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The breaking of conventional linear k? factorization for hard processes in a nuclear environment is by
now well established. Here we report a detailed derivation of the nonlinear k?-factorization relations for
the production of quark-gluon dijets. This process is the dominant source of dijets in the proton
hemisphere of proton-nucleus collisions at energies of the relativistic heavy ion collider (RHIC). The
major technical problem is a consistent description of the non-Abelian intranuclear evolution of multi-
parton systems of color dipoles. Following the technique developed in our early work [N. N. Nikolaev, W.
Schäfer, B. G. Zakharov, and V. R. Zoller, J. Exp. Theor. Phys. 97, 441 (2003)], we reduce the description
of the intranuclear evolution of the qgg �q state to the 3� 3 system of coupled equations in the space of
color-singlet 4-parton states j3�3i, j6�6i, and j1515i (and their large-Nc generalizations). At large number of
colors Nc, the eigenstate �j6�6i � j1515i�=

���
2

p
decouples from the initial state j3�3i. The resulting nuclear

distortions of the dijet spectrum exhibit much similarity to those found earlier for forward dijets in deep
inelastic scattering. Still there are certain distinctions regarding the contribution from color-triplet qg final
states and from coherent diffraction excitation of dijets. To the large-Nc approximation, we identify four
universality classes of nonlinear k? factorization for hard dijet production.
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INTRODUCTION

According to the conventional perturbative QCD
(pQCD) factorization theorems the hard scattering cross
sections are linear functionals (convolutions) of the appro-
priate parton densities in the projectile and target [1]. An
implicit assumption behind these theorems is that the
parton densities in the beam and target are low and the
relevant partial wave amplitudes are small, so that the
unitarity constraints can be ignored. In the case of hard
processes in a nuclear environment, the properly defined
partial wave amplitudes become proportional to the nu-
clear thickness and, for a sufficiently heavy nucleus, over-
shoot the s-channel unitarity bound. Unitarization makes
the nuclear partial waves a highly nonlinear functional of
the free-nucleon amplitudes. Alternatively, in the pQCD
language, the unitarity constraints bring in a new dimen-
sional scale into the problem—the so-called saturation
scale. An important implication of the nonlinear unitarity
relation between the free-nucleon and nuclear partial
waves is that the properly defined density of gluons in a
nucleus becomes a nonlinear functional of the gluon den-
sity in a free nucleon; the first discussions of the fusion of
partons in deep inelastic scattering (DIS) off a nucleus go
back to 1975 [2].

The emergence of a new large scale and the ensuing
nonlinearity call for a revision of the pQCD factorization
for hard processes in a nuclear environment. A consistent
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analysis of forward hard dijet production in DIS off nuclei
revealed a striking breaking of linear k? factorization [3,4]
confirmed later on in the related analysis of single-jet
spectra in hadron-nucleus collisions [5,6]. Namely, follow-
ing the pQCD treatment of diffractive dijet production
[7,8], one can define the collective nuclear unintegrated
gluon density such that it satisfies the s-channel unitarity
constraints and such that the familiar linear k? factoriza-
tion (see e.g. the recent reviews [9]) would hold for the
nuclear structure function F2A�x;Q

2� and the forward
single-quark spectrum in DIS off nuclei because of their
special Abelian features. However, the dijet spectra in DIS
and single-jet spectra in hadron-nucleus collisions prove to
be highly nonlinear functionals of the collective nuclear
gluon density. Furthermore, the pattern of nonlinearity for
single-jet spectra was shown to depend strongly on the
relevant partonic subprocess [6]. Our conclusions on the
breaking of linear k? factorization for hard scattering off
nuclei were recently taken over by other authors [10–12].

In this communication we extend the analysis [4,13] of
the excitation of heavy flavor and leading quark dijets in
DIS, 

gN ! Q �Q, where gN stands for the gluon ex-
changed with the nucleon, to the excitation of quark-gluon
dijets (pQCD Bremsstrahlung tagged by a scattered quark)
in the pQCD subprocess q
gN ! qg off free nucleons and
its generalization to heavy nuclear targets. In the latter case
multiple gluon exchanges between the involved partons
and a nucleus are enhanced by a large nuclear radius.
The issues are (i) to which extent such multiple gluon
exchanges can be described in terms of one and the same
unintegrated collective nuclear gluon density and
(ii) whether the nuclear factorization for quark-gluon dijets
-1  2005 The American Physical Society
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1A brief discussion of the main results has been reported
elsewhere [18].
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in qA collisions is similar to that for the quark-antiquark
dijets in DIS, i.e, in 

A collisions. To a certain extent,
our answer is in the affirmative—the nonlinear
k?-factorization properties for two processes exhibit
much similarity. Still, the two cases differ substantially.
For instance, the production of coherent diffractive dijets
makes about 50% of the total cross section in DIS but
becomes marginal in qA collisions. Furthermore, the con-
tributions from quark-gluon dijets in different color mul-
tiplets have very distinct k?-factorization properties. Also
the effects of the initial-state interaction (ISI) change sub-
stantially from the color-singlet 

 in DIS to the color-
triplet quark in qA collisions. On the other hand, the
unifying aspect is a treatment of the excitation of final-
state color dipoles into the higher color multiplets—color-
octet q �q in DIS and sextet and 15-plet qg in qA collisions.
The principal finding from our scrutiny of dijets in DIS and
qA collisions and of open charm production in gA colli-
sions is a classification of different nuclear hard processes
in four universality classes for nonlinear k? factorization
depending on color properties of the pQCD subprocess.

A tempting scenario for hard processes in nuclear matter
is hard scattering of the incident parton off the collective
nuclear glue preceded and followed by incoherent soft
initial and final state interactions. Our consistent
S-matrix treatment of the non-Abelian intranuclear evolu-
tion of color dipoles is much richer in consequences and
such a naive pattern of nuclear factorization is borne out by
none of our universality classes: coherent distortions over
the whole nucleus or its slices are a common feature of the
three universality classes with exception of the open charm
production; in the universality class for transition of color
dipoles from lower to higher color representations the hard
excitation is described by the free-nucleon gluon density;
incoherent initial and final state interactions are manifestly
absent in the nonlinear k? factorization for the excitation
of quark-gluon dijets in the color-triplet state.

The starting point of our analysis is the master formula
(13) for the inclusive dijet spectrum. It is derived based on
the technique developed in [4,6,14,15] and allows to cal-
culate the dijet spectrum in terms of the S-matrices for
interaction with the target nucleon or nucleus of the color-
singlet n-parton states, n � 2, 3, 4. Within this technique,
one deals with infrared-safe quantities despite the fact that
the incident parton—the quark q
—is carrying a net color
charge. The calculation of the two-parton and three-parton
S-matrices is a single-channel problem with known solu-
tion [15–17]. The stumbling block is the calculation of the
4-body S-matrix. In the case of the quark-gluon dijets it
describes the non-Abelian intranuclear evolution of the
color-singlet qg �qg system of dipoles. It can be reduced
to a 3� 3 coupled-channel problem. In our earlier work
[4] we published a full solution of the related two-channel
problem for the q �qq �q system which emerges in the de-
scription of quark-antiquark dijets in DIS. Here we report
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the solution for the qg �qg system of dipoles which has some
new features compared to the q �qq �q state in DIS.1 We go to
fine details of this derivation—specifically, the diagonal-
ization of the coupled-channel S-matrix and to the formu-
lation of explicit nonlinear k?-factorization formulas for
the dijet spectrum—for several reasons. First, the produc-
tion of quark-gluon dijets without the soft gluon approxi-
mation has not been treated before. Second, regarding the
color properties of the incident and final states, it is a
process of sufficient generality to set a basis for the de-
scription of other pQCD processes. In conjunction with our
earlier results, it allows to formulate four universality
classes of nonlinear k? factorization. Third, recently the
formal representation for the dijet cross section similar to
our master formula has been discussed by several groups
[10–12], but these works stopped short of the diagonaliza-
tion of their counterpart of our 4-body S-matrix.
Correspondingly, they do not contain explicit nonlinear
k?-factorization formulas.

A very rich pattern of the process-dependent nonlinear
k? factorization emerges from the studies presented here
and reported in [4,6,13,18]. For instance, it becomes in-
creasingly clear that hard processes in a heavy nucleus
cannot be described in terms of a universal collective
glue, rather the nuclear glue must be described by a density
matrix in the color space. Furthermore, the collective glue
defined for a slice of a nucleus rather than the whole
nucleus is an indispensable part of the description of
excitation of color dipoles into higher color representa-
tions, especially in regard to their intranuclear ISI and
final-state interaction (FSI) properties. The linear k? fac-
torization for single-quark jets in DIS found in our earlier
study [4] is an exception due to the Abelian incident
parton—the photon.

From the point of view of practical applications, the
discussed quark-gluon dijets are of direct relevance to the
large (pseudo)rapidity region of proton-proton and proton-
nucleus collisions at RHIC (for the discussion of the pos-
sible upgrade of detectors at RHIC II for the improved
coverage of the proton fragmentation region see [19]). Our
treatment is applicable when the beam and final-state
partons interact coherently over the whole longitudinal
extension of the nucleus, which at RHIC amounts to the
proton fragmentation region of

x �
�Q
�2 
M2

?

2mEq

& xA �

1

2RAmp
� 0:1A�1=3; (1)

where RA is the radius of the target nucleus of mass number
A, �Q
�2, and Eq
 are the virtuality and energy of the beam
quark q
 in the target rest frame, M? is the transverse mass
of the dijet and mp is the proton mass ([2,16], for the
-2
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related color-dipole phenomenology of the experimental
data on nuclear shadowing see [20]).

The presentation of the main material is organized as
follows. The master formula for the dijet spectrum is
presented in Sec. II. The two-body density matrix—the
Fourier transform of which gives the dijet spectrum—
contains the S-matrices for the interaction of two-, three-
, and four-parton color-singlet systems of dipoles with the
target. Based on the technique developed in [15], in Sec. III
we report single-channel S-matrices in terms of the quark-
antiquark and quark-antiquark-gluon color-dipole cross
sections [16,17]. Section IV contains all the technicalities
of the derivation of the coupled-channel S-matrix for the
qg �qg state: the decomposition into color multiplets; pro-
jection onto the final states; the color-flow diagram tech-
nique for the calculation of the 3� 3 matrix of color-
dipole cross sections; the derivation of the relevant
Casimir operators; the explicit diagonalization of the
S-matrix at large number of colors Nc, and the Sylvester
expansion. The quark-gluon dijet spectrum for the free-
nucleon target is derived in Sec. V. Here we also comment
on a direct relationship between the dijet and single-jet
spectra for the free-nucleon reactions described by the
single-gluon exchange in the t-channel. The principal re-
sult of this study—the nonlinear k? factorization for the
dijet spectrum produced off nuclear targets—is reported in
Sec. VI. Here we compare the pattern of nonlinear k?
factorization for quark-gluon dijets in qA collisions to
that for the quark-antiquark dijets in DIS and gA collisions
and identify four universality classes depending on the
color representation of the incident parton and final-state
dijet. In Sec. VII we apply our results to the nuclear broad-
ening of the dijet acoplanarity distribution. In Sec. VIII we
comment on a limiting case when the quark-gluon dijets
merge to one jet. Such monojets can be identified with the
fragmentation of the quark jet formed by the quasielasti-
cally scattered incident quark. The separation into the dijet
and monojet final states changes with the mass number of
the target nucleus and the centrality of the collisions. We
also comment on the possible nuclear modification of the
fragmentation function. In the Conclusions section we
summarize our main results.

II. THE MASTER FORMULA FOR QUARK-GLUON
DIJET PRODUCTION OFF FREE NUCLEONS

AND NUCLEI

A. Kinematics and nuclear coherency

To the lowest order in pQCD the underlying subprocess
for quark-gluon dijet production in the proton fragmenta-
tion region of proton-nucleus collisions is a collision of the
valence quark q
 from the proton with the gluon gN from
the target,

q
gN ! qg:

It is a pQCD Bremsstrahlung tagged by a scattered quark.
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We do not restrict ourselves to radiation of soft gluons. In
the case of a nuclear target one has to deal with multiple
gluon exchanges which are enhanced by a large thickness
of the target nucleus.

From the laboratory, i.e., the nucleus rest frame, stand-
point it can be viewed as an excitation of the perturbative
jqgi Fock state of the physical projectile jq
i by one-gluon
exchange with the target nucleon or multiple gluon ex-
changes with the target nucleus. Here the collective nuclear
effects develop if the coherency over the thickness of the
nucleus holds for the qg Fock states, i.e., if the coherence
length is larger than the diameter of the nucleus

lc �
2Eq


M2
? 
 �Q
�2

�
1

xmN
> 2RA; (2)

where

M2
? �

p2
q

zq



p2
g

zg
(3)

is the transverse mass squared of the qg state, pq;g and zq;g
are the transverse momenta and fractions of the incident
quarks momentum carried by the quark and gluon, respec-
tively, (zq 
 zg � 1).

As a side remark, we note that interactions of the nucleus
with the fast beam spectator partons need not be included
explicitly, as they would cancel after a proper unitarity sum
over spectator final states that is required for the inclusive
process in question (see e.g. [6]). The valence quarks of the
proton have a small transverse momentum typical of the
soft wave function and the interference of radiation of
gluons by different valence quarks of the proton is strongly
suppressed at large transverse momentum of gluons—no-
tice a close correspondence to the DIS Compton scattering
diagram with absorption of the hard photon by one and
emission by another quark in the proton which vanishes in
the hard regime.

In the antilaboratory (Breit) frame, the partons with the
momentum xpN have a longitudinal localization of the
order of their Compton wavelength � � 1=xpN , where
pN is the momentum per nucleon. The coherency over
the thickness of the nucleus in the target rest frame is
equivalent to the spatial overlap of parton fields of different
nucleons at the same impact parameter in the Lorentz-
contracted ultrarelativistic nucleus. In the overlap regime
one would think of the fusion of partons form different
nucleons and collective nuclear parton densities [2]. The
overlap takes place if � exceeds the Lorentz-contracted
thickness of the ultrarelativistic nucleus

� �
1

xpN
> 2RA �

mN

pN
; (4)

which is identical to the condition (2).
Qualitatively, both descriptions of collective nuclear

effects are equivalent to each other. Quantitatively, the
laboratory frame approach takes advantage of the well-
-3
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FIG. 1 (color online). The rapidity structure of the radiation of
gluons by quarks q! qg in pA collisions.
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FIG. 2 (color online). Typical contribution to the excitation
amplitude for q
A! qgX, with multiple color excitations of the
nucleus. The amplitude receives contributions from processes
that involve interactions with the nucleus after and before the
virtual decay which interfere destructively.

2In terms of the light cone approach to the QCD Landau-
Pomeranchuk-Migdal effect, this corresponds to the thin-target
limit [22].
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developed multiple-scattering theory of interactions of
color dipoles with nuclei [4,16,17,21]. From the practical
point of view, the coherency condition x < xA restricts
collective effects in hard processes at RHIC to the proton
fragmentation region. The target frame rapidity structure
of the considered q
 ! qg excitation is shown in Fig. 1.
The (pseudo)rapidities of the final-state partons must sat-
isfy �q;g > �A � log1=xA. The rapidity separation of the
quark and gluon hard jets,

��qg � log
1� zg
zg

; (5)

is considered to be finite. Both jets are supposed to be
separated by a large rapidity from other jets at midrapidity
or in the target nucleus hemisphere; the gaps between all
jets, beam spectators, and target debris are filled by soft
hadrons from an underlying event.

B. Master formula for excitation of quark-gluon dijets

In the nucleus rest frame, relativistic partons q
, q, and
g, propagate along straightline, fixed-impact-parameter,
trajectories. To the lowest order in pQCD the Fock state
expansion for the physical state jq
iphys reads

jq
iphys � jq
i0 
��zg; r�jqgi0; (6)

where ��zg; r� is the probability amplitude to find the qg
system with the separation r in the two-dimensional
impact-parameter space, the subscript ‘‘0’’ refers to bare
partons. The perturbative coupling of the q
 ! qg transi-
tion is reabsorbed into the light cone wave function
��zg; r�. We also omitted a wave function renormalization
factor, which is of no relevance for the inelastic excitation
to the perturbative order discussed here. The explicit ex-
pression for ��zg; r� in terms of the quark-splitting func-
tion will be presented below. The wave function depends
on the virtuality of the incident q
, which equals �Q
�2 �
�p
�2, where p
 is the transverse momentum of q
 in the
incident proton (Fig. 1). For the sake of simplicity we take
the collision axis along the momentum of the incident
quark q
, the transformation between the transverse mo-
034033
menta in the q
-target and p-target reference frames is
trivial [6].

If b is the impact parameter of the projectile q
, then the
impact parameters of the final-state quark and gluon equal

b q � b� zgr; bg � b
 zqr: (7)

By the conservation of impact parameters, the action of the
S-matrix on jaiphys takes a simple form

Sjq
iphys � Sq�b�jq
i0 
 Sq�bq�Sg�bg���z; r�jqgi0

� Sq�b�jq
iphys 
 �Sq�bq�Sg�bg�

� Sq�b����zg; r�jqgi0: (8)

In the last line we explicitly decomposed the final state into
the (quasi)elastically scattered jq
iphys and the excited state
jqgi0. The two terms in the latter describe a scattering on
the target of the qg system formed way in front of the target
and the transition q
 ! qg after the interaction of the state
jq
i0 with the target, as illustrated in Fig. 2. The contribu-
tion from transitions q
 ! qg inside the target nucleus
vanishes in the high-energy limit of x & xA.2 We recall,
that the s-channel helicity of all partons is conserved.

The probability amplitude for the two-jet spectrum is
given by the Fourier transform

Z
d2bqd2bg exp��i�pqbq 
 pgbg���Sq�bq�Sg�bg�

� Sq�b����zg; r�: (9)

The differential cross section is proportional to the modu-
lus squared of (9),
-4
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Z
d2b0qd

2b0gexp�i�pqb
0
q
pgb

0
g���S

y
q �b0q�S

y
g �b0g�

�Sy
q �b0���
�zg;r0��

Z
d2bqd2bg exp��i�pqbq
pgbg��

��Sq�bq�Sg�bg��Sq�b����zb;r�: (10)

The crucial point is that the Hermitian conjugate Sy can be
viewed as the S-matrix for an antiparton [4,14,15].
Consequently, the four terms in the product

�Sq�b0q�Sg�b0g� � Sq�b0��y�Sq�bq�Sg�bg� � Sq�b��

admit a simple interpretation:

S �2�
q
q
 �b

0; b� � Sy
q �b0�Sq�b� (11)

can be viewed as an S-matrix for elastic scattering on a
target of the �q
q
 state in which the antiparton �q
 prop-
agates at the impact parameter b0. The averaging over the
color states of the beam parton q
 amounts to the dipole
q
 �q
 being in the color-singlet state. Similarly,

S�3�
�q
qg

�b0; bq; bg� � Sy
q �b0�Sq�bq�Sg�bg�;

S�3�
�q0g0q


�b; b0q; b
0
g� � Sy

q �b0q�S
y
g �b0g�Sq�b�;

S�4�
�q0g0gq�b

0
q;b

0
g; bq; bg� � Sy

q �b0q�S
y
g �b0g�Sg�bg�Sq�bq�:

(12)

describe elastic scattering on a target of the overall color-
singlet �qqg and �q �g gq states, respectively. This is shown
schematically in Fig. 3. Here we suppressed the matrix
elements of S�n� over the target nucleon, for details of the
derivation based on the closure relation, see [4].
Specifically, in the calculation of the inclusive cross sec-
tions one averages over the color states of the beam parton
q
, sums over color states X of final-state partons q, g,
takes the matrix products of Sy and S with respect to the
relevant color indices entering S�n� and sums over all
nuclear final states applying the closure relation. The tech-
nicalities of the derivation of S�n� will be presented below,
here we cite the master formula for the dijet cross section,
which is the Fourier transform of the two-body density
+ - -

(3)
S

(3)
SS

(4) (2)
S+ - -q

q

q

*

q

*

q

*

qgg

g

g

q

*

q

*

q

*

q q

q

gg

FIG. 3 (color online). The S-matrix structure of the two-body
density matrix for excitation q
 ! qg.
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matrix:

d!�q
 ! qg�

dzd2pqd2pg
�

1

�2"�4
Z
d2bqd2bgd2b0qd2b0g

� exp��ipq�bq � b0q� � ipg�bg � b0g��

���zg; bq � bg��

�zg; b0q � b0g�

�
X
X

hXjfS�4�
�qg0qg�b

0
q;b0g; bq; bg�


 S�2�
�q
q


�b0; b� � S�3�
�qg0q
 �b;b

0
q; b

0
g�

� S�3�
�q
qg

�b0; bq; bg�gjini: (13)

Hereafter, we describe the final-state dijet in terms of the
gluon-jet momentum, p � pg, z � zg, and the decorrela-
tion (acoplanarity) momentum � � pq 
 pg. We also in-
troduce

s � bq � b0q; (14)

in terms of which bg � b0g � s
 r� r0 and

exp��ipq�bq � b0q� � ipq�bg � b0g��

� exp��i�s� ipr
 ipr0�; (15)

so that the dipole parameter s is conjugate to the acopla-
narity momentum �.
III. CALCULATION OF THE 2-PARTON AND
3-PARTON S-MATRICES

A. The quark-nucleon S-matrix and the
k?-factorization representations for the

color-dipole cross section

In order to set up the formalism, we start with the
S-matrix representation for the cross section of interaction
of the triplet-antitriplet color dipole q �q with the free-
nucleon target [4]. To the two-gluon exchange approxima-
tion, the S-matrices of the quark-nucleon and antiquark-
nucleon interaction at an impact parameter bq�b �q� equal,
respectively,

S �bq� � 1
 iTaVa%�bq� �
1

2
TaTa%2�bq�;

Sy�b �q� � 1� iTaVa%�b �q� �
1

2
TaTa%2�b �q�;

(16)

where TaVa%�b� is the eikonal for the quark-nucleon gluon
exchange. The vertex Va for excitation of the nucleon
gaN ! N


a into color-octet state is so normalized that after
application of closure over the final-state excitationsN
 the
vertex gagbNN equals hNjVy

a VbjNi � &ab. The second
order terms in (16) do already use this normalization.
The S-matrix of the �q �q�-nucleon interaction equals

S �2�
q �q�bq; b �q� �

hNjTr�S�bq�Sy�b �q��jNi

hNj1jNiTr1
: (17)
-5
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FIG. 4 (color online). The color-flow diagram for the S-matrix
for the interaction of the color-single q �q dipole with the nucleon;
a and �a are the impact parameters of the quark and antiquark,
respectively.
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A graphical rule for the calculation of the color traces
entering (17) is shown in Fig. 4; such color-flow diagrams
will extensively be used in the subsequent calculation of
S�4�.

The corresponding profile function is �2�bq; b �q� � 1�

S�2�
q �q�bq; b �q�. The dipole cross section for interaction of the

color-singlet q �q dipole r � bq � b �q with the free nucleon
is obtained upon the integration over the overall impact
parameter

!�r� � 2
Z
d2bq�2�bq;bq � r�

� CF
Z
d2bq�%�bq� � %�bq � r��2; (18)

where CF � �N2
c � 1�=2Nc is the quark Casimir operator.

It sums a contribution from the four Feynman diagrams of
Fig. 5 and is related to the gluon density in the target by the
k?-factorization formula [17,23]

!�x; r� �
Z
d2�f�x;���1� exp�i�r��; (19)

where

f�x;�� �
4")S�r�
Nc

�
1

,4
�F �x; ,2� (20)

and

F �x; ,2� �
@G�x; ,2�

@ log,2 (21)

is the unintegrated gluon density in the target nucleon.
Hereafter, unless it may cause a confusion, we suppress
the variable x in the gluon densities and dipole cross
sections. The leading Log 1

x evolution of the dipole cross
N

gκ

N

q
q
_

<

FIG. 5 (color online). The four Feynman diagrams for the
quark-antiquark dipole-nucleon interaction by the two-gluon
pomeron exchange in the t-channel.
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section is governed by the color-dipole leading-Log 1
x evo-

lution [17,24], the same evolution for the unintegrated
gluon density is governed by the familiar momentum-
space Balitskii-Fadin-Kuraev-Lipatov (BFKL) equation
[25].

The S-matrix for coherent interaction of the color dipole
with the nuclear target is given by the Glauber-Gribov
formula [26,27]

S �b; !�r�� � exp
�
�
1

2
!�r�T�b�

�
; (22)

where

T�b� �
Z 1

�1
drznA�b; rz� (23)

is the optical thickness of the nucleus. The nuclear density
nA�b; rz� is normalized according to

R
d3 ~rnA�b; rz� �R

d2bT�b� � A, where A is the nuclear mass number.
In the specific case of S�2�

�q
q

�b0; b� the color dipole equals

r q �q � b� b0 � s
 zr� zr0 (24)

and S�2�
�q
q


�b0; b� entering Eq. (14) will be given by the

Glauber-Gribov formula

S �2�
�q
q


�b0;b� � S�b; !�s
 zr� zr0��: (25)
B. The S-matrix for the color-singlet �qqg state

Here quark and gluon couple to the color triplet. The
dipole cross section for the color-singlet �qqg state has been
derived in [17], the S-matrix derivation with the quark-
antiquark basis description of the gluon is found in
Appendix A of Ref. [6]. For the generic 3-body state shown
in Fig. 6 it equals

!3�rq �q; rgq� �
CA
2CF

�!�rgq� 
 !�rg �q� � !�rq �q�� 
 !�rq �q�;

(26)

where rg �q � rgq 
 rq �q. The configuration of color dipoles
for the case of our interest is shown in Fig. 6 (see the
related derivation in [15]). For the �q
qg state the relevant
q
rgq

qq
_r q

_

a) b)

s-zr’

r
q

g

FIG. 6 (color online). The color-dipole structure of (a) the
generic quark-antiquark-gluon system of dipoles and (b) of the
�q
qg system which emerges in the S-matrix structure of the two-
body density matrix for excitation q
 ! qg.
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dipole sizes in (26) equal

r q �q � bq � b0 � s� zr; rgq � bg � bq � r;

rg �q � bg � b0 � s
 r� zr0;
(27)

whereas for the q
 �qg0 state we have

r q �q � b� b0q � s
 zr; rgq � b0g � b0q � r0;

rg �q � bg � b � s
 zr� r0;
(28)

so that

! �q
qg �
CA
2CF

�!�r� 
 !�s
 r� zr0� � !�s� zr0��


 !�s� zr0�;

!q
 �q0g0 �
CA
2CF

�!��r0� 
 !�s� r0 
 zr� � !�s
 zr��


 !�s
 zr�: (29)

The overall color-singlet q �qg state has a unique color
structure and its elastic scattering on a nucleus is a
single-channel problem. Consequently, the nuclear
S-matrix is given by the single-channel Glauber-Gribov
formula [26,27]

S �3�
�q0g0q
 �b; b

0
q; b

0
g� � S�b; !q
 �q0g0 �;

S�3�
�q
qg

�b0; bq; bg� � S�b; ! �q
qg�:
(30)
IV. COUPLED-CHANNEL S-MATRIX FOR THE
4-PARTON STATE

A. The basis of color-singlet �q �qgg0� states

The 4-parton S-matrix describes transitions between
color-singlet �q �qgg0� states. It is convenient to decompose
the jqgi state into the j3i, j6i, and j15i states and their
SU�Nc� generalizations (our reference to the triplet, sextet,
and 15-plet states at arbitrary Nc should not cause any
confusion). Then the basis of color-singlet states jq �qgg0i
will consist of the j3�3i, j6�6i, and j1515i systems of color
dipoles and the intranuclear evolution in the elastic scat-
tering of the 4-parton state off the nucleus is a three-
channel problem. The evolution starts from the j3�3i state
what is evident from Fig. 3. Technically, once the 3� 3

matrix �̂ of 4-body dipole cross sections is known, the
corresponding nuclear S-matrix will be given by the
Glauber-Gribov formula

S �4�
�q0g0gq�b

0
q; b

0
g; bq; bg� � S�b; �̂�: (31)

Our immediate task is a calculation of the coupled-channel
operator �̂.

We chose a description of the gluon in the quark-
antiquark basis:
034033
gik � �aiak �
1

Nc
� �aa�&ik: (32)

In the calculation of the S-matrices both the quark a and
the antiquark �a must be considered as propagating at the
same impact parameter. The generic quark-gluon state is
described by a tensor

vikl � gikcl � �aiakcl �
1

Nc
� �aa�cl&

i
k: (33)

There is a unique color-triplet quark-gluon state (the nor-
malization of the states will be defined at the level of the
j3�3i, j6�6i, and j1515i systems of color dipoles)

tk � � �ac�ak �
1

Nc
� �aa�ck: (34)

The sextet state is described by the traceless tensor anti-
symmetric in �k; l�,

Aikl � �ai�akcl � alck� 

1

Nc � 1
�� �ac�al � � �aa�cl�&

i
k

�
1

Nc � 1
�� �ac�ak � � �aa�ck�&il; (35)

while the 15-plet is described by the traceless symmetric
tensor

Sikl � �ai�akcl 
 alck� �
1

Nc 
 1
�� �ac�al 
 � �aa�cl�&ik

�
1

Nc 
 1
�� �ac�ak 
 � �aa�ck�&il: (36)

The quark, antiquark, and two gluons in the color-singlet
(q �qgg0) system of dipoles all propagate at different impact
parameters. To avoid confusion, the gluon in the complex
conjugated state will be described by the tensor

�g0�ik � �bibk �
1

Nc
� �bb�&ik; (37)

and the antitriplet state is

�t k � � �cb� �bk �
1

Nc
� �bb� �ck: (38)

The overall color-singlet j3�3i, j6�6i, and j1515i states will
be decomposed into six 6-body color-singlet states. The
corresponding 6-body vertices (projection operators) equal

V1 � � �ab�� �ba�� �cc�; V2 � � �ab�� �bc�� �ca�;

V3 � � �aa�� �bc�� �cb�; V4 � � �ac�� �bb�� �ca�;

V5 � � �ac�� �ba�� �cb�; V6 � � �aa�� �bb�� �cc�;

(39)

some of which are pictorially represented in Fig. 7. For
instance, the normalized color-singlet triplet-antitriplet
state will be
-7
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FIG. 7 (color online). Examples of the 6-body vertices (pro-
jection operators) which emerge in expansions of the qg �qg states
in the quark-antiquark basis.
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j3�3i �
�
�

1

Nc
V3 �

1

Nc
V4 
 V5 


1

N2
c
V6

�
�

������
Nc

p

�N2
c � 1�

:

(40)

Similarly, one finds

j6�6i �
�
V1 � V2 


1

Nc � 1
�V3 
 V4 � V5 � V6�

�

�
1���������������������������������������������

2Nc�Nc 
 1��Nc � 2�
p ; (41)
b
_

c
_

b
_

a
a
_ c

b
b
_

c
_
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a
_ c
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c
_

a
a
_

c

b

σ σ11 25σ12

FIG. 8 (color online). Examples of color-flow diagrams for the
calculation of the components of the 6-body dipole cross sec-
tions. The horizontal quark lines are multiplied by the quark
S-matrix S�bi� taken at the appropriate impact parameter, while
each horizontal antiquark line is multiplied by Sy�bi�, the trace
is taken for each closed loop.
j1515i �
�
V1 
 V2 �

1

Nc 
 1
�V3 
 V4 
 V5 
 V6�

�

�
1���������������������������������������������

2Nc�Nc � 1��Nc 
 2�
p : (42)

These states are normalized to unity, h3�3j3�3i � h6�6j6�6i �
h1515j1515i � 1, the normalization coefficients are read-
ily derived using the color-flow diagram technique de-
scribed in Sec. IV C below. The diagonal and off-
diagonal matrix elements of the 4-body cross section op-
erator in the basis of j3�3i, j6�6i, and j1515i of color-dipole
states will be decomposed in terms of the matrix elements

!ik � hVij�̂jVki (43)

with the coefficients given by the expansions (40)–(42).
Note that each of the !ik is a matrix element between the

overall color-singlet 6-body configurations composed of
the three color-singlet quark-antiquark pairs. As such all of
them are infrared-safe quantities.

B. Projection onto the final states

In the case of the inclusive dijet spectrum with summa-
tion over all colors of final-state quarks and gluons the
projection onto the final state is of the form (see the
discussion in [4])
034033
X
X

hXj �
X
R

���������������
dim�R�

p
hR �Rj

�
������
Nc

p
h3�3j 


���������������������������������������������
1

2
Nc�Nc 
 1��Nc � 2�

s
h6�6j




���������������������������������������������
1

2
Nc�Nc � 1��Nc 
 2�

s
h1515j; (44)

where dim�R� is the dimension of the corresponding rep-
resentation. The averaging over the colors of the initial
quark q
 amounts to taking

jini � j3�3i �
1��������������

dim�3�
p : (45)

Then the calculation of the inclusive dijet cross section
requires the evaluation of the combination of matrix ele-
mentsX
X

hXjS�b; �̂�jini � h3�3jS�b; �̂�j3�3i




��������������
dim�6�

dim�3�

s
h6�6jS�b; �̂�j3�3i




�����������������
dim�15�

dim�3�

s
h1515jS�b; �̂�j3�3i: (46)

Besides the inclusive spectrum one can readily consider the
excitation of quark-gluon dijets in specific color represen-
tations. We reiterate that they also will be infrared-safe
observables.

C. Color-flow diagrams

The calculation of the matrix elements (43) is greatly
simplified by the technique of color-flow diagrams. Each
matrix element (43) corresponds to a certain color-flow
diagram. Altogether there are 21 different color-flow dia-
grams, the three selected cases are shown in Fig. 8. The
number of closed loops varies from three to one. In the
calculation of the S-matrix elements,
-8
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FIG. 9 (color online). Examples of interaction with the target
nucleon of the (a) quark-antiquark and diquark dipole in the
�bc �ca state.
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S ik � hVijSjVki; (47)

each horizontal quark line is multiplied by the quark
S-matrix S�bi� taken at the appropriate impact parameter
bi, while the antiquark line is multiplied by Sy�bi�. The
trace of the product of S-matrices is calculated for each
closed loop.

The first application of the color-flow diagrams is to the
derivation of the normalization factors in expansions (41).
They are obtained by assigning the factor Nc to each and
every loop.

Now we present the results for the three matrix elements
shown in Fig. 8. For the sake of brevity the impact parame-
ters of quarks and antiquarks will be denoted by their
symbols. One readily finds

S 11 � hV1jSjV1i

� Tr�S�a�Sy� �b��Tr�S�b�Sy� �a��Tr�S�c�Sy� �c��

� N3
c�1� ��a� �b���1� ��b� �a���1� ��c� �c��:

(48)

The multibody S-matrices must be evaluated up to the
terms quadratic in the QCD eikonal, i.e., to the terms linear
in the triplet-antitritplet color-dipole profile function �,
and the corresponding matrix element of the dipole cross
section equals

!11 � hV1j�̂jV1i

� N3
c�!�a� �b� 
 !�b� �a� 
 !�c� �c��

� N3
c�2!�a� b� 
 !�c� �c��: (49)

Each quark-antiquark loop gives the corresponding dipole
cross section times Nc to the power equal to the number of
loops. Here we took into account that the quark a and
antiquark �a, and b and �b as well, propagate pairwise at
equal impact parameters.

The case of !12 is a bit more complicated. Here S12 is a
product of two traces:

S 12 � hV1jSjV2i

� Tr�S�b�Sy� �a��Tr�S�a�Sy� �b�S�c�Sy� �c��

� Nc�1� ��b� �a��Tr�S�a�Sy� �b�S�c�Sy� �c��: (50)

The latter trace Tr�S�a�Sy� �b�S�c�Sy� �c�� was already
encountered in our derivation of the 4-parton S-matrix
for the production of dijets in DIS [4]. The corresponding
color-flow diagram is shown in Fig. 9. Here one needs to
sum the contributions to the �bc �ca scattering amplitude
from the exchange by the 2-gluon pomerons in the
t-channel. The familiar diagram of Fig. 9(a) gives a con-
tribution �%�c�%� �c�Tr�TaTa�. The new case is when the

NONLINEAR k?FACTORIZATION FOR QUARK-GLUON . .
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two gluons are attached to the diquark ac as shown in
Fig. 9(b). Straightforward algebra shows that the corre-
sponding contribution to the profile function equals
%�a�%�c�Tr�TaTa�. This gives rise to a simple rule: each
quark-antiquark pair, a �b, a �c, c �b, and c �c, contributes the
corresponding triplet-antitriplet dipole cross section,
whereas the diquark ac and the antidiquark �b �c contribute
the triplet-antitriplet dipole cross section taken with the
negative sign. The color traces give a factor Nc per each
loop, one of these factors has already been put in evidence
in Eq. (50). The final result is

!12 � hV1j�̂jV2i

� N2
c�!�b� �a� 
 !�a� �b� � !�a� c� 
 !�a� �c�


 !�c� �b� � !� �b� �c� 
 !�c� �c��: (51)

Application of the same technique to !25 gives

S 25 � hV2jSjV5i

� Tr�S�a�Sy� �a�Sy� �c�S�b�Sy� �a�S�c�Sy� �b�� (52)

with the cross section

!25 � hV2j�̂jV5i

� Nc�!�a� �c� � !�a� b� 
 !�a� �a� � !�a� c�


 !�a� �b� 
 !�b� �c� � !� �a� �c� 
 !�c� �c�

� !� �c� �b� 
 !�b� �a� � !�b� c� 
 !�b� �b�


 !�c� �a� � !� �a� �b� 
 !�c� �b��

� Nc!�c� �c� (53)

Here we used the obvious properties !�a� �a� � !�b�
�b� � 0 and cancellations due to equalities of the form
!�c� a� � !�c� �a�. For the sake of completeness, we
cite all the remaining !ik:
-9
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!13 � Nc!�c� �c�; !14 � Nc!�c� �c�;

!15 � N2
c�2!�a� b� 
 !�c� �c� 
 !�a� c� 
 !�b� c� � !�b� c� � !�a� �c��; !16 � N2

c!�c� �c�;

!22 � N3
c�!�a� b� 
 !�b� c� 
 !�a� �c��; !23 � N2

c�!�b� c� 
 !�b� �c��;

!24 � N2
c�!�a� c� 
 !�a� �c��; !26 � Nc!�c� �c�; !33 � N3

c�!�b� c� 
 !�b� �c��;

!34 � Nc!�c� �c�; !35 � N2
c�!�b� c� 
 !�b� �c��; !36 � N2

c!�c� �c�;

!44 � N3
c�!�a� c� 
 !�a� �c��; !45 � N2

c�!�a� c� 
 !�a� �c��; !46 � N2
c!�c� �c�;

!55 � N3
c�!�a� b� 
 !�a� c� 
 !�b� �c��; !56 � Nc!�c� �c�; !66 � N3

c!�c� �c�:

(54)
D. The 3� 3 matrix of 4-parton dipole cross sections �̂.

A simple algebra gives the following 3� 3 matrix �̂ of
4-body dipole cross sections (we go back to the dipole
parameters defined in Sec. II):

�11 � h3�3j�̂j3�3i

�
CA
2CF

�!�s� r0 
 r� 
 !�r� 
 !�r0��

�
1

N2
c � 1

!�s� �
CA
2CF

�
1

N2
c � 1

�; (55)

where

� � !�s� r0� 
 !�s
 r� � !�s� r0 
 r� � !�s�:

(56)

Similar calculation gives

�22 � h6�6j�̂j6�6i �
3Nc 
 1

Nc 
 1
�
1

2
� �!�s� r0 
 r� 
 !�s��



N2
c 
 1

2�N2
c � 1�

� �!�s� r0 
 r� � !�s��



Nc

N2
c � 1

�!�r� 
 !�r0�� �
Nc

2�Nc 
 1�

�

�
1


1

�Nc � 1�2

�
�; (57)

�33�h1515j�̂j1515i�
3Nc�1

Nc�1
�
1

2
� �!�s�r0 
r�
!�s��



N2
c
1

2�N2
c�1�

� �!�s�r0
r��!�s��

�
Nc

N2
c�1

�!�r�
!�r0��

�
Nc

2�Nc�1�
�

�
1


1

�Nc
1�2

�
�:

(58)

All the off-diagonal matrix elements for transition between
different color representations are proportional to �:
034033
�21 � h6�6j�̂j3�3i � �
N2
c

�Nc � 1��N2
c � 1�

���������������������
Nc � 2

2�Nc 
 1�

s
�;

(59)

�31 � h1515j�̂j3�3i � �
N2
c

�Nc 
 1��N2
c � 1�

���������������������
Nc 
 2

2�Nc � 1�

s
�;

(60)

�32 � h1515j�̂j6�6i � �
1

2
�

N2
c

�N2
c � 1�

���������������
N2
c � 4

N2
c � 1

s
�: (61)

Note that the off-diagonal � has precisely the same color-
dipole structure as the off-diagonal!18 which describes the
excitation of the q �q dipole from the color-singlet to color-
octet state [4]. These off-diagonal matrix elements vanish
if either r � 0 or r0 � 0, when the pointlike jqgi and jq0g0i
Fock states cannot be resolved.

E. The pointlike triplet, sextet, and 15-plet dipoles and
Casimir operators

In the limit of r � r0 � 0, the 4-body states reduce to the
pointlike triplet-antitriplet, sextet-antisextet, and 15-15
dipoles.

Indeed, in this limit

�11 � !�s�; (62)

as expected, while

�22 �
3Nc 
 1

Nc 
 1
!�s�; �33 �

3Nc � 1

Nc � 1
!�s�: (63)

The Feynman diagrams of Fig. 5 make it obvious that for
partons in the representation R the dipole cross section
must be proportional to the Casimir operator CR.
Consequently, the coefficients in (63) must equal the ratio
CR=CF (a factor CF for the triplet-antitriplet color dipole
had been absorbed into the definition of!�s�, see Eq. (18)).
-10
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The derivation of CR by the color-flow diagram technique
proceeds as follows:

We recall that the calculation of CF for the quark a,

CF �
Tr�TaTa�

Tr1
; (64)

can be represented in terms of traces of color loop dia-
grams as shown in Fig. 10. In order to avoid a confusion in
the description of the conjugate states, it is convenient to
represent the sextet qg state in terms of the three different
quark fields,

Aikl � �ai�bkcl � blck� 

1

Nc � 1
�� �ac�bl � � �ab�cl�&

i
k

�
1

Nc � 1
�� �ac�bk � � �ab�ck�&

i
l: (65)

One readily finds that

�AA / � �aa�� �bb�� �cc� � � �aa�� �bc�� �cb� 

1

Nc � 1
� �ac�� �ba�

� � �cb� 

1

Nc � 1
� �aa�� �bb�� �cc� �

1

Nc � 1
� �ac�

� � �bb�� �ca� �
1

Nc � 1
� �ab�� �ba�� �cc�: (66)
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FIG. 11 (color online). The color-flow diagrams for the derivation
quark-antiquark representation.

034033
In the quark representation the Casimir operator equals

�Tb 
 Tc � Ta�
2 � 3CF 
 2�TbTc� � 2�TaTb�

� 2�TcTa�: (67)

The six color-flow diagrams generated by the expansion
(66) are shown in Fig. 11. The straightforward calculation
of the corresponding traces, putting the Ti on the relevant
horizontal lines in the loops gives

C6 �
3Nc 
 1

Nc 
 1
CF: (68)

The similar expansion for the 15-plet state reads

�SS / � �aa�� �bb�� �cc� 
 � �aa�� �bc�� �cb� 

1

Nc 
 1
� �ac�� �ba�

� � �cb� 

1

Nc 
 1
� �aa�� �bb�� �cc� 


1

Nc 
 1
� �ac�

� � �bb�� �ca� 

1

Nc 
 1
� �ab�� �ba�� �cc� (69)

and

C15 �
3Nc � 1

Nc � 1
CF: (70)

This completes the check of the formulas (63).

F. The Nc ! �Nc transformation between the sextet
and 15-plet matrix elements

As a function of Nc, the Casimir operators and matrix
elements for transitions containing the sextet and 15-plet
states satisfy a curious symmetry
b
_
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a
_

c
_ c

b
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c

b

b
_
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a
_

c
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b
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3)

6)

of the Casimir operator CF for sextet and 15-plet qg states in the
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C15�Nc� � C6��Nc�; �33�Nc� � �22��Nc�;

�13�Nc� � ��12��Nc�:
(71)

Evidently, the relative minus sign in the last line of (71) is a
matter of convention for the basis states. We do not offer
any straightforward group-theoretic explanation for this
transformation (see, however, a discussion of the corre-
spondence between the symmetric and antisymmetric rep-
resentations in Cvitanovic’s lectures [28]).

G. Large-Nc properties of �

The application of the above derived �̂ to the dijet
production of the free-nucleon target is straightforward.
In the case of the nuclear target one has to solve the secular
equation for the eigenvalues and eigenstates of �̂. As a
cubic equation, it can be solved in radicals and the corre-
sponding eigenfunctions are directly calculable. The fur-
ther application of the Sylvester expansion [4] to the
S-matrix (31) is then also straightforward. Unfortunately,
because of the radicals the relevant Fourier transforms in
(13) can only be performed numerically. The direct rela-
tionship between the collective nuclear unintegrated gluon
density and the dijet spectrum will be lost in such a brute
force approach. Furthermore, because the dipole cross
section !�r� is a nonanalytic function at r! 0, one faces
the menace of a loss of accuracy in numerical evaluations
of large Fourier components which are important in the jet
cross sections.

Simple algebraic formulas for eigenvalues and analytic
results for the dijet spectra which reveal their
k?-factorization properties are, however, obtained in the
large-Nc approximation. Specifically, the diagonalization
of the three-channel operator �̂ can readily be accom-
plished. Furthermore, the resulting Sylvester expansion
for the 4-body evolution operator (S-matrix) can be cast
into a form which explicitly emphasizes the non-Abelian
evolution properties of color dipoles propagating in nu-
clear matter and furnishes a clear-cut separation of ISI and
FSI effects. The higher order terms of expansion in inverse
powers of Nc can also be presented in an analytic form [4].

Note that for large Nc

�31 � �21 �
1

Nc
���
2

p �; �32 �
1

2
�;

�33 � �22 � 2!�s� r0 
 r� 
 !�s� �
1

2
�;

(72)

which shows that one must first diagonalize the matrix �̂ in
the j6�6i, j1515i sector. The two eigenvalues are

�2;3 � !22 �
1

2
� (73)

and the corresponding eigenstates are
034033
j2i �
1���
2

p �j6�6i 
 j1515i� �
V1

N3=2
c

;

j3i �
1���
2

p �j6�6i � j1515i� �
V2

N3=2
c

:

(74)

In the basis of the states j1i � j3�3i, j2i, and j3i the matrix
�̂ takes the form (�1 � �11)

�̂ �

�1
1
Nc
� 0

1
Nc
� �2 0

0 0 �3

0
B@

1
CA; (75)

where

�1 � !�s
 r� r0� 
 !�r� 
 !�r0�;

�2 � 2!�s
 r� r0� 
 !�s� � C2!�s
 r� r0� 
 !�s�:

(76)

Here we show an explicit dependence on the Casimir
operator for the large-Nc eigenstate

C2 
 1 �
C6

CF
�
C15

CF
� 3: (77)

As a matter of fact, at large Nc the quark and gluon colors
in the sextet and 15-plet states become decorrelated, so that
C6 � C15 � CA 
 CF and

C2 �
CA
CF

: (78)

To the leading order in the 1=Nc expansion, the state j3i
is not excited by single-gluon exchange from the initial
state j1i � j3�3i, which is obvious also from the projection
onto the final states (44), which at large Nc readsX

X

hXj �
X
R

���������������
dim�R�

p
hR �Rj �

������
Nc

p
h1j 
 �

������
Nc

p
�3h2j: (79)

In the new basis the non-Abelian intranuclear evolution
of the 4-body qg �qg0 state becomes the two-channel prob-
lem. Expansion over the final states takes the form

X
X

hXjS�b; �̂�j1i �
������
Nc

p
h1j exp

�
�
1

2
�̂T

�
j1i 
 �

������
Nc

p
�3

� h2j exp
�
�

1

2
�̂T

�
j1i: (80)

To the leading order inNc, the S-matrix element in the first
term equals

h1j exp
�
�
1

2
�̂T

�
j1i � exp

�
�

1

2
�1T

�

� exp
�
�

1

2
�!�s� 
 !�r� 
 !�r0��T

�
:

(81)

Making use of the Sylvester expansion technique used in
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[4], for the second matrix element one finds

h2j exp
�
�
1

2
�̂T

�
j1i � � �

1

Nc

�
exp�� 1

2 �1T� � exp�� 1
2 �2T�

�2 � �1
:

(82)

This result is still a too complex one: the dipole-size
dependent factor 1=��2 ��1� does not allow any useful
Fourier representation of the matrix element (82) in terms
of the free-nucleon and collective nuclear gluon densities.
This troublesome denominator can be eliminated by the
integral representation of Ref. [4],

exp�� 1
2 �1T� � exp�� 1

2 �2T�

�2 ��1

�
1

2
T
Z 1

0
d2 exp

�
�
1

2
�2�1 
 �1� 2��2�T

�
; (83)

where the variable 2 has a meaning of the depth in nuclear
matter from the front face of the nucleus in units of the
optical thickness T�b�. The integral representation (83)
makes explicit a decomposition into the ISI and FSI dis-
tortions described by the cross sections �1 and �2, respec-
034033
tively. Our final result for the sum over final states readsX
X

hXjS�b;�̂�j1i�
X
X

hXjexp
�
�
1

2
�̂T

�
j1i

�
������
Nc

p �
exp

�
�
1

2
�!�s
r�r0�
!�r�


!�r0��T
�

� �T

Z 1

0
d2

�exp
�
�
1

2
�2�1
�1�2��2�T

��
: (84)

The systematic approach to the 1=Nc perturbation ex-
pansion has been developed in [4] on an example of quark-
antiquark dijets in DIS. Its extension to quark-gluon dijets
is straightforward, we will not dwell into that in this
communication.

V. THE LINEAR k? FACTORIZATION FOR DIJETS
FORM THE FREE-NUCLEON TARGET

The S-matrices in the master formula (13) depend only
on the dipole parameters s, r, r0. In the case of the free-
nucleon target one can integrate over the overall impact
parameter and represent the integrand of Eq. (13) in terms
of the dipole cross sections:
2
Z
d2b

X
X

hXjfS�4�
�qg0qg�b

0
q; b0g; bq; bg� 
 S�2�

�q
q

�b0;b� � S�3�

�qg0q
 �b; b
0
q; b0g� � S�3�

�q
qg
�b0; bq; bg�gjini

� ! �q
qg 
 !q
 �qg0 ��11 


��������������
dim�6�

dim�3�

s
�21 


�����������������
dim�15�

dim�3�

s
�31

�
CA
CF

�!�s
 r� zr0� 
 !�s
 zr� r0� � !�s
 r� r0� � !�s
 zr� zr0�� �
1

N2
c � 1

�!�s� zr0� 
 !�s
 zr�

� !�s� � !�s
 zr� zr0�� 

CA
CF

�: (85)
Now we apply the k?-factorization representation (19) for
the free-nucleon dipole cross section. For instance, one
readily finds

� �
Z
d2�f����1� exp�i�r���1� exp��i�r0��

� exp�i�s�: (86)

The momentum-space wave function of the qg Fock
state of the physical quark is defined by the Fourier trans-
form

��z;p� �
Z
d2r��z; r� exp��ipr�: (87)

We discuss the cross sections averaged over the helicities
of the incident parton and summed over helicities of the
final-state partons. Then ��z;p� would always enter in
combinations of the form [6,16]
j��z;p� ���z;p� ��j2 � 2Nc)S�p
2�Pgq�z� �

�
p

p2 
 "2

�
p� �

�p� ��2 
 "2

�
2
; (88)

where Pgq�z� is the familiar splitting function,

Pgq�z� � CF
1
 �1� z�2

z
; (89)

and, neglecting the mass of the incident light quark,

"2 � z�1� z��Q
�2; (90)

where �Q
�2 � �p
�2 is the virtuality of the incident quark
q
, given by the square of its transverse momentum p
 in
the projectile hadron. If "2 is negligible small compared to
p2, then one can use the large-p approximation,�

p

p2 �
p� �

�p� ��2

�
2
�

�2

p2�p� ��2
; (91)
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and it is worth to recall the emerging exact factorization of longitudinal and transverse momentum dependencies which is a
well-known feature of the high-energy limit.

Then the master formula for the free-nucleon cross section yields the k?-factorization result

d!N�q

 ! qg�

dzd2pqd2pg
�

1

2�2"�4
Z
d2�f���

Z
d2sd2rd2r0 exp��i�s� ipr
 ipr0� exp�i�s���z; r��
�z; r0�

�

�
CA
2CF

�1� exp�i�r���1� exp��i�r0�� 

CA
2CF

�exp�iz�r� � exp�i�r���exp��iz�r0� � exp��i�r0��

�
1

N2
c � 1

�1� exp�iz�r���1� exp��iz�r0��
�

�
1

2�2"�2
f���

�
CA
2CF

j��z;p� ���z;p� ��j2 

CA
2CF

j��z;p��� ���z;p� z��j2

�
1

N2
c � 1

j��z;p� ���z;p� z��j2
�
: (92)
A direct comparison shows that the dijet spectrum (92) on
the free nucleon is precisely the differential form of the
inclusive single-gluon spectrum from the excitation q
 !
qg which was derived in [6]. The reason emphasized in
[18] is that here the excitation q
 ! qg proceeds via one-
gluon exchange and the acoplanarity momentum is pre-
cisely the transverse momentum of the exchanged gluon.
Remarkably, the color-dipole structure of the integrand of
the dijet cross section only differs from the one for the
single-jet spectrum by the shift of arguments of all the
dipole cross sections by s.

The free-nucleon cross section is a linear functional of
the unintegrated gluon density. Then, with certain reser-
vations on the region of soft �, the acoplanarity distribu-
tion is a direct probe of f�x;��. First, on the pQCD side,
the unintegrated gluon density f�x;�� is well defined only
for sufficiently large momenta � above the soft scale.
Second, from the practical point of view, any definition
of the jet momentum has an intrinsic uncertainty with
whether the soft hadron belongs to the jet or to the under-
lying soft event, so that experimentally the acoplanarity
momentum is well defined only when it is above the soft
scale.

In our previous work on dijets in DIS we noticed that the
parton-level dijet spectrum vanishes at � � 0, i.e., for
exactly back-to-back dijets (see Eq. (45) in Ref. [4]).
Precisely the same property holds for the considered
quark-gluon jets. Indeed, all the three terms in the curly
braces in dijet spectrum (92) vanish identically at � � 0,
because soft exchanged gluons cannot resolve the quark-
gluon Fock state. For the related decoupling of large-
034033
wavelength gluons from the color-singlet nucleon, the
unintegrated gluon density f��� is nonsingular at � � 0,
for instance, see [29] and Eq. (97) below. In the azimuthal
correlations the exact dip is observed if the transverse
momenta of both jets are of identical magnitude. The dip
is accompanied by two symmetric humps at the value of �
where �2f��� takes the maximal value, the position of the
hump depends on the form of f���. Going from partons to
the observed jets will somewhat smear out the dip because
of the aforementioned uncertainties in the jet reconstruc-
tion. For unequal-momentum jets the dip and the double-
hump structure of the dijet spectrum become less pro-
nounced. In the proton-target collision frame, the dip is
further filled by the integration over the transverse momen-
tum p
 of the incident valence quark. In the azimuthal
correlations of hadron pairs of moderately high transverse
momentum experimentally studied at RHIC such a double-
hump structure is washed out by the fragmentation of jets.

Now we focus on our major theme: how the linear k?
factorization (92) for the dijet production off the free-
nucleon target is modified for strongly absorbing nuclear
targets.
VI. THE NONLINEAR k? FACTORIZATION FOR
THE DIJET PRODUCTION OFF NUCLEI

A. The color-dipole representation at large Nc

The final Fourier representation for the leading term of
the large-Nc expansion for the dijet cross section per unit
area in the impact-parameter space reads
d!�q
 ! qg�

d2bdzd2�d2p
�

1

�2"�4
Z
d2sd2rd2r0 � exp��i�s� ipr
 ipr0���z; r��
�z; r�

�
1

2
� � T�b�

Z 1

0
d2 exp

�
�

1

2
�2�1


 �1� 2��2�T�b�
�

 exp

�
�
1

2
�!�s
 r� r0� 
 !�r� 
 !�r0��T�b�

�

 exp

�
�
1

2
!�s� zr0 
 zr�T�b�

�

� exp
�
�
1

2
�!�r� 
 !�s
 r� zr0��T�b�

�
� exp

�
�
1

2
�!�r0� 
 !�s� r0 
 zr��T�b�

��
: (93)
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Recall that the first term / � describes the excitation from
the color-triplet dipole to sextet and 15-plet dipole states.
Note how the large-Nc suppression of the off-diagonal
matrix element �12 is compensated for by a large number
of final states in the higher representations. At large Nc,
once the sextet and 15-plet states have been excited, their
deexcitation back to the triplet state is suppressed and the
further intranuclear evolution consists of the color rota-
tions within the higher representations. The remaining four
terms in (93) describe the rotations within the color-triplet
states.

B. Unintegrated collective nuclear glue and isolation of
initial-state distortions

The transformation from the color dipole to the momen-
tum representation is furnished by the k?-factorization
formula (19) and its generalization to the nuclear target.
For the latter we adopt the collective nuclear unintegrated
gluon density per unit area in the impact-parameter plane,
5�b; x;��, as defined in terms of the nuclear profile func-
tion [4,8,30,31]:

��b; !�x; r�� � 1� exp
�
�
1

2
!�x; r�T�b�

�

�
Z
d2�5�b; x;���1� exp�i�r��: (94)

The utility of5�b; x;�� stems from the observation that the
driving term of small-x nuclear structure functions, the
amplitude of coherent diffractive production of dijets off
nuclei, and the single-quark spectrum from the 

 ! q �q
excitation off a nucleus all take the familiar
k?-factorization form in terms of 5�b; x;��. The so-
defined collective nuclear glue 5�b; x;�� satisfies the
sum rule

Z
d2�5�b; x;�� � 1� S�b; !0�x��; (95)

where !0�x� is the dipole cross section for large dipoles.
The multiple-scattering expansion of 5�b; x;�� in terms of
the collective glue of j-overlapping nucleons in the
Lorentz-contracted nucleus and its nuclear shadowing
and antishadowing properties are found in [4,8,30,31]
and need not be repeated here. We only cite the formula
for the so-called saturation scale,

Q2
A�b; x� �

4"2

Nc
)S�Q2

A�G�x;Q
2
A�T�b�; (96)

and reiterate that at a large saturation scale 5�b; x;�� is
well defined not only for perturbative values of �2 below
Q2
A�b; x�, its continuation to the soft region is also stable,
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5�b; x;�� �
1

"
Q2
A�b; x�

��2 
Q2
A�b; x��

: (97)

To this end we recall that although !0�x� enters the
multiple-scattering expansion for 5�b; x;��, the final
form of 5�b; x;�� is exclusively controlled by Q2

A�b; x�
and does not depend on the auxiliary soft parameter !0�x�
[4]. We also note that the nuclear profile function satisfies
the s-channel unitarity bound for the partial waves of the
dipole-nucleus scattering, ��b; !�x; r�� � 1, while the par-
tial wave of the impulse approximation (IA) overshoots the
s-channel unitarity bound for a sufficiently heavy nucleus,
��IA��b; !�x; r�� � 1

2!�x; r�T�b�> 1. As such, the uninte-
grated collective nuclear gluon density 5�b; x;�� defined
by Eq. (94) unitarizes the density of partons in a Lorentz-
contracted ultrarelativistic nucleus.

Still another convenient quantity is

!�b; x;�� � S�b; !0�x��&��� 
5�b; x;��; (98)

in terms of which

exp
�
�
1

2
!�x; r�T�b�

�
�

Z
d2�!�b; x;�� exp�i�r�:

(99)

We shall also encounter the collective glue for a slice �0; 2�
of the nucleus:

exp
�
�
1

2
2!�x; r�T�b�

�
�

Z
d2�!�2; b; x;�� exp�i�r�;

(100)

and the intranuclear attenuation-distorted wave function in
the dipole and momentum representations,

��2; x; z; r� � ��z; r� exp
�
�

1

2
2!�x; r�T�b�

�
;

��2; x; z;p� �
Z
d2r��2; z; r� exp��ipr�

�
Z
d2���z;p� ��!�2; b; x;��:

(101)

Hereafter, unless it may cause confusion, we suppress the
variable x in gluon densities, dipole cross sections, and
distorted wave functions.

C. Excitation of color-triplet quark-gluon dipoles

First, we rewrite the last four terms in the integrand of
(93) in terms of the distorted wave functions. Then we
make use of the Fourier representation (99), (101):
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d!�q
!qg�

d2bdzd2d2p

��������3
�

1

�2"�4
Z
d2sd2rd2r0exp��i�s� ipr
 ipr0�

�
��1;z;r��
�1;z;r0�exp

�
�
1

2
!�s
r�r�T�b�

�


��z;r��
�z;r0�exp
�
�
1

2
!�s�zr0 
zr�T�b�

�
���1;z;r��
�z;r0�exp

�
�
1

2
!�s
r�zr0�T�b�

�

���z;r��
�1;z;r0�exp
�
�
1

2
!�s�r0 
zr�T�b�

��

�
1

�2"�4
Z
d2sd2rd2r0d2�!�b;��exp��i�s� ipr
 ipr0�

�
��1;z;r��
�1;z;r0�exp�i��s
r�r0��


��z;r��
�z;r0�exp�i��s�zr0 
zr�����1;z;r��
�z;r0�exp�i��s
r�zr0��

���z;r��
�1;z;r0�exp�i��s�r0 
zr��
�

�
1

�2"�2
!�b;��j��1;z;p������z;p�z��j2

�
1

�2"�2
5�b;��j��1;z;p������z;p�z��j2


1

�2"�2
&���j��1;z;p����z;p�j2S�b;!0�x��: (102)
Now recall [8] that the amplitude of the coherent diffrac-
tive excitation qA! �qg�A is precisely proportional to

��z;p� ���1; z;p�

�
Z
d2r��z; r�

�
1� exp

�
�

1

2
!�r�T�b�

��
exp��ipr�;

(103)

so that the last term in (102) describes the coherent dif-
fractive production of dijets. In the approximation of a very
large nucleus the diffractive dijets are produced exactly
back-to-back. For finite nuclei instead of the delta-function
&��� one finds a sharp peak of the width �2 & 1=R2

A which
is described by the form factor of the nucleus, the details
034033
are found in [8] and must not be repeated here. The first
term in (102) describes inelastic, incoherent production of
color-triplet qg states.

D. The contribution from sextet and 15-plet final states

The evaluation of the contribution from the excitation of
higher color representations in (93) proceeds as follows.
First, we make use of the integral representation (86) for
the off-diagonal cross section. Second, keeping an explicit
dependence on the Casimir operators C6;15 (cf. Eq. (77)),
we have
Z 1

0
d2 exp

�
�
1

2
�2�1 
 �1� 2��2�T�b�

�
�

Z 1

0
d2 exp

�
�
1

2
2�!�s
 r� r0� 
 !�r� 
 !�r0��T�b�

�

� exp
�
�
1

2
�1� 2��C2!�s
 r� r0� 
 !�s��T�b�

�

�
Z 1

0
d2 exp

�
�
1

2
2!�r�T�b�

�
exp

�
�
1

2
2!�r0�T�b�

�

�
Z
d2�3!�2; b;�3� exp�i�3�s
 r� r0��

�
Z
d2�2!�C2�1� 2�; b;�2� exp�i�2�s
 r� r0��

�
Z
d2�1!�1� 2; b;�1� exp�i�1s�: (104)
In this decomposition we keep the dipole form of the two
attenuation factors S�b; 2!�r�� and S�b; 2!�r0��. They
describe the coherent distortion of the color-triplet quark-
gluon dipole by intranuclear ISI before the excitation into
the sextet and 15-plet representations at the depth 2 from
the front face of the nucleus. The way to handle these
distortion factors has already been clarified above. Note
that in contrast to the quark-antiquark dijet production in
DIS off nuclei, both the ISI and FSI distortion factors
depend on the dipole parameter s and explicitly contribute
to the acoplanarity distribution.

Combining together (86), (101), and (104) we obtain the
dijet spectrum from the excitation of the sextet and 15-plet
dipoles
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d!�q
 ! qg�

d2bdzd2�d2p

��������6
15
�

1

�2"�2
T�b�

Z 1

0
d2�

Z
d2�d2�1d2�2d2�3&��
 �1 
 �2 
 �3 ���

� f���!�1� 2; b;�1�!�C2�1� 2�; b;�2�!�2; b;�3�

� j��2; z;p� �1� ���2; z;p� �1 � �2�j
2: (105)
The acoplanarity momentum � manifestly receives four
distinct contributions which can be classified as follows.
The excitation from the color triplet to the sextet and 15-
plet states by single-gluon exchange with one of the nucle-
ons of the nucleus contributes the transverse momentum �.
The momentum �3 comes from the ISI of the incident
quark, the FSI of the qg dipole in the sextet, and 15-plet
representations contributes �1 and �2.

There are several crucial points about the explicit result
(105). First, it is a quadrature in terms of the collective
nuclear glue. Such a nonlinear k?-factorization represen-
tation would have been impossible without the transforma-
tion of Ref. [4] from the Sylvester expansion (82) to the
integral representation (83). Second, it contains the free-
nucleon unintegrated glue and the collective nuclear glue
defined for the slices of the nucleus �0; 2� in which the ISI
takes place and �2; 1� in which the FSI takes place rather
than the collective glue defined for whole nucleus, i.e, the
slice �0; 1�. Third, the emergence of the collective nuclear
glue !�C2�1� 2�; b;�2� is not accidental: �1� 2� is a
thickness of the slice �2; 1� of the nuclear matter traversed
by the sextet and 15-plet qg dipoles, while the factor C2

derives from the Casimir operators of higher representa-
tions, see Eq. (77). That is one more illustration of our
point [4,6] that the collective gluon field of the nucleus
cannot be described by a single function, rather it is a
density matrix in the space of color representations. In
the considered large-Nc approximation, C2 � CA=CF and
!��1� 2�CA=CF; b;�2� is precisely the collective nuclear
glue defined in terms of the color-singlet gluon-gluon
dipole.
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Fourth, although the exponentials in the numerator of
the Sylvester expansion (82) could have been cast as
Fourier representations in terms of the collective glue for
the whole nucleus, that would not yield any useful quad-
ratures for the dijet spectrum the straightforward Fourier
representation of the factor 1=��2 � �1� in terms of the
unintegrated gluon densities is impossible. The brute force
calculation of Fourier transforms from the dipole to the
momentum space is possible but would miss all the crucial
features of the nonlinear k? factorization (105): the clear-
cut link to the non-Abelian intranuclear evolution of color
dipoles in a nucleus, its decomposition into the ISI and FSI
effects in terms of the collective glue for slices of the
nucleus, the interplay of coherent and incoherent ISI’s,
the explicit dependence of FSI on the Casimir operators
for different partons from the relevant pQCD subprocess.

The ISI and FSI distortions can partly be combined
taking the convolution [4]Z
d2�3d

2�2!�C2�1�2�;b;�2�!�2;b;�3�&����2��3�

�!�2
C2�1�2�;b;��; (106)

which is also obvious from the color-dipole form in (104).

E. Nonlinear k? factorization for dijets:
the universality classes

1. Quark-gluon vs quark-antiquark dijets

After application of the convolution (106), the final
result for the inclusive quark-gluon dijet spectrum takes
the form
�2"�2d!A�q

 ! qg�

d2bdzd2pd2�
�

1

2
T�b�

Z 1

0
d2

Z
d2�1d2�f�x;�� �!�1� 2; b; x;�� �1 � ��!�2
 C2�1� 2�; b; x;�1�

� j��2; z;p� �1� ���2; z;p� �1 � ��j2 
5�b; x;��j��1; z;p� �� ���z;p� z��j2


 &���S�b; !0�x��j��1; z;p� ���z;p�j2; (107)

which must be compared to the large-Nc version of the free-nucleon cross section (92). The free-nucleon cross section
satisfies the linear k? factorization—it is a linear functional of the unintegrated gluon density. The k?-factorization
properties of the nuclear cross section are much more complicated.

At this point, it is instructive to discuss (107) in conjunction with the quark-antiquark dijet spectrum in DIS [4] and
gluon-nucleus collisions [18]. The spectrum of dijets in DIS equals

�2"�2d!A�

 ! Q �Q�

d2bdzd2pd2�
�

1

2
T�b�

Z 1

0
d2

Z
d2�1d2�� f���!�1� 2;b;�� �1 � ��!�1� 2;b;�1�

� j��2; z;p� �1� ���2; z;p� �1 � ��j2 
 &���j��1; z;p� ���z;p�j2; (108)

where the first term describes the excitation of the color dipole from the lower (color-singlet) to higher (octet)
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representation, whereas the second term is the contribution
from coherent diffractive excitation. Here ��z;p� stands
for the wave function of the q �q Fock state of the photon
[6,16].

Still another reference observable is the spectrum of the
quark-antiquark dijets in gA collisions,

�2"�2d!A�g

 ! Q �Q�

dzd2pd2bd2�
�

Z
d2�!�1; b;��!�1;b;�� ��

� j��z;p� ��

���z;p� z��j2; (109)

where ��z;p� stands for the wave function of the q �q Fock
state of the gluon [6,16].

Now we can identify the four universality classes of the
nonlinear k? factorization which differ by the pattern of
transitions between the initial and final-state color multip-
lets. They describe the leading transitions in the large-Nc
approximation, the excitation and regeneration processes
to higher orders in 1=Nc satisfy the nonlinear k? factori-
zation of still higher nonlinearity in gluon densities, the
examples are found in [4].

2. Excitation of higher color representations from
partons in the lower representations

Excitation of color-octet states in DIS, and of sextet and
15-plet states in qA interactions, belong to this universality
class. The two reactions have much similarity. In both
cases, the / 1=Nc suppression of the transition matrix
element is compensated for the number of states in higher
representations which is by the factor N2

c larger than in the
lower representation. In both cases the hard transition from
the lower to higher color representations is described by
the free-nucleon gluon density f�x;�� rather than the
collective nuclear glue. In q �q excitation in DIS the corre-
sponding contribution to the dijet spectrum is the fifth
order functional of gluon densities. In the qg case it is
the sixth order functional of gluon densities, only after the
application of the convolution (106) it takes the form of the
fifth order functional. In both cases two powers of the
collective nuclear glue enter implicitly via the coherent
ISI distortions of the wave function ��2; z;p� in the slice
of the nuclear matter �0; 2� before the excitation of color
dipoles in the higher representation, two more powers of
the collective nuclear glue describe the broadening of the
acoplanarity distribution by incoherent ISI and FSI.

The principal difference between DIS and qA interac-
tions is in the nuclear thickness dependence of the inco-
herent distortion factors. Namely, the factor

!��1� 2�;b;�� �1 � ��!��1� 2�; b;�1�

in DIS is a symmetric function of the nuclear gluon mo-
menta �1 and �2 � �� �1 � � which flow from the
nucleus to the quark and antiquark (or vice versa), respec-
tively. It describes equal and uncorrelated distortion of the
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outgoing quark and antiquark waves by pure FSI. Such an
uncorrelated incoherent final-state distortion is a feature of
the large Nc approximation. For qg dijets in qA collisions
the distortion factor

!�1� 2;b;�2�!�C2�1� 2� 
 2;b;�1�

after the convolution (106) is an asymmetric one. The first
source of the asymmetry is the nonsinglet color charge of
the projectile parton. The second source is that the two
partons in the final state belong to different color repre-
sentations. This is best seen from in the overall distortion
factor in (105),

!�2; b;�3�!�C2�1� 2�; b;�2�!�1� 2; b;�1�;

before taking the convolution (106). The FSI distortions in
the slice �1� 2� of the nucleus are given by the two last
factors, of which !�1� 2; b;�1� is a broadening due to
final-state rescatterings of the quark. Because C2 �
CA=CF, see Eq. (78), the second FSI factor, !�C2�1�
2�; b;�2�, corresponds to the FSI distortion of exactly
the outgoing gluon wave. To the large-Nc approximation
the rescatterings of the quark and gluon are uncorrelated.

The coherent ISI distortion of the wave functions in DIS
and qA collisions is identical. However, in qA collisions
this coherent distortion is accompanied by an incoherent
ISI distortion of the incident quark wave described by
!�2; b;�3�. In DIS the incoherent ISI distortions are ab-
sent because the photon is a color-singlet particle. We can
anticipate that gluon-nucleus collisions with excitation of
gluon-gluon dijets in higher color representations will
belong to this universality class.

3. Excitation of final-state dipoles in exactly the same
color state as the incident parton: coherent diffraction

To this universality class belong the exactly back-to-
back dijets. The experimental signature of the coherent
diffraction is a retention of the target nucleus in the ground
state and large rapidity gap between the hadronic debris of
the diffractive dijet and the recoil nucleus. It is most
important for DIS where coherent diffraction dissociation
of the photon into q �q dijets makes for heavy nuclei � 50%
of the total DIS rate [32]. The origin of the coherent
diffraction is a coherent nuclear distortion of the wave
function of the q �q Fock state over the whole thickness of
the nucleus.

In the coherent diffractive excitation of qg dipoles in qA
collisions the qg dipole must propagate in exactly the same
color state as the incident quark. The nuclear suppression
factor S�b; !0�x�� has the meaning of

S �b; !0�x�� �
�
S
�
b;
1

2
!0�x�

��
2

(110)

and the factor S�b; 12!0�x�� in the diffractive amplitude
corresponds to the intranuclear attenuation of the quark
wave with the total cross section
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!qN �
1

2
!0�x�: (111)

Coherent diffractive excitation of color-octet gluon-gluon
dijets in gluon-nucleus collisions is expected to exhibit
similar properties.

Coherent diffractive excitation of Q �Q dipoles in gA
collisions is allowed, but it is suppressed at large Nc by
the condition that the Q �Q dipole must propagate in exactly
the same color state as the incident gluon.

4. Incoherent excitation of final-state dipoles in the same
lower color representation as the incident parton

An example of this universality class is an inelastic
excitation of color-triplet qg states in qA collisions fol-
lowed by a color excitation of the target. Here both the
incident parton and dijet belong to the fundamental, i.e.,
lower, representation of SU�Nc�. The intranuclear evolu-
tion of such a dipole is confined to rotations within the
color-triplet state. This contribution is not suppressed at
large Nc. The dijet cross section for this universality class
looks like satisfying the linear k? factorization in terms of
5�b; x;��. But this is not the case: one of the wave func-
tions, ��1; z;pg�, is coherently distorted over the whole
thickness of the nucleus, so that this contribution is a cubic
functional of the collective nuclear glue. The striking
feature of this universality class is a complete absence of
the incoherent initial and final-state interaction effects.

We can anticipate that gluon-nucleus collisions with
excitation of color-octet gluon-gluon dijets will belong to
this universality class, although one has to account for the
existence of the two, F-coupled and D-coupled, octet
states.

Although superficially it looks like a subclass of this
universality class, the coherent diffraction is a distinct class
for the property of the exact back-to-back dijets and the
rapidity gap between the dijet and the recoil nucleus in the
ground state.

5. Excitation of final-state dipoles in the same higher
color representation as the incident parton

In the realm of QCD with gluons in the adjoint repre-
sentation and quarks in the fundamental representation,
this universality class is exhausted by the quark-antiquark
dijets in gluon-nucleus collisions. Only in this case the
initial parton (gluon) belongs to the higher (octet) color
multiplet of the final Q �Q state. At large Nc, the intra-
nuclear evolution of Q �Q will consist of color rotations
within the space of color-octet states. The deexcitation
from the color-octet to color-singlet Q �Q dipoles is sup-
pressed at large Nc. Consequently, the non-Abelian evolu-
tion of the Q �QQ0 �Q0 state becomes the single-channel
problem. The coherent diffraction excitation, in which
the initial and final color states must be identical, is like-
wise suppressed. The emerging pattern of quadratic non-
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linearity can be related to the large-Nc gluon behaving like
the color-uncorrelated quark and antiquark. A remarkable
absence of coherent distortions of the wave function of the
c �c Fock state is noteworthy.

The above classification exhausts reactions caused by
incident photons, quarks, and gluons. However, technically
all the universality classes have a much broader basis.
Indeed, instead of an incident gluon one can think of the
projectile which is a compact lump of many partons in the
highest possible color representation. For instance, com-
pact sextet diquarks are possible.

6. Is an experimental separation of events belonging to
different universality classes possible?

First we note that in none of the universality classes the
dijet cross section factorizes into the hard excitation of the
dijet in the collective nuclear glue accompanied by the
incoherent initial and final-state interactions of partons.
Coherent diffraction has distinct signatures and the experi-
mental separation of events from this universality class is
not a problem. Production of very forward dijets in proton-
nucleus collisions evidently tags quark-nucleus collisions.
Production of open charm in the proton hemisphere of the
proton-nucleus collisions tags gluon-nucleus collisions.
Incoherent processes belonging to different universality
classes are characterized by distinct color charge of the
hard dijet and this distinction is well defined at the parton
level. Translating the cross talk between color charges in
the dijet, the spectator partons of the proton, and the color-
excited nucleus remnant into properties of hadronic final
states can only be done within nonperturbative hadroniza-
tion models, though. As an example we cite the impact of
color reconnection effects on the flow of slow hadrons and
the accuracy of the W� mass determination in e
e�

annihilation ([33], for the review see [34]).

F. The impulse approximation

In the impulse approximation (IA) one only has to keep
the terms linear in T�b�. The transition to the IA is best
seen in the color-dipole representation (93). Recall, that
our formulas for nuclear cross section were derived in the
large-Nc approximation. Here the first term, the contribu-
tion from the sextet and 15-plet final states, is already
linear in T�b� and one must put the attenuation factors
equal to unity. The remaining four exponentials must be
expanded to terms linear in T�b�. Then one would find
precisely the large-Nc version of Eq. (85) times T�b�. The
integration over impact parameters gives

R
d2bT�b� � A.

Such a comparison does not expose the role of coherent
diffraction and we revisit the issue in the momentum
representation.

We start with the sextet and 15-plet contribution in
(107). It already contains the factor T�b�. Consequently,
one must neglect ISI distortions in the wave function
��2; z;p� ) ��z;p� and take
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!�1� 2; b; x;�� �1 � ��!�2� 2; b; x;�1�

� &��� �1 � ��&��1�: (112)

This way one would recover the first term in the right-hand
side (rhs) of Eq. (92). In the contribution from the excita-
tion of the triplet dipoles one must neglect the distortion of
the wave function and take

5�b; x;�� �
1

2
T�b�f�x;��: (113)

The second term in the rhs of Eq. (92) is recovered. Finally,
according to Eq. (103) the diffractive amplitude starts with
the term linear in T�b�. Consequently, the coherent dif-
fractive contribution to the dijet cross spectrum starts with
the terms / T2�b� and vanishes in the IA.

VII. NUCLEAR BROADENING OF THE
ACOPLANARITY DISTRIBUTION AND THE

BACK-TO-BACK DIP

The nuclear broadening of the acoplanarity distribution
of hard quark-gluon dijets from qA collisions is somewhat
different from the broadening of quark-antiquark jets in
DIS and now we comment on those differences.

A. Coherent diffractive contribution

The first striking difference is in the role of the coherent
diffractive production. It gives exactly back-to-back dijets.
In the considered approximation of single-gluon exchange
in the t-channel diffractive production off the free-nucleon
target vanishes. Experimentally, at Hadron Electron Ring
Accelerator (HERA) energies a fraction of DIS which is
diffractive does not exceed 10% [35]. In contrast to that, in
DIS off heavy nuclei a fraction of coherent diffraction was
shown to be as large as � 50% [32]. The existence of
coherent diffractive mechanism in the quark-nucleus colli-
sions is interesting by itself. From the practical point of
view, it is suppressed by nuclear absorption and is
marginal.

B. Excitation of the color-triplet states

Inelastic excitation of color-triplet dipoles is a specific
feature of qA collisions in the sense that it has no counter-
part in DIS. One must compare

5�b; x;��j��1; z;p� �� ���z;p� z��j2 (114)

with its IA form

1

2
T�b�f���j��z;p� �� ���z;p� z��j2: (115)

The first striking distinction is that for the free-nucleon
target the contribution of this process vanishes at z! 1,
when the incident quark’s momentum is transferred en-
tirely to the forward gluon jet. For the nuclear target this is
not the case because one of the wave functions in (114) is
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the nuclear-distorted one. Because p� � � �pq, it takes
the form 5�b; x;��j��1; z;pq� ���z;pq�j

2; as a function
of the quark-jet momentum, it is reminiscent of the coher-
ent diffractive contribution, but the acoplanarity momen-
tum distribution is given by the unintegrated nuclear gluon
density 5�b; x;��. Hereafter we consider the case of finite
�1� z�.

A comprehensive discussion of nuclear properties of the
ratio

Rg�b;�� �
25�b; x;��
T�b�f���

(116)

is found in [4,6]. It is nuclear-shadowed, Rg�b;��< 1, for
�2 & Q2

A�b� and it exhibits antishadowing property
Rg�b;��> 1 in a broad region of �2 * Q2

A�b� . The maxi-
mum value of Rg�b;�� is reached at a value of �2 which is
larger than Q2

A�b� by a large numerical factor.
Now we turn to distortions of the wave function. We are

interested in hard dijets. If the incident quark is a valence
quark of the proton, its transverse momentum and virtual-
ity have the hadronic scale and can be neglected. For hard
jets

��z;p� /
p

p2 (117)

and, upon averaging over the azimuthal angle ’ of the
gluon momentum �,

h��z;p� ��i’ /
p

p2 <�p
2 � �2�: (118)

Consequently, the wave function distortion factor equals

= �b; z;p� �
��1; z;p�
��z;p�

�
Z p2

d2�!�b; x;��

� 1�
Z
p2
d2�!�b; x;��: (119)

For the weakly virtual incident quark it does not depend on
z. For hard jets, p2 * Q2

a�b�, the remaining integral (119)
can be evaluated following the analysis of the Cronin effect
in [6]. Namely, here we can use the leading-twist approxi-
mation,

!�b; x;�� �
1

2
T�b�f���; (120)

and the definition (20) with the result

& � 1� = �b; z;p� �
Z
p2
d2�!�b; x;��

�
2"2T�b�)S�p2�

Ncp2 �
@G�x;p2�

@ logp2

�
1

2
�
Q2
A�b�

p2 �
)S�p2�

)S�Q2
A�G�x;Q

2
A�

�
@G�x;p2�

@ logp2 : (121)

It is important that & is a manifestly positive valued
quantity. It has a form similar to, but is numerically smaller
than, the nuclear higher twist correction to 5�b; x;��.
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In Fig. 12 we show the numerical results for the wave
function distortion factor for the gold nucleus at several
values of the optical thickness ?�b� � 1

2!0�x�T�b�. At this
point one needs to pay a due attention to an explicit
dependence on the QCD running coupling )S�r� on the
small dipole-size r in Eq. (20). The discussion of its impact
is found in [4,8], in the evaluation of the momentum
spectra this running coupling must be taken at the largest
relevant hard parameter, which in our case is p2.
Correspondingly, in all the formulas for the dijet spectra,
the dipole cross section for large dipoles !0�x� must be
understood as

!0�x� ) )S�p
2� �

4"2

Nc

Z d,2

,4
�F �x; ,2�

� )S�p2�!0�x;1�: (122)

For this reason, the optical thickness of the nucleus ?�b� as
a function of the impact parameter b, shown in the left
panel of Fig. 12, depends on the hard scale—the jet
momentum. The wave function distortion factor
= �b; z;p� is shown in the right panel of Fig. 12. The
hard regime (121) for & sets in at the momenta p *

1 GeV. We reiterate that the saturated cross section
!0�x;1� is only an auxiliary parameter which does not
enter directly the observable cross sections—the latter
only depend on the saturation scale Q2

A�b�, the discussion
is found in Ref. [4].

In terms of the wave function distortion factor & one
readily finds

R �b;p;�� �
j��1; z;p� �� ���z;p� z��j2

j��z;p� �� ���z;p� z��j2

�
��1� z��� & �p� z���2

�1� z�2�2

�
��1� z��
 & �pq � �1� z����2

�1� z�2�2 : (123)
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FIG. 12 (color online). The left panel shows the impact-parameter d
values of the gluon-jet momentum p. The momentum dependence of
of the optical thickness of the nucleus is presented in the right pane
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The overall nuclear modification factor, the ratio of the
nuclear, (114), and free-nucleon, (115), target contribu-
tions, is a product

R�3�
A=N�b;p;�� � Rg�b;��R �b;p;��: (124)

Here Rg�b;�� does not depend on the jet momentum p
except for the weak dependence through )S�p

2�.
Evidently, R �b;p;�� is azimuthally asymmetric and fa-
vors � anticollinear to the gluon momentum and collinear
to the quark momentum: in the back-to-back configuration,
the gluon jet tends to have the transverse momentum
smaller than the quark jet. The dominant contribution to
the nuclear dijet cross section comes from �2 �Q2

A�b�,
and for hard dijets the asymmetry will be weak, of the order
of

������
& 

p
�QA�b�=p.

Alternatively, if one keeps the quark transverse momen-
tum fixed and increases the target mass number A, i.e.,
Q2
A�b� and & thereof, the transverse momentum of the

away gluon jet will decrease with A. The form of the q!
qg splitting function favors production of the gluon jet at
rapidities smaller than the quark jet. Then, the above
correlation between the acoplanarity and quark momenta
shall exhibit itself as a nuclear suppression of the away jet
produced at rapidites smaller than the rapidity of the for-
ward trigger jet. The numerical studies of this effect will be
reported elsewhere.

C. Excitation of the sextet and 15-plet jets states

Here one must compare the contribution to the nuclear
dijet spectrum (107) with its IA counterpart

T�b�d!N�p;��

dzd2pd2�

��������6
15
�

1

2�2"�2
T�b�f���j��z;p�

���z;p� ��j2: (125)

Note, that the nuclear cross section can be cast in the form
reminiscent of a triple convolution
1 10
p, GeV/c

0,4

0,6

0,8

1

Ψ ν=1
    2
    4
    8

ependence of the optical thickness of the gold nucleus for several
the wave function distortion factor = �b; z;p� for several values
l.
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d!A�q

 ! qg�

d2bdzdpd�

��������6
15
� T�b�

Z 1

0
d2

Z
d2�d2�1d2�2d2�3&��
 �1 
 �2 
 �3 � �� �!�1� 2; b;�1�

�!�C2�1� 2�; b;�2�!�2; b;�3�
d!N�2;p� �1;��

dzd2�p� �1�d
2�

��������6
15
; (126)
where d!N�2;p� is the free-nucleon cross section calcu-
lated in terms of the ISI distorted wave functions. This
convolution form suggests that at a fixed gluon-jet momen-
tum p, it will be a broader distribution of � than the free-
nucleon cross section (for the related discussion see [4]).

The convolution property of d!A is manifest for hard
dijets, p2 � �2,Q2

A�b�. Because the dominant contribution
comes from �2

i & Q2
A�b�, here one can neglect �2;3 com-

pared to p, i.e., the nuclear distortion of the wave functions
in d!N�2;p�, which then becomes independent of 2. The
result takes the form first found for DIS in [4]:

d!A�q
 ! qg�

d2bdzdpd�

��������6
15
� T�b�

Z 1

0
d2

Z
d2�

�!�1
 C2�1� 2�; b;�� ��

�
d!N�p;��

dzd2pd2�

��������6
15
: (127)

It is reminiscent of, but not identical to, the expectation
from the simplistic reference scenario described in the
Introduction—true, !�1
 C2�1� 2�; b;�� �� de-
scribes a convolution of incoherent ISI and FSI of partic-
ipating partons, but the hard cross section d!N is
calculated in terms of the free nucleon, rather than collec-
tive nuclear, unintegrated glue.

The saturation scale for the distribution !�1
 C2�1�
2�; b;�� �� equals

Q2
A;eff � �1
 C2�1� 2��Q2

A�b� (128)

and the broadening of the acoplanarity distribution for the
quark-gluon dijets is substantially stronger than that for the
quark-antiquark dijets in DIS discussed in [4].

D. The fate of the dip for exactly back-to-back dijets

Nuclear effects partly smear out the dip of the dijet cross
section at � � 0 for exactly back-to-back quark-gluon
dijets. First, the collective nuclear glue (97) is finite at � �
0. Second, the contribution from color-triplet dijets is
proportional to j��1; z;p� �� ���z;p� z��j2, which
does not vanish at � � 0, see Eq. (123). Third, a similar
smearing of the dip at � � 0 is obvious from the convo-
lution form of the contribution from the sextet and 15-plet
dijets: while the impulse approximation term (125) van-
ishes at � � 0, the nuclear cross section (126) remains
finite at � � 0. The weakening of the dip at � � 0 and of
the double-hump azimuthal dependence of the dijet cross
section for unequal momentum jets holds for nuclear tar-
gets too. The large-� collective nuclear glue (97) starts
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decreasing only at �2 * Q2
A�b; x� and the double-hump

structure will evidently spread with rising saturation scale
QA�b; x�, which is a part of the above discussed generic
azimuthal decorrelation of nuclear dijets, see also Ref. [4].

VII. MONOJETS FROM DIJETS:
FRAGMENTATION VS GENUINE DIJETS

A. Monojets from dijets in the free-nucleon reactions

In the above discussion we implicitly assumed that the
quark and gluon hard jets are separated by a large azimu-
thal angle and the acoplanarity momentum is small com-
pared to the jet momenta �2 & p2, �p���2. An
interesting new situation is encountered when the quark
and gluon jets start merging. Specifically, the wave func-
tion ��z;p� z�� which enters the color-triplet dijet cross
section (115) has a pole when p� z� � 0, i.e., when the
gluon and quark are collinear,

p � z�; pq � �� p � �1� z�� � zq�: (129)

In the vicinity of the pole the qg production cross section
has the factorized form

d!N�q
 ! qg�

dzd2pd2�

��������monojet
�

1

2�2"�2
f���j��z;p� z��j2:

(130)

Now recall that ��z;p� z�� is precisely a probability
amplitude to find the gluon with the momentum k? � p�
z� transversal with respect to the axis of the quark jet with
the momentum �, and j��z;p� z��j2 of Eq. (88) is
proportional to the familiar splitting function Pgq�z�, which
is precisely the driving term of the quark-jet fragmentation
function. Consequently, the contribution (130) must be
treated as a fragmentation of the scattered quark into the
quark and gluon, q0 ! qg. The quark pole contribution
will dominate if

k 2
? � �p� ��2 � p2

q: (131)

From the experimental point of view, the corresponding
final state is a monojet of the transverse momentum �. The
transverse momentum of such a monojet will be compen-
sated by an away jet produced at midrapidity or the nucleus
hemisphere of pA collisions.

In terms of Feynman diagrams of Fig. 2—for the free-
nucleon target one takes the single-gluon exchange—the
monojet production is a property of the diagram (c).
Indeed, the cross section (130) is proportional to precisely
the differential cross section of quasielastic scattering of
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the projectile quark off the nucleon target—the latter is
evidently proportional to the unintegrated gluon density of
the target proton f���. The two classes of Feynman dia-
grams in Fig. 2(b) and 2(c) are integral parts of the gauge-
invariant description of the QCD Bremsstrahlung excita-
tion of the qg state. Still, the isolation of the pole contri-
bution from the gauge-invariant combinations

j��1; z;p� �� ���z;p� z��j2

� j��1; z;pq� ���z;p� z��j2

in (92), and of the monojet contribution to the generic dijet
cross section would not conflict gauge invariance. In order
to conform to the jet-finding algorithms, the production of
the quark and gluon within the jet-defining cone must be
treated as a fragmentation of the monojet; if the azimuthal
angle between the quark and gluon is larger than the jet-
defining angle, the two jets must be viewed as independent
ones.

The monojet-pole contribution is absent in the excitation
of the sextet and 15-plet final states. The combination of
the wave functions, which enters Eq. (125),

j��z;p� ���z;p� ��j2 /
�p
 pq�

2

p2p2
q

;

is finite for all orientations of the quark and gluon jets.
The quark-tagged pQCD gluon Bremsstrahlung consid-

ered here is already the higher order process, the lowest
order pQCD process in qN interaction is the radiationless
quasielastic scattering of the quark. Naive application of
fragmentation q0 ! qg to this lowest order process would
evidently lead to a double counting, because the fragmen-
tation is manifestly a monojet part of our dijet cross
section. The integration over the gluon momentum k? in
the inclusive cross section would yield the familiar col-
linear logarithm, which must be reabsorbed into the defi-
nition of the fragmentation function at the starting scale.
Simultaneously, one must include the virtual radiative
correction to the radiationless quasielastic scattering of
the incident quark off the target nucleon. The treatment
of these virtual corrections to quasielastic scattering and
elimination of double counting go beyond the scope of the
present study and will be addressed elsewhere. We only
want to comment that if one would insist on the description
of monojets in terms of the fragmentation of the quark,
then the interplay of the virtual correction to the radiation-
less quasielastic scattering and of the collinear logarithm in
the monojet component of the dijet cross section may
entail a departure of the fragmentation function from that
defined in the e
e�-annihilation.

B. Monojets from dijets off a nuclear target

The presence of the monojet pole (129) in the nuclear
dijet cross section (107) is manifest:
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d!A�q

 ! qg�

d2bdzdpd�

��������monojet
�

1

2�2"�2
T�b�5�b; x;��

� j��z;p� z��j2: (132)

It factorizes precisely as the free-nucleon cross section: the
differential cross section of quasielastic quark-nucleus
scattering, proportional to the unintegrated collective
gluon density of the nucleus, times the fragmentation of
the scattered quark to the gluon and quark given by
j��z;p� z��j2, which does not depend on the target.
However, the virtual radiative correction to the radiation-
less quasielastic scattering of the incident quark off the
target nucleus and the elimination of double counting are
likely to depend on the acoplanarity momentum � and the
shape of the collective nuclear glue 5�b; x;��. Should this
be the case, such a dependence could be reinterpreted as a
nuclear modification of the fragmentation function; this
issue will be addressed elsewhere.

As it was the case for the free-nucleon target, excitation
of the sextet and 15-plet final states is free of the monojet
singularities. To be more precise, the wave function singu-
larities in the integrand of the sextet and 15-plet contribu-
tion to (107) occur in the intermediate state, at
p� �1 � � � 0 and p� �1 � 0. However, they are inte-
grated out in the observed dijet cross section. It is still
instructive to look at the effect of these singularities in the
monojet kinematics �2 � p2 * Q2

A�b�.
Consider first the contribution from the intermediate

pole at p� �1 � 0. The relevant �i integrations are of
the formZ
d2�1d

2�f�x;��!�1� 2;b; x;�� �1 � ��

�!�2
 C2�1� 2�; b; x;�1� � j��2; z;p� �1�j
2

� !�2
 C2�1� 2�; b; x;p�
Z p2

d2kj��2; z;k�j2

�
Z
d2�f�x;��!�1� 2;b; x;�� p� ��: (133)

For the considered hard jets

!�1�2;b;x;��p����
1

2
�1�2�T�b�f���p���

(134)

and the convolution in (133) equals [4,8]Z
d2�f�x;��!�1� 2;b; x;�� p� ��

� �1� 2�T�b�f��� p�: (135)

The resulting contribution from the intermediate pole of
the wave function at p� �1 � 0 is proportional to

T2�b�f��� p�f�p�Pgq�z� � T2�b�f�pg�f�pq�Pgq�z�

(136)
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and has the form of the product of the differential cross
sections of independent quasielastic scattering of the quark
and gluon fragments of the incident quark. It does not
depend on the azimuthal angle between the quark and
gluon jets at all, and has no collinear singularity. A similar
situation has been found to occur in our previous study of
the production of hard quark-antiquark dijets in "A colli-
sions [13]. The contribution from the pole at p� �1 �
� � 0 is entirely similar.
IX. CONCLUSIONS

The prime task of the pQCD theory of nuclear interac-
tions is to establish a link between observables for different
hard processes in a nuclear environment, as close to famil-
iar linear k? factorization for high-energy interactions on
the free-nucleon target as possible. The reported derivation
of nuclear modifications of the quark-gluon production in
quark-nucleus collisions is a major step towards this goal.
Our principal result—the nonlinear k?-factorization rela-
tion (107)—gives one observable—the spectrum of
quark-gluon dijets produced off a nuclear target—as a
quadrature in terms of the collective nuclear unintegrated
glue defined by another observable—the amplitude of
coherent diffractive dijet production off nuclei.
Furthermore, precisely the same collective nuclear glue
furnishes linear k? factorization for leading single-quark
jet spectrum in DIS off nuclei and nonlinear k? factoriza-
tion for single-jet spectra from other pQCD subprocesses
in a nuclear environment.

The derived quark-gluon dijet cross section can be de-
composed into three major contributions. The excitation of
qg dijets in higher-sextet and 15-plet color representations
gives rise to the sixth order nonlinearity in gluon densities,
compared to the fifth order nonlinearity for q �q dijets in
DIS. A part of the nonlinearity comes from the free-
nucleon gluon density which emerges in all instances of
excitation of higher color representations (see also the
related discussion of the 1=�N2

c � 1� expansion in
Ref. [4]). The matrix elements of transitions from lower
to higher color representations are suppressed at large Nc,
but this suppression is compensated for by the large num-
ber of states in higher representations. The coherent dif-
fraction, in which the final dipole is produced in exactly the
same color state as the incident quark, is not suppressed by
large Nc, but because of the color-nonsinglet incident
partons the diffractive contribution is suppressed by an
overall nuclear attenuation and will only come from colli-
sions at the diffuse edge of a nucleus. A new feature of qA
collisions in contrast to DIS is inelastic production of qg
states in the same color representation as the incident
parton. Such color rotations within the same representation
are not suppressed at large Nc. This contribution has the
form which superficially looks like satisfying the linear k?
factorization in terms of the collective nuclear gluon den-
sity. However, it contains the nuclear-distorted wave func-
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tion of the qg Fock state and, consequently, is a cubic
functional of the collective nuclear glue.

The above three components of the quark-gluon dijet
cross section differ by more than the degree of the non-
linearity. The coherent diffractive mechanism and the ex-
citation of quark-gluon dijets in the same color
representation as the incident quark are explicitly calcu-
lable in terms of the collective nuclear glue of Eq. (94)
which is defined for the whole nucleus. This is not the case
for the excitation of quark-gluon dijets in higher color
multiplets. It is proportional to the unintegrated gluon
density in the free nucleon. The coherent initial-state in-
teraction, before the excitation of higher color multiplets at
the depth 2 of the nucleus, must be described in terms of
the unintegrated collective glue (100) defined for the slice
2 of the nucleus.

The quantum mechanical coherence properties of our
final result are highly nontrivial: coherent distortions of the
qg wave function are complemented by incoherent broad-
ening of the incident quark transverse momentum distri-
bution in the same slice �0; 2� of the nucleus. Likewise, the
final-state interactions after the excitation of higher mul-
tiplets must be described in terms of the unintegrated
collective glue defined for the slice �1� 2� of the nucleus.
Furthermore, besides the collective nuclear glue defined
for color-singlet quark-antiquark dipole, there emerges a
new nuclear gluon density which depends on the Casimir
operators of higher quark-gluon color representations, i.e.,
the gluon field of the nucleus must be described by a
density matrix in the space of color representations.

A comparison of the results for the quark-gluon dijets in
quark-nucleon collisions to the excitation of quark-
antiquark dijets in DIS and gluon-nucleus collisions re-
veals a vast variety of nonlinear quadratures in terms of the
collective nuclear glue. We have shown how, depending on
the color properties of the relevant pQCD subprocesses,
different results fall into four universality classes for non-
linear k? factorization. A tempting simplistic scenario for
hard processes in a nuclear matter as a hard scattering of
the incident parton off the collective nuclear glue preceded
and followed by incoherent soft initial and final-state in-
teractions is borne out by none of our universality classes.

The central technical point of our derivation is the
2-unintegrated form of the dijet cross section. Only this
form makes manifest the nonlinear k? factorization for the
dijet observables in terms of another physics observable—
the coherent diffractive dijet amplitude. Precisely because
of this unifying aspect and the establishment of the uni-
versality classes we regard our results as nonlinear
k?-factorization theorems for dijet production in a nuclear
environment. We reiterate that the 2-dependence of inte-
grands of the dijet cross section is not an artifact of our
formalism, rather it emphasizes nontrivial non-Abelian
properties of the intranuclear evolution of color dipoles,
different color properties of the initial-state and final-state
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interactions, the necessity of the color density matrix de-
scription of the collective nuclear glue and nontrivial inter-
play of coherent and incoherent distortions. The collective
nuclear glue (100) defined for different slices of the nu-
cleus emerges as an indispensable entity of nonlinear k?
factorization and is at the heart of the identification of
universality classes of nonlinear k? factorization. The
direct multidimensional Fourier transform of the
Sylvester expansion (82), the numerator of which can be
presented in terms of the gluon density defined for the
whole nucleus or classical field, like e.g. the color glass
condensate approach [36], is technically possible. Such a
brute force numerical calculation would obscure the above
described ISI/FSI interpretation of the dijet cross section
and miss the nonlinear k? factorization which furnishes the
unified description of different hard processes.

The representation for the dijet cross section similar to
our master formula (13) has been discussed recently by
several authors [10–12], but these works stopped short of
the solution of the coupled-channel intranuclear evolution
for the 4-parton state. Although major ingredients for the
diagonalization of the four-body S-matrix are found in our
earlier work on dijets in DIS [4], the case of the qg dijets
has its own tricky points. For this reason, we felt it im-
perative to present full technical details of this
diagonalization.
034033
The emphasis of the present communication was on the
formalism, the numerical applications will be reported
elsewhere. The nuclear coherency condition, x & xA �

0:1 � A�1=3, restricts the applicability domain of our for-
malism to the forward part of the proton hemisphere of pA
collisions at RHIC. Although the required coherency con-
dition does not hold for the midrapidity dijets studied so far
at RHIC [37], our predictions could be tested after the
detectors at RHIC II will be upgraded to cover the proton
fragmentation region [19].

ACKNOWLEDGMENTS

We are grateful to the referee for useful suggestions on
the presentation. This work was partly supported by Grant
No. DFG 436 RUS 17/101/04.

Note added.—Recently an e-print by Baier et al. on a
related discussion of dijet production has been posted [38].
The reported numerical results on azimuthal correlations of
back-to-back dijets and the dip at � � 0 are based on the
direct numerical Fourier transform of the Sylvester expan-
sion in the color-dipole master formula for the dijet spec-
trum. The observed trends are in line with our brief
discussion in Sec. VII D which we added to clarify the
relationship between the two approaches.
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