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We study the �QCD=MB corrections from subleading shape functions in inclusive B-meson decays. We
propose a natural and smooth interpolation from the endpoint region to the full phase space, and derive
expressions for the triple differential decay rate in B ! Xu‘ ��‘ and the photon energy spectrum in B !
Xs	. Our results are valid to order �QCD=MB for hadronic invariant masses of order �QCDMB and to order
�2

QCD=M2
B for larger hadronic masses. They allow a systematic investigation of the transition between the

separate regimes of the local and nonlocal expansions, and can be used to study decay distributions in any
kinematic variables. We consider several examples of interest and point out that a combined measurement
of hadronic energy and invariant mass provides an alternative to the extraction of jVubj which is largely
independent of shape-function effects and in principle allows a higher accuracy than the combined
measurement of leptonic and hadronic invariant masses. We perform the expansion directly in QCD light-
cone operators, and give a discussion of the general basis of light-cone operators. Reparametrization
invariance under the change of the light-cone direction reduces the number of independent shape
functions. We show that differing previous results for the lepton energy spectrum obtained from different
choices of light-cone coordinates are in agreement.
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I. INTRODUCTION

Inclusive decays of B mesons offer a rich environment to
explore the flavor sector of the standard model and to
search for new physics in radiative decays. Moment analy-
ses of B ! Xc‘ ��‘ decay distributions have provided a
precision measurement of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element jVcbj at the two-percent
level, along with an extraction of the b-quark and c-quark
masses, and higher order hadronic parameters [1–3].
Similarly, the study of inclusive decays B ! Xu‘ ��‘ allows
for an extraction of jVubj with current errors of 10%–15%
[4–9].

The conventional treatment of inclusive B decays relies
on a local operator product expansion (OPE) in inverse
powers of the large momentum Q transferred to the had-
ronic system [10–15]. However, for b ! u transitions,
tight experimental cuts are needed to suppress the over-
whelming charm background. They usually put the kine-
matics close to the boundary of phase space where the final
hadronic system has large energy in the B-meson rest
frame but small invariant mass. That is, Q lies close to
the light-cone with Q2 being much smaller than pB � Q.
Consequently, the OPE in local operators breaks down.
The large and small components of Q can be separated
by employing light-cone coordinates. The local OPE can
then be replaced by an OPE in nonlocal light-cone opera-
tors [16], which only expands in inverse powers of the
remaining large components of Q.

The leading term in this so-called twist expansion has
been known for some time now [17–20]. When going
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beyond the tree-level approximation the separation of
short- and long-distance contributions becomes important
and schematically leads to a decay rate of the form [21]

d� � H � J � S;

which is factorized into a hard contribution multiplying the
convolution of a jet and soft contribution. The hard, jet, and
soft contributions are associated with the different scales
m2

b � �QCDmb � �2
QCD. The matrix elements parame-

trizing the soft contributions are usually referred to as
shape functions.

With the current experimental reach of precision, the
investigation of subleading twist corrections in �QCD=mb

has become important. They were considered at tree level
for the photon energy spectrum in B ! Xs	 [16] and the
lepton energy spectrum [22,23] and hadronic invariant
mass spectrum [24] in B ! Xu‘ ��‘. Baryonic decays have
also been considered [25]. The first investigation of sub-
leading twist corrections in B ! Xc‘ ��‘ was given recently
in Ref. [26], and it was discovered that the matching of
some subleading contributions in the earlier B ! Xu‘ ��‘
result [23] are incorrect.

Beyond the tree-level approximation, the factorization
into hard, jet, and soft contributions at subleading order in
�QCD=mb was first worked out by Lee and Stewart [27]
within the framework of soft collinear effective theory
(SCET). They investigated the general structure of sub-
leading corrections, and gave results for decay rates to
O��QCD=mb	, including the full triple differential rate in
B ! Xu‘ ��‘. The latter was also derived by Bosch,
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Neubert, and Paz [28]. An analysis similar to Ref. [27] was
carried out by Beneke et al. [29], too. In all cases, the
subleading twist corrections to the differential decay rates
were still given at tree level, mainly due to the increased
complexity of the contributions arising beyond that.

In addition, it is usually difficult to assess how far away
from their literal expansion region the twist or local ex-
pansions are still valid, and where the transition between
them occurs. Having a single description for the entire
phase space improves this situation. By comparing it
with the predictions of the twist or local expansion, one
can systematically investigate where the corrections to the
local or twist expansion results become large.

In Ref. [26] it was shown for the lepton energy spectrum
in B ! Xu;c‘ ��‘ that the standard twist expansion can be
modified, such that it becomes valid over the entire phase
space. In the present paper we extend this approach to the
triple differential decay rate in B ! Xu‘ ��‘ and the photon
energy spectrum in B ! Xs	. Our results are exact to
O��QCD=MB	 for hadronic invariant masses sH 


O��QCDMB	 and to O��2
QCD=M2

B	 away from this region.
In particular, they contain the complete known result for
the rate to O��2

QCD=M2
B	 in the local OPE region, plus

some higher order corrections.
The results in Refs. [27–29] were obtained by first

matching QCD onto SCET, which acts at the intermediate
scale �2 � �QCDMB and allows one to take into account
perturbative corrections at this scale and sum logarithms
between the hard and intermediate scales. In the second
step SCET is matched onto heavy-quark effective theory
(HQET). However, since we only work at tree level, there
is no need to introduce an intermediate scale and go
through this two-step matching procedure. Instead, we
directly perform an expansion in QCD light-cone opera-
tors. The advantage of using QCD rather than HQET light-
cone operators is that it preserves the structure of the light-
cone OPE, not mixing it with the separate expansion of
QCD in HQET. It allows us to define shape functions in
QCD, which automatically combine all higher order
HQET shape functions that would normally arise from
expanding QCD in HQET.

In the following section we give the basic ingredients to
our calculation and discuss the power counting. In Sec. III
we discuss the general basis of light-cone operators and
their parametrization in terms of shape functions. In
Sec. III C we include a discussion of reparametrization
invariance under the change of the light-cone direction,
which reduces the number of independent shape functions.
In particular, we show that the results for the B ! Xu‘ ��‘
lepton energy spectrum derived in Ref. [26] and with a
different choice of light-cone direction in Refs. [27,28] are
in agreement. Sec. IV contains the matching calculation
and the results for the light-cone OPE. The results for the
differential decay distributions are presented and discussed
in Sec. V, and we conclude in Sec. VI.
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II. BASIC INGREDIENTS AND POWER COUNTING

A. Hadronic tensor and decay rates

We are interested in the semileptonic decay B ! Xu‘ ��‘
and the radiative decay B ! Xs	. The effective weak
Hamiltonian for the semileptonic decay is

Hu
W �

4GF���
2

p Vub� �u	�PLb	� �‘	�PL�‘	; (1)

with PL � �1� 	5	=2, from which one obtains the triple
differential decay rate in the rest frame of the B meson [30]

d3�u

dE‘dE�dq2
� 48�u

0L��Wu
����E‘	��q

2	��4E‘E� � q2	;

(2)

where

�u
0 �

G2
FjVubj

2

192�3 : (3)

Note that we do not include the usual factor of m5
b in �0.

The momentum q � p‘ 
 p� is the total leptonic momen-
tum, E‘ and E� are the charged lepton and neutrino ener-
gies in the rest frame of the decaying B meson, and we
explicitly kept all phase space limits. The leptonic tensor is
L�� � Tr�6p�	� 6p‘	�PL� and Wu

�� denotes the hadronic
tensor.

For the radiative decay B ! Xs	 the effective weak
Hamiltonian has the form

Hs
W � �

4GF���
2

p VtbV�
tsC

eff
7 �mb	O7 with

O7 �
e

16�2
�s%��F��� �mbPR 
 �msPL	b: (4)

Here, F�� denotes the electromagnetic field strength,
PR;L � �1� 	5	=2. We restrict our discussion to the dipole
operator O7 and neglect the tiny s-quark mass. The photon
energy spectrum in the B rest frame is

d�s

dE	
� 8�s

0E
3
	��E		"

�"��Ws
��: (5)

In this case

�s
0 �

G2
FjVtbV�

tsj
2jCeff

7 �mb	j
2�em �m2

b�mb	

32�4 ; (6)

where we only included the �m2
b from the effective weak

Hamiltonian. Summing over the photon polarization in
Eq. (5) yields

P
"�"�� � �(��.

The optical theorem allows one to express the hadronic
tensor Wf

�� as the forward scattering matrix element

Wf
�� �

hBjTf
��jBi

2MB
� hTf

��iB; (7)

where f is either u or s. We will use the shorthand
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1We use the label b to distinguish the conventional definition
kb � pb � mbv from ours.
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hOiB � hB�pB	jOjB�pB	i=2MB to denote the B expecta-
tion value of some operator O between physical B-meson
states. The operator Tf

�� is defined as the imaginary part of
the time-ordered product of two effective weak currents,

Tf
�� � �

1

�
Im

�
�i

Z
d4xe�iq�xT�Jfy

� �x	Jf
��0	�

�
: (8)

The momentum q is the momentum transferred away from
the hadronic system, i.e.,

q � p‘ 
 p� �f � u	 and q � p	 �f � s	: (9)

The currents for f � u; s following from Eqs. (1) and (4)
are

Ju
� � �u	�PLb; Js

� � �s �n6 	?�PRb: (10)

To write Js
� we already used the definitions from Eqs. (14)

and (15) below. We will skip the flavor label f in the
following when unnecessary.

B. Light-cone coordinates and hadronic variables

As usual, we denote the B-meson velocity by v, and
define light-cone coordinates by specifying two light-cone
vectors n and �n, satisfying

n2 � �n2 � 0; n � �n � 2; and 2v � n 
 �n: (11)

We use round or square brackets on indices to denote
complete symmetrization or antisymmetrization, e.g.,

n�� �n�	 �
1

2
�n� �n� 
 n� �n�	;

n�� �n�� �
1

2
�n� �n� � n� �n�	:

(12)

The metric and Levi-Civita tensors are decomposed as (we
use "0123 � 1)

(�� � n�� �n�	 
 (��
? and "��./ � 6"���

? �n.n/�: (13)

The second relation defines "��
? � "��./n. �n/=2. A ge-

neric four-vector p can be written as

p� �
1

2
p�n� 


1

2
p
 �n� 
 p�

?; (14)

with p
 � n � p, p� � �n � p, and p�
? � (��

? p�.
The direction of the light cone is fixed by setting n �

�q=jqj, i.e.,

q? � 0; q� � q0 � jqj; and thus q� � q
: (15)

For f � s this means q
 � 2E	 and q� � 0. For f � u
we have q2 � q
q� and E� � �q
 
 q�	=2� E‘, and we
choose E‘ and q� as our independent variables.

Usually, the hadronic tensor is decomposed into five
scalar structure functions. For our purposes it will be
most convenient to decompose it according to its light-
cone structure,
034036
W�� � �
1

2
�( 
 i"	��

? W1 �
1

2
�( � i"	��

? W2

� n�� �n�	W3 
 n�n�W4 
 �n� �n�W5: (16)

The structure functions Wi are scalar functions of q
 and
q�. In terms of these and changing variables from q2 and
E� to q� the triple differential rate (2) takes the form

d3�u

dE‘dq
dq�

�
48�u

0

q
 � q�

�q
q�� �q2
�Wu

1 
 �q2

Wu

2 	

� 2 �q
 �q��q
q�Wu
3 
 q2


Wu
4 
 q2

�Wu
5 		

� ��q�	��2E‘ � q�	��q
 � 2E‘	; (17)

where we defined �q� � q� � 2E‘. Integrating over E‘, the
double differential rate becomes

d2�u

dq
dq�

� 8�u
0�q
 � q�	

2�q
q��Wu
1 
 Wu

2 
 Wu
3 	


 q2

Wu

4 
 q2
�Wu

5 	��q�	��q
 � q�	: (18)

For B ! Xs	, the photon spectrum (5) takes the form

d�s

dE	
� 8�s

0E3
	��E		�W

s
1 
 Ws

2 
 2Ws
3	: (19)

Usually, the hadronic tensor is computed in terms of
partonic variables. To express the decay rates in terms of
hadronic variables, the total parton momentum mbv � q is
reexpressed in terms of the total hadronic momentum P �
MBv � q. For example, the light-cone component mb �
q
 is shifted to P
 � MB � q
 � mb 
 . � q
, where
. � MB � mb denotes the difference between the physical
B-meson and b-quark masses. Since . 
O��QCD	, this
change of variables yields an additional source of power
corrections, which has to be taken care of when working to
subleading order.

We follow a different approach and directly incorporate
the hadronic variables in the OPE, because as discussed in
Sec. II D, they are better suited for an exact treatment of the
phase space in the twist expansion. Usually, the OPE is
constructed by splitting the b-quark momentum as
pb � mbv 
 kb

1 and expanding in kb. Instead, we use

pb � MBv � .v 
 kb � MBv 
 k and

k � pb � MBv � kb � .v; (20)

and expand in k. That is, we shift the residual momentum k
by .v compared to the conventional choice kb � pb �
mbv. This is allowed, because k is only defined up to
O��QCD	, and corresponds to constructing HQET with a
residual mass term 2m � . [31]. On the operator level kb
and k turn into
-3
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iDb � iD � mbv; iD � iD � MBv � iDb � .v;

(21)

where iD is the full QCD covariant derivative correspond-
ing to pb.

The momentum Q transferred to the hadronic system
becomes

Q � pb � q � MBv � q 
 k � P 
 k with

P � MBv � q: (22)

In light-cone coordinates,

P� � MB � q� � P0 � jPj;

P? � 0; and k� � kb� � .; k? � kb?:
(23)

The decay rates will now explicitly contain only MB, while
all dependence on mb or . enters as higher order correc-
tions through k�, i.e., through the shape functions. In the
local OPE this corresponds to reexpanding mb as MB � .,
which normally does not yield a very good approximation
to the local result, since it introduces sizable 1=mb correc-
tions, which are otherwise absent. However, this is not an
issue in our case, since we are going to treat the complete
k
 dependence exactly, as described below. Concerning
k�, the contributions proportional to kn

� vanish at tree level
for a massless final-state quark, the first nonzero term
involving k� being of the form k�k? � �kb� � .	k?.
Therefore, when expanded in the local OPE, we effectively
only expand the mb dependence of a certain class of higher
order 1=m2

b corrections, which should yield a very good
approximation.

C. Definition of power counting

For the purpose of our discussion we formulate both
local and twist expansion in terms of hadronic variables. In
light-cone coordinates, the local OPE is obtained by writ-
ing

Q� � P�

�
1


k�
P�

�
n�

2

 P


�
1


k

P


�
�n�

2

 k�

?;

Q2 � P
P�

�
1


k

P




k�
P�



k
k� 
 k2?

P
P�

�
;

and expanding in powers of � � �QCD=MB, where P� and
k are treated as

P� 
O�MB	; k�; k? 
O��QCD	: (24)

We will refer to this as ‘‘local power counting.’’ The
components of k are always O��QCD	, but the size of P�

varies over the phase space. When P
 becomes O��QCD	,
k
=P
 
O�1	 is not a valid expansion parameter any-
more, and the local OPE breaks down.

The twist expansion avoids this breakdown by not ex-
panding the k
 dependence of Q in k
=P
. Usually, the
formal way to achieve this is to assign the power counting
034036
P� 
O�MB	; P
 
O��QCD	;

k�; k? 
O��QCD	;
(25)

which we refer to as ‘‘twist power counting.’’ As P
 is
explicitly counted as O��QCD	, an expansion in k
=P
 is
forbidden. However, at the same time the validity of the
expansion is restricted to the phase space region where P


is small, which is called the shape-function region. In
particular, the strict application of Eq. (25) leads to an
expansion in powers of P
=P�, including leptonic tensor
and phase space, which introduces sizable errors due to
neglected higher order terms.

However, we can choose a different approach, such that
the twist expansion becomes valid over the entire phase
space. The basic idea is to treat P
 as an exact kinematic
variable, i.e., to not count it as O��QCD	. At the same time
we still do not expand in k
 to avoid the breakdown of the
local OPE. In other words, we only expand in k� and k?
from the very beginning. To formalize this approach we
define the power counting

k�
MB


O�"	;
k?
MB


O�"	: (26a)

Here, " is meant to be a formal expansion parameter that
counts powers of k� and k?. When expanding in ", we
treat all other quantities, including k
 and P
, as exact. In
particular, we do not expand in P
=P�, as is done in the
standard twist expansion. This modification of the usual
twist expansion was applied in Ref. [26] to the lepton
energy spectrum in B ! Xu;c‘ ��‘, where the energy release
MB � 2E‘ plays the role of P
. On the operator level
Eq. (26a) turns into

iD�

MB

O�"	;

iD?

MB

O�"	; (26b)

where " now counts the number of explicit covariant
derivatives of a given light-cone operator. This already
implies that expanding to O�"n	 automatically contains
the full result to O��n	 in the local power counting. We
perform the light-cone OPE to O�"2	, that is, we obtain the
full OPE coefficients of any appearing operator with up to
two explicit covariant derivatives, which includes all cor-
rections of subleading order in the twist power counting.

The size of an actual term in the expansion, for instance
k2?=P
P�, still depends on the region of phase space, i.e.
the size of P�. Since we do not count P� in any way,
powers of " do not correspond to powers of � �

�QCD=MB, which is why we use " rather than � to define
the power counting. It also means that the accuracy in � of
our expansion varies over the phase space.

The phase space regions where the standard local and
twist expansions are valid are pictured in Fig. 1. For
illustration, we take � � 0:1 and show the regions where
the respective expansion parameters are less than

����
�

p
.
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FIG. 1 (color online). Phase space regions in the P� plane as
discussed in the text. The solid line shows sH=M2

B � � and the
dashed one sH � M2

D. The light (orange) filled region is
P
=P� <

����
�

p
, the light (green) and dark (violet) hatched re-

gions are P
=MB >
����
�

p
and P�=MB <

����
�

p
, and the dark (vio-

let) filled region is the resonance region with P�=MB < �. We
take � � 0:1 in all cases.
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Region I with P
 
O�MB	 is the region of the standard
local OPE, and the light (green) hatched area corresponds
to �QCD=P
 <

����
�

p
. Region II is the domain of the stan-

dard twist expansion P
 
O��QCD	, P
=P� 
O��	,
and the light (orange) filled area shows P
=P� <

����
�

p
.

The dark (violet) edge is the resonance region P�=MB <
�, where the inclusive treatment is invalid, and the ex-
pansions necessarily break down. The dark (violet) hatched
area �QCD=P� >

����
�

p
shows the transition into the reso-

nance region. In region III, the vicinity of P
=MB 


P�=MB 

����
�

p
, the local OPE is also applicable, except

that the expansion is only in powers of
����
�

p
. The expansion

in " is valid anywhere away from the resonance region, and
therefore provides a natural and smooth interpolation be-
TABLE I. Scaling of expansion parameters in th
of phase space. The regions are shown in Fig. 1

Region Standard OPE sH=M2
B P
=MB

I local 1 1
II twist � �
III

����������
local

p
�

����
�

p

assigned po

034036
tween the separate regimes of standard local and twist
expansion.

To investigate the accuracy of our expansion, we write
Q� as

Q� �
1

2
P�

�
n� 


P
 
 k

P�

�n� 

k�
P�

n� 
 2
k�
?

P�

�
: (27)

We can see that Q� itself contains an O��0	 piece propor-
tional to n. Taking the square,

Q2 � P2
�

�
0


P
 
 k

P�



P
 
 k


P�

k�
P�



k2?
P2
�

�

� �P
 
 k
	P�

�
1


k�
P�



k2?

�P
 
 k
	P�

�
; (28)

the leading term n2 � 0 vanishes, and the next largest term
is �P
 
 k
	=P�. The scaling in � for the various terms in
Eqs. (27) and (28) in regions I, II, and III is summarized in
Table I. It shows that an expansion to O�"2	 is exact to
O��2	 in region I, i.e., for sH 
O�M2

B	, and to O��	 in
regions II and III, i.e., for sH 
O��QCDMB	. In particular,
it includes all standard twist corrections of O��	, as well as
the complete local O��2	 result. The largest corrections
occur in region III, where they are only suppressed by
powers of

����
�

p
. In regions I and II the higher order correc-

tions are suppressed by �.
To explicitly see the difference to the standard twist

expansion, we take a closer look at Eqs. (27) and (28).
The k� and k2? terms in Q2 are both twist O��	, but O�"	
and O�"2	. In Q� itself, e.g. when multiplied by 	�, the k�
and k? terms are either twist O��	 or O�"	. These are the
only terms, which have a power of ". Therefore, expanding
to O�"2	 includes all corrections of subleading twist. In
addition it includes the O��2	 twist terms k2�=P2

� and
k�k?=P2

�. These are precisely the O��2	 twist contribu-
tions whose local expansions contain a local O��2	 term.
Their inclusion achieves the accuracy to local O��2	. Note
that we do not claim to include all O��2	 twist contribu-
tions, which would require to include the terms �k2?	

2,
k�k2?, and k?k2?. But the expansion to O�"2	 is correct
to O��2	 in region I, and hence to O��	 in region III.

The second type of terms are those proportional to
P
=P�, which are twist O��	, but local O�1	. Ex-
panding these ‘‘kinematic’’ twist terms restricts the stan-
e construction of the OPE for different regions
and discussed in the text.

P�=MB
k

P


P

k

P�

k�;k?
P�

k2
?

�P

k
	P�

1 � 1 � �2

1 1 � � �����
�

p ����
�

p
1

����
�

p
�

wer in ": 1 1 " "2
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dard twist expansion to small P
. In Q�, the standard twist
expansion also expands the term �P
 
 k
	=P� 
O��	.
In contrast, we do not assign a power counting to it and
treat it exactly. As mentioned before, all kinematic factors
from leptonic tensor and phase space are usually also
treated as kinematic twist terms and expanded in P
=P�.
Since they are unrelated to the OPE, we can treat them
exactly, too. In summary, our expansion keeps all kine-
matic twist contributions, which makes it valid over the
entire phase space.

D. Phase space and hadronic vs partonic variables

In this section, we point out a subtlety in the treatment of
the phase space. Fundamentally, the hadronic tensor itself
only contains the overall momentum conservation, while
the remaining phase space limits are contained as � func-
tions in the decay rates. Taking the double differential rate
(18) as example, these are ��mb � p�	��p� � p
	, where
p � mbv � q is the total parton momentum.

As defined in Eqs. (7) and (8), the hadronic tensor Wf

has support for positive and negative values of P�, where
the negative values correspond to different physical pro-
cesses. In particular, its support is a priori not restricted to
0 � p�. Rather, when evaluating the imaginary part in Tf

one has to pick out the cut corresponding to 0 � P�. In the
local OPE the hadronic tensor contains at tree level the
partonic momentum conservation

2�p2	 � 2�p
p�	 �
1

p�

2�p
	

�
��p�	 � ���p�	

p�

2�p
	: (29)

The two terms in the last expression correspond to the two
different cuts. The 2 function sets p
 � 0, with which the
� functions become ��mb � p�	��p�	. Therefore, the
hadronic tensor is only evaluated for 0 � p� � mb, which
automatically picks out the correct cut.

Using the partonic variable p in the twist expansion, the
momentum conservation will be

2��p
 � !	p�	 �
��p�	 � ���p�	

p�

2�p
 � !	; (30)

where ! is the argument of the shape functions with
support �. � !. With p
 � ! the phase space limits
are ! � p� � mb, and p� can become negative. To pick
the first term in Eq. (30) we must require 0 � p� by hand.
This results in different limits on p� depending on the sign
of !, namely, 0 � ! � p� � mb or ! � 0 � p� � mb,
which is rather cumbersome. One could argue that this is
irrelevant, since the twist expansion is only valid for large
p� 
O�mb	 anyway. Also, upon integration over p�, the
difference between ! � p� and 0 � p� will be of higher
order. However, since 0 � p� restricts P� to . � P�, this
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seems to disallow an exact treatment of the phase space,
which is what we aim for.

The problem is that we want hadronic phase space
boundaries, while the partonic variables force us to expand
around partonic phase space. In hadronic variables, the �
functions are ��MB � P�	��P� � P
	. Using P instead of
p, the momentum conservation will be

2��P
 � !	P�	 �
��P�	 � ���P�	

P�

2�P
 � !	; (31)
giving the limits ! � P� � MB. Since the support of the
shape functions is now 0 � !, this again picks out the
correct cut by itself. In particular, P� can now extend into
the region 0 � P� � .. To summarize, we obtain 0 �
P
 � P� � MB. These are the physical phase space
boundaries, provided we neglect the mass of the � meson,
which is much smaller than �QCD. At present there is no
way to consistently include the effects of m�, because the
twist expansion can only account for the nonperturbative
effects due to the initial B meson.
III. QCD LIGHT-CONE OPERATORS

A. General operator basis

All light-cone operators to O�"2	 can be derived from
the three kernels

K�
0 �!	 � �b2�iD
 
!	�b;

K��
1 �!1;!2	 � �b2�iD
 
!1	iD

�2�iD
 
!2	�b;

K���
2 �!1;!2;!3	 � �b2�iD
 
!1	iD

�2�iD
 
!2	

� iD�2�iD
 
!3	�b; (32)
where � is some generic Dirac structure, and the b-quark
fields are full QCD fields. When parametrizing the opera-
tors in Sec. III B we take iD � iD � MBv, according to
Eq. (21), but the general discussion in this section is
independent of the specific definition of D and !. Since
K�

1 �!1; !2	 and K�
2 �!1; !2; !3	 depend on more than

one variable, their parametrizations yield shape functions
of two and three variables. In Refs. [27,29] such parame-
trizations are given for the SCET equivalents of these
kernels. At tree level only bi-local operators appear, and
therefore only integrals of the above operator kernels are
needed. In the same way, the shape functions appearing at
tree level only depend on one variable, and are effective
combinations of the multivariable functions [27,29].

To save some writing, we abbreviate the Wilson lines as
2
�!	 � 2�iD
 
 !	. The complete set of bi-local op-
erators to O�"2	 is
-6
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O�
0 �!	 � �b2
�!	�b;

O��
1 �!	 � 20

12�!	 �b2
�!1	iD
�2
�!2	�b;

O���
2 �!	 � 200

123�!	 �b2
�!1	iD
�2
�!2	iD

�2
�!3	�b;

O��
3;4 �!	 �

1

2
�b�iD�2
�!	 � 2
�!	iD�	�b;

O���
5 �!	 � 20

12�!	 �b2
�!1	iD
�iD�2
�!2	�b;

O���
6;7 �!	 �

1

2
20
12�!	 �b�iD�2
�!1	iD

�2
�!2	

� 2
�!1	iD
�2
�!2	iD

�	�b;

O���
8 �!	 � �biD�2
�!	iD��b;

O���
9;10 �!	 �

1

2
�b�iD�iD�2
�!	 � 2
�!	iD�iD��	b;

(33)

where the upper and lower sign belongs to the first and
second label, respectively. Note the particular assignment
of the Lorentz indices for O���

6;7 �!	 and O���
9;10 �!	, which

turns out to be useful for parametrizing them. For later
convenience we define O�

i �!	 � �bOi�!	�b. That is, we
drop the label � when referring to the derivative structure
only, e.g., O�

1 �!	 � 20
122
�!1	iD

�2
�!2	.

FULL-PHASE-SPACE TWIST EXPANSION IN . . .
034036
The 2-function factors 20
12�!	 and 200

123�!	 are defined
as

20
12�!	 �

Z
d!1d!2

2�! � !1	 � 2�! � !2	

!1 � !2

�
Z

d!1d!2

�
2�!01	

!02



2�!02	

!01

�
;

200
123�!	 �

Z d!320
12�!	 � d!12

0
23�!	

!1 � !3

�
Z

d!1d!2d!3

�
2�!01	

!02!03



2�!02	

!01!03



2�!03	

!01!02

�
;

(34)

with !ij � !i � !j and !0 � !. They are completely
symmetric in the !i and include implicit integrations
over !1; !2 and !1; !2; !3, respectively. They satisfy

20
12�!	2�!1	2�!2	 � �20�!	;

200
123�!	2�!1	2�!2	2�!3	 �

1

2
200�!	:

(35)

The factors in brackets on the right-hand sides of
Eqs. (34) arise as the imaginary parts
�
1

�
Im

1

�!01 
 i"	�!02 
 i"	
�

2�!01	

!02



2�!02	

!01
; (36a)

�
1

�
Im

1

�!01 
 i"	�!02 
 i"	�!03 
 i"	
�

2�!01	

!02!03



2�!02	

!01!03



2�!03	

!01!02
: (36b)
In Refs. [27,29] the right-hand side of Eq. (36b) contains
an additional piece ��22�!01	2�!02	2�!03	, which we
think should not be there. Equations (36) are defined upon
integration over !. Taking the imaginary part together with
the i" prescription picks out the poles at ! � !1; !2; !3,
and the replacements in Eqs. (36) are a formal way of
achieving the same. Taking the limit !2; !3 ! !1 on both
sides, Eqs. (36) reduce to the n � 1; 2 cases of the standard
formula

�
1

�
Im

1

�!01 
 i"	n
1 �
��1	n

n!
2�n	�!01	:

The operators in Eq. (33) are not completely indepen-
dent with respect to their Lorentz structure. An operator of
O�"n	 reduces to one of O�"n�1	 when any derivative next
to a Wilson line is contracted with n�. For example, using
Eq. (35), we have

n�O
��
1 �!	 � �!O�

0 �!		0; n�O
��
3 �!	 � �!O�

0 �!	;

n�O
��
4 �!	 � 0; (37)

where the prime denotes the derivative with respect to !.
This simply means that only D� and D? (or equivalently
v �D and D?) in the operators are independent structures,
which reduces the number of shape functions needed to
parametrize the operators. The full set of such relations is
given in the Appendix.

Another comment concerns the twist order of the opera-
tors in Eq. (33). Formally, the factors of 20

12�!	 and
200
123�!	 reduce the twist order of an operator. For instance,

O�
1;2�!	 are formally of leading twist. Nevertheless, the

discussion in Sec. II C shows that they do describe sub- or
subsubleading twist corrections, because they contain ex-
plicit derivatives. Therefore, they must have coefficients of
higher twist order. We will see an example of this in
Sec. IVA 1. This involves the standard twist power count-
ing, for one has to consider the operators and their coef-
ficients. In this respect, our power counting is more
transparent.

B. Shape functions

In this subsection we take iD � iD � MBv. The pa-
rametrization of the operators also depends on the specific
Dirac structure �. We need � � 	� and � � 	�	5, and
-7
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define

O �
i �!	 � �bOi�!		�b; P �

i �!	 � �bOi�!		�	5b:

(38)

We follow the notation of Ref. [26] where possible.2

Schematically,

hO�
i �!	iB � �Fi; Gi	�!	v� 
 �Ki; Mi	�!	�n � v	�


 Li�!	(�
?;

hP �
i �!	iB � Hi�!	�n � v	� 
 Ni�!	v� 
 Ri�!	i"�

?;

(39)

where �Fi; Gi	�!	 stands for Fi�!	 or Gi�!	. In the heavy-
quark limit, the 	� in O�

i �!	 is parallel to v�. Therefore,
Fi�!	 and Gi�!	 contain the leading contribution, while
the functions Ki�!	, Li�!	, and Mi�!	 are suppressed by
1=mb because v � �n � v	 � v � (? � 0. They contain all
higher order corrections in 1=mb perpendicular to v� that
would arise from expanding the b-quark field. Similarly,
the axial vector 	�	5 in P�

i �!	 is perpendicular to v� at
leading order in 1=mb, and all contributions parallel to v�

are suppressed by 1=mb. Similarly, there will be 1=mb
suppressions from the HQET equations of motion, see
below.

1. The leading operator

The B expectation value of the leading operator is

hO�
0 �!	iB � F0�!	v� 
 K0�!	�n � v	�;

hP �
0 �!	iB � 0;

(40)

which defines the QCD shape functions F0�!	 and K0�!	.
This is exact, i.e., there are no higher order corrections on
the right-hand side. The support of the shape functions is
0 � ! � MB. Strictly speaking, the upper limit is MB
rather than 1, because Eq. (40) contains no reference to
the heavy-quark limit. The matrix element of P�

0 �!	 van-
ishes by parity invariance.

Using iD � iDb � .v instead of iDb in the leading
operator only shifts the argument of the shape functions by
., such that F0�! 
 .	, K0�! 
 .	 correspond to the
functions defined in Ref. [26]. Their expansion into the
usual HQET shape functions [16] is

F0�!	 � f�! � .	 

1

2mb
t�! � .	 
 � � � ;

K0�!	 �
�! � .	

mb
f�! � .	 


1

mb
h1�! � .	 
 � � � ;

(41)

which explicitly shows the 1=mb suppression of K0�!	.
The QCD shape functions automatically contain the ap-
2In Ref. [26] the operators are defined in terms of iDb, which
shifts the shape functions’ argument by ..
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propriate combinations of HQET shape functions that arise
from expanding the QCD fields and states. This is in fact
very similar to the local expansion, where the parameters
�2

�;G are defined using the full QCD states, and thus differ
from the HQET parameters .1;2 by 1=mb corrections.

To constrain the form of F0�!	 and K0�!	 we can also
directly parametrize their moments in HQET. Using the
abbreviations

;1 � T 1 
 3T 2; ;2 � T 3=3
T 4;

.0 � .1 
 ;1 
 3�.2 
 ;2	; <0 � <1 
 3<2;
(42)

where .1;2, <1;2, and T 1�4 are the usual HQET parameters,
we find

F0�!	 � 2�!�.	�
.0

2mb
20�!�.	

�
.1 
 ;1=mb

6
200�!�.	�

<1

18
2000�!�.	
 � � � ;

K0�!	 �
2.0 �<0=mb

6mb
20�!�.	


<0

6mb
200�!�.	


 � � � : (43)

It is convenient to expand with respect to ! � ., otherwise
. explicitly appears in the moments. This is where the
b-quark mass reappears. The normalizations of F0�!	 and
K0�!	 are fixed by b-quark number conservation, while all
other moments in Eq. (43) receive higher order corrections
starting at order �4

QCD divided by an appropriate power of
mb.

2. Subleading operators

For the O�"	 operators, parity invariance implies that

hO��
i �n; v	iB �

P
hOi���nP; vP	iB;

hP ��
i �n; v	iB �

P
�hP i���nP; vP	iB;

(44a)

where we temporarily suppressed the ! dependence, but
explicitly showed the dependence on the vectors n and v.
The transformed vectors satisfy n�

P � n�, v�
P � v�.

Hence, the P��
i �!	 must be proportional to "��

? , because
"��
? � �"?��, while the O��

i �!	 must not contain "��
? .

Time-reversal invariance requires

hO��
1;3 �n; v	iB �

T
hO1;3���nP; vP	i

�
B � hO1;3���nP; vP	iB;

hO��
4 �n; v	iB �

T
hO4���nP; vP	i

�
B � �hO4���nP; vP	iB;

(44b)

and identical relations hold for the P ��
i �!	. The complex

conjugation reverses the order of all derivatives in the
operators, yielding the additional minus sign for O��

4 �!	
and P ��

4 �!	. Equations (44a) and (44b) show that the
matrix elements of P��

1;3 �!	 and O��
4 �!	 have to vanish.
-8
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The remaining nonvanishing matrix elements are parametrized as3

hO��
1 �!	iB � ���!F0�!	v� 
 !K0�!	�n � v	��0�n � v	� � ��F1 � .F0	�!	v� 
 �K1 � .K0	�!	�n � v	��0n�

�
1

2
L0
1�!	(?��;

hO��
3 �!	iB � ��!F0�!	v� 
 !K0�!	�n � v	���n � v	� 
 ��F3 � .F0	�!	v� 
 �K3 � .K0	�!	�n � v	��n�



1

2
L3�!	(?��;

hP ��
4 �!	iB � �

i

2
R4�!	"��

? ;

(45)

and we already took into account the constraints from Eq. (37). The 20
12�!	 inside O��

1 �!	 makes it formally twist O�1	.
Mainly for cosmetical reasons, we want its shape functions to be of the twist order at which they actually appear, which is
why we use derivatives of shape functions to parametrize the operator. Equations (45) are chosen such that

hv�O
��
1 �!	iB � ��F1 � .F0	

0�!	v� � �K1 � .K0	
0�!	�n � v	�; h(?��O

��
1 �!	iB � �L0

1�!	;

hv�O
��
3 �!	iB � �F3 � .F0	�!	v� 
 �K3 � .K0	�!	�n � v	�; h(?��O

��
3 �!	iB � L3�!	;

hi"?��P
��
4 �!	iB � R4�!	:

(46)

To leading order in 1=mb, R4�!	 equals �h1�! � .	 of Ref. [16]. The K1;3�!	 and L1;3�!	 are suppressed by 1=mb, as
argued before. In the heavy-quark limit the HQET equations of motion imply F3�!	 � 0, and therefore F3�!	 is also
suppressed by 1=mb, which is why we choose �n � v	� and n� as independent vectors in Eqs. (45).

Considering the O�"2	 operators, by the same arguments as in Eqs. (44a) and (44b), the only nonvanishing matrix
elements are

hO����	
2;5;8 �!	iB; hP �����

2;5;8 �!	iB; hO���
6;9 �!	iB; hP���

7;10 �!	iB: (47)

Because of the three indices the decompositions become rather lengthy, so we will not write them out explicitly.4 Instead,
we define the shape functions as in Eqs. (46) by projecting out the independent Lorentz structures, which is done in the
Appendix. Here, we only list those needed in the following,

hv�(?��O
����	
2 �!	iB � �

1

2
G0

2�!	; h(?���v�	O
����	
2 �!	iB �

1

2
�L2 � .L1	

00�!	;

hv�(?��O
����	
5 �!	iB � G5�!	; h�n � v	�i"?��P

�����
5 �!	iB � H5�!	;

h �n�i"?��P
���
10 �!	iB � �R10 � .R4	�!	:

(48)
The functions G5�!	, H5�!	 equal G3�! � .	, H4�! � .	
of Ref. [26],5 and to leading order in 1=mb, G2�! � .	,
H2�! � .	 of Ref. [16], respectively.

C. Reparametrization invariance

The operators O0;3;4;5�!	 correspond to the operator
basis originally introduced in Ref. [16], and appear in the
OPE for the triple differential rate; see Eq. (65) below. The
operators O0;1;2;5�!	 are the complete set of operators
3The definition of R4�!	 is slightly different in Ref. [26];
R0
4�!	 there corresponds to 2R4�!	 here.
4A complete decomposition for O����	

2 �!	 is given
in Ref. [26].

5The numbering of the operators is changed to account for
O3;4�!	. The operators O3�!	, P 4�!	 of Ref. [26] correspond to
O5�!	, P 5�!	 here.

034036
needed for the direct computation of the lepton energy
spectrum in B ! Xu‘ ��‘ [26]. There, the momentum of
the charged lepton is used to define the light-cone direc-
tion, i.e., one chooses p‘ � E‘ �n. For B ! Xs	 with q �

p	 this choice is equivalent to ours in Eq. (15). For the
triple differential rate with q � p‘ 
 p� the two choices of
light-cone directions are rotated with respect to each other
by an angle depending on the three-momenta of charged
lepton and neutrino.

The lepton energy spectrum is independent of the choice
of the light-cone direction. Therefore, integrating the triple
differential rate should give the same result as the direct
computation. Since the two approaches require different
subsets of operators, not all operators in Eq. (33) can
contain independent nonperturbative information, and
therefore, some shape functions appearing in their parame-
trizations should be related, beyond simple relations like
-9
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Eq. (37). The shape functions basically describe the mo-
mentum distribution of the B meson, and because it has
zero spin, they cannot contain any spatial directional in-
formation. However, the light-cone coordinates separate
the spatial directions into (? and n � �n. Hence, shape
functions referring to (? and n � �n should be somehow
related.

The independence of physical quantities on the choice of
the light-cone direction is described by reparametrization
invariance (RPI). More generally, there are two types of
ambiguities related to RPI in our setting. First, the ambi-
guity in the decomposition of the heavy-quark momentum
leads to the well-known reparametrization invariance of
HQET [32]. Its implications for the twist expansion have
been studied in HQET in Ref. [33]. The authors there
consider the case of a single outgoing particle with q� �
q? � 0. Their results are thus not applicable to the triple
differential rate, and it is not surprising that they do not
hold in this case.

The second type of ambiguity arises from the arbitrari-
ness in the definition of the light-cone vectors. This has
been studied in some detail in SCET [34–36], where it
places many constraints on the form of allowed operators.
Following Ref. [35], there are three classes of transforma-
tions that preserve the fundamental properties n2 � �n2 �
0 and n � �n � 2,

�I	
�

n ! n 
 2?;
�n ! �n;

�II	
�

n ! n;
�n ! �n 
 �2?;

�III	
�

n ! �1
 �	n;
�n ! �1� �	 �n;

which are generated by the five infinitesimal parameters
f2?; �2?; �g. The RPI transformation studied in Ref. [33]
corresponds to a combined action of (I) and (III).

We want to study the effect of rotating the light-cone
direction, while keeping 2v � n 
 �n fixed. Thus, we set
� � 0 and �2? � �2? and consider the infinitesimal ro-
tation 2R,

n ! n 
 2Rn;

�n ! �n 
 2R �n with 2Rn � �2R �n � 2?;
(49a)

under which

2Rv � 0; 2R�n � �n	 � 22?;

2R(��
? � �n � �n	��2�	

? ; 2R"��
? � �n � �n	��"��.

? 2?.:

(49b)

The last two transformations can be found by requiring that
metric and Levi-Civita tensor stay invariant. Similarly, any
four-vector is invariant under 2R; only its light-cone com-
ponents change according to Eqs. (49a) and (49b).

We also need the transformation of the Wilson line
2
 � 2�iD
 
 !	,
034036
2R2
�!	 � �20
12�!	2
�!2	�2? � iD?	2
�!1	; (50)

which can be found using 2
�!	 � ��1=�	Im�iD
 

! 
 i"	�1. Note that 2? need not be formally O��	, but
can be O�1	, because 2R only rotates the light-cone com-
ponents of k into each other, but leaves v invariant. In
particular, the transformation (50) does not change the
twist order of an operator. However, it connects different
orders in ", which yields constraints on the shape functions
arising from operators of different order in ".

The Dirac structure � and the b-quark fields are unaf-
fected by 2R, so Eq. (50) yields

2RO
�
0 �!	 � �2?�O

��
1 �!	; (51a)

and for the O�"	 operators

2RO
��
1 �!	 � �22?�O

����	
2 ;

2RO
��
3;4 �!	 � �2?�O

���
6;7 :

(51b)

Similarly, the operators of O�"2	 are transformed into
O�"3	 operators. Taking the B expectation values of
Eqs. (51a) and (51b), we can pull 2R out of the matrix
elements, because it has no effect on the B-meson states, as
well. Thus, the same relations also hold for the B expec-
tation values, which reduces the number of independent
shape functions.

Taking � � 	� and employing Eqs. (40) and (45), the
matrix element of Eq. (51a) yields

2R�F0�!	v� 
K0�!	�n�v	�	 � K0�!	2�
? �

1

2
L0
1�!	2�

?;

(52)

from which it follows that

L0
1�!	 � 2K0�!	: (53a)

This relation has the expected form, since K0�!	 and
L0
1�!	 are proportional to �n � v	 � �n � �n	=2 and (?,

respectively. Similarly, the relation between O��
1 �!	 and

O����	
2 �!	 yields

L0
2�!	 � 2K1�!	 and

G2�!	 � �2�! � .	F0�!	 � 2F1�!	:
(53b)

The remaining relations following from Eqs. (51a) and
(51b) are given in the Appendix.

Writing the second relation as G2�!	 
 2F1�!	 �
�2�! � .	F0�!	 one can easily see that the B ! Xu‘ ��‘
lepton energy spectrum in Ref. [26] expanded to sublead-
ing twist agrees with the results obtained in Refs. [27–29].
The appearance of the different operator structure in
Ref. [26] is not related to the use of QCD vs HQET fields
as presumed in Ref. [27], but arises from choosing the
light-cone direction to be parallel to the lepton momentum.
We disagree with the statement in Ref. [29] that this choice
can lead (by itself ) to incorrect results. Part of the reason
-10
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why Ref. [23] obtained an incorrect result is that it tried to
match on an (for this choice) incomplete operator basis.
IV. THE LIGHT-CONE OPE

In this section, which is mainly technical, we compute
the light-cone OPE of the current correlator T�� in Eq. (8)
to O�"2	 in the power counting (26a) and (26b). We start
with considering generic currents J� � �b��f and J� �
�f��b with two arbitrary Dirac structures �� and ��. For
completeness, Sec. IVA contains the actual matching cal-
culation. In Secs. IV B and IV C we give the results for
general currents, Eq. (66a) and (66b), and semileptonic and
radiative currents, Eqs. (70a)–(70c). The latter are used in
Sec. VA to obtain the hadronic tensor.

A. Matching calculation

1. Zero-gluon matrix element

The matrix element of T�� between b-quark states with
momentum pb � MBv 
 k is shown on the left in Fig. 2.
With P � MBv � q it is

hbjT��jbi � �
1

�
Im

�
�ub�

� 1

P6 
 k6 
 i"
��ub

�

� �ubA0��
�	���ub: (54)

Using the shorthand 2k � 2�P
 
 k
	, the expansion of
A�
0 to O�"2	 is

2A�
0 � n�2k 


2k�
?

P�

2k 

k2?
P�

�
n�20

k �
1

P�

�n�2k

�

�
2k�

?k�
P2
�

2k 
O�"3	: (55)

The derivative is with respect to the argument of the 2
function. There are no terms proportional to k� and k2�. By
first expanding the 2 function in k2? only, one can see that
there are no contributions proportional to kn

�.
Since O0�!	 is the only operator at order "0, we can

extract its coefficient from Eq. (55)
q q

m B v+ k m B v+ k
b b

f

FIG. 2. Tree-level Feynman diagrams for

034036
A�
0 �

Z
d!2�P
 � !	

n�

2
hbjO0�!	jbi 
O�"	; (56)

where hbjO0�!	jbi � 2�k
 
 !	. At higher orders, this
extraction becomes ambiguous. For example, by partial
integration we can rewrite k2?20

k as

k2?20�P
 
 k
	 �
Z

d!20�P
 � !	k2?2�k
 
 !	

�
Z

d!2�P
 � !	k2?20�k
 
 !	

�
Z

d!��P
 � !	k2?200�k
 
 !	:

(57)

The first expression requires O8;9�!	, the second O5;6�!	,
and the last O2�!	. The operators themselves correspond
to twist O��2	 through O�1	. The difference in their order
is canceled by their coefficients in the convolution, which
are of relative O���1	 through O��	, so that the total order
is the same. In our case the convolution always involves
2�P
 � !	.

Because k and 2�k
 
 !	 commute, while iD and
2�iD
 
 !	 do not, the zero-gluon matrix element cannot
distinguish these operators, and thus only fixes a linear
combination of their Wilson coefficients. This is avoided
by either directly expanding the propagator 1=�6P 
 i 6D	, or
gets resolved by the one-gluon matrix element, which can
distinguish the operators. For terms containing k� this
means that one is a priori not allowed to use the HQET
equations of motion to replace k� � �k
, because in
some operators the derivatives are separated from the
b-quark fields by Wilson lines.

2. One-gluon matrix element

The one-gluon matrix element is depicted on the right in
Fig. 2. It has an additional soft background gluon, which
we take to be in the initial state with momentum l � k.
Working in light-cone gauge A
 � 0, we have
q q

m B v+ k m B v+ l

l− k
b b

f

g

the zero- and one-gluon matrix element.
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hbjT��jbgi � �
1

�
Im

�
�gta �ub�

� 1

P6 
 l6 
 i"	

� A6 a 1

P6 
 k6 
 i"
��ub

�

� �ubA1��
�	���ub: (58)

where

A�
1 	� � ��P6 
 l6 	A6 �P6 
 k6 	

2��P 
 k	2� � 2��P 
 l	2�

�P 
 l	2 � �P 
 k	2
:

(59)

We absorbed all factors from the gluon vertex into the
polarization vector A � gtaAa, such that A corresponds to
a covariant derivative iD � �i@ � MBv	 
 gA.

According to Eq. (26b) we expand this in k�; l�; A�, and
k?; l?; A?. Employing the identity

	�	�	� � (��	� 
 (��	� � (��	� � i"����	�	5

(60)

to reduce the product of three 	 matrices, we find to O�"2	

2A�
1 �

1

P�

�
�( � i"	��

? A��2k � 2l	

� n��( � i"	�.
? �l � k	�A.

2k � 2l

l
 � k


�

�
1

P2
�

� �n��( 
 i"	�.
? �A�k.2k 
 l�A.2l	


 �( � i"	��
? ��A�k� 
 l�A�	2k

� �l�A� 
 A�k�	2l		 
O�"3	: (61)

Here, 2k � 2�P
 
 k
	, 2l � 2�P
 
 l
	, and the upper
and lower signs belong to (? and i"?, respectively.

3. Four-quark contributions

We include the four-quark matrix element on the right in
Fig. 3, which was first considered in Ref. [27]. Its size has
been subject to some recent discussion [27–29,37].
q q

m B v+ k m B v+ k
b bf f

FIG. 3. Four-quark diagrams. On the right we

034036
Although the corresponding operator is formally of sub-
leading twist and third local order, it is unclear at present
how well, or if at all, this represents its actual size. We thus
refrain from assigning it a power in ". Instead, we treat it as
a separate contribution and keep only its leading twist
term. The graph on the left in Fig. 3 has no imaginary
part contributing to the triple differential rate. Its contribu-
tion to single differential spectra can be computed, where
the lepton or neutrino lines are connected [22].

We route the momenta such that the quarks carry resid-
ual momenta k1 and k2, and the gluon residual momentum
l. To leading twist the matrix element of T�� then becomes
[27]
hbfjT��jfbi � �
1

�
Im

�
�g2 �ub�

� 1

P6 
 k6 2 
 i"
	�tauf

�
(��
?

�P
 l	2 
 i"
�ufta	�

1

P6 
 k6 1 
 i"
��ub

�

��g2A��
4q n�. �n/	 �u

i
b�

�	�	.	��
�uj

b

� � �ufta	j	/PL�t
auf	

i; (62)
where i; j are color indices. The second form is obtained by
noting that for the currents in Eq. (10) uL

4 � �	���ub	
L

and �uL
1 � � �ub�

�	�	L are left-handed spinors and employ-
ing the Fierz identity
� �uL
1	?.uL

2 	� �u
L
3	.

?uL
4 	 � n�. �n/	� �u

L
1	.uL

4 	� �u
L
3	/uL

2 	:
The latter follows from contracting the general Fierz iden-
tity for left-handed vector currents
� �uL
1	�uL

2 	� �u
L
3	�uL

4 	 �
1

2
�(��(./ � (�.(�/ � (�/(�.

� i"��./	� �uL
1	.uL

4 	� �u
L
3	/uL

2 	:
q q

k1 k2k1− l k2− l
b bf f

only show the routing of residual momenta.
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The expansion of A��
4q to leading twist is

4A��
4q �

1

P�

n�n�
� 2k1

�P 
 k2	
�P 
 l	




2k2

�P 
 l	
�P 
 k1	




2l

�P 
 k2	
�P 
 k1	


�
:

(63)

Plugged into Eq. (62) this is matched onto

T��
4q � �

1

2

Z
d!2�P
 � !	

1

P�

�bn�Q
f�!	��	���b;

(64a)

with the four-quark operator

Q fij�!	 � g2200
123�!	2
�!1	2

f

�!2	

� � �fta	j 6nPL�t
af	i2
�!3	: (64b)

Here, 2f

�!	 acts on everything on its right except f. We

include the g2 in the operators, and do not think of it as
4��s, but treat it like the g2 inside �iD	2, as suggested in
Ref. [29].

B. The result for general currents

From the general basis of light-cone operators in
Eq. (33) we define the combinations

O�
5;8?�!	 � (?��O

���
5;8 �!	;

P �
5;8?�!	 � i"?��O

���
5;8 �!	;

R��
4?�!	 � (�

?.O
�.
3 �!	 � i"�

?.O
�.
4 �!	;

R��
10?�!	 � �n.�(

�
?/O

�./
9 �!	 � i"�

?/O
�./
10 �!		: (65)

The operators R4;10?�!	 are only needed for B ! Xu‘ ��‘,
but not for B ! Xs	. Their major contributions arise from
the ‘‘gluonic’’ parts O4;10�!	. Employing Eqs. (35) the
zero- and one-gluon matrix elements of the operators are
straightforward to calculate, and comparing with Eqs. (55)
and (61) we can read off their OPE coefficients.

To write down the light-cone OPE of T��, we write it as

T�� � �bA��
�	���b 
 T��

4q : (66a)

The four-quark contribution T��
4q is given in Eqs. (64a) and

(64b). The expansion of A� to O�"2	 reads

A� �
1

2

Z
d!2�P
 � !	

�
n�O0�!	 


2

P�

R�
4?�!	

�
1

P�

�
n��O� P 	5?�!	 


1

P�

�n��O
 P 	8?�!	

�

�
2

P2
�

R�
10?�!	

	

O�"3	: (66b)

For comparison, we wrote the terms in the same order as
the corresponding ones in Eq. (55). Equations (66a) and
034036
(66b) represent the light-cone OPE of T�� to O�"2	 and is
the starting point for the further analysis.

C. Semileptonic and radiative currents

To continue we consider the currents Jf
� in Eq. (10). For

f � u, corresponding to B ! Xu‘ ��‘, we have �� �
	�PL, and the Dirac structure in Eq. (66a) becomes � �
��	��� � 	�	�	�PL. Therefore, with the help of
Eq. (60),

n��
�	��� � �n�n� �n� � �( 
 i"	��

? n�		�PL;

�n��
�	��� � � �n� �n�n� � �( � i"	��

? �n�		�PL;

(?���
�	��� � ��n�� �n�	(?�� � in�� �n��"?��		

�PL:

(67)

Similarly, for B ! Xs	, Eq. (10) gives �� � 	�
? �n6 PL.

Using �n6 2 � 0 and Eq. (60) yields

��	��� � 	�
? �n6 	� �n6 	�

?PR � �2 �n��( 
 i"	��
? �n�	�PR:

(68)

In this case only the terms proportional to n� in Eq. (66b)
contribute.

The appearing Dirac structures are � � 	�PL and � �
	�PR. The discussion in Sec. III B shows that the 	�	5

part of O�
5;8? and the 	� part of P �

5;8?�!	 vanish in the B
expectation value, and can thus be dropped. The same is
true for the parity even and odd parts of the R�

4;10?�!	,
which only come with � � 	�PL. From Eqs. (65) we
define

O�
5;8?�!	 � (?��O

���
5;8 �!	;

P �
5;8?�!	 � i"?��P

���
5;8 �!	;

R��
4?�!	 � (�

?.O
�.
3 �!	 
 i"�

?.P
�.
4 �!	;

R��
10?�!	 � �n.�(

�
?/O

�./
9 �!	 
 i"�

?/P
�./
10 �!		: (69)

The sign of the parity-odd parts in R�
4;10?�!	 has changed

due to the minus sign from PL.
We parametrize T�� in analogy to the hadronic tensor in

Eq. (16) as

T�� �
Z

d!2�P
 � !	

�
�

1

2
�( 
 i"	��

? t1

�
1

2
�( � i"	��

? t2 � n�� �n�	t3 
 n�n�t4 
 �n� �n�t5

�
;

(70a)

where the structure functions ti are scalar functions of !
and P�. They can be read off from Eq. (66b) using
Eqs. (67) and (68). For B ! Xu‘ ��‘ we obtain
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tu
1 �

1

2
n�

�
O�

0 �!	 �
1

P�

�O
 P 	�5?�!	

�
;

tu
2 � �

1

2P2
�

�n��O� P 	�8?�!	;

tu
4 �

1

4
�n�

�
O�

0 �!	 �
1

P�

�O
 P 	�5?�!	

�
;

tu
5 � �

1

4P2
�

n��O� P 	�8?�!	;

tu
3 �

1

2P�

(?��

�
R��

4?�!	 �
1

P�

R��
10?�!	

�
:

(70b)

The PL gives an additional factor 1/2 for the O�
i �!	 and

R�
4;10�!	, and �1=2 for P �

5;8�!	 compared to Eq. (66b).
For B ! Xs	 only ts

1 is nonzero, while the ts
2�5 vanish

identically,

ts
1 � 2 �n�

�
O�

0 �!	 �
1

P�

�O� P 	�5?�!	

�
; ts

2�5 � 0:

(70c)

Note that the only operator structures for f � s are
O0;5�!	. In particular, as in Ref. [26], O3;4�!	 do not
appear in the QCD light-cone OPE. In both cases they
arise only if the QCD light-cone operators are expanded
into HQET ones.

Finally, we consider the four-quark contribution T��
4q . It

contains the same Dirac structure � � ��	���.
Therefore, from Eq. (64b) we define

Q f�
1 �!	 � �biQfij�!		�bj;

Qf�
2 �!	 � � �biQfij�!		�	5bj:

(71)

We included a minus sign in the second definition, because
parity only allows the axial part of the left-handed light-
quark bilinear to contribute. The four-quark contributions
to the B ! Xu‘ ��‘ structure functions are

tu
4q;1 � �

1

2P�

n��Q
u
1 
Qu

2	
��!	;

tu
4q;4 � �

1

4P�

�n��Q
u
1 
Qu

2	
��!	;

(72a)

and for B ! Xs	

ts
4q;1 � �

2

P�

�n��Q
s
1 �Qs

2	
��!	: (72b)

Equations (70a)–(70c), (72a), and (72b) provide the light-
cone OPE of T�� to O�"2	 for B ! Xu‘ ��‘ and B ! Xs	.

As a nontrivial check we tested our results against the
known local expressions by plugging the shape-function
parametrizations of the operators into Eqs. (70a)–(70c) and
employing their moment expansions. This reproduces the
full local result to O��2	 [15,30]. We also checked all local
O��3	 contributions that should be fully contained in our
034036
results with the expressions in Ref. [38]. We find agree-
ment for the form factors T�3	

1�4 in the notation of Ref. [38].
Concerning T�3	

5 , we actually disagree with Ref. [38]. We
believe the contribution proportional to 1=�3

0, correspond-
ing to a subleading twist term, should read

�
2�<1 
 3<2	

3mb�
3
0

�2mb 
 q � v	�mb � q � v	 

2<2mb

�3
0

:

We explicitly verified this by directly computing this term
in the local OPE. Reference [38] misses the 2mb in the first
term. This might have been overlooked so far because T�3	

5
is not needed in the decay rates for massless leptons, only
for ; leptons.
V. DIFFERENTIAL DECAY DISTRIBUTIONS

We will now use our results from the previous section to
derive expressions for various differential decay distribu-
tions. The decay rates in this section can be used over the
entire phase space to study arbitrary cuts on kinematic
variables. They are valid to O��	 for small hadronic
masses sH 
O��QCDMB	 and to O��2	 for large hadronic
masses sH 
O�M2

B	. For practical purposes this holds
provided all shape functions are modeled with correct
moments up to O��2	. In the resonance region, the expan-
sion necessarily breaks down, and one has to integrate the
rates over a sufficiently large region to trust the results.

A. Hadronic tensor

It is straightforward to take the B expectation value of
Eqs. (70a)–(70c), (72a), and (72b) and use the parametri-
zations in the Appendix to express the hadronic tensor in
terms of the full set of shape functions appearing to O�"2	
at the operator level. However, this includes many higher
order corrections beyond subleading twist and second local
order, as we saw in Sec. III B. For phenomenological
purposes it is more desirable to reduce the number of shape
functions as much as possible.

Since our expansion is accurate to subleading twist and
second local order, we can neglect all shape functions of
twist O��3	. In addition, it suffices to keep only those
subsubleading shape functions which have moments at
O��2	. The final parametrizations of the operators appear-
ing in the OPE including these simplifications are given in
Eqs. (A13).

Writing the structure functions Wi in Eq. (16) as

Wi�P
; P�	 �
Z

d!2�P
 � !	wi�!; P�	; (73a)

and using Eqs. (A13) to take the B expectation value of the
tu
i in Eqs. (70b), the hadronic tensor for B ! Xu‘ ��‘ be-

comes
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wu
1 �

1

2

�
F0 � K0 �

1

P�

�G5 � H5	

�
�!	;

wu
4 �

1

4

�
F0 
 K0 �

1

P�

�G5 
 H5	

�
�!	;

wu
2 �

1

2P2
�

�! � .	�2�! � .	F0 
 R4��!	;

wu
5 �

1

4P2
�

�! � .	�2�! � .	F0 � R4��!	;

wu
3 �

1

2P�

�
R4 � 2�! � .	K0 �

1

P�

�R10 � .R4


 2.�! � .	K0�

�
�!	: (73b)

The wu
i are regarded as functions of ! and P�. For B !

Xs	 we set P� � MB, and Eq. (70c) yields

ws
1�!	 � 2

�
F0 
 K0 �

1

MB
�G5 � H5	

�
�!	;

ws
2�5�!	 � 0:

(73c)

Expanding all shape functions into HQET shape functions
to subleading twist, the wu

2;5 vanish and the wu
1;3;5 and ws

1

reproduce the expressions for the hadronic tensor in
Refs. [28,29]. The additional O��2	 contributions have
not been computed before.

Considering the four-quark operators, we define [see
Eqs. (A6)]

hQf�
1 �!	iB � Gf

1�!	v� 
 � � � ;

hQf�
2 �!	iB � Hf

2 �!	�n � v	� 
 � � � :
(74)

The four-quark shape functions are different for charged
and neutral B mesons and f � u; s. To avoid having to
distinguish between these cases we will not consider
them explicitly in the following. If desired, they are
incorporated by replacing G5�!	 ! �G5 
 Gf

1	�!	,
H5�!	 ! �H5 
 Hf

2 	�!	 in all expressions.

B. Shape-function models

To illustrate our results in the next subsection we employ
three models for the shape functions, based on the two
model functions

Fmod1�!	 � ca
�

2b2 ! exp
�
�

�
4

�
!
b

�
2
�

��!	


 c�1� a	
32

�2b3 !2 exp
�
�

4

�

�
!
b

�
2
�

��!	;

Fmod2�!	 � c
aab

��ab	
!ab�1e�a!��!	: (75)

The first function is an extension of the one given in
034036
Ref. [20] and is used in the first model. The second one
is taken from Ref. [22] and is used for the second and third
model. The moment expansions of the shape functions are
given in Eqs. (A14)–(A16). Note that the moments are
taken with respect to ! � ..

The leading shape function F0�!	 is modeled from
Fmod1;2�!	 by adjusting the parameters a, b, c to produce
the correct zeroth, first, and second moment. For this
purpose we set ;1 � ;2 � 0 and use .1 � �0:27 GeV2,
.2 � 0:12 GeV2, and mb � 4:65 GeV, corresponding to
. � MB � mb � 0:63 GeV, as our default values. They
are inspired by the values obtained in Refs. [1,3]. The third
moment of F0�!	 predicts <1 � 0:055 GeV3 in model 1
and <1 � 0:084 GeV3 in model 2. The left plot in Fig. 4
shows F0�!	 in models 1 and 2. F0�!	 is the same in
models 2 and 3.

The zeroth moments of the subleading shape functions
G5�!	, H5�!	, and R4�!	 vanish to all orders in 1=mb,
because the functions arise from operators containing the
derivative 20

12�!	.6 Therefore, it seems natural to model
them by the derivatives F0

mod1;2�!	. In the first model we set
a � 0, to ensure that the functions vanish at ! � 0, and
adjust b and c to reproduce the correct first and second
moments. For the second moment of R4�!	 we use <2 �
�0:05 GeV3. The second moments of G5�!	 and H5�!	
vanish at O��3

QCD	. We set them to �2=3	�0:5 GeV	4=mb

and �0:5 GeV	4=mb, respectively.
In the second model we adjust a, b, c such that the

functions have the same first, second, and third moment as
in model 1. Their shape is actually quite sensitive to the
value of the third moment, which is of O��4

QCD	. In our
third model we adjust the third moments of G5�!	, H5�!	,
and R4�!	 to one half their values in the second model.
Therefore, models 2 and 3 differ only in the subleading
shape functions’ third and higher moments, which are
O��4

QCD	 and higher. The three functions are shown for
each model in Fig. 4. Throughout the paper we plot models
1, 2, and 3 in dark (violet), medium (orange), and light
(green), respectively. Notice that G5�!	 and H5�!	 behave
roughly oppositely, which means the combination �G5 �
H5	�!	 is rather large, while �G5 
 H5	�!	 is small, as one
would expect from their first moments.

For modeling purposes we set [see Eqs. (41) and (A12)]
K0�!	 � ��! � .	F0 � R4��!	=mb, where in this case the
first moment of F0�!	 is set to zero, and R10�!	 � ��! �
.	H5�!	.

Note that in our approach we regard the local parame-
ters, e.g., .1 and mb, as known input parameters. To a first
approximation, the error due to the uncertainty in their
values should be treated separately from the error due to
the unknown form of the shape functions, i.e., their un-
known higher order moments. For example, the total rate is
very sensitive to mb, but basically shape-function indepen-
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dent. Therefore, we do not vary .1 and mb over a large
range to produce different shapes for the functions, be-
cause this exaggerates the uncertainty for any quantity
which is dominated by the local expansion or the first
few moments of the shape functions. Instead, to assess
the true sensitivity of a given quantity to the specific
form of the shape functions, we look at its variation be-
tween different shape-function models, while keeping the
zeroth, first, and second moments of all shape functions
fixed. To do so, we use the three models described above.
In a more extensive treatment one should include more
model functions and also scan over generic values for the
higher order moments. Of course, it is not possible to
completely disentangle the two uncertainties; for example,
the shape-function dependence itself might be different to
some extent for different values of .1 or mb.

Our main interest is in if and by how much a given
quantity is influenced by shape functions’ effects and how
sensitive it is to the specific form or higher moments of the
shape functions. We emphasize that the variations we will
see in the plots do not represent total uncertainties. They
give a measure of the shape-function dependence alone,
and are only one, in some cases small, part in the total
uncertainty. To estimate the latter, one has to vary the local
parameters as well. To illustrate this, we will vary mb in the
range �50 MeV in a few cases.

C. Decay spectra

We are now ready to assemble the expressions for vari-
ous decay spectra. Since there are no phase space restric-
tions on our results, we can easily switch to any desired set
of kinematic variables. We use the notation

� � MB � 2E‘; M! � MB � !;

�! � �� ! � M! � 2E‘:
034036
The spectra in all plots are normalized to the partonic rate
�u

p � �u
0m5

b or �s
p � �s

0m
3
b, respectively.

1. Photon energy spectrum

We start by writing down the B ! Xs	 photon energy
spectrum. From Eqs. (5) and (73c) we have

d�s

dE	
� 16�s

0E3
	��E		

�
F0 
 K0 �

1

MB
�G5 � H5	

�

� �MB � 2E		: (76)

We do not expand the overall E3
	, because there is no need

to do so. Interestingly, Eq. (76) does not contain any
subsubleading shape functions. Instead, F0�!	 and K0�!	
already contain all local O��2	 pieces that are of subsu-
bleading twist. The photon energy spectrum, normalized to
the partonic rate �s

p � �s
0m

3
b, is shown in Fig. 5. Since at
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tree level its support lies entirely in the shape-function region, our expansion yields only a small correction of O��2	 to the
subleading twist result.

2. Spectra in P
 and P�

With the wu
i � wu

i �!; P�	 given in Eqs. (73b), the triple differential decay rate, Eq. (17), becomes

d3�u

dE‘dP
dP�

� 48�u
0

Z
d!

2�P
 � !	

P� � !
���!	��P� � �	��MB � P�	fM!�MB � P�	���� P�	

2wu
1�!; P�	


 �2
!wu

2�!; P�	� � 2�!��� P�	�M!�MB � P�	wu
3�!; P�	 
 M2

!wu
4�!; P�	


 �MB � P�	
2wu

5�!; P�	�g: (77)

The double differential rate, Eq. (18), reads

d2�u

dP
dP�

� 8�u
0

Z
d!2�P
 � !	��P� � !	��MB � P�	�P� � !	2�M!�MB � P�	�w

u
1 
 wu

2 
 wu
3	�!; P�	


 M2
!wu

4�!; P�	 
 �MB � P�	
2wu

5�!; P�	�: (78)

To use q� one has to replace P� � MB � q�.
The spectrum in the variable P
 is interesting, since it can be directly compared to the photon energy spectrum in

B ! Xs	 to determine the ratio jVub=Vtsj [39]. Integrating Eq. (78) over P�, we obtain

d�u

dP


� �u
0

Z
d!2�P
 � !	��MB � !	

�
M5

!

�
F0�!	 


1

3
K0�!	

�



2M!

3
�M!��M2

! 
 3!�MB 
 !		


 6MB!2 ln�!=MB		�G5 � H5 � R4 � L3	�!	 
 M2
!��M!�M! � 2!	 
 2!2 ln�!=MB		�G5 
 H5	�!	

� 2M!�M!�MB 
 5!	 
 2!�2MB 
 !	 ln�!=MB		�G8 � H8 
 R10 � .�R4 
 L3	��!	

�
2

3
�M!�M2

! 
 12!MB	 
 6MB!�MB 
 !	 ln�!=MB		�G8 
 H8	�!	

	
; (79)

with [see Eqs. (A10) and (A11)]

L3�!	 � �2�! � .	K0�!	; G8�!	 � �2�! � .	2F0�!	; H8�!	 � �! � .	R4�!	: (80)
Notice that the leading term comes indeed with a power
M5

!, as suggested by the subleading result, confirming the
leading order result obtained in Ref. [39]. The integration
over P
 to obtain the total rate amounts to dropping the
2�P
 � !	 under the integral in Eq. (79). Expanding
Eq. (79) to subleading twist reproduces the results in
Refs. [27,28].7

The P
 spectrum (79) normalized to �u
p is depicted on

the left in Fig. 6. As for the photon energy spectrum, at tree
level it has only support in the shape-function region. The
corrections of the full result (solid lines) to the subleading
twist result (dotted lines) are thus small, although larger
than in the case of E	 in Fig. 5. The right plot shows the
corresponding partial rate, i.e., the spectrum integrated up
7In comparing our result with Ref. [27] we set the additional
P� cut employed there to zero.
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to P
 � Pcut

 (still normalized to �u

p	. Beyond Pcut

 �

1:5 GeV the lines stay constant. One can see that indepen-
dently of the used model our result indeed approaches the
value for the total rate including O��2	 corrections.

3. Spectra containing the hadronic invariant mass

The hadronic invariant mass sH is useful for the extrac-
tion of jVubj [40–42]. Using
sH � P
P�; q2 � �MB � P
	�MB � P�	;

dsHdq2 � MB�P� � P
	dP
dP�;
and defining s! � sH=! the triple and double differential
rates in terms of sH and q2 are
-17
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d3�u

dE‘dsHdq2
� 48�u

0

Z
d!

2�q2 � M!�MB � s!	�

!�s! � !	
���!	��s! ��	��MB � s!	fM!�MB � s!	���� s!	

2wu
1�!; s!	


 �2
!wu

2�!; s!	� � 2�!��� s!	�M!�MB � s!	wu
3�!; s!	 
 M2

!wu
4�!; s!	 
 �MB � s!	

2wu
5�!; s!	�g;

(81)

and

d2�u

dsHdq2 � 8�u
0

Z
d!2�q2 � M!�MB � s!	���s! � !	��MB � s!	

�s! � !	2

!
�M!�MB � s!	�wu

1 
 wu
2 
 wu

3	�!; s!	


 M2
!wu

4�!; s!	 
 �MB � s!	
2wu

5�!; s!	�: (82)

Equations (81) and (82) can easily be integrated to give d2�u=dE‘dsH and d�u=dsH by dropping the 2 function. In this
case, the phase space limits yield the limits on the ! integration

0 �
sH

MB
� ! �

�
sH=� for

������
sH

p
� � � MB;

�sH=sH for sH=MB � � �
������
sH

p
� MB;

0 �
sH

MB
� ! �

������
sH

p
; (83)
for d2�u=dE‘dsH and d�u=dsH, respectively. For the latter,
upon integration over !, the limits on sH are 0 � sH �
M2

B.
The hadronic invariant mass spectrum d�u=dsH ob-

tained from Eq. (82) is shown on the left of Fig. 7. The
right plot contains the partial rate for an upper cut sH �
scutH . The solid lines correspond to the full result. The
dashed ones show the result keeping only the contributions
from F0�!	, in which the complete mb dependence of the
partonic spectrum is convoluted with F0�!	. For compari-
son, the dotted lines give the result from using F0�!	 in the
prescription of Ref. [43],8 where an overall m5

b is excluded
from the convolution. The full result lies in between the
8For consistency this includes only the tree-level results of
Ref. [43].
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two and neither gives a better approximation than the other.
One should also note that the solid medium and light
(orange and green) lines only differ in the third and higher
moments, which are O��4

QCD	 and higher, of the sublead-
ing shape functions. In particular, they share the same
medium (orange) dashed and dotted lines.

Expanding the sH spectrum obtained from Eq. (82) to
subleading twist reproduces the result of Ref. [24]. In
Fig. 8 we compare our result (solid lines) for the spectrum
and the corresponding partial rate with the subleading twist
result (dashed lines). In addition, the dotted lines show the
result of Ref. [28], which keeps certain factors of MB, and
hence contains some higher order terms compared to the
result of Ref. [24]. The corrections to the subleading twist
result from our result are more significant than in the E	 or
P
 spectrum. For the partial rate, in the third model (light,
green) they are bigger than the difference between the
-18
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individual models. Our result also has less sensitivity to the
form of the shape functions than the result to subleading
twist.

The solid lines in the right plot in Fig. 8 approach the
horizontal line, which is again a manifestation of the fact
that our result contains the total rate to O��2	. For practical
purposes, the partial rates are usually translated into event
fractions by normalizing them to the respective predicted
total rate. This introduces an additional error, if the total
rate is not reproduced correctly. Figure 9 shows the event
fractions corresponding to the partial rates on the right of
Figs. 7 and 8.

Equation (82) also allows us to obtain the sH spectrum
with an additional lower cut on q2, as proposed in
Ref. [44]. Figure 11 shows the spectrum and its partial
rate for the cut q2 > 8 GeV2 employed by BABAR and
Belle [7,9]. As expected, the cut on high q2 significantly
reduces the shape-function dependence compared to Fig. 7.
034036
This comes at the price of having a much smaller number
of contained b ! u events. In Ref. [44] the correction from
smearing the local result with the leading shape function is
translated to 100% into an uncertainty on the partial rate.
Our results can be used to improve on that, and additionally
allow one to include O��	 corrections.

Another possibility is to replace the q2 cut by a cut on
the hadronic energy EH � �P
 
 P�	=2. The rates in
terms of EH are obtained by replacing 2�q2 � M!�MB �
s!	� ! 2�EH � �s! 
 !	=2� in Eqs. (81) and (82). A cut

on EH < MB �
��������������
�q2	min

p
produces the same upper limit on

sH as q2 > �q2	min.
The various phase space cuts are depicted in Fig. 10. The

solid dark (violet) and medium (orange) lines are sH � m2
D

and sH � �1:7 GeV	2. For �q2	min > 8 GeV2 (medium or
orange dotted line) this corresponds to the cut EH <
2:45 GeV (light or green dashed line). The spectrum and
partial rate for this cut are given by the dashed lines in
-19
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Fig. 12. For sH < �1:7 GeV	2 the EH cut significantly
increases the fraction of b ! u events from about 30% to
about 50% (at tree level), while achieving almost the same
shape-function independence. On the other hand this cut
has less separation power than the q2 cut to reject contami-
nation from b ! c transitions. Lowering it to the intersec-
tion of q2 � 8 GeV2 and sH � �1:7 GeV	2 yields
EH < 2:15 GeV (medium or orange dashed line). This still
retains a larger fraction of the signal, and at the same time
cuts out a somewhat larger portion of the b ! c phase
space, which should in principle provide an equal or better
suppression of contamination from b ! c.

The sH spectrum and partial rate for this cut are shown
by the solid lines of Fig. 12. For comparison, the dotted
lines show the result for the q2 cut, i.e., they are identical to
the solid lines of Fig. 11. The EH cut has basically the same
shape-function independence, but retains an additional 5%
of signal events and should provide an equal or better b !
c separation. Of course, eventually this depends on the
experimental resolution. We conclude that a combined
0
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FIG. 10 (color online). Phase space cuts. Solid, dashed, and
dotted lines are constant sH, EH, and q2. The dark (violet) ones
are sH � m2

D, EH � mD, and q2 � �MB � mD	
2. The medium

(orange) ones are sH � �1:7 GeV	2, EH � 2:15 GeV, and q2 �
8 GeV2, and the light (green) dashed line is EH � 2:45 GeV.
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analysis of sH and EH provides a viable alternative for
measuring jVubj, with a potentially higher accuracy than
the analogous measurement of sH and q2.

Figure 13 shows the variation of the partial rate for sH �
smax

H for the various cuts when changing mb by �50 MeV,
where lines of the same color correspond to the same value
of mb. It shows that the uncertainty in mb is clearly a
separate, in these cases much bigger, effect than the sensi-
tivity to the specific form of the shape functions. The two
effects should therefore be distinguished and treated as
separate uncertainties, as argued at the end of Sec. V B.

4. Hadronic energy spectrum

A fixed hadronic energy corresponds to a line with slope
�1 in the P� plane; see Fig. 10. The hadronic energy
spectrum thus receives contributions from both local and
twist phase space regions, and is therefore interesting to
study in its own right. In addition, considering the single
differential spectra, a cut on EH < mD (dark or violet
dashed line in Fig. 10) retains substantially more signal
events than the equivalent cut on q2 > �mB � mD	

2 (dark
or violet dotted line). Both methods have been suggested to
determine jVubj [45–47].

Changing variables from q2 to EH in Eq. (82) and
integrating over sH, we obtain

d�u

dEH
� 64�u

0

Z
d!��EH � !	��MB � 2EH 
 !	

� �EH � !	2�M!�MB � 2EH 
 !	

� �wu
1 
 wu

2 
 wu
3	�!; 2EH � !	


 M2
!wu

4�!; 2EH � !	 
 �MB � 2EH 
 !	2

� wu
5�!; 2EH � !	�: (84)

Using the fact that 0 � !, the phase space limits yield the
-20
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integration limits

0 � ! � EH for 0 � EH � MB=2;

2EH � M � ! � EH for MB=2 � EH � MB:
(85)

The EH spectrum and the partial rate obtained from
integrating it up to EH � Ecut

H are shown in Fig. 14. Our
result (solid lines) matches the local result (thin black
lines) over a wide range of energies and smooths it out
near the partonic phase space boundaries. The partonic
boundary however does not lie in the shape-function re-
gion, and hence, the shape-function dependence in the
dropoff at EH � mb=2
 ., i.e., the differences between
the three models, are very mild, for example, compared to
the sH spectrum or the lepton energy spectrum (see below).
In the EH spectrum the prescription of Ref. [43] seems to
give a better approximation than convoluting the full mb
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dependence of the partonic spectrum. A cut on EH < mD
alone keeps 21% of the b ! u signal (normalized to the
partonic rate), which is 50% more than the cut on q2 >
�mB � mD	

2, which keeps 14%. This relative increase
should not be changed much by radiative corrections. At
the same time the spectrum and partial rate in this region
are completely shape-function independent. Hence, mea-
suring the hadronic energy spectrum alone to extract jVubj
seems worth pursuing, too.

The spectrum and partial rate with an additional cut
sH < m2

D (solid lines) and sH < �1:7 GeV	2 (dashed lines)
are given in Fig. 15. A slight increase in the sH cut allows
one to substantially raise the EH cut while still keeping the
partial rate practically shape-function independent. Ideally,
if the cut sH < m2

D would remove all charm background,
the EH cut could be raised up to EH < 2:7 GeV, which
would yield a partial rate around 70%. The mb dependence
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l rate (right) with a cut sH < m2
D (solid lines), sH < �1:7 GeV	2

cal O��2	 result, and the vertical lines denote EH � mD, EH �
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meaning of the lines is the same as in Fig. 13.
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of the partial rate with these cuts is shown in Fig. 16. The uncertainty in mb is again important, as one would expect, but
distinct from the shape-function uncertainty.

5. q2-E‘ spectrum

The q2-E‘ spectrum is also of great interest for measuring jVubj. Integrating Eq. (81) over sH, and defining q! �
q2=M!, we obtain

d2�u

dE‘dq2 � 48�u
0

Z d!
M!�M! � q!	

���!	��2E‘ � q!	��q!	fq
2��q! � 2E‘	

2wu
1�!; MB � q!	 
�2

!wu
2�!; MB � q!	�

� 2�!�q! � 2E‘	�q2wu
3�!; MB � q!	 
 M2

!wu
4�!; MB � q!	 
 �q!	

2wu
5�!; MB � q!	�g: (86)

The resulting integration limits on ! are

0 � ! �

�
MB � 2E‘ for 0 � 2E‘ �

�����
q2

p
� MB;

MB � q2=�2E‘	 for 0 �
�����
q2

p
� 2E‘ � MB:

(87)
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The maximally allowed hadronic invariant mass for
given q2 and E‘ defines the variable

smax
h �

�
MB �

q2

2E‘

�
�MB � 2E‘	:

Requiring smax
h < m2

D is an efficient way to discriminate
the b ! c background [48] and has been implemented by
BABAR [6]. The distribution in smax

h provides a quite non-
trivial application for our expansion, because fixed smax

h
contains contributions from large q2, which should be
shape-function independent [47], as well as large lepton
energies, which are shape-function sensitive. The smax

h
spectrum is obtained from Eq. (86) by changing variables
from q2 to smax

h and integrating over the lepton energy. It is
depicted in Fig. 17 with and without an additional cut on
E‘ > 2 GeV. Above smax

h 
 5 GeV2 the spectrum is deter-
mined by the local result, which extends to smax

h � M2
B,

where it goes to zero. Below that our result smooths out the
local spectrum. The shape-function sensitivity in the lower
034036
part of the spectrum is somewhat larger than for EH, but
still much smaller than for sH or E‘. With a cut E‘ >
2 GeV the maximum value of smax

h is MB�MB � 4 GeV	 �
6:76 GeV2. Although this cut removes a large fraction of
the local OPE part of the included phase space, it is still
low enough that the increase in the shape-function sensi-
tivity is insignificant.

For comparison, Fig. 18 shows the spectrum and partial
rate with a cut E‘ > 2 GeV, where the dashed lines only
include the contributions from F0�!	, and the dotted lines
implement the prescription of Ref. [43]. For the partial rate
our result yields a sizable correction to the latter and also to
the local result. The variation between the different models
is negligible.

6. Lepton energy spectrum

Finally, we come to the lepton energy spectrum.
Integrating Eq. (77) over P
 and P� or Eq. (86) over q2

we find
d�u

dE‘
� 4�u

0��E‘	
Z

d!���!	M!f4E2
‘�M! 
 2�!	�F0 � K0	�!	 
 12M!�!�2E‘ 
�! ln��!=M!		K0�!	

� 6�2E‘�E‘ 
 2�! 
 !	 � fM!�
2
! ln��!=M!	g

0	�G5 � H5	�!	 � 6M!�!f�! ln��!=M!	g
0�G5 
 H5	�!	

� 12�!�2E‘ � fM!�! ln��!=M!	g
0	�R4 
 L3	�!	 � 3�2

!fM! ln��!=M!	g
00�G8 � H8	�!	

� 3
�!

M!
�4E‘ � fM2

!�! ln��!=M!	g
00	�G8 
 H8	�!	 
 6�!fM!�! ln��!=M!	g

00�R10 � .�R4 
 L3	��!	g; (88)
where G8�!	, H8�!	, and L3�!	 are given in Eq. (80)
above, and we use the notation

ff�!	g0 �
f�!	 � f�0	

!
;

ff�!	g00 � 2
f�!	 � f�0	 � !f0�0	

!2 :

(89)
Expanding Eq. (88) to subleading twist reproduces the
result in Ref. [27]. It also agrees with Ref. [28].
However, for some reason, the authors there divide their
result by an additional factor MB � ! and subtract a
compensating term �! � .	F0�!	.

Equation (88) and the result derived in Ref. [26] agree
when both are expanded to subleading twist. However, we
-24
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cannot expect them to be identical, since the light-cone
directions in Ref. [26] and in the present case are different.
The modified expansion thus retains different higher order
twist corrections in each case. The direct computation in
Ref. [26] yields a much more concise result, because it uses
a light-cone direction natural to the lepton energy spec-
trum. On the other hand one could say that the present
choice includes more higher order twist corrections, since
it keeps them already at the level of the triple differential
rate. However, to make this statement precise one would
need to compute all subsubleading twist contributions. The
two results are shown in Fig. 19. Below E‘ 
 1:8 GeV they
are dominated by the local spectrum. Above E‘ 
 2:2 GeV
they become quite different, which indicates that the higher
order kinematic twist corrections are important.

In Fig. 20 we compare our result (solid lines) with the
subleading twist result (dashed and dotted lines). We note
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FIG. 20 (color online). Lepton energy spectrum (left) and partial ra
subleading twist result, and the dotted lines the result of Ref. [28].

034036
two things. First, the spectrum on the left shows that the
twist expansion breaks down around E‘ 
 2:1 GeV, and
cannot be trusted for smaller energies. Second, we see
again that the higher order twist corrections are important.
Interestingly, the variations between the different models
are significantly larger for the subleading twist result than
for our result. We already observed a similar but smaller
effect in the sH spectrum. This suggests that the endpoint
spectrum is to a large extent determined by higher order
kinematic twist corrections. If this is the case, it would be
promising to the jVubj extraction from the lepton energy
endpoint spectrum, where the shape-function dependence
is a limiting factor in the achievable accuracy. To confirm
this one certainly needs to consider a wider spread of
model functions. One could also compute the true subsub-
leading twist corrections to see if they have an equally
large effect on the spectrum or not.
VI. CONCLUSIONS

We have studied the �QCD=MB corrections to inclusive
B-meson decays, with attention to the radiative decay B !
Xs	 and the semileptonic decay B ! Xu‘ ��‘.

Usually, the twist expansion is valid in the shape-
function region and the local expansion in the rest of phase
space. Following Ref. [26] we used a modification of the
twist expansion which avoids the restriction to the shape-
function region and yields an expansion applicable over the
full phase space, except for the resonance region. This
effectively provides a smooth interpolation between the
otherwise separate regimes of local and twist expansion.
So far, we only worked at tree level. It would certainly be
interesting to see how much of our approach can be carried
over to include radiative corrections, at least for the con-
tributions proportional to the leading shape function, since
the �s corrections to the leading twist result are known
[49,50]. To extend the matching calculation presented here
0
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The vertical line denotes the BABAR cut E‘ � 2 GeV [8].
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to order �s one needs to study the renormalization of the
relevant light-cone operators in QCD. The renormalization
properties of the shape functions will be different when
they are defined via QCD rather than HQET operators.
Similarly, the �s corrections to the relations between
shape-function moments and the standard HQET parame-
ters will differ between QCD and HQET shape functions.

We performed the expansion directly in QCD light-cone
operators and gave a discussion of the general operator
basis appearing at tree level, including its parametrization
in terms of QCD shape functions. We used reparametriza-
tion invariance under rotations of the light-cone direction
to reduce the number of independent shape functions, and
showed that the different lepton energy spectra obtained in
Refs. [26–28] are in agreement.

The results for the various decay distributions are pre-
sented in Sec. V. The photon spectrum for B ! Xs	 is
given in Eq. (76). The triple differential decay rate for B !
Xu‘ ��‘ is given in terms of E‘, P
, and P� in Eq. (77) and
in terms of E‘, sH, and q2 in Eq. (81). Except for the
resonance region, the decay rates are valid over the entire
phase space, being exact to order �QCD=MB in the region
of hadronic masses sH 
O��QCDMB	, and to order
�2

QCD=M2
B away from it.

Employing different shape-function models our results
allow us to quantify the impact of shape-function effects on
decay distributions and partial rates for any desired kine-
matic cuts. We stress again that the shape-function models
we used only differ in the third and higher moments of the
shape functions, but still give quite different shapes. The
034036
observed variations in the results provide a direct measure
of the true shape-function sensitivity of a quantity, i.e., its
sensitivity to the unknown specific form or higher order
moments of the shape functions. For the total uncertainty,
one has to additionally vary the local parameters, most
notably .1 and mb, as well, the effect of which should be
regarded separately.

An application is to study the transition between the
local and twist expansion. The primary example is the
lepton energy spectrum, and we saw that the usual twist
expansion cannot be trusted below E‘ 
 2:1 GeV.

We are free to choose any kinematic variables, and
discussed several examples of interest. In particular, we
can study decay rates which for given values of the kine-
matic variables receive contributions from the phase space
regions of both local and twist expansion, such as the
hadronic energy, or the variable smax

h used in the q2-E‘

analysis. The hadronic energy spectrum has not received
much attention so far. We point out that, with or without an
additional cut on sH, it represents a viable alternative to the
existing sH-q2 analyses to extract jVubj.
APPENDIX: PARAMETRIZATION OF
LIGHT-CONE OPERATORS

Here we collect the results related to the parametrization
of the light-cone operators from the body of the paper and
add some further details. First, the number of independent
Lorentz structures in the operator basis in Eq. (33) can be
reduced employing the relations
n�O
��
1 �!	 � �!O�

0 �!	�0; n�O
��
3 �!	 � �!O�

0 �!	; n�O
��
4 �!	 � 0;

n�O
����	
2 �!	 �

1

2
�!O��

1 �!	�0 

1

2
O��

1 �!	; n�O
����	
5 �!	 � �!O��

1 �!	 
O��
3 �!	;

n�O
�����
5 �!	 � �O��

4 �!	; n�O
����	
8 �!	 � �!O��

3 �!	; n�O
�����
8 �!	 � �!O��

4 �!	;

n�O
���
6 �!	 � �!O��

3 �!	�0; n�O
���
6 �!	 � O��

3 � !O��
1 ; n�O

���
7 �!	 � �!O��

4 �!	�0;

n�O
���
7 �!	 � O��

4 ; n�O
���
9 �!	 � �!O��

3 �!	; n�O
���
10 �!	 � �!O��

4 �!	;

(A1)

which hold for any Dirac structure �. Note that there is no relation for n�O
���
9;10 �!	. They also imply

n�n�O
���
2 �!	 �

1

2
�!2O�

0 �!	�00; n�n�O
���
5 �!	 � n�n�O

���
6 �!	 � ��!2O�

0 �!	�0;

n�n�O
���
8 �!	 � n�n�O

���
9 �!	 � !2O�

0 �!	; n�n�O
���
7 �!	 � n�n�O

���
10 �!	 � 0:

(A2)

For completeness we repeat the parametrization of the leading operator, Eq. (40),
hO�

0 �!	iB � F0�!	v� 
 K0�!	�n � v	�; (A3)

and the O�"	 operators, Eqs. (46),

hv�O
��
1 �!	iB � ��F1 � .F0	

0�!	v� � �K1 � .K0	
0�!	�n � v	�; h(?��O

��
1 �!	iB � �L0

1�!	;

hv�O
��
3 �!	iB � �F3 � .F0	�!	v� 
 �K3 � .K0	�!	�n � v	�; h(?��O

��
3 �!	iB � L3�!	;

hi"?��P
��
4 �!	iB � R4�!	:

(A4)
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The set of all nonzero matrix elements for the O�"2	 operators is given in Eq. (47). We need

h(?��O
���
5;8 �!	iB � G5;8�!	v� 
 M5;8�!	�n � v	�; hi"?��P

�����
5;8 �!	iB � H5;8�!	�n � v	� 
 N5;8�!	v�;

h �n�(?��O
���
9 �!	iB � �L9 � .L3	�!	; h �n�i"?��P

���
10 �!	iB � �R10 � .R4	�!	:

(A5)

The four-quark operators, defined in Eq. (71), give rise to the shape functions

hQf�
1 �!	iB � Gf

1�!	v� 
 Mf
1 �!	�n � v	�; hQf�

2 �!	iB � Hf
2 �!	�n � v	� 
 Nf

2 �!	v�: (A6)

They depend on the flavor of the final-state quark, and are thus different for B ! Xs	 and B ! Xu‘ ��‘. In addition, they
also differ for charged and neutral B mesons.

The RPI constraints in Eqs. (51a) and (51b) require
L0
1�!	 � 2K0�!	; L0

2�!	 � 2K1�!	; G2�!	 � �2��! � .	F0 
 F1��!	;

M0
2�!	 � �2��! � .	K0 
 K1�

0�!	 � 2K0�!	;
(A7)

where the functions G2�!	, L2�!	, and M2�!	 are defined by

h(?��O
����	
2 �!	iB � �

1

2
G0

2�!	v� �
1

2
M0

2�!	�n � v	�; h(?���v�	O
����	
2 �!	iB �

1

2
�L2 � .L1	

00�!	: (A8)

They also require

h(?��O
���
6 �!	iB � �2��! � .	F0 
 F3��!	v� � �2�! � .	K0 
 2K3 
 L3��!	�n � v	�;

hv�(?��O
���
6 �!	iB � ��K3 � .K0	�!	; hi"?��P

���
7 �!	iB � R4�!	�n � v	� 
 0v�;

hv�i"?��P
���
7 �!	iB � 0:

(A9)

In the remainder of this appendix we use �n to denote �n
QCD divided by an appropriate power of mb. The functions

M5;8�!	, N5;8�!	, and L9�!	 are suppressed by 1=mb. Hence, they are effectively twist O��3	 and can be neglected. The
HQET equations of motion imply

F3�!	 � O��2	; G8�!	 � �2�! � .	2F0�!	 
O��3	; H8�!	 � �! � .	R4�!	 
O��3	; (A10)

where the neglected terms are of higher twist order, and the relations for G8�!	 and H8�!	 follow from the form of their
nth moments. In addition, we may neglect also all twist O��2	 shape functions without moments of local O��2	. The RPI
relations (A7) and (A9) and the HQET equations of motions then imply

F1�!	 � O��2	; !F0
1�!	 
 F3�!	 � O��3	; K1�!	 � O��3	; K3�!	 � O��3	;

L0
1�!	 � 2K0�!	; L3�!	 � �2�! � .	K0�!	 
O��3	: (A11)

The neglected terms are now only of higher order in the local power counting. The relation for L1�!	 is exact. There is no
formal relation fixing R10�!	, but we may model it as

R10�!	 � ��! � .	H5�!	 
O��4	 (A12)

which correctly reproduces its first two moments; see below.
Putting everything together by employing the above shape-function definitions and Eqs. (A1), (A10), and (A11), the

parametrization of the operators (69) in the OPE are
hO�

0 �!	iB � F0�!	v� 
 K0�!	�n � v	�; hO�
5?�!	iB � G5�!	v� 
 � � � ; hP �

5?�!	iB � H5�!	�n � v	� 
 � � � ;

hO�
8?�!	iB � �2�! � .	2F0�!	v� 
 � � � ; hP�

8?�!	iB � �! � .	R4�!	�n � v	� 
 � � � ;

hR��
4?�!	iB �

1

2
�R4 � 2�! � .	K0��!	(��

? 
 � � � ; hR��
10?�!	iB �

1

2
�R10 � .R4 
 2.�! � .	K0��!	(��

? 
 � � � :

(A13)

At last, we look at the moment expansions of the shape functions. For F0�!	 and K0�!	 they were given in Eqs. (43),
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F0�!	 � 2�! � .	 �
.0

2mb
20�! � .	 �

.1 
 ;1=mb

6
200�! � .	 �

<1

18
2000�! � .	 
 � � � ;

K0�!	 �
2.0 � <0=mb

6mb
20�! � .	 


<0

6mb
200�! � .	 
 � � � :

(A14)

For the shape functions arising from the O�"	 operators we have

F1�!	 � �
.0

2mb
2�! � .	 
O��4	20�! � .	 �

<1

18
200�! � .	 
 � � � ;

F3�!	 � �
.0

2mb
2�! � .	 
O��4	20�! � .	 
O��4	200�! � .	 
 � � � ;

K1;3�!	 �
<0

6mb
20�! � .	 
 � � � ;

L1;3�!	 �
2.0 � <0=mb

3mb
2�! � .	 


<0

3mb
20�! � .	 
 � � � ;

R4�!	 � ��.2 
 ;2=mb	20�! � .	 �
<2

2
200�! � .	 
 � � � :

(A15)

Finally, the shape functions arising from the O�"2	 operators we need obey the expansion

G5�!	 � �
2

3
�.1 
 ;1=mb	2

0�! � .	 
O��4	200�! � .	 
 � � � ;

H5�!	 � ��.2 
 ;2=mb	20�! � .	 
O��4	200�! � .	 
 � � � ;

G8�!	 �
2

3
�.1 
 ;1=mb	2�! � .	 


2<1

3
20�! � .	 
 � � � ;

H8�!	 � �.2 
 ;2=mb	2�! � .	 
 <22
0�! � .	 
 � � � ;

L9�!	 �
<0

3mb
2�! � .	 
 � � � ;

R10�!	 � ��.2 
 ;2=mb	2�! � .	 
O��4	20�! � .	 
 � � � :

(A16)

All moments of M5;8�!	 and N5;8�!	 are O��4	 and higher.
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