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We present the calculations of the complete next-to-leading order (NLO) QCD corrections (including
supersymmetric QCD) to the inclusive total cross sections of the associated production processes pp!
A0Z0 � X in the minimal supersymmetric standard model at the CERN Large Hadron Collider. Both the
dimensional regularization scheme and the dimensional reduction scheme are used to organize the
calculations, which yield the same NLO rates. The NLO correction can either enhance or reduce the
total cross sections, but it generally efficiently reduces the dependence of the total cross sections on the
renormalization/factorization scale. We also examine the uncertainty of the total cross sections due to the
parton distribution function uncertainties.
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I. INTRODUCTION

The search for one or more Higgs bosons is the central
task of the CERN Large Hadron Collider (LHC), with���
S
p
� 14 TeV and a luminosity of 100 fb�1 per year. In

the standard model (SM), the Higgs boson mass is a free
parameter with an upper bound of mH � 600–800 GeV
[1]. Beyond the SM, the minimal supersymmetric standard
model (MSSM), whose Higgs sector is a special case of the
two Higgs doublet model (2HDM) [2], is of particular
theoretical interest, and contains five physical Higgs bo-
sons: two neutral CP-even bosons h0 and H0, one neutral
CP-odd boson A0, and two charged bosons H�. The h0 is
the lightest, with a mass mh0 � 140 GeV when including
the radiative corrections [3], and is a SM-like Higgs boson
especially in the decoupling region (mA0 � mZ0 ). The
other four are non-SM-like ones, and the discovery of
them may give the direct evidence of the MSSM. It has
been shown in Refs. [4,5] that the h0 boson of MSSM
cannot escape detection at the CERN LHC and that more
than one neutral Higgs particle can be found in a large area
of the supersymmetry (SUSY) parameter space

At the LHC, the neutral Higgs bosons can be produced
through the following mechanisms: gluon fusion gg! �
[6–9], weak boson fusion qq! qqV�V� ! qqh0=qqH0

[10], associated production with weak bosons [11–13],
associated production with a heavy quark-antiquark pair
gg; q �q! t�t�=b �b� [14], and pairs production [15].
Studying the associated production process of a neutral
Higgs boson and a vector boson at future hadron colliders
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may be an interesting way to search for neutral Higgs
bosons, since the total cross section may be large and
also the leptonic decay of the vector boson can be used
as a spectacular event trigger. In the SM, the process
q �q�0	 ! W=Z0h0

SM has been studied both at the leading
order (LO) [11] and the next-to-leading order (NLO)
[13,16] in QCD. In the 2HDM and MSSM, the associated
production of h0�H0	Z0 and A0Z0 has been studied only at
tree level for the Drell-Yan process and at one-loop level
for gluon fusion in Refs. [17–20], respectively.

It was shown in Ref. [18] that the A0Z0 associated
production rate at the LHC strongly depends on the
SUSY parameters tan� (the ratio of two vacuum expecta-
tion values) and mA (the mass of A0). The total cross
section increases with an increment of tan� and decreases
with an increment of mA. In this paper, we present the
complete NLO QCD, including supersymmetric QCD,
calculation for the cross section of the associated produc-
tion of A0Z0 through the b �b annihilation process at the
LHC. For simplicity, in our calculation, we neglect the
bottom quark mass except in the Yukawa couplings. Such
approximations are valid in all diagrams, in which the
bottom quark appears as an initial state parton, according
to the simplified Aivazis-Collins-Olness-Tung scheme
[21]. To regularize the ultraviolet (UV), soft, and collinear
divergences, two regularization schemes are used in our
calculations for a cross check, i.e. the dimensional regu-
larization (DREG) scheme [22] (with the naive �5 scheme
[23]) and the dimensional reduction (DRED) scheme [24],
and their results are compared.

The arrangement of this paper is as follows. In Sec. II,
we show the LO results and define the notations. In Sec. III,
we present the details of the calculations of both the virtual
-1 © 2005 The American Physical Society
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FIG. 1. Leading order Feynman diagrams for b �b! A0Z0.
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and the real parts of the NLO QCD corrections and com-
pare the results in DREG with those in DRED. In Sec. IV,
by a detailed numerical analysis, we present the predictions
for the inclusive and the differential cross sections of the
A0Z0 associated production at the LHC. Section V contains
a brief conclusion. For completeness, the relevant
Feynman rules are collected in Appendix A, and the
lengthy analytic expressions of the result of our calculation
are summarized in Appendix B.

II. LEADING ORDER CALCULATIONS

The related Feynman diagrams which contribute to the
LO amplitude of the partonic process b�p1	 �b�p2	 !
Z0�p3	A

0�p4	 are shown in Fig. 1. The LO amplitude in
n � 4� 2� dimensions is

MB � �i1i2�
4�n
r 
M�s	0 �M

�t	
0 �M

�u	
0 �;

with

M�s	0 � 2imb

�
A1F1

s�m2
h0

�
A2F2

s�m2
H0

�
v�p2	u�p1	p4:"��p3	;

M�t	0 �
imbA3

t
v�p2	�

5�p6 1 � p6 3	"6 �p3	�CV � CA�
5	u�p1	;

M�u	0 �
imbA3

u
v�p2	"6 �p3	�CV � CA�

5	�p6 1 � p6 4	�
5u�p1	;

where �i1i2 is the color tensor (i1; i2 are color indices for the
initial state quarks), �r is a mass parameter introduced to
keep the couplings dimensionless, s, t, and u are
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Mandelstam variables, which are defined as

s��p1�p2	
2; t��p1�p3	

2; u��p2�p3	
2;

Ai�1;2;3, Fi�1;2, and CV;A denote the coefficients appearing
in the relevant h0�H0; A0	b �b, h0�H0	Z0A0, and Z0b �b cou-
plings, respectively, and their explicit expressions are given
in Appendix A.

In order to simplify the expressions, we further intro-
duce the following Mandelstam variables:

t0 � t�m2
Z0 ; u0 � u�m2

Z0 : (1)

After the n-dimensional phase space integration, the LO
partonic differential cross sections are given by

d2�̂B

dt0du0
�

	S�
s2��1� �	

�t0u0 � sm2
Z0

�2
rs

�
��

��t0u0 � sm2
Z0	

��
s� �mZ0 �mA0	2���s� t� u

�m2
Z0 �m2

A0	
X
jMBj2; (2)

with
X
jMBj2 �

m2
b

6

��
4m2

A0s�
�s�m2

Z0 �m2
A0	

2s

m2
Z0

��
A1F1

s�m2
h0

�
A2F2

s�m2
H0

�
2
� A2

3�jCV j
2 � jCAj2	

�
2m2

Z0�1� �	�tu�m2
Z0m2

A0	 � st2

m2
Z0t2

� A2
3�jCV j

2 � jCAj2	
2m2

Z0�1� �	�tu�m2
Z0m2

A0	 � su2

m2
Z0u2

�
4A3CAs�t� u	�tu�m

2
Z0m2

A0	

tum2
Z0

�
A1F1

�s�m2
h0	
�

A2F2

�s�m2
H0	

�
� 2A2

3�jCVj
2 � jCAj2	

�
2�1� �	m2

Z0�tu�m2
Z0m2

A0	 � s�2m2
Z0m2

A0 � tu	

m2
Z0tu

�
; (3)
where S� � �4		�2�� and the � function is the Heaviside
step function.

P
jMBj2 is the LO squared matrix element of

b�x1p1	 �b�x2p2	 ! Z0�p3	A0�p4	, in which the colors and
the spins of the outgoing particles have been summed, and
the colors and the spins of the incoming ones have been
averaged over.

The LO total cross section at the LHC is obtained by
convoluting the partonic cross section with the parton
distribution functions (PDFs) Gb; �b=p in the proton:
�B�
Z
dx1dx2
Gb=p�x1;�f	G �b=p�x2;�f	��x1$x2	��̂

B;

(4)
where�f is the factorization scale and �̂B is the Born level
constituent cross section of b�x1p1	 �b�x2p2	 !
Z0�p3	A

0�p4	. Obviously, the above LO results in the
DREG scheme are equal to the ones in the DRED scheme
since the LO calculations are finite and free of any
singularity.
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III. NEXT-TO-LEADING ORDER CALCULATIONS

The NLO contributions to the associated production of
A0 and Z0 can be separated into the virtual corrections
arising from loop diagrams of colored particles and the real
corrections arising from the radiation of a real gluon or a
massless (anti)quark. For both the virtual and the real
corrections, we will first present the results in the DREG
scheme and then compare them with the ones obtained in
the DRED scheme.

A. Virtual corrections

The virtual corrections to b �b! A0Z0 arise from the
Feynman diagrams shown in Figs. 2 and 3. They consist
of self-energy, vertex, and box diagrams, which represent
the SM QCD corrections, arising from quarks and gluons,
and supersymmetric QCD corrections, arising from
squarks and gluinos. We carried out the calculation in the
’t Hooft-Feynman gauge and used the dimensional regu-
larization in n � 4� 2� dimensions to regularize the UV,
soft, and collinear divergences in the virtual loop correc-
tions. In order to remove the UV divergences, we renor-
malize the bottom quark masses in the Yukawa couplings
and the wave function of the bottom quark, adopting the
on-shell renormalization scheme [25].

Denoting mb0 and  b0 as the bare bottom quark mass
and the bare wave function, respectively, the relevant re-
b

b̄

h0↪ H0

Z

A0

(a)

b

b̄

Z

A0

(b)

b

b̄

Z

A0

(e)

b

b̄

Z

A0

(f)

= +h0↪ H0

b̄

b

A0

= +Z0

b̄

b

= +

FIG. 2. One-loop virtual diagrams, including self
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normalization constants �mb, �ZbL, and �ZbR are then
defined as

mb0 � mb � �mb; (5)

 b0 � �1� �ZbL	
1=2 bL � �1� �ZbR	

1=2 bR: (6)

After calculating the self-energy diagrams in Fig. 2, we
obtain the explicit expressions of all the renormalization
constants as follows:

�mb

mb
� �


s
4	

CF

�
3B0�m2

b; 0; m
2
b	 � 2�

X2

i�1

�
B1 �

m~g

mb

� sin2�~b��1	iB0

�
�m2

b; m
2
~g; m

2
~bi
	

�
;

�ZbL � �

s
2	

CF
X2

i�1

�R~b
i1	

2�B0 � B1	�0; m2
~bi
; m2

~g	;

�ZbR � �

s
2	

CF
X2

i�1

�R~b
i2	

2�B0 � B1	�0; m
2
~bi
; m2

~g	;

where CF �
4
3 , B0; B1 are the scalar two-point integrals

[26], m~b1;2
are the sbottom masses, m~g is the gluino mass,

and R~b is a 2� 2 matrix shown as below, which is defined
to transform the sbottom current eigenstates to the mass
eigenstates [27]:
b

b̄

Z

A0

(c)

b

b̄

Z

A0

(d)

b

b̄

Z

A0

(g)

-energy and vertex corrections for b �b! A0Z0.
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FIG. 3. Box diagrams for b �b! A0Z0.
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~b1
~b2

 !
� R~b

~bL
~bR

 !
; R~b �

cos�~b sin�~b
� sin�~b cos�~b

� �
; (7)

with 0 � �~b < 	, by convention. Correspondingly, the
mass eigenvalues m~b1

and m~b2
(with m~b1

� m~b2
) are given

by

m2
~b1

0

0 m2
~b2

0@ 1A � R~bM2
~b
�R~b	y;

M2
~b
�

m2
~bL

abmb

abmb m2
~bR

0@ 1A;
(8)

with

m2
~bL
� M2

~Q
�m2

b �m
2
Z cos2��Ib3L � eb sin2�W	; (9)

m2
~bR
� M2

~D
�m2

b �m
2
Z cos2�eb sin2�W; (10)

ab � Ab �� tan�: (11)

Here M2
~b

is the sbottom mass matrix. M ~Q; ~D and Ab are soft
SUSY breaking parameters and � is the Higgsino mass
parameter . Ib3L and eb are the third component of the weak
isospin (i.e. �1=2) and the electric charge of the bottom
quark b (i.e. �1=3), respectively.

The renormalized virtual amplitudes can be written as

MV � Munren �Mcon: (12)

Here Munren contains the radiative corrections from the
one-loop self-energy, vertex, and box diagrams, as shown
in Fig. 2, and Mcon is the corresponding counterterm.
Moreover, Munren can be separated into two parts:

Munren �
Xg

�a

M
 �
Xd
��a

Mbox��	; (13)
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where 
 and � denote the corresponding diagram indexes
in Figs. 2 and 3, respectively. They can be further ex-
pressed as

M
 �
X12

l�1

f
l Ml; (14)

Mbox��	 �
X12

l�1

fbox��	
l Ml; (15)

Munren �
X12

l�1

funren
l Ml; �funren

l � f
l � f
box��	
l 	; (16)

where f
l and fbox��	
l are the form factors, which are given

explicitly in Appendix B, and the Ml are the standard
matrix elements defined as

M1�2	 � �v�p2	u�p1	p1�2	:��p3	;

M3�4	 � �v�p2	PRu�p1	p1�2	:��p3	;

M5 � �v�p2	p6 3�6 �p3	u�p1	;

M6 � �v�p2	p6 3�6 �p3	PRu�p1	;

M7�8	 � �v�p2	p6 3PRu�p1	p1�2	:��p3	;

M9 � �v�p2	�6 �p3	u�p1	;

M10 � �v�p2	�6 �p3	PRu�p1	;

M11�12	 � �v�p2	p6 3u�p1	p1�2	:��p3	:

(17)

The counterterm contribution Mcon is separated into
Mcon�s	, Mcon�t	, and Mcon�u	, i.e. the counterterms for s, t,
and u channels, respectively, which are given by
Mcon � Mcon�s	 �Mcon�t	 �Mcon�u	; Mcon�s	 � 2i
�
A1F1

s�m2
h0

�
A2F2

s�m2
H0

��
�mb �

mb

2
��ZbL � �ZbR	

�
�M1 �M2	;

Mcon�t	 �
�iA3

t

�
�mb �

mb

2
��ZbL � �ZbR	

�

2�CV � CA	M1 � 4CVM3 � �CV � CA	M5 � 2CVM6�;

Mcon�u	 �
iA3

u

�
�mb �

mb

2
��ZbL � �ZbR	

�

2�CV � CA	M2 � 4CVM4 � �CV � CA	M5 � 2CVM6�:
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The O�
s	 virtual corrections to the differential cross
section can be expressed as

d2�̂V

dt0du0
�

	S�
s2��1� �	

�t0u0 � sm2
Z0

�2
rs

�
��

��t0u0 � sm2
Z0	

��
s� �mZ0 �mA0	2���s� t� u�m2
A0

�m2
Z0	2 Re

�X
�MVMB�	

�
; (18)

where the renormalized amplitude MV is UV finite, but it
still contains the infrared (IR) divergences:

MV jIR �

s
2	

��1� �	
��1� 2�	

�
4	�2

r

s

�
�
�
AV2
�2 �

AV1
�

�
MB; (19)

where

AV2 � �CF; AV1 � �3
2CF: (20)

Here the infrared divergences include the soft divergences
and the collinear divergences. The soft divergences are
cancelled after adding the real emission corrections, and
the remaining collinear divergences can be absorbed into
the redefinition of PDF [28], which will be discussed in the
following subsections. Note that the coefficients AV2 and AV1
of the infrared divergence terms are constants, similar to
the Drell-Yan type processes. Needless to say that the
SUSY-QCD corrections do not generate infrared divergen-
ces, for squarks and gluinos are massive particles.

In the above calculation, we have adopted the naive �5

prescription in the DREG scheme to calculate the A0Z0

associated production rate. To cross-check the above cal-
culation, we shall also adopt the DRED scheme to care-
fully treat the �5 factor in the amplitude calculation. We
shall show that the total inclusive rate is independent of the
regularization scheme, though the individual contributions,
from either virtual or real emission corrections, can be
scheme-dependent.

In the DRED scheme, �ZbL and �ZbR remain un-
changed; however, �mb is different, and�

�mb

mb

�
DREG

�

�
�mb

mb

�
DRED

�

s
4	

CF: (21)

Similarly, the form factors are found to be different, and

funren
i DREG � f

unren
i DRED � �


s
2	

CF for i � 1; 2 . . . 6;

(22)

funren
i DREG � f

unren
i DRED � 0 for i � 7; 8 . . . 12: (23)

Thus, it is easy to obtain the following relations from the
above results:

MV
DREG �M

V
DRED � �


s
4	

CFMB; (24)

�VDREG � �
V

DRED � �

s
2	

CF�
B �O�
2

s	: (25)
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B. Real gluon emission

The Feynman diagrams for the real gluon emission
process b�p1	 �b�p2	 ! Z0�p3	A

0�p4	 � g�p5	 are shown
in Fig. 4.

The phase space integration for the real gluon emission
will produce infrared singularities, which can be either soft
or collinear and can be conveniently isolated by slicing the
phase space into different regions defined by suitable cut-
offs. In this paper, we use the two-cutoff phase space
slicing method [29], which introduces two small cutoffs
to decompose the three-body phase space into three
regions.

First, the phase space can be separated into two regions
by an arbitrary small soft cutoff �s, according to whether
the energy (E5) of the emitted gluon is soft, i.e. E5 �
�s

���
s
p
=2, or hard, i.e. E5 > �s

���
s
p
=2. Correspondingly, the

partonic real cross section can be written as

�̂ R � �̂S � �̂H; (26)

where �̂S and �̂H are the contributions from the soft and
the hard regions, respectively. �̂S contains all the soft
divergences, which can be explicitly obtained after analyti-
cally integrating over the phase space of the emitted soft
gluon. Second, in order to isolate the remaining collinear
divergences from �̂H, we should introduce another arbi-
trary small cutoff, called collinear cutoff �c, to further split
the hard gluon phase space into two regions, according to
whether the Mandelstam variables satisfy the collinear
condition ��cs < u1;2  �p1;2 � p5	

2 < 0 or not. Thus,
we have

�̂ H � �̂HC � �̂HC; (27)

where the hard collinear part �̂HC contains the collinear
divergences, which can be explicitly obtained after analyti-
cally integrating over the phase space of the emitted col-
linear gluon. The hard noncollinear part �̂HC is finite and
can be numerically computed using standard Monte-Carlo
integration techniques [30] and can be written in the form:

d�̂HC �
1

2s

X
jMb �bj2d�3: (28)

Here d�3 is the hard noncollinear region of the three-body
phase space.

In the next two subsections, we will discuss in detail the
soft and the hard collinear gluon emission.

1. Soft gluon emission

In the soft limit, i.e. when the energy of the emitted
gluon is small, with E5 � �s

���
s
p
=2, the matrix element

squared
P
jMRj2 for the process b�p1	 �b�p2	 !

Z0�p3	A0�p4	g�p5	 can be simply factorized into the
Born matrix element squared times an eikonal factor �eik:
-5



FIG. 4. Feynman diagrams for the real gluon emission contributions.
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X
jMR�b �b! A0Z0 � g	j2 ���!soft

�4	
s�2�
r 	
X
jMBj2�eik;

(29)

where the eikonal factor �eik is given by

�eik � CF
s

�p1 � p5	�p2 � p5	
: (30)

Moreover, the phase space in the soft limit can also be
factorized as

d�3�b �b! A0Z0 � g	���!soft
d�2�b �b! A0Z0	dS; (31)

where dS is the integration over the phase space of the soft
gluon, which is given by [29]

dS �
1

2�2		3�2�

Z �s
��
s
p
=2

0
dE5E1�2�

5 d�2�2�: (32)

Hence, the parton level cross section in the soft region can
be expressed as

�̂ S � �4	
s�
2�
r 	

Z
d�2

X
jMBj2

Z
dS�eik: (33)

Using the approach of Ref. [29], after analytically integrat-
ing over the soft gluon phase space, Eq. (33) becomes

�̂ S � �̂B
�

s
2	

��1� �	
��1� 2�	

�
4	�2

r

s

�
�
��
As2
�2 �

As1
�
� As0

�
;

(34)

with

As2 � 2CF; As1 � �4CF ln�s; As0 � 4CF ln2�s:

(35)
2. Hard collinear gluon emission

In the hard collinear region, i.e. E5 > �s
���
s
p
=2 and

��cs < u1;2 < 0, the emitted hard gluon is collinear to
one of the incoming partons. As a consequence of the
factorization theorems [31], the squared matrix element
for b �b! A0Z0 � g can be factorized into the product of
034032
the Born squared matrix element and the Altarelli-Parisi
splitting function for b� �b	 ! b� �b	g [32,33], i.e.

X
jMR�b �b!A0Z0�g	j2 ���!collinear

�4	
s�
2�
r 	
X
jMBj2

�

�
�2Pbb�z;�	

zu1

�
�2P �b �b�z;�	

zu2

�
; (36)

where z denotes the fraction of incoming parton b� �b	’s
momentum carried by parton b� �b	 with the emitted gluon
taking a fraction �1� z	, and Pij�z; �	 are the unregulated
splitting functions in n � 4� 2� dimensions for 0< z<
1, which can be related to the usual Altarelli-Parisi splitting
kernels [32] as Pij�z; �	 � Pij�z	 � �P0ij�z	. Explicitly,

Pbb�z	 � P �b �b�z	 � CF
1� z2

1� z
� CF

3

2
��1� z	; (37)
P0bb�z	 � P0�b �b
�z	 � �CF�1� z	 � CF

1

2
��1� z	: (38)

Moreover, the three-body phase space can also be factor-
ized in the collinear limit, and, for example, in the limit
��cs < u1 < 0 it has the following form [29]:

d�3�b �b! A0Z0 � g	 ���!collinear
d�2�b �b! A0Z0; s0 � zs	

�
�4		�

16	2��1� �	
dzdu1

� 
�z� 1	u1�
��: (39)

Here the two-body phase space should be evaluated at the
squared parton-parton energy zs. Thus, the three-body
cross section in the hard collinear region is given by [29]
-6
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d�HC � �̂B
�

s
2	

��1� �	
��1� 2�	

�
4	�2

r

s

�
�
�

�

�
�

1

�

�
���c 
Pbb�z; �	Gb=p�x1=z	G �b=p�x2	

� P �b �b�z; �	G �b=p�x1=z	Gb=p�x2	

� �x1 $ x2	�
dz
z

�
1� z
z

�
��
dx1dx2; (40)

where Gb� �b	=p�x	 is the bare PDF.

C. Massless (anti)quark emission

In addition to the real gluon emission, a second set of
real emission corrections to the inclusive production rate of
pp! A0Z0 at the NLO involves the processes with an
additional massless (anti)quark in the final states:

NEXT-TO-LEADING ORDER QCD PREDICTIONS FOR . . .
FIG. 5. Feynman diagrams for the emission

034032
gb! bA0Z0; g �b! �bA0Z0:
The relevant Feynman diagrams for massless (anti)quark
emission (the diagrams for the antiquark emission are
similar and are omitted here) are shown in Fig. 5.

Since the contributions from the real massless (anti)-
quark emission contain the initial state collinear singular-
ities, we also need to use the two-cutoff phase space slicing
method [29] to isolate those collinear divergences. Because
there is no soft divergence in the splitting of g! b �b, we
need only to separate the phase space into two regions: the
collinear region and the hard noncollinear region. Thus,
according to the approach shown in Ref. [29], the cross
sections for the processes with an additional massless
(anti)quark in the final states can be expressed as
d�add �
X

�
�g;��b; �b	

�̂C�
�! A0Z0 � X	
G
=p�x1	G�=p�x2	 � �x1 $ x2	�dx1dx2

� �̂B
�

s
2	

��1� �	
��1� 2�	

�
4	�2

r

s

�
�
��
�

1

�

�
���c 
Pbg�z; �	Gg=p�x1=z	G �b=p�x2	 �Gb=p�x1	P �bg�z; �	Gg=p�x2=z	

� �x1 $ x2	�
dz
z

�
1� z
z

�
��
dx1dx2; (41)
where

Pbg�z	 � P �bg�z	 � 1
2
z

2 � �1� z	2�;

P0bg�z	 � P0�bg�z	 � �z�1� z	:
(42)

The first term in Eq. (41) represents the noncollinear cross
sections for the two processes, which can be written in the
form:

d�̂C �
1

2s

X
jM
�j2d�3; (43)

where 
 and � denote the incoming partons in the partonic
processes, and d�3 is the three-body phase space in the
noncollinear region. The second term in Eq. (41) represents
the collinear singular cross sections.

D. Mass factorization

As mentioned above, after adding the renormalized
virtual corrections and the real corrections, the partonic
cross sections still contain the collinear divergences, which
can be absorbed into the redefinition of the PDF at NLO, in
general called mass factorization [28]. This procedure in
practice means that first we convolute the partonic cross
section with the bare PDF G
=p�x	 and then rewrite
G
=p�x	 in terms of the renormalized PDF G
=p�x;�f	 in
the numerical calculations. In the MS scheme, the scale
of a massless bottom quark contribution.
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dependent PDF G
=p�x;�f	 is given by [29]

G
=p�x;�f	�G
=p�x	�
X
�

�
�

1

�

��

s
2	

��1��	
��1�2�	

�

�
4	�2

r

�2
f

�
�
�Z 1

x

dz
z
P
��z	G�=p�x=z	: (44)
034032
After replacing the bare PDF by the renormalized MS PDF
and integrating out the collinear region of the phase space
defined in the two-cutoff phase space slicing method [29],
the resulting sum of Eq. (40) and the collinear part (the
second term) of Eq. (41) yield the remaining O collinear
contribution as [29]:
�coll �
Z
�̂B
�

s
2	

��1� �	
��1� 2�	

�
4	�2

r

s

�
�
��

~Gb=p�x1; �f	G �b=p�x2; �f	 �Gb=p�x1; �f	 ~G �b=p�x2; �f	

�
X

�b; �b

�
Asc1 �
! 
g	

�
� Asc0 �
! 
g	

�
Gb=p�x1; �f	G �b=p�x2; �f	 � �x1 $ x2	

�
dx1dx2; (45)
where

Asc1 �b! bg	 � Asc1 � �b! �bg	 � CF�2 ln�s � 3=2	; (46)

Asc0 � Asc1 ln
�
s

�2
f

�
; (47)

~G
��b; �b	=p�x;�f	 �
X

��g;


Z 1��s�
�

x

dy
y

�G�=p�x=y;�f	 ~P
��y	; (48)

with

~P
��y	 � P
��y	 ln
�
�c

1� y
y

s

�2
f

�
� P0
��y	: (49)

The NLO total cross section for pp! A0Z0 in the MS
factorization scheme is obtained by summing up the Born,
virtual, soft, collinear, and hard noncollinear contributions.
In terms of the above notations, we have

�NLO �
Z
dx1dx2f
Gb=p�x1; �f	G �b=p�x2; �f	

� �x1 $ x2	���̂
B � �̂V � �̂S � �̂HC	g � �coll

�
X

�
�g;��b; �b	

Z
dx1dx2
G
=p�x1; �f	G�=p�x2; �f	

� �x1 $ x2	��̂C�
�! A0Z0 � X	: (50)
We note that the above expression contains no singular-
ities, for 2AV2 � A

s
2 � 0 and 2AV1 � A

s
1 � A

sc
1 �b! bg	 �

Asc1 � �b! �bg	 � 0. Namely, all the 1=�2 and 1=� terms
cancel in �NLO. The apparent logarithmic �s and �c de-
pendent terms also cancel with the hard noncollinear cross
section �̂HC after numerically integrating over its relevant
phase space volume.

E. Real emission corrections and NLO total cross
sections in the DRED scheme

In the end of Sec. III A, cf. Eqs. (21)–(25), we discussed
the results of virtual corrections in the DRED scheme.
Here we examine the real emission corrections and the
NLO total cross section in the DRED scheme and compare
them with those obtained in the DREG scheme. We find
that the contributions from soft gluon emission remain the
same, while the ones from hard collinear gluon emission
and massless (anti)quark emission are different due to the
difference in the parton splitting functions and the pertur-
bative PDFs.

First, the splitting functions in the DRED scheme con-
tain no � parts, so that

Pij�z; �	DRED � Pij�z	: (51)
Thus, from Eqs. (45) and (51), we find the difference
�coll
DREG � �

coll
DRED � �


s
2	

Z
�̂B
�X
�

Z 1��s�b�

x1

dy
y
G�=p�x1=y;�f	P0b��y	G �b=p�x2; �f	

�
X
�

Z 1��s� �b�

x2

dy
y
G�=p�x2=y;�f	P

0
�b�
�y	Gb=p�x1; �f	 � �x1 $ x2	

�
dx1dx2: (52)

Second, the perturbative PDFs defined in the DRED and the DREG schemes are different, and [34]

G
=p�x;�f	DREG �G
=p�x;�f	DRED �

s
2	

X
�

Z 1

x

dy
y
P0
��x=y	G
=p�x;�f	DREG: (53)

After substituting them into the formula for calculating the Born level cross sections, cf. Eq. (4), we find the difference
arising from the perturbative PDFs, at the O�
s	 level, as:
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�BDREG � �
B

DRED �

s
2	

Z
�̂B
�X
�

Z 1

x1

dy
y
G�=p�x1=y;�f	DREDP

0
b��y	G �b=p�x2; �f	DRED

�
X
�

Z 1

x2

dy
y
G�=p�x2=y;�f	DREDP0 �b�

�y	Gb=p�x1; �f	DRED � �x1 $ x2	

�
dx1dx2: (54)

Except the upper limit of the integral over y, the two expressions in Eqs. (52) and (54) are the same. After substituting
Eqs. (25), (52), and (54) into Eq. (50), we find the relation between the two NLO total cross sections, separately calculated
in the DREG and the DRED schemes, as follows:

�NLO
DREG � �

NLO
DRED �


s
2	

Z
�̂B
�X
�

Z 1

1��s�b�

dy
y
G�=p�x1=y;�f	P0b��y	G �b=p�x2; �f	 �

X
�

Z 1

1��s� �b�

dy
y

�G�=p�x2=y;�f	P0 �b�
�y	Gb=p�x1; �f	 � �x1 $ x2	

�
dx1dx2 �


s
2	

CF�BDRED �O�
2
s	: (55)
Using the explicit expressions of the � parts of the splitting
functions P0, cf. Eqs. (38) and (42), we find

�NLO
DREG � �NLO

DRED �O�
2
s	: (56)

As expected, both schemes yield the same NLO total cross
sections, up to O�
2

s	.

F. Differential cross sections in transverse momentum
and invariant mass

In this subsection, we present the differential cross
section in the transverse momentum of Z0 and A0 bosons,
respectively, and the invariant mass of the A0Z0 pair. Using
the notations defined in Ref. [35], the differential distribu-
tion of the transverse momentum (pT) and rapidity (y) of
Z0 boson for the processes

p�p1	 � p�p2	 ! Z0�p3	 � A
0�p4	
�g�p5	=b�p5	= �b�p5	�

(57)

is given by

d2�
dpTdy

� 2pTS
X

;�

Z 1

x�1

dx1

Z 1

x�2

dx2x1G
=p�x1; �f	x2

�G�=p�x2; �f	
d2�̂
�
dt0du0

; (58)

where
���
S
p

is the total center-of-mass energy of the collider,
and

p2
T �

T2U2

S
�m2

Z0 ; y �
1

2
ln
�
T2

U2

�
;

x�1 �
�T2 �m

2
Z0 �m2

A0

S�U2
;

x�2 �
�x1U2 �m

2
Z0 �m2

A0

x1S� T2
;

(59)

with T2 � �p2 � p3	
2 �m2

Z0 andU2 � �p1 � p3	
2 �m2

Z0 .
The limits of integral over y and pT are

�ymax�pT	 � y � ymax�pT	; 0 � pT � pmax
T ; (60)
034032
with

ymax�pT	 � arccosh

0@S�m2
Z0 �m2

A0

2
���������������������������
S�p2

T �m
2
Z0	

q
1A;

pmax
T �

1

2
���
S
p

���������������������������������������������������������
�S�m2

Z0 �m2
A0	

2 � 4m2
Z0S

q
:

(61)

The differential distribution with respect to pT and y of A0

is similar to the one of Z0. The differential distribution with
respect to the invariant mass MAZ is given by

d�
dMAZ

�
2MAZ

S

X

;�

dL
�
AZ

d�
�̂
���S	; (62)

where dL
�
AZ=d� is the parton luminosity, defined as:

dL
�
AZ

d�
�
Z 1

�

dx
x

G
=p�x;�f	G�=p��=x;�f	�; (63)

with

MAZ 
����������������������������������������������������
�E3 � E4	

2 � � ~p3 � ~p4	
2

q
� �mA0 �mZ0	; (64)

�  M2
AZ=S: (65)

IV. NUMERICAL RESULTS

In the numerical calculations, we used the following set
of SM parameters [36]:


ew�mW	 � 1=128; mW � 80:419 GeV;

mZ � 91:1882 GeV; mt � 178 GeV;


s�MZ	 � 0:118:

(66)

The running QCD coupling 
s�Q	 is evaluated at the two-
loop order [37], and the CTEQ6M PDFs [38] are used
throughout this paper to calculate various cross sections,
either at the LO or the NLO. As to the Yukawa coupling of
the bottom quark, we shall first use the MS bottom quark
mass,mb�mb	 � 4:25 GeV, to evaluate the event rate, then
-9



TABLE II. Five sets of SUSY input parameters studied in this
paper, within the mSUGRA scenario.

Set number m0 (GeV) m1=2 (GeV) A0 (GeV) tan� Sign ��	

LI, LI, LIU, JIN, AND YUAN PHYSICAL REVIEW D 72, 034032 (2005)
compare it with the one calculated using the QCD im-
proved running mass to reduce the higher order QCD
radiative corrections and, therefore, improve the perturba-
tive calculations. The QCD improved running massmb�Q	,
evaluated by the NLO formula [39], is

mb�Q	 � U6�Q;mt	U5�mt;mb	mb�mb	; (67)

where the evolution factor Uf is

Uf�Q2; Q1	 �

�

s�Q2	


s�Q1	

�
d�f	
�

1�

s�Q1	 � 
s�Q2	

4	
J�f	

�
;

d�f	 �
12

33� 2f
; J�f	 � �

8982� 504f� 40f2

3�33� 2f	2
;

(68)

and f is the number of the active light quarks. For com-
parison, we list the QCD improved running bottom quark
mass in Table I for various energy scales Q.

For large tan�, the SUSY threshold correction to the
bottom quark Yukawa couplings could be large, and it can
be resummed by making the following replacement in the
tree-level couplings to improve the perturbation calcula-
tions [39]:

mb�Q	 !
mb�Q	

1� �mb�Q � MSUSY	
; (69)

�mb �
2
s�Q � MSUSY	

3	
M~g� tan�I�m~b1

; m~b2
;M~g	

�
h2
t

16	2 �At tan�I�m~t1 ; m~t2 ; �	

�
g2

16	2 �M2 tan�
X2

i�1

�
�R~t

i1	
2I�m~ti ; M2; �	

�
1

2
�R~b

i1	
2I�m~bi

;M2; �	
�
; (70)

where

I�a; b; c	 �
1

�a2 � b2	�b2 � c2	�a2 � c2	

�

�
a2b2 log

a2

b2 � b
2c2 log

b2

c2 � c
2a2 log

c2

a2

�
;

(71)

ht �
gmt���

2
p
mW sin�

; (72)
TABLE I. The QCD improved running bottom quark mass,
evaluated at Q � 250, 500, and 750 GeV. The MS bottom quark
mass is taken to be mb�mb	 � 4:25 GeV.

Q (GeV) 250 500 750
mb�Q	 (GeV) 2.68 2.55 2.49
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and R~t and R~b are the rotation matrices for defining the
mass eigenstates of ~t and ~b, respectively. We set MSUSY in
�mb to m~g in our numerical calculations. Needless to say
that when using the running bottom quark Yukawa cou-
pling to evaluate cross sections, we shall subtract the
corresponding (SUSY-)QCD corrections at the order 
s
from the renormalization constant �mb to avoid double
counting in perturbative expansion of the strong coupling
constant.

The values of the MSSM parameters taken in our nu-
merical calculations were constrained within the minimal
supergravity scenario (mSUGRA) [40], in which there are
only five free input parameters at the grand unification
scale. They are m1=2, m0, A0, tan�, and the sign of �,
where m1=2,m0, A0 are, respectively, the universal gaugino
mass, scalar mass, and the trilinear soft breaking parameter
in the superpotential. Given those parameters, all the
MSSM parameters at the weak scale are determined in
the mSUGRA scenario by using the program package
SUSPECT 2.3 [41]. In particular, we used the running
Higgs masses at the mZ scale, defined in the modified
dimensional reduction (DR) scheme, which have included
the full one-loop corrections, as well as the two-loop
corrections controlled by the strong gauge coupling and
the Yukawa couplings of the third generation fermions
[41,42]. In our numerical calculations, we used the two-
loop renormalization group equations (RGEs) presented in
that program for calculating all the gauge couplings, the
(third generation) Yukawa couplings, and the gaugino
masses, while using one-loop RGE for the other super-
symmetric parameters. In the following, we shall present
our numerical studies based on the five sets of SUSY input
parameters listed in Table II, which are consistent with all
the existing experiment data [36]. We will also vary tan�,
m0, and A0 to examine their effects to various cross sec-
tions. For completeness, we also show the relevant SUSY
output parameters in Table III. The QCD plus SUSY-QCD
and SUSY-EW (electroweak) improved bottom quark run-
ning mass are listed in Table IV, which should be compared
with those given in Table I, in which only the QCD running
effect is included. For comparison, the QCD plus SUSY-
QCD improved bottom quark running mass are separately
listed in Table V.
1 150 180 300 40 �

2 150 400 300 40 �

3 200 160 100 40 �

4 250 160 100 40 �

5 400 160 100 40 �
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FIG. 6. LO total cross sections of pp! A0Z0 via b �b annihi-
lation, compared with the ones from gluon fusion and Drell-Yan
processes at the LHC, as a function of tan� with mb�mb	 �
4:25 GeV, assuming: (1) m0 � 200 GeV, m1=2 � 160 GeV,
A0 � 100 GeV, and �< 0; (2) m0 � 150 GeV, m1=2 �

180 GeV, A0 � 300 GeV, and �> 0.

TABLE IV. The QCD plus SUSY-QCD and SUSY-EW im-
proved bottom quark running mass for the five sets of SUSY
inputs listed in Table II, evaluated at Q � 250, 500, and
750 GeV.

Set number 1 2 3 4 5

mb�Q � 250;MSUSY � m~g	 (GeV) 2.35 2.41 3.18 3.16 3.10
mb�Q � 500;MSUSY � m~g	 (GeV) 2.24 2.29 3.03 3.01 2.96
mb�Q � 750;MSUSY � m~g	 (GeV) 2.18 2.23 2.95 2.93 2.88

TABLE III. The SUSY output parameters used in our numerical calculations, corresponding to the five sets of SUSY input
parameters listed in Table II.

m~b1�2	
(GeV) m~t1�2	 (GeV) m~g (GeV) mA0�h0 ;H0	 (GeV) At�b	 (GeV) � (GeV) 
 cos�~t�~b	

1 374.6(429.1) 339.7(457.7) 457.0 223.8(107.5223.9) �256:5��275:8	 235.3 �0:032 0.97(0.74)
2 764.3(822.0) 673.6(833.8) 940.0 458.3(115.5458.3) �607:5��750:9	 498.1 �0:027 0.47(0.71)
3 314.3(395.1) 305.5(425.1) 416.8 133.7(106.7134.1) �263:9��303:9	 �224:6 �0:143 0:62��0:69	
4 330.8(408.6) 317.0(434.3) 419.9 155.0(107.2155.3) �262:7��303:6	 �228:8 �0:086 0.60(0.71)
5 396.1(467.5) 363.9(476.1) 431.9 233.0(108.4233.2) �261:0��304:9	 �249:4 �0:043 0.54(0.79)

TABLE V. The QCD plus SUSY-QCD improved bottom quark
running mass for the five sets of SUSY inputs listed in Table II,
evaluated at MSUSY � m~g, and Q � 250, 500, and 750 GeV.

Set number 1 2 3 4 5

mb�Q � 250;MSUSY � m~g	 (GeV) 2.15 2.14 3.71 3.66 3.53
mb�Q � 500;MSUSY � m~g	 (GeV) 2.04 2.04 3.53 3.49 3.36
mb�Q � 750;MSUSY � m~g	 (GeV) 1.99 1.98 3.44 3.39 3.27
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As for the renormalization and factorization scales, we
always chose �r � mav  �mA0 �mZ0	=2 and �f � mav,
unless specified otherwise.

A. LO total cross section

In Figs. 6 and 7, we first compare the LO total cross
sections of pp! A0Z0 via b �b annihilation with the ones
via gluon fusion and Drell-Yan processes, respectively.
Here we use the MS bottom quark mass mb�mb	 �
4:25 GeV, without including the effect from QCD running.
Our numerical results are different from the ones presented
in Ref. [18], because the updated SUSY parameters are
used instead of the earlier input parameters used in
Ref. [18], which have already been ruled out by recent
experiments. As shown in Figs. 6 and 7, the LO total cross
sections via b �b annihilation and Drell-Yan processes in-
crease with tan�, while the ones via gluon fusion process
are relatively larger for low and high values of tan� but
become smaller for intermediate values of tan�. Moreover,
all the LO rates decrease when mA0 increases. Figures 6
and 7 also show that, in most of the chosen parameter
range, b �b contributions are much larger than the ones
from gluon fusion and Drell-Yan processes, especially for
034032
large tan� and small mA0 , where the total cross sections
from the b �b contributions can reach a few hundred
femtobarn.

B. Cutoff dependence

In Fig. 8, we show the dependence of the NLO QCD
predictions on the two arbitrary theoretical cutoff scales �s
and �c, introduced in the two-cutoff phase space slicing
method, where we have set �c � �s=50 to simplify the
study and used QCD plus SUSY improved bottom quark
Yukawa coupling. The NLO total cross section can be
separated into two classes of contributions. One is the 2!
2 rate contributed by the Born level, and the O�
s	 virtual,
soft, and hard collinear real emission corrections, denoted
as �̂B, �̂V , �̂S, and �coll in Eq. (50). Another is the 2! 3
rate contributed by the O�
s	 hard noncollinear real emis-
sion corrections, denoted as �̂HC and �̂C in Eq. (50). As
noted in the previous section, the 2! 2 and 2! 3 rates
depend individually on �s and �c, but their sum should not
depend on any of the theoretical cutoff scales. This is
-11



FIG. 7. LO total cross sections of pp! A0Z0 via b �b annihi-
lation, compared with the ones from gluon fusion and Drell-Yan
process at the LHC, as a function of mA0 with mb�mb	 �
4:25 GeV, assuming: m1=2 � 160 GeV, A0 � 100 GeV, tan� �
40, and �< 0.
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clearly illustrated in Fig. 8 for two different sets of SUSY
parameters. We find that �NLO is almost unchanged for �s
between 5� 10�5 and 10�2, which is about 200 and 28 fb,
respectively, for the two different sets of SUSY parameters.
Therefore, we take �s � 10�4 and �c � �s=50 in the
numerical calculations below.
FIG. 8. Dependence of the NLO total cross sections for the
A0Z0 production at the LHC on the theoretical cutoff scale �s
with �c � �s=50, assuming: (1) m0 � 200 GeV, m1=2 �

160 GeV, A0 � 100 GeV, tan� � 40, and �< 0;
(2) m0 � 150 GeV, m1=2 � 180 GeV, A0 � 300 GeV, tan� �
40, and �> 0. Here we take mb�mb	 � 4:25 GeV. In (a), the
solid and the dotted curves are the results for model (1) and (2),
respectively.
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C. mA0 dependence

In Fig. 9, we show the total cross sections of pp! A0Z0

at the LHC as a function of mA0 for tan� � 10 and 40,
respectively, assuming m1=2 � 160 GeV, A0 � 100 GeV,
and �< 0. We considered the LO total cross sections in
three different cases, i.e. using (I) MS bottom quark mass
at the scale mb, (II) QCD improved bottom quark running
mass at the scale mA0 , and (III) QCD plus SUSY improved
bottom quark running mass at the scale mA0 , respectively.
We also considered the NLO total cross sections for the
cases of (II) and (III). Figure 9 shows that the LO and NLO
total cross sections get smaller with the increasingmA0 , and
FIG. 9. Dependence of the total cross section of the A0Z0

production at the LHC on mA0 , assuming m1=2 � 160 GeV,
A0 � 100 GeV, and �< 0 for tan� � 40 in (1) and tan� �
10 in (2). Three different calculations were done by using:
(I) MS bottom quark mass at the scale mb, (II) QCD improved
bottom quark running mass at the scale mA0 , and (III) QCD plus
SUSY improved bottom quark running mass at the scale mA0 ,
respectively, to evaluate the bottom quark Yukawa coupling.
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FIG. 10. K factor, defined as �NLO=�LO, for the A0Z0 produc-
tion at the LHC as a function of mA0 , using the QCD improved
running mb to evaluate the bottom quark Yukawa coupling,
assuming m1=2 � 160 GeV, A0 � 100 GeV, and �< 0 for
tan� � 40 in (1) and tan� � 10 in (2). The full K factor is
shown as curve (a), which includes the pure QCD corrections,
shown as curve (b), and SUSY-QCD corrections, shown as
curve (c). The contribution from the SUSY-QCD box diagrams
is also separately shown as curve (d) for comparison.
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the results for tan� � 10 in Fig. 9(2) are much smaller
than the ones for tan� � 40 in Fig. 9(1). For small mA0 (<
160 GeV) the LO total cross sections in Fig. 9(1) can be
larger than 100 fb. The contributions from the QCD run-
ning mb mass effects and the SUSY improved mb correc-
tions are significant; for example, in Fig. 9(1) when
mA0 ’ 155 GeV and tan� � 40, the LO total cross sec-
tions are about 270, 120, and 185 fb for the three cases,
respectively. Moreover, Fig. 9 shows that the NLO QCD
corrections can either enhance or suppress the total rate,
and the O�
s	 contribution is in general a few tens percent
of the total rate, as described below. Define the K factor as
the ratio of the NLO to LO total cross sections, calculated
using the CTEQ6M PDFs. We show in Fig. 10 the depen-
dence of theK factor onmA0 for A0Z0 production, based on
the results of case (II) in Fig. 9. Namely, the QCD im-
proved bottom quark running mass is used for calculating
the total cross section at the LO and the NLO. Figure 10
shows that, in general, the K factor becomes smaller with
the increasing mA0 . For example, curve (a) in Fig. 10(1)
shows that when mA0 varies from 108 to 900 GeV, the K
factor varies from 1.72 to 0.82, and curve (a) in Fig. 10(2)
shows that when mA0 varies from 235 to 860 GeV, the K
factor varies from 0.91 to 0.68. The contributions to the K
factors, shown as curve (a), in both Figs. 10(1) and 10(2)
come from the pure QCD corrections, shown as curve (b),
and SUSY-QCD corrections, shown as curve (c). The
former includes both the virtual and the real emission
contributions originated from pure QCD corrections, while
the latter consists of only virtual corrections. As expected,
the K factor contributed by the pure QCD corrections is
under control, of a few tens percent, when the QCD im-
proved bottom quark running mass is used to evaluate the
Yukawa coupling of the bottom quark. On the other hand,
the SUSY-QCD corrections could become large as mA0

decreases, especially for large tan�. For example, in
Fig. 10(1), for tan� � 40, when mA0 ’ 108 GeV, the K
factor of SUSY-QCD corrections is about 0.8, which domi-
nates the overall K factor. Hence, to improve the conver-
gence of the perturbation calculations in the case of large
tan�, we could use the SUSY improved bottom quark
running mass to evaluate the Yukawa coupling of the
bottom quark. More on SUSY-QCD corrections will be
discussed below. We have also examined the contributions
from the box diagrams shown in Fig. 3. The pure QCD box
diagram contribution, arising from Figs. 3(a) and 3(c), is
ultraviolet finite but not infrared finite. For tan� � 40 the
finite part of the pure QCD box diagram contribution
becomes more important for large mA0 , and its effect is
to decrease the total rate. On the contrary, the SUSY-QCD
box diagram contribution, arising from Figs. 3(b) and 3(d),
is free of any singularity and is small numerically.

Figure 11 shows the dependence of the K factors on mA0

for A0Z0 production, based on the results of case (III) in
Fig. 9. Namely, the QCD plus SUSY improved bottom
034032
quark running Yukawa coupling is used for calculating
the total cross section at the LO and the NLO. Generally,
the K factor decreases with mA0 . For example, for tan� �
40, when mA0 varies from 108 to 900 GeV, the K factor
corresponding to curve (a) ranges from 0.98 to 0.61, which
contains two parts: the pure QCD corrections, shown as
curve (b), and SUSY-QCD corrections, shown as curve (c).
As compared to the results in Fig. 10(1), we find that the
SUSY-QCD correction, shown as curve (c), has been
largely suppressed. For instance, the K factor of SUSY-
QCD corrections drops from 0.8, in Fig. 10(1), to 0.05, in
Fig. 11, for mA0 ’ 108 GeV, while the other SUSY pa-
-13



FIG. 11. K factor, defined as �NLO=�LO, for the A0Z0 produc-
tion at the LHC as a function of mA0 , using the QCD plus SUSY
improved bottom quark Yukawa coupling, assuming m1=2 �

160 GeV, A0 � 100 GeV, �< 0, and tan� � 40. The full K
factor is shown as curve (a), which includes the pure QCD
corrections, shown as curve (b), and SUSY-QCD corrections,
shown as curve (c). The contribution from the SUSY-QCD box
diagrams is also separately shown as curve (d) for comparison.

FIG. 12. Comparison of the SUSY-QCD corrections, denoted
as ��SUSY�QCD=�LO, for the A0Z0 production at the LHC. The
results of using the complete numerical calculation (dashed
curves) and the approximate analytical forms (solid curves) in
the heavy mass limit are separately shown as a function of
MSUSY with tan� � 4 and 40, respectively, assuming mA0 �
150 GeV and M ~Q � M ~D � � � Ab � M~g  MSUSY. Here the
LO cross section is calculated by using the MS bottom quark
mass.
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rameters are identical in both calculations. This is because
using the SUSY improved running mb to evaluate the LO
cross section, we have already included the dominant NLO
SUSY-QCD corrections. Therefore, we shall use the QCD
plus SUSY improved bottom quark running mass in the
following numerical analysis for both the LO and the NLO
calculations, unless specified otherwise.

D. SUSY-QCD corrections in heavy mass limit

It is instructive to examine the results of Figs. 10(1) and
11 in the heavy mass limit, where all the SUSY mass
parameters except mA0 are of the same size and tend to
be heavy, i.e. M ~Q � M ~D � � � Ab � M~g  MSUSY �

mZ. In the heavy mass limit, the SUSY-QCD box diagram
contribution, arising from Figs. 3(b) and 3(d), is suppressed
by powers of MSUSY and can be neglected. This is con-
firmed by our numerical calculation which shows that the
SUSY-QCD box contribution is generally below 0:1% of
the total rate. Hence, we shall examine the effect of SUSY-
QCD corrections in the heavy mass limit to the virtual
diagrams shown in Figs. 2(a)–2(g) and compare the ana-
lytical result with our numerical calculations.

Since our aim is to examine the NLO SUSY-QCD effect
in this part of study, we shall use the LO bottom quark
Yukawa coupling (with mb � 4:25 GeV) to evaluate the
relevant tree-level vertices. Keeping only terms at O�
s	
that are not suppressed by negative powers of heavy mass
MSUSY in the heavy mass limit, the one-loop SUSY-QCD
034032
correction to the individual diagram in Fig. 2 yields the
following corrections. After stripping off the Born level
matrix element (including all the vertex and propagator
factors), the multiplicative factor of the s-channel diagram
with the h0 propagator, cf. Fig. 2(a), is given by

F�a	h0 � �
g2
s

12	2 �1� cot
	; (73)

where 
 is the mixing angle of the two CP-even Higgs
bosons [2]. Note that Eq. (73) is in agreement with the one
shown in Ref. [43]. Similarly, the multiplicative factor of
the s-channel diagram with theH0 propagator, cf. Fig. 2(a),
is given by

F�a	H0 � �
g2
s

12	2 �1� tan
	: (74)

The multiplicative factor of the t- and u-channel diagrams,
cf. Fig. 2(c) or Fig. 2(d), is given by

F�c	A0 � F�d	A0 � �
g2
s

12	2 �1� cot�	: (75)

The multiplicative factor for the sum of Figs. 2(b) and 2(g)
is zero. This is because, after adding the wave function
renormalization factor for the external bottom quark line,
the renormalized Zb �b vertex vanishes in the heavy mass
limit. (Again, we have dropped any term that is suppressed
by negative powers of the heavy mass scale MSUSY.)
Similarly, the multiplicative factor for the sum of
Figs. 2(e) and 2(f) is zero.
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FIG. 14. Dependence of the K factor, defined as �NLO=�LO, on
tan� for the A0Z0 production at the LHC, assuming:
(1) m0 � 200 and 400 GeV, respectively, m1=2 � 160 GeV,
A0 � 100 GeV, and �< 0; (2) m0 � 150 GeV, m1=2 � 180
and 400 GeV, respectively, A0 � 300 GeV, and �> 0.
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Given the above multiplicative factors, we can calculate
the SUSY-QCD correction to the total cross section for
pp! A0Z0 production at the LHC and compare it with the
complete numerical calculation described in Sec. III. The
results in the heavy mass limit are shown in Fig. 12, which
shows that the agreement becomes better for larger value of
MSUSY. Hence, this provides a consistent check on our
complete numerical calculations.

E. tan� dependence

In Figs. 13(1) and 13(2), the total cross sections for
pp! A0Z0 at the LHC are plotted as a function of tan�
for two representative values of m1=2 and m0, respectively.
In Fig. 13(2), when tan� ranges between 4 and 40, mA0

varies from 330 to 223 GeV and from 660 to 458 GeV for
m1=2 � 180 and 400 GeV, respectively. From Fig. 13(2) we
can clearly see that the LO and the NLO total cross sections
are enhanced with the increasing tan� and decreased with
the increasing m1=2. For large tan� (> 40) and m1=2 �

180 GeV, the LO and the NLO total cross sections can be
over 30 fb. The features in Fig. 13(1) are similar to the ones
in Fig. 13(2), but, in general, the total cross sections are
larger than later. For example, for large tan��>40	 and
m0 � 200 GeV, both the LO and the NLO total cross
sections can reach about hundreds of femtobarn.

Figure 14 shows the dependence of the K factors on
tan�, based on the results in Fig. 13, where the K factor
increases with the increasing tan�. For the results of
Fig. 13(1), the K factor varies from 0.69 to 0.90 and from
0.65 to 0.92 for m0 � 200 and 400 GeV, respectively. For
the results of Fig. 13(2), the K factor varies from 0.70 to
0.74 and from 0.62 to 0.63 for m1=2 � 180 and 400 GeV,
respectively.
FIG. 13. Dependence of the total cross sections for the A0Z0

production at the LHC on tan�, assuming: (1) m0 � 200 and
400 GeV, respectively, m1=2 � 160 GeV, A0 � 100 GeV, and
�< 0; (2) m0 � 150 GeV, m1=2 � 180 and 400 GeV, respec-
tively, A0 � 300 GeV, and �> 0.
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F. �r=�f dependence

Figure 15 shows the dependence of the total cross sec-
tions for pp! A0Z0 production at the LHC on the renor-
malization scale (�r) and the factorization scale (�f), with
�r � �f. The case (1) is for �< 0, and the case (2) is for
FIG. 15. Dependence of the total cross sections on the renor-
malization/factorization scale ��r � �f	 for the A0Z0

production at the LHC, assuming: (1) m0 � 200 GeV, m1=2 �

160 GeV, A0 � 100 GeV, tan� � 40, and �< 0;
(2) m0 � 150 GeV, m1=2 � 180 GeV, A0 � 300 GeV, tan� �
40, and �> 0. Here the QCD plus SUSY improved bottom
quark Yukawa coupling is used. The case of the curves (3) is
similar to (1), but in (3) the pure QCD running bottom quark
mass is used instead. The case of the curves (4) is similar to (1),
but in (4) the contribution from the SUSY-EW correction in the
running bottom quark Yukawa coupling is not included, namely,
only the pure QCD and SUSY-QCD corrections are included.
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FIG. 17. The PDF dependence of the total cross sections for
pp! A0Z0 production at the LHC, as a function of A0, assum-
ing m0 � 250 GeV, m1=2 � 160 GeV, tan� � 40, and �< 0.
Here the QCD running bottom quark mass is used to evaluate the
bottom quark Yukawa coupling.

FIG. 16. Dependence of the total cross sections on the facto-
rization scale ��f	, labeled as case (1), or renormalization scale
��r	, labeled as case (2), for the A0Z0 production at the LHC,
assuming: m0 � 200 GeV, m1=2 � 160 GeV, A0 � 100 GeV,
tan� � 40, and �< 0. Here the QCD plus SUSY improved
bottom quark Yukawa coupling is used and mav � �mA0 �
mZ0 	=2.

FIG. 18. The PDF dependence of the total cross sections for
pp! A0Z0 at the LHC as a function of mA0 , assuming A0 �
100 GeV, m1=2 � 160 GeV, tan� � 40, and �< 0. Here the
QCD running bottom quark mass is used to evaluate the bottom
quark Yukawa coupling.
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�> 0. In both cases, the scale dependence of the NLO
total cross section is smaller than that of the LO cross
section. For example, the LO cross sections vary from 65
to 261 fb and 25 to 45 fb when �r � �f ranges between
0:1mav and 10mav, while the NLO ones vary from 230 to
232 fb and 38 to 39 fb, in case (1) and case (2), respec-
tively. Here the QCD plus SUSY improved bottom quark
Yukawa coupling is used. For comparison, we also show
the results of the other two calculations. The case (3) is
similar to the case (1), but in (3) the pure QCD running
bottom quark mass is used instead. The case (4) is similar
to the case (1), but in (4) the contribution from the SUSY-
EW correction in the running bottom quark Yukawa cou-
pling is not included; namely, only the pure QCD and
SUSY-QCD corrections are included.

To further investigate the scale dependence in case (1),
with �< 0, we study the scale dependence of the total
cross section on the renormalization scale ��r	 and the
factorization scale ��f	 separately in Fig. 16. Here the
QCD plus SUSY improved bottom quark Yukawa coupling
is used. We find that in either case, whether we fixed �r
and let �f vary or vice versa, the NLO rate is less depen-
dent on the scale than the LO rate.

Hence, when applying the usual prescription to estimate
the scale dependence, i.e. varying the scale aroundmav by a
factor of 2, the NLO cross sections vary by around 10% to
20%, cf. Figs. 15 and 16.

G. PDF uncertainty

To estimate the uncertainties in the total cross sections
due to the uncertainty of PDFs, we take the 41 sets of
034032
CTEQ6.1 PDFs to calculate the LO and NLO rates [44]. As
shown in Fig. 17, the LO result of using the CTEQ6M PDF
lies between the maximum (�max) and minimum (�min) LO
rates. The NLO total cross sections are then calculated
using three different PDF sets, one of which is
CTEQ6M; the other two are the ones that give the maxi-
mum and the minimum LO rates, respectively. The total
cross sections for pp! A0Z0 production at the LHC, as a
-16



FIG. 20. Differential cross sections in the invariant mass
(MA0Z0 ), for the A0Z0 production at the LHC, assuming:
(1) m0 � 200 GeV, m1=2 � 160 GeV, A0 � 100 GeV, tan� �
40, and �< 0; (2) m0 � 150 GeV, m1=2 � 180 GeV, A0 �

300 GeV, tan� � 40, and �> 0.
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function of the trilinear coupling A0, for the above men-
tioned PDFs are shown in Fig. 17, where we have used the
QCD running mass to evaluate the bottom quark Yukawa
coupling. It turns out that the PDF uncertainties [defined
here as ���max � �min	=��max � �min	] in the LO and
NLO total cross sections are about the same, when the
QCD running mb is used. For example, when A0 �
100 GeV, the PDF uncertainties are �2:9% at the LO
and �3:0% at the NLO, respectively.

Figure 18 shows the PDF uncertainties [defined here as
Eq. (3) in Ref. [45]] in the LO and NLO total cross sections
for pp! A0Z0 production at the LHC, as a function of
mA0 . Here we also used the QCD running mass to evaluate
the bottom quark Yukawa coupling. It turns out that the
NLO rate has a slightly larger uncertainty than the LO rate
due to the PDF uncertainties, especially at large mA0 . Also,
the uncertainty in the total cross section at the LHC in-
creases as mA0 increases.

H. Differential cross sections

Figure 19 shows the differential cross section as a func-
tion of the transverse momentum pT of Z0 and A0 in the
associated production of the A0Z0 pairs at the LHC. We
find that the NLO QCD correction could change the shape
of transverse momentum distribution. The NLO QCD cor-
rection enhances the LO differential cross section in the
low and the high pT region, but reduces in the medium pT
region.

Figure 20 shows the differential cross section as a func-
tion of the invariant massMA0Z0 of the A0Z0 pairs produced
at the LHC. The NLO QCD corrections reduce the LO
differential cross sections more in the medium values of
MA0Z0 and much less in low or high values of MA0Z0 .
FIG. 19. Differential cross sections in the transverse momen-
tum (pT) of Z0 and A0 bosons, for the A0Z0 production at the
LHC, assuming: m0 � 200 GeV, m1=2 � 160 GeV, A0 �

100 GeV, tan� � 40, and �< 0.
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V. CONCLUSIONS

In conclusion, we have calculated the complete NLO
QCD corrections to the inclusive total cross sections of the
A0Z0 pairs produced at the LHC in the MSSM. We have
performed the calculations using both the DREG and the
DRED schemes and found that the NLO total cross sec-
tions in the above two schemes are the same, which pro-
vides a cross-check to our calculations. Our results show
that the LO total cross sections are a few tens fb in most of
the SUSY parameter space and can exceed 100 fb for mA0

below 160 GeV with large tan� ( * 40). The NLO cor-
rection can either enhance or reduce the total cross sec-
tions, but it generally efficiently reduces the dependence of
the total cross sections on the renormalization/factorization
scale. For small mA0 and large tan�, the K factor of SUSY-
QCD corrections could become large, and using the QCD
plus SUSY improved Yukawa coupling in the calculation
could reduce the size of the overall K factor. We have also
examined the uncertainty in total cross sections due to the
PDF uncertainties and found that the uncertainty in NLO
cross sections is slightly larger than that in LO ones,
especially at large mA0 . Finally, we also examined a few
differential distributions and found that the NLO QCD
corrections could change the shape of transverse momen-
tum and invariant mass distributions.
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APPENDIX A

In this appendix, we give the relevant Feynman rules.
(1) h0�H0	 � b� �b: A1�2	mb

A1 �
igs


2mw cos�
; A2 �

�igc

2mw cos�

;

where 
 is the mixing angle in the CP-even neutral Higgs
boson sector [2]. Here we use the abbreviations s
 � sin

and c
 � cos
.

(2) A0 � b� �b: A3mb�5

A3 �
�g tan�

2mw
:
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(3) h0�H0	 � Z0 � A0: F1�2	�ph0�H0	 � pA0	�
F1 �
g cos��� 
	

2 cos�w
; F2 �

�g sin��� 
	
2 cos�w

:

Here we define the outgoing four-momenta of h0�H0	 and
A0 to be negative and positive, respectively.

(4) Z0 � b� �b: ���CV � CA�5	
CV �
�ig

2 cos�w

�
�

1

2
�

2

3
sin2�w

�
; CA �

�ig
4 cos�w

:

(5) h0�H0; A0	 � ~b
 � ~b�: i
R~bĜ
~b
1�2;3	�R

~b	T�
�
Ĝ ~b
1 �

gmZ
cos�w
�� 1

2�
1
3 sin�2

w	 sin�
� �	 �
���
2
p
mbhbs


1��
2
p hb
Abs
 ��c
�

1��
2
p hb
Abs
 ��c
�

gmZ
cos�w
�� 1

3 sin�2
w	 sin�
� �	 �

���
2
p
mbhbs


0@ 1A;

Ĝ ~b
2 �

gmZ
cos�w
�12�

1
3 sin�2

w	 cos�
� �	 �
���
2
p
mbhbc
 � 1��

2
p hb
Abc
 ��s
�

� 1��
2
p hb
Abc
 ��s
�

gmZ
cos�w
�13 sin�2

w	 cos�
� �	 �
���
2
p
mbhbc


0@ 1A;
Ĝ ~b
3 � i

gmb

2mW

0 �Ab tan���
Ab tan��� 0

� �
;

with hb � gmb=
���
2
p
mW cos�.

(6) Z0 � ~b
 � ~b�: ��ig= cos�w	TZ�
;�	�p~b

� p~b�

	�

TZ �
� 1

2 cos2
�~b
� 1

3 sin2
�w

1
4 sin2�~b

1
4 sin2�~b � 1

2 sin2
�~b
� 1

3 sin2
�w

 !
;

where p~b

and p~b�

are the four-momenta of ~b
 and ~b�,

respectively, in the direction of the charge flow.

APPENDIX B

In this appendix, we collect the explicit expressions of
the nonzero form factors in Eqs. (14) and (15). SinceP
M0Myj�7;8;...12 � 0, only the form factors of the first six

matrix elements are presented here. For simplicity, we
introduce the following abbreviations for the Passarino-
Veltman three-point integrals Ci�j	 and four-point integrals
Di�j	, which are defined similarly to Ref. [26] except that
we take internal masses squared as arguments:

Cai�j	 � Ci�j	�0; 0; s; 0; 0; 0	;

Cbi�j	 � Ci�j	�m2
A0 ; t; 0; 0; 0; 0	;

Cci�j	 � Ci�j	�m
2
Z; u; 0; 0; 0; 0	;
Cdi�j	 � Ci�j	�m2
A0 ; 0; u; 0; 0; 0	;

Cei�j	 � Ci�j	�m2
z ; 0; t; 0; 0; 0	;

Cfi�j	 � Ci�j	�t; 0; m2
z ; 0; 0; 0	;

Cgi�j	 � Ci�j	�u; 0; m2
z ; 0; 0; 0	;

Chi�j	 � Ci�j	�u; 0; m
2
A0 ; 0; 0; 0	;

Cii�j	 � Ci�j	�m
2
Z; t; 0; 0; 0; 0	;

Cji�j	 � Ci�j	�u;m2
A0 ; 0; 0; 0; 0	;

Cki�j	 � Ci�j	�m
2
A0 ; t; 0; 0; 0; 0	;

Cli�j	 � Ci�j	�0; m2
Z; u; 0; 0; 0	;

Cui�j	 � Ci�j	�s; 0; 0; 0; 0; 0	;

Cvi�j	 � Ci�j	�0; u; m
2
Z; 0; 0; 0	;

Cxi�j	 � Ci�j	�s;m
2
A0 ; m2

Z; 0; 0; 0	;
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Cyi�j	 � Ci�j	�0; m2
A0 ; t; 0; 0; 0	;

Czi�j	 � Ci�j	�0; t; m
2
Z; 0; 0; 0	;

Cmi�j	�a; b	 � Ci�j	�0; 0; s; m
2
~ba
; m2

~g; m
2
~bb
	;

Cni�j	�a; b	 � Ci�j	�m2
A0 ; t; 0; m2

~bb
; m2

~ba
; m2

~g	;

Coi�j	�a; b	 � Ci�j	�0; u; m
2
Z; m

2
~bb
; m2

~ba
; m2

~g	;

Cpi�j	�a; b	 � Ci�j	�m2
A0 ; 0; u; m2

~bb
; m2

~ba
; m2

~g	;

Cqi�j	�a; b	 � Ci�j	�t;m
2
Z; 0; m

2
~g; m

2
~bb
; m2

~ba
	;

Cri�j	�a; b	 � Ci�j	�u; 0; m2
A0 ; m2

~bb
; m2

~ba
; m2

~g	;

Csi�j	�a; b	 � Ci�j	�u;m2
A0 ; 0; m2

~g; m
2
~bb
; m2

~ba
	;

Cti�j	�a; b	 � Ci�j	�0; m
2
A0 ; t; m2

~g; m
2
~bb
; m2

~ba
	;
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Da
i�j	 � Di�j	�s; 0; t; m2

A0 ; 0; m2
Z; 0; 0; 0; 0	;

Db
i�j	 � Di�j	�0; t; m

2
Z; s; m

2
A0 ; 0; 0; 0; 0; 0	;

Dc
i�j	 � Di�j	�s; 0; u; m2

Z; 0; m
2
A0 ; 0; 0; 0; 0	;

Dd
i�j	 � Di�j	�0; u; m

2
A0 ; s; m2

z ; 0; 0; 0; 0; 0	;
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Many of the above functions contain the soft and/or col-
linear singularities. Since all the Passarino-Veltman inte-
grals can be written as a combination of the scalar
functions A0, B0, C0, and D0, we present here the explicit
expressions for the C0 and D0 functions used in our cal-
culations:
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where C� � �4	�2
r=s	

���1� �	=��1� 2�	.
For diagrams (a)–(g) in Fig. 2, we get the form factors as following, respectively:
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For the box diagrams (a)–(d) in Fig. 3, we find, respectively,
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~b
3�l; b	�R

~b
a2R

~b
b1 � R

~b
a1R

~b
b2	�D

h
1 �D

h
2	:
034032-22



NEXT-TO-LEADING ORDER QCD PREDICTIONS FOR . . . PHYSICAL REVIEW D 72, 034032 (2005)
[1] T. Hambye and K. Riesselmann, Phys. Rev. D 55, 7255
(1997).

[2] H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985).
[3] H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815

(1991); Y. Okada et al., Prog. Theor. Phys. 85, 1 (1991); J.
Ellis et al., Phys. Lett. B 257, 83 (1991); S. Heinemeyer,
hep-ph/0407244.

[4] A. Djouadi, Pramana 62, 191 (2004); M. Dittmar, Pramana
55, 151 (2000); F. Gianotti, CERN, 2000 (unpublished).

[5] F. Gianotti et al., Eur. Phys. J. C 39, 293 (2005); D.
Denegri et al., hep-ph/0112045.

[6] H. Georgi et al., Phys. Rev. Lett. 40, 692 (1978).
[7] M. Spira et al., Phys. Lett. B 318, 347 (1993); Nucl. Phys.

B453, 17 (1995); S. Dawson et al., Phys. Rev. Lett. 77, 16
(1996); Robert V. Harlander and Matthias Steinhauser,
Phys. Lett. B 574, 258 (2003); Phys. Rev. D 68, 111701
(2003); J. High Energy Phys. 09 (2004) 066; A. Djouadi
and M. Spira, Phys. Rev. D 62, 014004 (2000).

[8] R. V. Harlander and W. Kilgore, Phys. Rev. Lett. 88,
201801 (2002); J. High Energy Phys. 10 (2002) 017; C.
Anastasiou and K. Melnikov, Nucl. Phys. B646, 220
(2002); Phys. Rev. D 67, 037501 (2003); V. Ravindran
et al., Nucl. Phys. B665, 325 (2003).

[9] S. Catani et al., J. High Energy Phys. 07 (2003) 028; A.
Kulesza et al., Phys. Rev. D 69, 014012 (2004).

[10] R. N. Cahn and S. Dawson, Phys. Lett. 136B, 196 (1984);
G. Altarelli et al., Nucl. Phys. B287, 205 (1987); T. Han
et al., Phys. Rev. Lett. 69, 3274 (1992).

[11] S. Glashow et al., Phys. Rev. D 18, 1724 (1978).
[12] R. Kleiss, Z. Kunszt, and W. J. Stirling, Phys. Lett. B 253,

269 (1991).
[13] T. Han and S. Willenbrock, Phys. Lett. B 273, 167 (1991).
[14] Z. Kunszt, Nucl. Phys. B247, 339 (1984); W. Beenakker

et al., Phys. Rev. Lett. 87, 201805 (2001); Nucl. Phys.
B653, 151 (2003); S. Dawson et al., Phys. Rev. Lett. 87,
201804 (2001); Phys. Rev. D 67, 071503 (2003); C. Balazs
et al., Phys. Rev. D 59, 055016 (1999).
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