��x�O�y�i �

i�xy
a4

h��O�y�i:

(2.13)

Here the backward lattice derivative is defined by
@
�f�x� � 	f�x� � f�x� �̂�
=a, and the vector current
corresponding to Eq. (2.12) is

J�� �x� �
1

2
	 �x�!���� � 1�U��x� �x� �̂�

�  �x� �̂�!���� � 1�Uy
��x� �x�
: (2.14)

While the notation h. . .i indicates an integration over both
fermion and gauge fields, the Ward identity (2.13) in its
various guises is in fact valid for each gauge configuration
separately.

We define the pion two-point function

��x; y� � h ��x� ��y�i (2.15)

as well as

���x; y� � hJ�� �x� ��y�i: (2.16)

[Note that this is the usual pion only when � � m1 � 0;
see Eq. (2.10).] If we take O�y� �  ��y� in Eq. (2.13), we
find the Ward identity

@
����x; y� � 2m1��x; y� �
�xy
a4

h 3�y�i: (2.17)

Applying a Fourier transform, viz.

~��p� �
a8

V

X
xy

eip�y�x���x; y�; (2.18)

~� ��p� �
a8

V

X
xy

eip�y�x����x; y�; (2.19)

we derive the momentum-space Ward identity,

1

a

X
�

�1� e�iap��~���p� � 2m1
~��p� � h 3i: (2.20)
III. GOLDSTONE’S THEOREM AND
LOCALIZATION

The Ward identity (2.20) is valid for arbitrary � and m1.
In a quenched theory, however, despite the Goldstone
theorem, h 3i � 0 does not necessarily imply the exis-
034501
tence of a massless pole in ~���p� in the limit m1 ! 0.
Let us recall [7,12] how this comes about.

A. Condensate and Banks-Casher relation

The volume-averaged pion condensate

h 3i � �a4=V�
X
x

h 3�x�i; (3.1)

in the two-flavor theory (2.10) can be expressed in terms of
the Green function G��� im1�. We will denote the expec-
tation value in a given gauge field by h. . .iU. Then

a4
X
x

h 3�x�iU � �ia4Tr	G��� im1� �G��� im1�


� 2
X
n

m1

��n � ��2 �m2
1

;

(3.2)

where we have used the spectral representation (2.7).
Averaging this over the gauge field gives the translation-
invariant result

h 3i � 2
Z
d�0)��0�

m1

��0 � ��2 �m2
1

; (3.3)

where )��� is the eigenvalue density defined by

)��� �
1

V

�X
n

���� �n�
�
: (3.4)

In the limit m1 ! 0, we obtain

h 3i � 2 )���: (3.5)

This is a generalized Banks-Casher relation; the original
relation [10] is Eq. (3.5) at � � 0.

B. Localization as an alternative to Goldstone’s theo-
rem

Naively taking the limit m1 ! 0 in Eq. (2.20) gives

h 3i�
? 1

a

X
�

�1� e�iap��~���p� � ip�~���p�; (3.6)

where the last expression is the approximate form for
ap� 1. As we shall see shortly, Eq. (3.6) is sometimes
false, but it contains the Goldstone theorem: ~���p� must
have a massless pole for any � such that h 3i � 0. By the
generalized Banks-Casher relation (3.5), this happens
whenever )��� � 0. Apart from ���x; y�, one expects
long-range power-law decay also for other correlation
functions, including in particular ��x; y�.

In the physics of disordered systems [31] it is well
known that the eigenmodes of a Hamiltonian in a random
background divide into two classes: extended and local-
-4
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ized. In fact, the spectrum splits into bands, each band
containing only eigenmodes of one type.3 A point in the
spectrum separating an extended band from a localized
band is a mobility edge. ���x; y� will exhibit a power-law
decay when � lies in an extended band, while for a local-
ized band it will decay exponentially. We expect that the
same basic separation applies to HW as well.

If )��� comes from localized eigenmodes and ~���p� has
no pole at zero momentum, what has become of the
Goldstone theorem? In other words, how is the Ward
identity (2.20) satisfied? The way out of this conundrum
is the following. In the limit m1 ! 0, ~��p� diverges as
1=m1 for a range of values of p that includes the point p �

0. The limiting value of m1
~��p� is finite. For p! 0, we

arrive at an alternative to Eq. (3.6),

lim
m1!0

2m1
~��0� � lim

m1!0
h 3i: (3.7)
C. Divergence of the pion two-point function

Let us consider further the 1=m1 divergence in ~��p�. The
(finite-volume) spectral representation of the charged-pion
two-point function is

��x; y� �
�X
n�

y
n��x�
n��x�

�
1

�n� � �� im1

y
n��y�
n��y�

�
1

�n� � �� im1

�
; (3.8)

where terms with the subscript n� are associated with the
propagator for the corresponding quark flavor. As ex-
plained in Sec. 3 of Ref. [7], a 1=m1 divergence may arise
only from the terms with n� � n�, so that

��x; y� �
1

m1

�X
n

j
n�x�j
2j
n�y�j

2 m1

��n � ��2 �m2
1

�

�O�1�:

(3.9)

In analogy with Eq. (3.4), we define the eigenmode-density
correlation function,

R ��x; y� �
�X
n

j
n�x�j
2j
n�y�j

2���� �n�
�
; (3.10)

and its Fourier transform,

~R ��p� �
1

V

�X
n

jHn�p�j
2���� �n�

�
; (3.11)

where
3There seems to be no rigorous proof of this fact except in one
dimension [31].
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Hn�p� � a4
X
x

j
n�x�j
2eipx: (3.12)

Asm1 ! 0, these may be interpreted as the contribution to
��x; y�, or to its Fourier transform, of eigenmodes with
eigenvalue �. Repeating the analysis leading from
Eqs. (3.2) and (3.5) we find, for m1 � 1,

��x; y� �
 R��x; y�

m1
�O�1�: (3.13)

Observe that R��x; y� is the ensemble average (3.10) of a
quantity that is strictly positive. Also, since the eigenmodes
are normalized, we have that

~R ��0� �
a8

V

X
xy

R��x; y� � )���; (3.14)

and so )��� � 0 means that R��x; y� must be nonzero for
at least one pair of values �x; y�. Consequently, in any finite
volume, )��� � 0 implies the existence of a 1=m1 diver-
gence in the coordinate-space two-point function. [This
must be true for at least one value of �x; y�, but is expected
to hold for practically every �x; y�.] This result is valid for
the generalized quenched theory defined by Eq. (2.10) for
any Boltzmann weight; the only assumption we used is that
the Boltzmann weight does not depend on � and m1.

[An unquenched theory with fermion action (2.10)
would include det�HW � �� i!3m1� in the Boltzmann
weight. This determinant will suppress eigenvalues �n �
�, and the spectral density measured by Eq. (3.5) will be
zero in any finite volume in the limit m1 ! 0.]

We next consider the infinite-volume limit. The asymp-
totic behavior of an exponentially localized eigenmode is

j
n�x�j
2 � exp

�
�
jx� x0nj
ln

�
; jx� x0nj � ln; (3.15)

where ln is the localization length and x0n is the center of
the localized eigenmode. Equation (3.15) is valid only at
distances that are large compared to the size of the region
containing most of the eigenmode’s density. In principle,
nothing forbids the occurrence of eigenmodes with a very
short localization length ln � a.

An extended eigenmode is one that does not satisfy
Eq. (3.15) for any finite ln. Evidently, truly extended
eigenmodes exist only in infinite volume. In finite volume,
the clear-cut identification of an eigenmode as localized
demands that j
n�x�j2 is exponentially small on most of
the lattice. In later sections we will give a more quantitative
criterion.

In infinite volume, we expect the Fourier transform of
the eigenmode density (3.15) to have the following small-p
behavior:

Hn�p� �
eipx

0
n

1� p2l2n
: (3.16)

The region p2l2n � 1 will reflect only the exponentially
-5
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decaying envelope (3.15) of the eigenmode density but not
the short-distance fluctuations. The overall normalization
is set by Hn�0� � 1 for a normalized eigenmode.
Substituting the ansatz (3.16) into Eq. (3.11) and going to
small p we find, in analogy with Eq. (3.13),

~��p� �
 )�0�
m1

	1�O�p2l2�
 �O�1�; (3.17)

where l is some average localization length for the eigen-
modes with eigenvalue �. [This extends Eq. (3.7) to non-
zero p.] From Eq. (2.20) we conclude that

~� ��p� � ip�)�0�l
2: (3.18)

Thus there is no Goldstone pole when the eigenmodes with
eigenvalue � are exponentially localized.4

When the eigenmodes at the given � are extended, the
transition from Eq. (3.8) to Eq. (3.9) is not justified if the
limit m1 ! 0 is taken after the infinite-volume limit, be-
cause of interference effects between eigenmodes with
infinitesimally close eigenvalues. In this case we expect
Eq. (3.6) to be valid, indicating a Goldstone pole.
IV. WILSON PLAQUETTE ACTION: SPECTRAL
DENSITY

We now turn to our numerical investigation. We begin
with quenched ensembles generated with the Wilson pla-
quette action for the SU(3) gauge theory,

S �
,
3

X
x

�<-

ReTr�1�Ux�-�: (4.1)

We began calculating at , � 6:0, which is usually taken to
correspond to the lattice scale a�1 ’ 2 GeV, and at5 m0 �
�1:5, between the Aoki ‘‘fingers’’ that point to the , � 1
(g0 � 0) axis at m0 � 0 and �2. Then we moved down-
ward in, towards the Aoki phase, calculating at, � 5:85,
5.7 (where a�1 ’ 1 GeV), 5.6, 5.5, and 5.4. We will show
that the Aoki phase is entered just below , � 5:6 (see
Fig. 1).

Returning to , � 5:7, we moved ‘‘sideways’’ by chang-
ing m0 to �2:0 and �2:4. The latter turns out to be very
close to or in the second Aoki finger. We put these choices
of �,;m0� into the context of other work in Sec. VII.

For each value of , we generated 120 uncorrelated
gauge configurations (except where otherwise noted) on
a lattice of 164 sites, using the MILC pure-gauge over-
relaxation code. For a given ,, results for all values of m0,
�, and m1 were calculated on the same ensemble; thus
correlations had to be taken into account in all fits and
statistical analysis.
4See also Sec. IV of Ref. [7].
5For the remainder of the paper we rescale am0 ! m0, giving

the bare Wilson mass in lattice units.
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We shall illustrate our methods by discussing in detail
the analysis for , � 5:85 and m0 � �1:5. Results for
other values of �,;m0� will be summarized in the tables.

A. Spectral density from Banks-Casher relation

From the Banks-Casher relation (3.2) and (3.5) we have

2 )��� � lim
m1!0

h 3i �
2

V
lim
m1!0

hIm TrG��� im1�i: (4.2)

Thus the volume- and ensemble-averaged Green function,
extrapolated to m1 � 0, gives )��� directly. Of course m1

must be kept nonzero for actual calculation in order for G
to be bounded.

The spectral sum (3.2) shows how to do the extrapola-
tion. For any gauge configuration U we consider the sumX

n

m1

��n � ��2 �m2
1

: (4.3)

The summand tends to a � function as m1 ! 0, but before
the limit is taken it has a finite width equal tom1. The given
configuration will make a contribution of O�1=m1� if HW
has an eigenmode whose eigenvalue �n satisfies j�n �
�j & m1; these contributions, summed over configurations
U, will add up to a finite limit as m1 ! 0. On the other
hand, all the eigenmodes that are far from �, with aj�n �
�j � O�1�, will make a contribution of O�m1�. This indi-
cates a linear extrapolation,

h 3i

2 
� c0 � c1m1; (4.4)

where c0;1 will depend on �. Then c0 is an estimate for
)���.

We calculated TrG using a single random source per
gauge configuration. Averages were obtained for up to
seven values of m1 : 0:01; 0:02; . . . ; 0:07. The upper graph
in Fig. 2 shows the linear extrapolation for two values of �.
For � � 0:3 the fit works well. For � � 0, on the other
hand, the extrapolated intercept is very small and the
precision attained is inadequate.

The problem is that, when )��� is too small, there are
few eigenmodes (for the volume we use) within the broad-
ened � function in Eq. (4.3). Then the sum is dominated by
the O�m1� contributions of the more distant eigenmodes,
with large fluctuations. Making m1 even smaller will sup-
press these contributions, but it will be self-defeating be-
cause even fewer modes will lie within the broadened
� function, increasing the fluctuations in their contribution
as well.

B. Improved estimator

A solution lies in using an improved estimator for the
spectral density, one that suppresses the contribution of
distant eigenmodes and thus approaches the m1 ! 0 limit
faster than linearly. We introduce the (dimensionless) dif-
ferential operator J defined by
-6
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FIG. 2 (color online). Top graph: the pion condensate
�2 ��1h 3i as a function of m1 (open symbols), and its linear
extrapolation to yield the spectral density )��� at m1 � 0, for
� � 0:3 (upper curve) and � � 0 (lower curve). Bottom graph:
cubic extrapolation of improved estimator for � � 0 (circles),
compared to the result of the linear fit above (square). All data
are for Wilson action at , � 5:85; m0 � �1:5.
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J f � �m2
1

@
@m1

�
1

m1
f
�

(4.5)

for any f�m1�. It is designed to remove the linear term in
f�m1�. Applying it to the pion condensate, we have

J h 3i �
2

V
hIm TrG�m1Re TrG2i; (4.6)

with the spectral representation

J h 3i �
4

V

�X
n

m3
1

	��n � ��2 �m2
1


2

�
: (4.7)

The m1 ! 0 limit again yields 2 )��� sinceR
dxm3

1=�x
2 �m2

1�
2 �  =2.

The operator J indeed removes the leading, linear con-
tribution of the eigenmodes with aj�n � �j � O�1�. We
can see from Eq. (4.7) that the contribution of these eigen-
modes is now proportional to m3

1. In view of this, we
attempt a cubic extrapolation,
034501
J h 3i

2 
� c0 � c3m

3
1: (4.8)

The lower graph in Fig. 2 shows the new extrapolation,
again at � � 0. Linear and quadratic terms are in fact
unnecessary to attain an excellent fit to the data points;
this is the final justification of the model (4.8). Most
important, the precision in the extrapolation is improved
by a factor of 10.

Using the improved estimator (4.6) requires a second
inversion for each random source. The number of
conjugate-gradient (CG) iterations needed for the second
inversion can reach twice the number for the first inversion.
The cost of the improved estimator is thus up to (roughly) 3
times the original cost. Were we to invest the additional
computer time instead in increased statistics using the
simple estimator (4.2), the anticipated reduction in the
statistical error would not come anywhere close to the
factor of 10 achieved with the improved estimator.

C. Spectral density from the two-point function

Since the two-point function ��x; y� is the eigenmode-
density correlator [see Eq. (3.9)], it is a rich source of
information about spectral properties. The first application
we discuss is an alternative method to calculate the spectral
density )���.

We project ��x; y� to zero spatial momentum and calcu-
late the time-correlation function,

��t� �
a6

V3

X
x;y

��0;x; t; y�; (4.9)

where V3 is the three volume. This calculation requires a
random source on time slice 0, as well as a random sink for
each time slice t; again we use one set of random sources
per gauge configuration. If we sum ��t� over all t, we can
use translation invariance and Eq. (3.9) to show that

lim
m1!0

am1

X
t

��t� �  )���: (4.10)

This corresponds to setting p � 0 in the finite-volume
Ward identity (2.20). [Note the similarity to Eq. (3.14).]
We verified Eq. (4.10) for two values of the bare coupling
(, � 6:0 and 5.7) by calculating both the condensate
[Eq. (4.2)] and the two-point function. In all subsequent
measurements we did not calculate the condensate sepa-
rately since it gives only the spectral density, while ��t�
yields this and much more.

The extrapolation of m1��t� to m1 � 0 suffers from the
same fluctuation problems as that of h 3i when the spectral
density is small. The solution again lies in an improved
estimator, but now for the eigenmode-density correlation
function R�x; y;�� [see Eq. (3.10)]. We define the ‘‘im-
proved’’ two-point function,

�imp�x; y� � TrhG�x; y�G�y; x�i; (4.11)
-7



TABLE I. Spectral properties for , � 6:0, m0 � �1:5. The
mobility edge is at �c ’ 0:41, marked by the space in the table,
below which �‘ � 1. The quantities l‘, D, ls, and R, which
characterize the localized modes, are defined in Sec. V.

� ) l‘ D ls R

0.0a,b 0.000 11(2) 0.61(1) 0.000 038(8) 2.9(8) 31
0.1a,b 0.000 24(2) 0.61(1) 0.000 10(1) 2.4(3) 25
0.2a 0.0016(1) 0.70(1) 0.000 53(6) 3.0(4) 16
0.3a 0.0214(9) 1.16(4) 0.0058(4) 3.7(3) 8
0.4a 0.128(3) 3.8(6) 0.025(2) 5.1(4) 5.3

0.5 0.267(7) 1 0.033(5) 8(1) 4.4
0.6 0.390(9) 1 0.042(9) 9(2) 4

aResults from improved estimator.
bUsed 1200 gauge configurations for measurements with m1 �
0:01, 0.02, 0.03.

TABLE II. Spectral properties for , � 5:85, m0 � �1:5. The
mobility edge is at �c ’ 0:32.

� ) l‘ D ls R

0.0a 0.0011(1) 0.64(1) 0.000 36(5) 3.1(5) 17
0.1a 0.0019(1) 0.71(1) 0.000 54(7) 3.5(5) 15
0.2a 0.0088(4) 0.92(2) 0.0024(2) 3.7(3) 10
0.3a 0.056(1) 2.2(2) 0.0132(8) 4.2(3) 6.5

0.4 0.168(7) 1 0.036(6) 4.7(8) 4.9
0.5 0.27(1) 1 0.023(7) 12(4) 4.4
0.6 0.39(2) 1 0.055(9) 7(1) 4

aResults from improved estimator.

TABLE III. Spectral properties for , � 5:7, m0 � �1:5. The
mobility edge is at �c ’ 0:25.

� ) l‘ D ls R

0.0a 0.0089(3) 1.04(3) 0.0023(2) 3.9(4) 10
0.1a 0.0126(7) 1.29(5) 0.0029(3) 4.3(5) 9.4
0.2a 0.039(1) 2.3(1) 0.0097(5) 4.0(2) 7.1

0.3a 0.106(2) 1 0.026(1) 4.1(2) 5.5
0.4a 0.199(6) 1 0.036(4) 5.5(6) 4.7
0.5a 0.308(8) 1 0.052(4) 5.9(5) 4.2

aResults from improved estimator.

TABLE IV. Spectral properties for , � 5:6, m0 � �1:5. The
mobility edge is at �c � 0:14�2�. (We give the statistical error in
�c here because it is larger than in other cases. All suffer from
systematic error in the extrapolation.)

� ) l‘ D ls R

0.0 0.027(2) 2.1(1) . . . . . . 7.8
0.1 0.034(3) 4(1) . . . . . . 7.4

GOLTERMAN, SHAMIR, AND SVETITSKY PHYSICAL REVIEW D 72, 034501 (2005)
where

G �x; y� � a4
X
z

G�x; z;�� im1�G�z; y;�� im1�

�
X
n


n�x�

y
n �y�

��n � ��2 �m2
1

; (4.12)

and project it to zero spatial momentum,

�imp�t� �
a6

V3

X
x;y

�imp�0;x; t; y�: (4.13)

Instead of Eq. (3.9) one has

m3
1�imp�x; y� �

�X
n

j
n�x�j
2j
n�y�j

2 m3
1

	��n � ��2 �m2
1


2

�

�O�m2
1�;

(4.14)

whence

lim
m1!0

m3
1�imp�x; y� �

 
2
R��x; y�: (4.15)

Equation (3.14) then yields the spectral density [cf.
Eq. (4.10)],

lim
m1!0

am3
1

X
t

�imp�t� �
 
2
)���: (4.16)

Results obtained using ��t� were extrapolated to m1 � 0
linearly in m1, while those obtained using �imp�t� were
extrapolated6 linearly in m3

1.
We also tried to improve the estimator for the eigenmode

density by calculating J��x; y� [cf. Eq. (4.5)]. This has the
advantage that the application of J to all terms in the Ward
identity (2.20) generates a new identity. As it turns out,
while some reduction in the statistical error was achieved
this way, the improvement was not significant. The reason
is that the application of J to ��x; y� would be effective in
suppressing the contribution of eigenmodes with aj�n� �
�j � 1 only if the approximation Eq. (3.9) is valid. As it
turns out, for the m1 values we used, Eq. (3.9) is not a good
approximation to Eq. (3.8) when the spectral density is
small. The correlator �imp�x; y� does a better job in sup-
pressing the contribution of eigenmodes with aj�n� �
�j � 1.

D. Numerical results

We present our results for the spectral density for the
Wilson plaquette action in Tables I, II, III, IV, V, VI, VII,
and VIII and in Figs. 3 and 4.

At each value of , and m0, we performed our calcula-
tions for a range of values of � starting from zero, increas-
0.2 0.072(4) 1 0.012(3) 6(2) 6.1
0.3 0.135(7) 1 0.016(5) 8(3) 5.2
0.4 0.219(8) 1 0.017(6) 13(5) 4.6

6The form of Eq. (4.14) suggests an m2
1 term as well, but we

found it to be unnecessary for a good fit.
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TABLE VI. Spectral properties for , � 5:4, m0 � �1:5. The
mobility edge is at zero.

� ) l‘ D ls R

0.0 0.066(3) 1 . . . . . . 6.2
0.1 0.089(5) 1 0.008(3) 11(4) 5.8
0.2 0.148(6) 1 0.022(4) 7(1) 5.1
0.3 0.194(7) 1 0.018(4) 11(3) 4.8
0.4 0.27(1) 1 0.028(6) 10(2) 4.4

TABLE VII. Spectral properties for , � 5:7, m0 � �2:0. The
mobility edge is at �c ’ 0:21.

� ) l‘ D ls R

0.0 0.014(2) 1.14(4) 0.005(2) 3(1) 9.1
0.1 0.022(2) 1.37(5) 0.005(2) 4(2) 8.2
0.2 0.13(2) 3.8(5) 0.03(1) 4(2) 5.3

0.3 0.24(1) 1 0.028(4) 9(1) 4.5
0.4 0.41(2) 1 0.05(1) 8(2) 4.0

TABLE V. Spectral properties for , � 5:5, m0 � �1:5. The
mobility edge is at zero.

� ) l‘ D ls R

0.0a 0.057(1) 1 0.0112(6) 5.1(3) 6.5
0.1a 0.073(1) 1 0.013(1) 5.6(4) 6.1
0.2 0.116(5) 1 0.015(4) 8(2) 5.4
0.3 0.172(7) 1 0.019(4) 9(2) 4.9
0.4 0.25(1) 1 0.029(6) 9(2) 4.5

aResults from improved estimator.

TABLE VIII. Spectral properties for , � 5:7, m0 � �2:4.
The mobility edge is very close to zero.

� ) l‘ D ls R

0.0 0.043(2) 4(1) 0.006(2) 7(2) 6.9

0.1 0.112(5) 1 0.014(3) 8(2) 5.5
0.2 0.234(8) 1 0.026(6) 9(2) 4.5
0.3 0.40(1) 1 0.052(6) 8(1) 4.0
0.4 0.54(1) 1 0.05(1) 11(2) 3.7
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ρ(λ)

FIG. 3 (color online). Eigenvalue density )��� for (bottom to
top) , � 6:0, 5.85, 5.7, 5.6, 5.5, 5.4. Mobility edges �c�,� (when
�c > 0) are indicated by vertical bars. Wilson action; m0 �
�1:5.
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FIG. 4 (color online). Eigenvalue density )��� for , � 5:7
and (bottom to top) m0 � �1:5, �2:0, �2:4. Mobility edges
are indicated by vertical bars. For m0 � �2:4 the mobility edge
is probably very close to � � 0. Wilson action.
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ing in steps of 0.1. In the ranges studied (the maximal �
was 0.4 to 0.6) the spectral density typically increases by 1
to 3 orders of magnitude. For the ensemble generated by
the plaquette action, )��� shows no remarkable behavior as
� passes �c, the mobility edge (to be determined below). In
all cases, however, the mobility edge is encountered for
)��c� � 0:1. There is a steady rise in the spectral density
as we decrease , (Fig. 3), which bespeaks an increased
disorder in the gauge field.
034501
A final note on improvement: For the larger values of �
it is possible to achieve acceptable precision without using
the improved estimator. Since the number of CG iterations
required grows rapidly with the spectral density, we limited
the use of improved estimators to those cases where results
obtained without improvement were poor.
-9



7Some further details are provided in Ref. [28].
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V. WILSON PLAQUETTE ACTION:
LOCALIZATION PROPERTIES

A central goal of the work presented here is the deter-
mination of the mobility edge �c at various places in the
�,;m0� phase diagram. Equally interesting is the shape and
density of the localized eigenmodes below �c (when �c >
0).

The two-point function ��x; y� contains complete infor-
mation about the eigenmodes of HW , and it is our primary
tool both in determining �c and in studying the localized
modes. When dealing with localized eigenmodes, we aim
for parameter values where the single spectral sum (3.9)
provides a good approximation to the exact expression
(3.8). When m1 is small enough, ��x; y� then reduces to
the eigenmode-density correlator R��x; y� [Eq. (3.10)].
Our analysis is based on this feature. The approximation
(3.9) ceases to hold when the eigenmodes become too
dense or too extended, that is, when they interfere in the
double sum. This occurs when � is above or too close to the
mobility edge. We will develop a criterion to establish the
consistency of our analysis of the localized eigenmodes.

We begin by giving a precise definition of the localiza-
tion length l‘���. Its divergence marks the mobility edge
�c�,;m0�. By definition, �c � 0 marks the Aoki phase. We
then turn to study other properties of the localized eigen-
modes outside the Aoki phase, where �c > 0.

A. The localization length

We have loosely defined the localization length ln of an
individual eigenmode in Eq. (3.15). We can use ln, nebu-
lous as it is, to motivate the definition of an average
localization length that can be obtained from the large-t
behavior of ��t�. Once we reach this definition, a precise
definition of ln will be superfluous.

We begin by introducing the restricted spectral density
)l��� that contains the contributions of eigenmodes with
localization length ln � l only. It is given by

)l��� �
1

V

�X
n

���n � ��2�l� ln�
�
; (5.1)

and its derivative, the differential spectral density, is given
by

)0
l��� �

d)l���
dl

�
1

V

�X
n

���n � ����ln � l�
�
: (5.2)

We also introduce a probability distribution P ��l� for the
localization length l of eigenmodes with given eigenvalue
� by writing )0

l��� � )���P ��l�. This distribution is nor-
malized because, in finite volume,

Z L

0
dl)0

l��� � )��� and hence
Z L

0
dlP ��l� � 1;

(5.3)
034501
where L is the (largest) linear size of the lattice. Below, this
upper limit will be implicit.

[In infinite volume there can be truly extended eigen-
modes. Since we expect the eigenmodes at a given � to be
either all extended or all localized, we have correspond-
ingly either P ��l� � 0 for all finite l, or

R
1
0 dlP ��l� � 1.]

The decay rate of individual localized eigenmodes can
be related to the decay rate of ��t� for m1 ! 0 [7]. Using
Eq. (3.15) in Eq. (3.9) gives

m1��x; y� �
�X
n

exp
�
�

jx� x0nj � jy� x0nj
ln

�

�
m1

��n � ��2 �m2
1

�
: (5.4)

Averaging over the position of x0n gives

m1��x; y� �
1

V

�X
n

exp
�
�

jx� yj
ln

�
m1

��n � ��2 �m2
1

�
;

(5.5)

since the average is dominated by locations x0n near the
straight line connecting x and y. Hence

lim
m1!0

m1��x; y� �  )���
Z
dlP ��l� exp

�
�
jx� yj
l

�
;

(5.6)

where we have used Eq. (5.2). Equation (4.9) then gives

lim
m1!0

m1��t� �  )���
Z
dlP ��l� exp

�
�
t
l

�
: (5.7)

Thus ��t� decays exponentially, as a weighted average of
exponentials with all localization lengths. Motivated by
this result and ignoring power corrections, we finally define
the average localization length as

l‘��� �
1

����
; (5.8)

where���� is the extrapolation tom1 � 0 of the decay rate
M of the two-point function,

��t� � exp	�M��;m1�t
; t� a: (5.9)

Equation (5.7) actually suggests a slightly different defi-
nition of����, based on the extrapolation of the correlation
function as a whole,

lim
m1!0

m1��t� � exp	�����t
; t� a: (5.10)

In practice, the extraction of ���� using Eq. (5.10) turns
out to be extremely noisy, but compatible with the results
obtained using Eq. (5.9).7 We therefore used the definition
based on Eq. (5.9) throughout our calculations.
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We extrapolate to m1 � 0 by fitting

M2��;m1� � �2��� � "���m1: (5.11)

See below for an explanation of this choice. We illustrate
this extrapolation in Fig. 5. The tables list the results for
l‘ � ��1, for comparison with other characteristic
lengths.8

The derivation leading to Eq. (5.7) relies on Eq. (3.9),
where interference effects present in Eq. (3.8) have been
dropped. This is certainly true when the exponentially
localized eigenmodes are isolated. A precise definition of
what this means will be given later. For now it suffices to
say that, intuitively, the eigenmodes with eigenvalue near �
are isolated if every such eigenmode is supported in a
different part of the lattice.

As � increases, the spectral density grows and so does
the localization length of individual eigenmodes.
Eventually, interference sets in, meaning that the approxi-
mation of Eq. (3.9) is not valid for the m1 values we use.
Interference will cause ��t� to decay faster than the decay
rate of individual eigenmodes. The definition l‘ � ��1

will then systematically underestimate the true (average)
localization length, as extracted perhaps by calculating
individual eigenmodes and matching them to Eq. (3.15).
If we are to use Eq. (5.9) to calculate the localization
length, we must verify that the eigenmodes are indeed
isolated. We return to this issue below.
0 0.02 0.04 0.06 0.08
m
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FIG. 5 (color online). Squared decay rate M2 of the two-point
function ��t� vsm1 (open symbols) and its linear extrapolation to
m1 � 0. Top to bottom: � � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The
mobility edge is at � ’ 0:32. All data are for Wilson action at
, � 5:85; m0 � �1:5.
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B. The mobility edge

As we increase �, we reach a critical value �c where
���c� � 0 (see Fig. 5). What is the physical significance of
�c? According to the preceding discussion, ��1��� pro-
vides a reasonable average value for the localization
lengths of individual eigenmodes if there is no interfer-
ence, while it underestimates the average when interfer-
ence sets in. Either way,���� � 0 implies that the average
localization length of individual eigenmodes is infinite; the
eigenmodes have become extended. The point �c therefore
marks the mobility edge.

Would a different procedure yield a different value for
the mobility edge? One might consider, for instance, an
alternative determination based on the numerical calcula-
tion of individual eigenmodes. We believe that such ambi-
guity can only be an artifact of finite-size effects. Such
effects are perforce significant when ���� � 1=L, since
the notion of extended eigenmodes is truly meaningful
only in infinite volume. Thus some disagreement between
different determinations of the mobility edge is to be
expected in any finite volume. Nonetheless, we expect
that all methods will converge to the same value in the
infinite-volume limit [31]. We are only interested here in
obtaining an overall picture, which does not justify the
resources that would be needed for, say, a finite-size scal-
ing analysis.

We estimate �c simply by a linear extrapolation of ����
to zero, using the last two nonzero values we have found.
0 0.1 0.2 0.3 0.4
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FIG. 6 (color online). The inverse squared localization length
�2 vs �. Top to bottom: , � 6:0, 5.85, 5.7, 5.6. Intercepts at the
� axis are extrapolated from the last two points in each set, and
provide estimates for the mobility edge �c. Data are for Wilson
action; m0 � �1:5.
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FIG. 7 (color online). Same as Fig. 6, at , � 5:7. Top to
bottom: m0 � �1:5, �2:0, �2:4. For m0 � �2:4 the mobility
edge is probably very close to � � 0. Wilson action.

TABLE IX. Mobility edge �c�,;m0�. Where no error is
shown, the statistical error is less than one in the last digit.

, m0 �c

1 �1:5 1=2
6.0 �1:5 0.41
5.85 �1:5 0.32
5.7 �1:5 0.25
5.6 �1:5 0.14(2)
5.5 �1:5 0.0
5.4 �1:5 0.0

5.7 �2:0 0.21
5.7 �2:4 � 0
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The justification for this procedure is that, for � near �c, we
expect that ���� will exhibit the characteristic behavior of
a (continuous) phase transition. See Figs. 6 and 7.

Above the mobility edge we expect the 1=m1 divergence
of ��x; y� to disappear in the infinite-volume limit; hence
Eq. (3.6) is valid, and ~���p� should have a Goldstone pole.
We expect that the physics of these Goldstone poles to be
governed by some effective chiral Lagrangian. Borrowing
from the familiar physics of ordinary Goldstone bosons,
we expect M2 / m1 in the presence of the symmetry-
breaking fieldm1. This is the motivation for the term linear
inm1 in the fit function (5.11). Below the mobility edgeM2

does not vanish for m1 ! 0, and therefore it is immaterial
whether we extrapolate M or M2 to m1 � 0. Put together,
these considerations suggest that Eq. (5.11) is an appro-
priate form both below and above the mobility edge.

Above the mobility edge, the linear extrapolation often
gives a small negative result for �2. We have neglected to
include possible logarithms which, in the context of a
chiral Lagrangian, would occur at next-to-leading order
in m1. These logarithms, together with finite-size correc-
tions, should move the extrapolated value to zero.

Our linear extrapolation to find the zero of ���� �
l�1
‘ ��� suffers from an uncertainty that stems from the

interference to which we alluded above. On further analy-
sis (see Sec. V E below) we will conclude that, for all
�,;m0� where �c > 0, our estimate of l‘ is unreliable for
8We calculated the localization length from ��t�, without
improvement. Where the tables indicate improvement, it applies
to ) and D only.
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the largest value of � that is below the mobility edge �c.
(This uncertainly does not occur for lower values of �.) In
fact, the calculated l�1

‘ at this value of � is likely to be too
high; its true value could even be zero. In other words, this
value of � could lie above the mobility edge. This means
that the last measured point on each curve in Figs. 6 and 7
is unreliable.

C. Entering the Aoki phase

Our estimates for the mobility edge �c�,;m0� are col-
lected in Table IX. Consider first the m0 � �1:5 results.
For reference, we include the free-theory limit (, � 1)
[7], where �c coincides with the gap of the free HW . At
, � 6:0, �c is still close to its free-field value. As we move
towards strong coupling, the curve �c�,� steepens before
reaching zero somewhere between , � 5:6 and , � 5:5.
As discussed in Sec. III, where �c � 0 the two-point
function ��t� has a zero-momentum pole even at � � 0.
The Goldstone theorem is valid, the Ward identity (3.6) is
satisfied, and the (quenched) Wilson-fermion theory pos-
sesses a Goldstone boson associated with the spontaneous
breakdown of its SU(2) flavor symmetry. This is the Aoki
phase, and we put its boundary between , � 5:6 and 5:5.

Table IX also shows results at the other two m0 values
for , � 5:7. We find only a small change between m0 �
�1:5 and m0 � �2:0, while the m0 � �2:4 result sug-
gests that here, too, one is near or within the Aoki phase.

The implications of these results for DWF and overlap
fermions are discussed in Sec. VII.

D. Participation number and the support length

Now we turn to a more detailed description of the
localized eigenmodes, for which j�j< �c. We begin by
defining a measure of the size of the support of a localized
eigenmode. In the sequel we use this measure to sharpen
the notion of isolated localized eigenmodes, and verify the
consistency of our approach.

We define [29,31] the participation number P of a
normalized eigenmode 
�x� in d dimensions by
-12



9Here it is significant that l‘ turns out to be smaller than ls.
10This applies also to results obtained with improved gauge

actions, to be discussed in Sec. VI below. We ignore those cases
where data for ls are not available.
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P�1 � ad
X
x

�j
�x�j2�2: (5.12)

The physical meaning is easy to see. Suppose that the
magnitude of the eigenmode density is j
�x�j2 � 1=lds
over a region whose linear size is ls. Then P1=d � ls is a
measure of the linear size of the support of 
�x�. We
similarly define a generalized participation number by

P�1
d;d0 � ad�d

0
X

xd0�1;...;xd

�
X

x1;...;xd0

j
�x��j2�2: (5.13)

[Equation (5.12) corresponds to d0 � 0.] In the case con-
sidered we would have

P�1
d;d0 � ld�d

0

s �ld
0�d
s �2 � ld

0�d
s : (5.14)

In the special case d0 � d� 1, we have Pd;d�1 � ls.
We are thus motivated to define ls�n� � P4;3�n� to be the

linear size of the support of the nth eigenmode.
Substituting in Eq. (3.9) and using translation invariance
together with Eqs. (4.9) and (5.14) we have

m1��t � 0� �
1

V

�X
n

1

ls�n�
m1

��n � ��2 �m2
1

�
�O�m1�:

(5.15)

Defining

D ��� �  �1 lim
m1!0

m1��t � 0�; (5.16)

we have

D ��� � )���
Z
dlP s

��l�
1

l
; (5.17)

where P s
��l� is the probability distribution for ls�n�. On the

basis of Eq. (5.17) we define the average support length as

ls��� �
)���
D���

: (5.18)

While we expect the average localization length l‘ and the
average support length ls to be quantities of similar mag-
nitude, there is no reason why they should be the same.

We may also obtain D��� using the improved estimator
(4.13). Again, results obtained using ��t� were extrapolated
to zero linearly in m1, while those obtained using �imp�t�
were extrapolated linearly in m3

1.
We list our results for ls in the tables. Observe that below

the mobility edge ls turns out to be always larger than l‘.
The physical significance of these results is discussed
below.

E. Separation distance of localized eigenmodes

We now return to the notion of isolated localized eigen-
modes mentioned above. The use of Eq. (3.9) depends on
neglecting interference among the modes appearing in
Eq. (3.8), which is only justified when m1 is sufficiently
034501
small. We must check whether our smallest values of m1

are indeed sufficiently small.
Spectral sums as in Eq. (3.9) show that m1 is the reso-

lution with which we detect eigenmodes near �. Let us
compare the average support and localization lengths ls
and l‘ to the mean distance between eigenmodes detected
at this resolution. Our smallest value of m1 is 0.01. The
number of eigenmodes with eigenvalues near � that we
detect for a typical gauge configuration is thus N��� ’
0:01V)���. Hence we define

R��� � 	V=N���
1=4 ’ 	0:01)���
�1=4 (5.19)

as a measure of the average separation between eigen-
modes detected at this resolution. Results for R��� are
shown in the tables. [We do not quote errors but they can
be easily worked out from the )��� data.] If ls � R the
eigenmodes are isolated, and correlation functions reflect
properties of individual localized eigenmodes, with no
interference.9 Thus, our method for the extraction of the
average localization and support lengths is valid.

We can also directly estimate the overlap among any two
eigenmodes to see whether they interfere. This overlap
satisfies the inequality

jh
1j
2ij
2 �

�
a4
X
x

j
1�x�jj
2�x�j
�
2
: (5.20)

We assume �1 � �2 � �. The ‘‘edge’’ of the support of

2 closest to the center of 
1 is at an average distance of
around R� ls=2. Using Eq. (3.15) this gives

jh
1j
2ij
2 & exp	��R� ls=2�=l‘
: (5.21)

A review of the tables shows the following.10 Leaving out
the last value of � just below the mobility edge we find that
for all other � < �c one has ls < R=2 and l‘ < R=5. Hence
jh
1j
2ij

2 & exp	��3R=4�=�R=5�
 � exp��15=4� ’
0:024. This demonstrates that, except for the last value of �
just below �c, all the quantities we measured indeed reflect
properties of individual localized eigenmodes, with no
interference.

Above �c, as well as (in most cases) for the � value just
below �c, we have R � ls � l‘. This means that interfer-
ence is not a negligible effect, and the values of ls and l‘ no
longer reflect the properties of individual eigenmodes.

F. The 1=m1 divergence of the two-point function:
p � 0

Finally, we return to the Ward identity Eq. (2.20). As can
be seen from Eq. (3.17), the localization alternative to
Goldstone’s theorem requires that the 1=m1 divergence
-13



TABLE X. Spectral properties for Iwasaki gauge action, , �
2:6, m0 � �1:8. The mobility edge is at �c ’ 0:38. Number of
configurations ranges from 600 at � � 0:0 to 100 at � � 0:5.

l‘ D ls R

0.0a 7�3� � 10�7 0.72(1) . . . . . . 110
0.1a 1:8�5� � 10�5 0.73(1) 4�1� � 10�6 4(2) 50
0.2a 2:3�9� � 10�4 0.80(1) 1:3�7� � 10�4 2(1) 25
0.3a 9�2� � 10�4 1.20(2) 2:7�8� � 10�4 3(1) 18

0.4a 0.111(2) 1 . . . . . . 5.5
0.5a 0.277(5) 1 0.040(4) 7(7) 4.3

aResults from improved estimator.

TABLE XI. Spectral properties for Iwasaki gauge action, , �
2:2, m0 � �1:8. The mobility edge is at �c ’ 0:27.
Measurements on 200 gauge configurations.

� ) l‘ D ls R

0.0a 0.0063(2) 0.80(1) 0.0021(1) 3.0(2) 11
0.1a 0.0095(3) 0.91(2) 0.0032(2) 3.0(2) 10
0.2 0.034(2) 1.40(5) 0.010(2) 3.4(7) 7.4

0.3 0.120(5) 1 0.025(4) 5(1) 5.4
0.4 0.27(1) 1 0.017(7) 16(10) 4.4
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persist for a range of momenta, and that its coefficient
depend smoothly on p.

In order to confirm this, we calculated the Fourier trans-
form of ��t�,

~��!n� �
X
t

cos�!nt���t� (5.22)

where !n � 2 n=16, and extrapolated m1
~��!n� linearly

to m1 � 0. [The justification for the linear extrapolation is
the same as for Eq. (4.4). We included data form1 � 0:005
in the fit.] The calculation, which provides a consistency
check, was done for , � 5:7, m0 � �1:5, � � 0, where
the higher spectral density (compared to , � 6:0) makes it
easier to obtain good statistics; the mobility edge here is
still far from zero. We plot the results in Fig. 8. The
! dependence of the 1=m1 divergence is indeed smooth,
as indicated in Eq. (3.17) for small !.

For comparison, we repeated the calculation for � �

0:5, which lies above �c. The extrapolation of m1
~��!n �

0� to m1 � 0 is again straightforward, as it must be since
this gives )��� according to Eq. (4.10). Doing the same
with ~��!n � 0�, however, leads to a huge 72, showing that
Eq. (3.17) is inapplicable. This highlights the qualitative
difference between j�j< �c and j�j> �c.
TABLE XII. Spectral properties for DBW2 gauge action, , �
1:04, m0 � �1:8. The mobility edge is at �c ’ 0:39. Between
200 and 400 gauge configurations were used.

� ) l D l R

aResults from improved estimator.

VI. IMPROVED GAUGE ACTIONS

As an alternative to the Wilson plaquette action, we also
studied pure-gauge ensembles generated by the Iwasaki
[18] and DBW2 [20] actions, which have been used in
DWF [22–24] and overlap [25,26] simulations. We set the
Wilson mass tom0 � �1:8 (see Sec. VII for explanation of
0 1 2 3 4 5 6 7 8
n

0

0.002

0.004

0.006

0.008

FIG. 8. Coefficient of the 1=m1 divergence in ~��!n� for , �
5:7, m0 � �1:5, � � 0:0.

TABLE XIII. Spectral properties for DBW2 gauge action,
, � 0:79, m0 � �1:8. The mobility edge is at �c ’ 0:32.
Measurements on 200 gauge configurations.

� ) l‘ D ls R

0.0a 0.0013(1) 0.70(1) 0.000 41(5) 3.2(5) 17
0.1a 0.0023(2) 0.73(1) 0.0009(1) 2.6(4) 14
0.2a,b 0.0064(4) 0.91(1) 0.0024(2) 2.7(3) 11
0.3a 0.058(1) 2.1(1) 0.012(1) 4.8(4) 6.4

0.4 0.22(1) 1 0.030(5) 7(1) 4.6

aResults from improved estimator.
bExtrapolation with Eq. (4.8) failed. We added an m2

1 term.

‘ s

0.0a . . . 0.74(1) . . . . . . . . .
0.1a 2�1� � 10�7 0.75(1) . . . . . . 150
0.2a 6�2� � 10�6 0.82(1) . . . . . . 65
0.3a,b 3:4�7� � 10�4 1.2(2) . . . . . . 23

0.4 0.058(2) 1 . . . . . . 6

aResults from improved estimator.
bExtrapolation with Eq. (4.8) failed. We added terms linear and
quadratic in m1.
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FIG. 10 (color online). As in Fig. 9, but at a�1 ’ 1 GeV:
Wilson action at , � 5:7, with m0 � �1:5 (circles); Iwasaki
action at , � 2:2, with m0 � �1:8 (squares); DBW2 action at
, � 0:79, with m0 � �1:8 (diamonds).
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this choice). For each action, we studied two values of the
lattice spacing, a�1 ’ 2 GeV and a�1 ’ 1 GeV. The cor-
responding bare couplings are , � 2:6 and 2.2, respec-
tively, for the Iwasaki action [19]. For the DBW2 action
they are , � 1:04 [23] and 0.79 respectively; the latter was
determined by interpolation using,-values from Ref. [21].

We present our results in Tables X, XI, XII, and XIII and
Figs. 9 and 10. A comparison of the (inverse squared)
localization length for the three gauge actions at 2 GeV
is shown in Fig. 9. The Iwasaki and DBW2 localization
lengths are almost the same, an indication of the good
scaling properties of the two actions. The mobility edge
is almost the same for all three actions. Our results at
1 GeVare compared in Fig. 10. There is a gradual decrease
in the localization length from Wilson to Iwasaki to
DBW2. Differences in the value of the mobility edge, while
bigger than in the 2 GeV case, remain small.

As can be seen from Tables X, XI, XII, and XIII, the
main difference among the three actions is a dramatic
reduction in the low-� spectral density as we go from the
Wilson action to the Iwasaki and then to the DBW2 gauge
actions. What distinguishes the three actions is the coeffi-
cient of the 1� 2 rectangle, which is zero for the standard
plaquette action and in a common parametrization [22,23]
is c � �0:331 for the Iwasaki action and c � �1:4069 for
the DBW2 action. We see that the decrease in the low-�
spectral density is correlated with a more negative rect-
angle coefficient c. The rectangle term in the action sup-
0 0.1 0.2 0.3 0.4
λ

0

1

2

3

µ2

FIG. 9 (color online). The inverse squared localization length
�2 vs �, as in Fig. 6. Comparison of three gauge actions at a�1 ’
2 GeV: Wilson action at , � 6:0, with m0 � �1:5 (circles);
Iwasaki action at , � 2:6, with m0 � �1:8 (squares); DBW2
action at , � 1:04, with m0 � �1:8 (diamonds).
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presses the small-size dislocations [20,23] responsible for
the existence of the near-zero modes.

At (or just above) the mobility edge the spectral density
remains of the same order as for the plaquette action:
)��c� � 0:1. This means that, unlike the plaquette action,
the Iwasaki and DBW2 spectral densities rise steeply as �
approaches the mobility edge from below. At 2 GeV, a
comparison of the spectral-density values just above and
below the mobility edge shows a jump by 2 orders of
magnitude for both improved actions.
VII. DISCUSSION

Our numerical results bear, first, on the phase structure
of the supercritical Wilson operator in various ensembles;
and, second, on the overlap and DWF theories based on the
Wilson operator. We examine each of these in turn.

A. The Aoki phase diagram

The Aoki phase diagram has dictated our list of �,;m0�
values for calculation, and our results in turn yield infor-
mation about the diagram. We can now discuss in more
detail the choice of �,;m0� values we have made.

There is considerable evidence (see e.g. Ref. [13]) that,
for plaquette actions with , � 5:7 to 6.0, the low-� spec-
tral density of the Wilson operator varies slowly over the
range �2:0<m0 <�1:5. In view of this, we have chosen
to carry out most of our calculations with the plaquette
action for the single value m0 � �1:5. We have tested this
-15



12The introduction of �� improves on the discussion of Ref. [7],
where the rather arbitrary cutoff �c=2 was imposed on the
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insensitivity to m0 by considering as well , � 5:7, m0 �
�2:0. We see in Fig. 7 that the localization lengths l‘ for all
� are almost unchanged asm0 changes from �1:5 to �2:0;
hence, the mobility edge is unchanged as well. The rough
equality extends to the support length and to the spectral
density for � sufficiently below the mobility edge, which
means in practice � � 0:1 (see Tables III and VII as well as
Fig. 4).

Old results [16] on the Aoki phase diagram indicate that
the point �, � 6:0; m0 � �2:4� lies in the second ‘‘finger’’
of the Aoki phase. Our results show that the point
�5:7;�2:4� is indeed at a boundary of this finger or inside
it.

Looking ahead to DWF, our results indicate that, for
, * 6:0, one can use any value of m0 in the range
	�2:0;�1:5
. (The same applies to the overlap construc-
tion.) Mean-field arguments suggest that the optimal m0

(related to the ‘‘domain-wall height’’M viaM � �m0) for
DWF simulations is roughly m0 � �1�mc�g0� [32]. The
commonly used value at a�1 ’ 2 GeV is M � �m0 �
1:8. This is consistent with the mean-field estimate and
lies comfortably in the middle of the range of m0 we
considered. In view of our evidence for the insensitivity
of the key spectral properties over this range, we have
chosen the value m0 � �1:8 also for the improved-action
calculations.

Our scan of , values for m0 � �1:5 places the bound-
ary of the Aoki phase of the plaquette action between , �
5:5 and , � 5:6 (cf. [16]).

B. Implications for overlap fermions

The overlap operator is constructed explicitly in terms of
the Wilson operator HW ,

Dov � 1� �5
HW

jHW j
: (7.1)

Our knowledge of the spectrum ofHW is thus of immediate
import to overlap calculations; in particular, it is critical to
understanding the locality of the operator. The long-
distance tail of Dov has two components [7,8], and both
must be kept under control. One component comes from
the near-zero modes; its range is the localization length
l‘� ���, where �� will be defined shortly. The other compo-
nent comes from modes near the mobility edge, and its
range is the inverse of �c.

We denote by lov the range of the overlap operator: For
jx� yj � a one has jDov�x; y�j � exp��jx� yj=lov�. In
Ref. [7] we discussed the different roles of the extended
and the localized modes in determining lov, and arrived at
an estimate for the contribution of the localized spec-
11This estimate complements the discussion of Ref. [8]. The
analytical techniques of Ref. [8] are inapplicable to the localized
spectrum because it becomes dense in the infinite-volume limit.
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trum.11 Here we revisit the issue in the light of our numeri-
cal findings.

In the treatment of the localized eigenmodes the essen-
tial assumption was the absence of interference between
different modes. This should be true, in particular, for the
low-lying modes that make up the mutually isolated sub-
space. These are all the localized eigenmodes in the inter-
val 	� ��; ��
 where 0< �� < �c is chosen such that for any
two eigenvalues �m; �n 2 	� ��; ��
, the corresponding lo-
calized eigenmodes are isolated (on average) in the sense
of Sec. V E. The contribution of the mutually isolated
subspace to the ensemble-averaged overlap operator is
then estimated to be12

hjDov�x; y�jij�j� �� �
Z ��

� ��
d�)��� exp

�
�
jx� yj
2l‘���

�
: (7.2)

Since both )��� and l‘��� are monotonically increasing,
the integral is dominated by its upper limit, viz.

hjDov�x; y�jij�j� �� � ��)� ��� exp
�
�
jx� yj

2l‘� ���

�
: (7.3)

This is the first of the two pieces determining lov.
We may arrive at a numerical estimate as follows.

Consider for definiteness our results for the Wilson gauge
action at , � 6:0, shown in Table I. A conservative guess
for the edge of the mutually isolated spectrum is �� � 0:2.
Since )�0:2� is of the order of 10�3, we find that the
integrated spectral density

R ��
� ��
d�)��� is of the order of

10�4. The total number of eigenvalues in the interval
	� ��; ��
 is given by the volume V times this integral, and
so the mean space-time separation �R between any two
eigenmodes in this spectral interval13 is �R ’ 10. Using
similar considerations to Sec. V E, this corresponds to
jh
nj
mij

2 � O�0:01�, which is certainly a small overlap.
All the modes in this spectral interval are, therefore, mu-
tually isolated.

Evaluating Eq. (7.3) for �� � 0:2 gives

hjDov�x; y�jij�j� �� � 10�4 exp
�
�
jx� yj
1:4

�
: (7.4)

This semiquantitative estimate highlights two points con-
cerning ��. First, the small prefactor signifies a large value
of �R. The latter must be appreciably larger than the support
length ls in order for the modes to be mutually isolated, and
�� must be chosen to make it so. Moreover, pushing �� to a
somewhat higher value would also increase l‘� ��� and thus
modify the coefficient in the exponent. Equation (7.4) still
integral [see, in particular, Eq. (6.3) therein].
13Note that �R measures the average separation between all

modes in the interval 	� ��; ��
, whereas R��� defined in
Sec. V E measures the average separation between modes in
an O�m1� neighborhood around �.
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provides a rough idea of the contribution of the mutually
isolated localized modes.

The modes with j�nj � �� are of two types: the localized
eigenmodes in the interval �� � j�nj � �c, and the ex-
tended modes above �c. The rise in the spectral density
near and above �c leads us to expect that the resulting
contribution to lov will be controlled by �c itself. For these
modes the analysis of Ref. [8] applies, and a comparison of
our results to theirs supports this conjecture. For , � 6:0
and m0 � �1� s � �1:4 and �1:6, Table I in Ref. [8]
reports l�1

ov ’ 0:49 and 0.45, respectively. This can be
compared to our result for the mobility edge at m0 �
�1:5, namely, �c ’ 0:41. Given the differences in the de-
tails, the close agreement may be a numerical coincidence.
Still, this suggests that the contribution of the rest of the
spectrum may indeed be dominated by the extended modes
just above the mobility edge, and that
hjDov�x; y�jij�j� �� � C exp���cjx� yj�; (7.5)
16Equation (7.7), derived from Appendix C.2 of Ref. [34],
provides a slightly better estimate of the contribution of the
localized modes than that given in Ref. [35]. Equation (7.6)
where C � O�1�. This is the second contribution to the tail
of Dov.

As explained above, the prefactor in Eq. (7.4) is bound to
be small. Comparing Eqs. (7.4) and (7.5) suggests that lov is
dominated by the mobility edge and not by the near-zero
modes. This is consistent with the results of Ref. [33].
There it is found that changing the gauge action from
Wilson to Iwasaki or to DBW2 at quenched a�1 ’
2 GeV has little effect on lov. Indeed, while the spectral
density of the localized modes is a sensitive function of the
gauge action, the mobility edge itself varies little among
the three gauge actions (see Tables X, XI, XII, and XIII and
Fig. 9). Of course, if 2l‘� ���> ��1

c the small contribution of
the near-zero modes will dominate the asymptotic tail of
Dov at large distances. For all cases we study here, how-
ever, the opposite inequality holds.

The overlap kernel’s decay rate l�1
ov can be interpreted as

the mass of unphysical degrees of freedom. In practice,
these degrees of freedom can be uncomfortably light.
Assuming lov � ��1

c , our data allow us to estimate their
mass for the pure-gauge ensembles. When the cutoff is
a�1 ’ 2 GeV, we find l�1

ov ’ 0:4� 2GeV � 800 MeV for
all three gauge actions.14 This is presumably a high enough
scale to qualify as part of the discretization errors. For
a�1 ’ 1 GeV, on the other hand, we obtain l�1

ov ’ 0:25�
1 GeV � 250 MeV for the Wilson action, 270 MeV for
Iwasaki, and 320 MeV for DBW2. This is an alarmingly
low scale for unphysical degrees of freedom.15
14This rough equality among the actions is in agreement with
the above mentioned results of Ref. [33].

15Note, in particular, the 1 GeV overlap simulations of
Ref. [25].
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C. Implications for domain-wall fermions

Our discussion of DWF will be less detailed for two
reasons. First, the theoretical background has already been
discussed in detail [7,34–36]. Also, the relevant
‘‘Hamiltonian’’ for DWF is not HW itself but the logarithm
of the fifth-dimension transfer matrix, a different (though
closely related) operator.

DWF achieve exact chirality when the number of sites
L5 in the fifth dimension tends to infinity. DWF simula-
tions are performed at finite L5, typically in the range of
10–20. The main question is what is the size of chiral
symmetry violations due to the finiteness of L5. A quanti-
tative measure of these violations is provided by the resid-
ual mass mres [22,23,36], which is the small additive
correction to the quark mass determined from the partially
conserved axial-vector current (PCAC) relation [2].
(Alternatively, mres can be determined from the extrapola-
tion of the pion mass to the chiral limit.) Here, too, there
are two terms that can be ascribed to extended and local-
ized modes,

mres � C1 exp��~�cL5� �
C2

L5
; (7.6)

where C1 � O�1� comes from the extended modes near the
mobility edge and

C 2 � L5

Z 1=L5

�1=L5

d�~)��� � ~)�1=L5� (7.7)

comes from the low-lying, localized modes. Because of the
rapidly growing spectral density, the localized modes’
contribution is dominated by modes with j�nj � 1=L5;
we ignore a power-law correction to the extended modes’
contribution.16 The tildes indicate spectral quantities of the
new ‘‘Hamiltonian,’’

~H � � log�T2�=�2a5�; (7.8)

where T�a5� is the transfer matrix for hopping in the fifth
direction and a5 is the corresponding lattice spacing (con-
ventional DWF have a5 � 1).

The ‘‘Hamiltonians’’ HW and ~H share identical zero
modes [2]. Thus we expect that for the near-zero modes,
the spectral density (and other properties) of ~H is fairly
close to that of HW . Replacing ~)��� by )��� in Eq. (7.7)
should yield a reasonably good approximation. On the
other hand, further away from � � 0 the spectra of ~H
and HW need not be equal. In particular the mobility edges
corrects the discussion of the near-zero modes’ contribution to
mres given in Ref. [7]. In particular, Eq. (6.12) therein as well as
the first term on the right-hand side of Eq. (7.1) there are
erroneous. The limits of integration in Eq. (7.7) here come of
demanding that exp���L5� � O�1� for modes included in the
integral.
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could be quite different. Nonetheless, again because of the
identity of the zero modes, the mobility edges of ~H andHW

reach zero simultaneously. Thus the same Aoki phase
defines the forbidden region for both overlap and DWF.

As noted, the numerical results of this paper are relevant
for determining the near-zero modes’ contribution to mres,
but separate calculations would be needed to determine ~�c,
the mobility edge of ~H, which governs the extended
modes’ contribution to mres. One can alternatively deter-
mine these quantities by calculating the residual mass as a
function of L5 [22,23,36] and fitting to Eq. (7.6).

Equation (7.6) shows that, unlike overlap fermions, the
physics of finite-L5 DWF simulation and, in particular, the
value of mres, are sensitive functions of the near-zero
modes of ~H (or of HW). In quenched DWF simulations,
using the Iwasaki or DBW2 actions allows reaching negli-
gibly small values ofmres [22,23]. For overlap simulations,
on the other hand, these gauge actions are advantageous for
a technical reason: overlap simulations require an exact
treatment (within numerical precision) of all the Wilson
eigenvalues in a certain interval 	��; �
, and reducing the
number of modes in this interval speeds up the simulation.
We note that there exist versions of DWF, in particular, the
so-called Möbius fermions [37], where the near-zero
modes’ contribution to mres decreases much faster with
L5 (see also [38–40]).
17If it turns out that the A and C regions in Fig. 1 are separated
by first-order transitions instead of fingers, the Wilson pion may
still have a very small mass near the transitions [17,41].
D. SUMMARY

The continuum limit of lattice QCD with either DWF or
overlap fermions can be taken while letting m0 ! �1.
Since all correlation lengths associated with the Wilson
operator itself remain finite in lattice units, there is little
doubt that the continuum limit is correct, and that no
unphysical excitations can survive it. Issues addressed in
this paper have to do with MC simulations at finite lattice
spacing.

Using Green function techniques, we have determined
the mobility edge of the Hermitian Wilson operator for a
number of pure-gauge ensembles with plaquette, Iwasaki
and DBW2 gauge actions. Our results allow mapping a
portion of the (quenched) Aoki phase diagram. Where the
mobility edge is nonzero, we have also characterized the
localized spectrum in terms of an average support length
and an average localization length, the latter determined
from the asymptotic decay rate of the mode density.

Our results are of direct relevance to the overlap opera-
tor. For the near-zero modes, or, more precisely, for the
mutually isolated subspace of the localized modes, we
found that the localization length is consistently smaller
than the support length. We have also found that twice the
localization length is not bigger than the inverse mobility
edge. Together, these findings imply that the near-zero
modes play little role in setting the range of the overlap
operator.
034501
We argue that the range of the overlap operator is set by,
and is roughly equal to, the inverse mobility edge. Our
results for the mobility edge suggest that it is fairly safe to
perform (quenched) overlap simulations at a�1 � 2 GeV.
The same is not true when the cutoff is 1 GeV; for all three
gauge actions we find that the standard overlap operator is
likely to contain unphysical quarklike degrees of freedom
as light as 250–300 MeV. This casts serious doubt on the
validity of 1 GeV overlap simulations. In general, the
determination of the range of the overlap operator is an
important test that must be carried out for any new overlap
simulation.

Closely related to the mobility edge is the mass of the
lowest pseudoscalar excitation of the Wilson-fermion ac-
tion—Wilson’s original would-be pion. It, too, is a non-
physical excitation where the overlap operator is
concerned. Where we demand that couplings be chosen
such that the mobility edge is far from zero, the same can
be said of the mass of the Wilson pion.17

Obtaining the corresponding information for DWF will
require the study of a different ‘‘Hamiltonian,’’ the loga-
rithm of the fifth-dimension transfer matrix, ~H. In particu-
lar, it is important to study the range of the effective four-
dimensional operator Deff obtained by integrating out the
five-dimensional bulk modes and the pseudofermions [38],
and to determine how the range ofDeff is affected by ~H as a
function of L5 and a5. The near-zero spectrum of ~H is
similar to that of the Wilson operator, and we are thus able
to confirm the picture that the near-zero modes (of either
HW or ~H) make a major contribution to the residual mass.

Last, we note that numerical simulations with dynamical
DWF [24] (or dynamical overlap fermions) require the
largest available computers. Not only production runs,
but also exploratory runs are very expensive. The process
of closing in on an optimal set of simulation parameters
can greatly benefit from the (low-cost) determination of the
quantities studied here—the mobility edge and the char-
acteristics of the localized modes.
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