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B-meson distribution amplitudes of geometric twist versus dynamical twist
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Two- and three-particle distribution amplitudes of heavy pseudoscalar mesons of well-defined geo-
metric twist are introduced. They are obtained from appropriately parametrized vacuum-to-meson matrix
elements by applying those twist projectors which determine the enclosed light-cone operators of definite
geometric twist and, in addition, observing the heavy quark constraint. Comparing these distribution
amplitudes with the conventional ones of dynamical twist we derive relations between them, partially
being of Wandzura-Wilczek type; also sum rules of Burkhardt-Cottingham type are derived. The
derivation is performed for the (double) Mellin moments and then resummed to the nonlocal distribution
amplitudes. Furthermore, a parametrization of vacuum-to-meson matrix elements for nonlocal operators
off the light cone in terms of distribution amplitudes accompanying independent kinematical structures is
derived.
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I. INTRODUCTION

Exclusive nonleptonic decays of Bmesons play a crucial
role for our understanding of rare flavor-changing pro-
cesses and the exploration of the mechanism of CP viola-
tion within the standard model. Thereby, of special interest
are hadronic two-body decays, either via B! D transition,
e.g., B! D��DK�, or with two very energetic light me-
sons in the final state, e.g., B! ���K��. While the weak
interaction part of these processes is fairly well understood,
their strong interaction dynamics is quite nontrivial.
However, some simplifications are possible due to the
strong ordering of the three fundamental scales: the weak
interaction scale MW , the b quark mass mb, and the QCD
scale �QCD. Because mb � �QCD the heavy quark effec-
tive theory (HQET) [1,2] (for a review, see, Refs. [3]) may
be applied and, furthermore, the strong interaction effects
with virtualities above mb may be included into the renor-
malized coefficients of local operators Oi of the weak
effective Hamiltonian.

In order to compute the (renormalized) matrix elements
hM1M2jOijBi, at least in leading order of �QCD=mb, some
factorization [4] into perturbatively calculable short-
distance contributions and appropriate long-distance
contributions has to be applied—either using the QCD
factorization approach [5–7], the more effective soft col-
linear effective theory approach [8,9], or the pQCD ap-
proach [10]. For example, according to [5] that matrix
element in case of two light mesons can be represented
by hard scattering amplitudes T, �BM� form factors FBMj as
well as light (�M) and heavy (�B) meson light-cone (LC)
distribution amplitudes (DA), e.g.,
address: geyer@itp.uni-leipzig.de
dress: Humboldt Universität zu Berlin, Institut für
onstr. 15, 12489 Berlin, Germany
address: witzel@physik.hu-berlin.de

05=72(3)=034023(17)$23.00 034023
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X
j
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j �m2

2�
Z 1

0
duTIij�u��M2

�u�

	
Z 1

0
d� du dvTIIi ��; u; v��B���


 �M1
�v��M2

�u�; (1.1)

assuming M1 to pick up the spectator quark from the B
meson; obviously, no long-distance interaction takes place
between M2 and the �BM1� system.

In the case of light (pseudo)scalar and vector mesons the
light-cone distribution amplitudes (LCDAs) are well
known for leading and next-to-leading twist for bilocal
(quark-antiquark) as well as trilocal (quark-gluon-
antiquark) operators for the � meson [11,12] and the �
meson [13,14]—also considering the Wandzura-Wilczek
(WW) relation. In case of B mesons they have been deter-
mined in the framework of HQET [6,15,16] also discussing
in detail the WW approximation [17,18]; the case of the D
meson is easily obtained, at least in leading order, by
observing the spin-flavor symmetry of HQET. Fur-
thermore, with the aim of a better understanding of the
scale dependence of LCDA—and of the hard scattering
kernel—in the factorization procedure the knowledge of
their renormalization behavior is required. In the case of
the leading LCDA �	 this has been studied recently [19]
(see also [20,21]).

In the limit of infinite heavy quark masses �mQ ! 1�,
the heavy quark field Q�x� reduces to an effective field
hv�x� with the kinematics contained in a phase factor (v
being the heavy meson’s velocity, v2 � 1),

Q�x� ! e�imQvxhv�x�: (1.2)

Moreover, the effective heavy quark field hv�x� obeys the
on-shell constraint,

v6 hv � hv; (1.3)

and the effective Lagrangian Leff �
PNh
i�1

�h�i�v i�vD�h�i�v is
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independent of the spin or mass of the heavy quark and
exhibits, therefore, the U�2Nh� spin-flavor symmetry (Nh
is the number of contributing heavy flavors). Of course, the
on-shell constraint reduces the number of independent
heavy meson DAs in comparision with light mesons.

In accordance with the definition of usual meson LCDAs
[11] but additionally respecting the on-shell constraint
(1.3), the B-meson LCDAs arise by parametrizing matrix
elements of appropriate nonlocal LC operators Oi which
are built up by quark and antiquark fields—occasionally
containing also gluons and/or quark-antiquark pairs—
sandwiched between vacuum h0j and B-meson state
jB�v�i of momentum P � Mv. For simplicity, everywhere
adopting the light-cone gauge, the (2-particle) LCDAs are
introduced as

h0j �q��1~x��hv��2~x�jB�v�i � K��P; x�



Z 1

�1
d�’B���e�i��1��2��~xP��;

(1.4)

where � denotes some generic Dirac structure

� � f1; !"; i#"$; !5; !5!"; i!5#"$g with

#"$ �
i

2
�!"; !$�;

(1.5)

and ~x � x	 v�
����������������������
�vx�2 � x2

p
� �vx��, ~x2 � 0 defines

some light ray being related to x by a fixed nonnull
subsidiary four-vector which may be identified with the
B meson’s velocity. Obviously, assuming Schwinger-Fock
LC gauge, the path ordered phase factor U��1~x; �2~x� �
P expf�ig

R
�1
�2
d&~x'A'�&~x�g may be omitted. Further-

more, the matrix element (1.4) is parametrized by a kine-
matic factor K� and the Fourier transform of the DA
’B��� with respect to variable ~xP; K� depends on the
momentum P of the (pseudoscalar) meson and LC coor-
dinate ~x of the nonlocal operator as well as on the generic
Dirac structure �. Explicit forms for K� will be introduced
in Sec. II. Everywhere, possible color indices in operator
matrix elements will be suppressed. The restriction of the
integration range results from the fact that, in the frame-
work of nonlocal LC expansion [22] by using the
"-parameter representation of Feynman diagrams, such
nonforward matrix elements of LC operators can be shown
to be entire analytic functions in the variable ~xP [23,24].
Additionally, due to the (anti)symmetry of the relevant
QCD operators O���1~x; �2~x� with respect to exchange
�1 $ �2 the integration range may be restricted to 0 �
� � 1. Analogous definitions hold in the case of trilocal
operators including, e.g., the gluon field strength F')��~x�
at arbitrary intermediate points � 2 ��1; �2�.

Conventionally, LCDAs are characterized by their dy-
namical twist which, roughly speaking, counts powers of
M=Q for the various terms in the kinematic decomposition
of the matrix elements of nonlocal QCD operators [25].
034023
Alternatively, using group theoretical arguments, the origi-
nal definition of twist [26] for local QCD operators, & �
dimension d� (Lorentz) spin j, has been generalized to the
notion of geometric twist for nonlocal QCD tensor opera-
tors on the light cone [27–29] as well as off the light cone
[30,31]. The decomposition of such tensor operators into
operators of definite geometric twist leads to correspond-
ing decompositions of the LCDAs [24,32] and to their
power (or target mass) corrections [33]. Concerning phe-
nomenological aspects the notion of dynamical twist is
favored. But, from a quantum field theoretical point of
view, geometrical twist seems to be more appropriate since
it has an invariant group theoretical meaning and, there-
fore, LC operators of definite twist & may show simpler
mixing behavior under renormalization.

Both definitions of twist, despite of being different for
higher twist, coincide at leading twist. However, by com-
paring equivalent kinematical structures, it has been shown
for distribution functions in deep inelastic scattering and of
LCDAs for light mesons, especially for � and � mesons,
that there exist unique relationships between the distribu-
tions of geometrical twist and the usual ones of dynamical
twist. To be more specific, let us generically denote the
distributions of definite geometric twist & by ’�&�

i �*� and
the ones of dynamical twist t by ,�t�

j ���. Then the distri-
butions of given dynamical twist t are uniquely determined
by that set of distributions of geometric twist &with &min �
& � t and vice versa:

,�t�
j ��� �

Xt
&�&min

Z
d*Ki

j��; *�’
�&�
i �*�;

’�&�
i �*� �

X&
t�tmin

Z
d��K�1�

j
i �*; ��,

�t�
j ���;

(1.6)

with some invertible kernel Ki
j��; *�, where tmin � &min. In

fact, the relations between both kinds of distributions are of
triangular shape and, therefore, the corresponding set of
equations can be solved with respect to either basis.
Solving the distributions of dynamical twist with respect
to those of geometric twist allows to derive the well-known
WW relations together with additional WW-like relations
[32]; corresponding relations have been derived for the
(light) meson LCDAs [34] and, later on, called geometrical
WW relations [35]. Using in addition the equations of
motion, a different set of WW-like relations for the
LCDAs—especially for the vector meson case—appeared
[14]; they should be called dynamical WW relations. This
situation has been discussed in more detail in Refs. [35].

In the case of heavy meson LCDAs the situation suffers
from the on-shell constraint of HQET. First, the number of
independent LCDAs is reduced. They have been deter-
mined already by Grozin and Neubert [15] and discussed
further by various authors [6,16–18], also considering the
WW relation within the dynamical twist approach. Second,
concerning renormalization, they show some pecularities
-2
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which have been studied in more detail in the case of
leading B-meson LCDA in Refs. [19]. Also regarding
this it seems to be of interest to consider the geometric
twist approach, too, and to find how these two approaches
are related. The results of such a comparison, mainly based
on Ref. [36], will be presented here.

The paper is organized as follows: In Sec. II we briefly
repeat the derivation of the nonlocal two- and three-particle
LCDAs of dynamical twist by using the trace formalism
according to Refs. [6,17,20]; in addition, in order to be able
to compare with the corresponding LCDAs of geometric
twist, their local forms are given as Mellin moments. A
consistent parametrization of the relevant matrix elements
which is not restricted to the light cone is given in
Appendix A. In Sec. III we determine the local two- and
three-particle LCDAs of geometrical twist by applying the
local projection operators (restricted to its light-cone form)
onto the matrix elements of the corresponding nonlocal LC
operators. In order not to be confused by the on-shell
constraint and obstacles of renormalization, they are de-
rived for the general case also applying to light (pseudo)-
scalar mesons. The corresponding projection operators are
well known from earlier work up to tensor operators of
second rank [31,32]; their local form is given in
Appendix B. In Sec. IV the relations between the LCDAs
of definite dynamical and geometrical twist are given, first,
for their local form and then for their nonlocal form.
Thereby, we also derive the relations between LCDAs
of definite geometric twist resulting from the on-shell
constraint. Most of the calculations are performed using
FORM [37].

II. DISTRIBUTION AMPLITUDES OF
DYNAMICAL TWIST

To begin with we briefly review the conventional repre-
sentation of vacuum-to-meson matrix elements of bilocal
and trilocal light-cone operators for B mesons in the heavy
quark limit by LCDAs of dynamical twist times corre-
sponding kinematic structures. Hereby we follow the co-
variant trace formalism [2]. These LCDAs are Fourier
transformed and converted into their Mellin moments.

In the trace formalism the vacuum-to-meson transition
by a generic quark-antiquark operator with a single heavy
quark is parametrized in terms of two-particle LCDAs
�̂��v~x� as follows [6,17]:
034023
h0j �q�~x��hv�0�jB�v�i � �
ifBM

2
Tr
�
!5�

1 	 v6
2

�
�̂	�v~x�

�
~x6

2�v~x�
��̂	�v~x� � �̂��v~x��

	

;

(2.1)

where, as usual, the B meson decay constant is defined by
h0j �q�0�!"!5hv�0�jB�v�i � ifBMv", and M is the mass of
the B meson. Computing these traces for the various Dirac
structures � one obtains:

h0j �q�~x�!5hv�0�jB�v�i � �ifBM
1

2
��̂	 	 �̂��; (2.2)

h0j �q�~x�!5!"hv�0�jB�v�i � �ifBM
�
v"�̂	

�
~x"

2�v~x�
��̂	 � �̂��

	
; (2.3)

h0j �q�~x�!5i#"$hv�0�jB�v�i � ifBM
v�"~x$�
�v~x�

��̂	 � �̂��;

(2.4)

with arguments v~x omitted. The parametrization of the
matrix element h0j �q�~x�i#"$hv�0�jB�v�i is obtained simply
by observing the relation i#"$ � ��i=2�."$�/!5i#�/,
whereas the matrix elements h0j �q�~x�i#"$hv�0�jB�v�i and
h0j �q�~x�hv�0�jB�v�i vanish. Here, and in the following, we
use the notation

a�"b$�: � �a"b$ � a$b"�=2;

a�"b$�: � �a"b$ 	 a$b"�=2:
(2.5)

These DAs are normalized by �̂��0� � 1 [15]. As
Grozin and Neubert also state, in the limit of fast-moving
mesons, �̂	 is of leading (dynamical) twist while �̂� is
subleading. When the matrix element (2.3) is considered it
becomes obvious that v" is related to leading twist while
~x"=�v~x� should correspond to 1=Q and therefore is related
to subleading twist.

Equivalently, the vacuum-to-meson matrix element con-
taining a trilocal quark-antiquark-gluon operator is pa-
rametrized in terms of four three-particle LCDAs
�̂A�v~x;#�, �̂V�v~x;#�, X̂A�v~x;#�, and ŶA�v~x;#� with #
being restricted to 0 � # � 1 as follows [17,20]:
h0j �q�~x�F')�#~x�~x)�hv�0�jB�v�i �
ifBM

2
Tr
�
!5�

1 	 v6
2

�
�v'~x6 � �v~x�!'���̂A � �̂V��v~x;#�

� i#')~x)�̂V�v~x;#� � ~x'X̂A�v~x;#� 	
~x'~x6

�v~x�
ŶA�v~x;#�

	

: (2.6)

Again, computing these traces for the Dirac structures � (arguments v~x and # omitted) one obtains:

h0j �q�~x�F')�#~x�~x)!5hv�0�jB�v�i � �ifBM~x'�X̂A � ŶA�; (2.7)
-3



BODO GEYER AND OLIVER WITZEL PHYSICAL REVIEW D 72, 034023 (2005)
h0j �q�~x�F')�#~x�~x)!5!"hv�0�jB�v�i � ifBM
�
�v'~x" � �v~x�g'"��̂A � v"~x'X̂A 	

~x'~x"
�v~x�

ŶA



; (2.8)

h0j �q�~x�F')�#~x�~x)!5i#"$hv�0�jB�v�i � 2ifBM
�
g'�"~x$��̂V �

~x'
�v~x�

~x�"v$�ŶA 	 �v'v�"~x$� 	 �v~x�g'�"v$����̂A � �̂V�



;

(2.9)

h0j �q�~x�F')�#~x�~x)!"hv�0�jB�v�i � �fBM.'"�/v
�~x/�̂V: (2.10)
Again, the parametrization of the matrix element
h0j �q�~x�F')�#~x�~x)i#"$hv�0�jB�v�i follows trivially from
Eq. (2.9), and h0j �q�~x�F')�#~x�~x)hv�0�jB�v�i vanishes.
According to the above introduced conventions, �̂A, �̂V ,
and X̂A are of leading (dynamical) twist, whereas ŶA is of
subleading twist.

An independent derivation of the just introduced para-
metizations, but not restricted to the light cone, is presented
in Appendix A. In this more general case the matrix
elements depend on three leading DAs, X̂1 � X̂5, X̂2, and
X̂4, and three subleading ones, Ŷ2, Ŷ4, and Ŷ5 (cf.
Equation (A19)). There it is also shown, that off the light
cone �̂A and �̂V contain also subleading contributions,
and �̂� contains subleading contributions already on the
light cone.

Later on, to obtain relations between DAs of dynamical
and geometric twist, the DAs have to be Fourier trans-
formed and, thereafter, be converted into Mellin moments.
Because of the parton interpretation of the DAs, their
singularities in the complex �v~x� plane are such that their
Fourier transforms ���u� vanish for u < 0 [15,17]; to-
gether with the general support restriction this results in
0 � u � 1 for the DAs.

For LCDAs which are related to bilocal operators their
Fourier transforms and the corresponding Mellin moments
read

�̂��v~x� �
Z 1

0
du e�iuP~x���u� �

X1
n�0

��iP~x�n

n!
��jn;

(2.11)
034023
��jn �
Z 1

0
du un���u� with

��j0 � 0 �normalization�:
(2.12)
In case of trilocal operators two-parameter LCDAs occur
whose Fourier transforms and the corresponding double
Mellin moments read
F̂�v~x; #v~x� �
Z 1

0
Dui e

�i�u1	#u2�P~xF�ui�

�
X1
n�0

��iP~x�n

n!
Fn�#�; (2.13)
Fn�#� �
Xn
m�0

n
m

� 	
#mFn;m;

Fn;m �
Z 1

0
Dui un�m1 um2 F�ui�;

(2.14)
here
R

1
0 Dui �

R
1
0 du1

R
1
0 du2 and F̂�v~x;#� generically

denotes any three-particle DA.
After transformation, Eqs. (2.2), (2.3), and (2.4) read
h0j �q�~x�!5hv�0�jB�v�i � �ifBM
X1
n�0

��iP~x�n

n!
1

2
��	jn 	 ��jn�; (2.15)

h0j �q�~x�!5!"hv�0�jB�v�i � �ifBM
X1
n�0

��iP~x�n

n!

�
v"�	jn �

~x"
2�v~x�

��	jn � ��jn�

	
; (2.16)

h0j �q�~x�!5i#"$hv�0�jB�v�i � ifBM
X1
n�0

��iP~x�n

n!

v�"~x$�
�v~x�

��	jn � ��jn�; (2.17)

while, the transformed equations, in case of a matrix element of a trilocal operator, read
-4
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h0j �q�~x�F')�#~x�~x)!5hv�0�jB�v�i � �ifBM~x'
X1
n�0

��iP~x�n

n!
�XAjn�#� � YAjn�#��; (2.18)

h0j �q�~x�F')�#~x�~x)!5!"hv�0�jB�v�i � ifBM
X1
n�0

��iP~x�n

n!

�
�v'~x" � �v~x�g'"��Ajn�#� � ~x'v"XAjn�#� 	

~x'~x"
�v~x�

YAjn�#�


;

(2.19)

h0j �q�~x�F')�#~x�~x)!5i#"$hv�0�jB�v�i � 2ifBM
X1
n�0

��iP~x�n

n!

�
�v'v�"~x$� 	 �v~x�g'�"v$����Ajn�#� � �Vjn�#��

	 g'�"~x$��Vjn�#� � ~x'
~x�"v$�
�v~x�

YAjn�#�


; (2.20)

h0j �q�~x�F')�#~x�~x)hv�0�jB�v�i � �fBM.'"�/v�~x/
X1
n�0

��iP~x�n

n!
�Vjn�#�: (2.21)
The local decompositions (2.15)—(2.21) with respect to
dynamical twist are required for comparison with those of
geometric twist in Sec. IV.

III. DISTRIBUTION AMPLITUDES OF
GEOMETRIC TWIST

In this section we introduce the B-meson LCDAs of
definite geometric twist. This is done in analogy to the
introduction of quark distribution functions in deep inelas-
tic scattering [28] and of �-meson LCDAs [34] in terms of
definite geometric twist. Namely, we use the decomposi-
tion of nonlocal light-cone operators Of#g with given ten-
sor structure f#g into a (finite) sum of nonlocal tensor
operators of definite twist &,

O f#g �
X
&

O�&�
f#g with O�&�

f#g �
eP �&�f#0g

f#g Of#0g; (3.1)

with appropriate projection operators, eP �&�f#0g

f#g �eP �&�f#0g
f#g �~x; ~d�, already known from Refs. [27,31,32]

~P �&�f#0g
f#g � � ~P �&�; ~P �&�"0

" ; ~P �&��"0$0�
�"$� ; ~P �&��"0$0�

�"$� ; . . .�; (3.2)

~d is the inner derivative on the light cone (see,
Appendix B). Obviously, for a given tensor structure, the
sum over these projection operators of different twist &

defines a decomposition of unity,
P
&
eP �&�f#0g

f#g � 7f#0g
f#g .

Considering bilocal operators, the corresponding meson
LCDAs of definite geometric twist &, generically denoted
by ’�&�

a �u�, are introduced according to Ref. [24] (cf. also
Refs. [28,34])

h0jOf#g�~x; 0�jB�v�i �
X
&

eP �&�f#0g

f#g �~x; ~d�K�s�a
f#0g

�v; ~x�



Z 1

0
du e�iuP~x’�&�

a �u�: (3.3)
034023
Thereby K�s�a
f#0g

�v; ~x� is the basic kinematical structure (of
scale dimension s with respect to x@) of that matrix ele-
ment which can be read off from its parametrization with
respect to LCDAs of dynamical twist since at leading order
geometric and dynamical twist coincide by construction.
When, in accordance with (2.12), one goes over to Mellin
moments ’�&�

ajn one has to apply the corresponding local

projection operators eP �&�f#0g

f#gjn	s�~x; ~d�,

h0jOf#0g�~x; 0�jB�v�i �
X
&

X1
n�0

eP �&�f#0g

f#gjn	s�~x; ~d�K
�s�a
f#0g

�v; ~x�



��iP~x�n

n!
’�&�
ajn; (3.4)

in case of trilocal matrix elements h0jOf#0g�~x; #~x; 0�jB�v�i

the moment ’�&�
ajn has to be replaced by %�&�

ajn�#�.
The explicit form of the local projection operators is

given in Appendix B. In the following they will be applied
to the bilocal and trilocal vacuum-to-meson matrix ele-
ments for pseudoscalar mesons—at first, without applying
the heavy quark on-shell constraint. Thereby we obtain a
decomposition of these matrix elements which differs from
the decomposition in terms of dynamical twist determined
in the preceding section. Afterwards, we will resum the
Mellin moments to get the corresponding B-meson DAs.

A. Twist decomposition: local representation in terms
of Mellin moments

First, we consider the bilocal operators and introduce the
Mellin moments of the corresponding DAs of definite
geometric twist. Then, applying the local twist projectors,
in particular (B9)–(B11) in the (axial) vector case and
(B12)–(B14) in the skew-tensor case, we get the following
decomposition of the vacuum-to-meson matrix elements:
-5
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h0j �q�~x�!5hv�0�jB�v�i � ifBM
X
&

X1
n�0

eP �&�
n

��iP~x�n

n!
’�&�
Pjn

� ifBM
X1
n�0

��iP~x�n

n!
’�3�
Pjn; (3.5)

h0j �q�~x�!5!"hv�0�jB�v�i � ifBM
X
&

X1
n�0

eP �&�"0

"jn
��iP~x�n

n!
v"0’�&�

Ajn

� ifBM
X1
n�0

��iP~x�n

n!

�
v"’

�2�
Ajn �

~x"
2�v~x�

n
n	 1

�’�2�
Ajn � ’�4�

Ajn�



; (3.6)

h0j �q�~x�!5i#"$hv�0�jB�v�i � ifBM
X
&

X1
n�0

eP �&��"0$0�
�"$�jn

��iP~x�n

n!

v�"0~x$0�

�v~x�
’�&�
Tjn

� ifBM
X1
n�1

��iP~x�n

n!

v�"~x$�
�v~x�

’�3�
Tjn: (3.7)
The (pseudo)scalar case is trivial since on the light cone
always eP �&min�

� 1. Therefore only the single LCDA ’�3�
Pjn

occurs. Obviously, in the axial vector and skew-tensor case
some LCDAs do not appear, namely, ’�3�

Ajn in Eq. (3.6) and
’�2�
Tjn as well as ’�4�

Tjn in Eq. (3.7) vanish. The summation in
Eq. (3.7) begins at n � 1 since ’�3�

Tj0 vanishes identically
[cf. Eq. (B13)]. The matrix elements of scalar and vector
operators vanish completely, and that with i#"$ results
trivially from expression (3.7). As stated above, the twist
decomposition generates all linearly independent kine-
matic coefficients which are known from the previous
section, Eqs. (2.2), (2.3), and (2.4) as well as Eqs. (A36)–
(A38). Let us also remark that, apart from different nor-
malization, the leading LCDAs from (3.5), (3.6), and (3.7)
coincide with those of Ref. [6], whereby the additional
034023
contribution in (3.6) is considered to be nonleading (with
respect to dynamical twist).

Next, we consider the trilocal operators and introduce
the double Mellin moments of corresponding three-particle
LCDAs of definite geometric twist. Concerning the twist
projections, we remind that only the tensorial structure of
the operators is crucial and not if it is a bilocal or trilocal
one. The relevant projection operators are defined by (B9)–
(B11) for the (axial) vector operators, by (B12)–(B14) for
the skew-tensor operators and by (B15)—(B19) for the
symmetric tensor operators of second rank. Unfortunately,
at present no projectors for tensors of third rank, besides
totally symmetric ones, are at our disposal.

With these operators the trilocal vacuum-to-meson ma-
trix elements in case of a pseudoscalar meson read:
h0j �q�~x�F')�#~x�~x)!5hv�0�jB�v�i � ifBM
X
&

X1
n�0

eP �&�'0

'jn	1
��iP~x�n

n!
~x'0%�&�

Pjn�#� (3.8)

� ifBM~x'
X1
n�0

��iP~x�n

n!
%�5�
Pjn�#�; (3.9)

h0j �q�~x�F')�#~x�~x)!5!"hv�0�jB�v�i � �ifBM
X
&

X1
n�0

� eP �&��'0"0�

�'"�jn	1
��iP~x�n

n!
~x�'0v"0��%

�&�
A1jn�#� 	 %�&�

A2jn�#��

	 eP �&��'0"0�

�'"�jn	1
��iP~x�n

n!
�g'0"0 �v~x�%�&�

A1jn�#� � ~x�'0v"0��%
�&�
A1jn�#� � %�&�

A2jn�#���



(3.10)

� ifBM
X1
n�0

��iP~x�n

n!

�
��v'~x" � �v~x�g'"�%

�4�
A1jn�#� � ~x'v"%

�4�
A2jn�#��

�
~x'~x"
2�v~x�

n
n	 1

��%�4�
A1jn�#� � %�6�

A1jn�#�� � �%�4�
A2jn�#� � %�6�

A2jn�#���


; (3.11)
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h0j �q�~x�F')�#~x�~x)!"hv�0�jB�v�i � �fBM
X
&

X1
n�0

eP �&��'0"0�

�'"�jn	1
��iP~x�n

n!
.'0"0�/v�~x/%

�&�
Vjn�#� (3.12)

� �fBM.'"�/v�~x/
X1
n�1

��iP~x�n

n!
%�4�
Vjn�#�; (3.13)

h0j �q�~x�F')�#~x�~x)!5i#"$hv�0�jB�v�i � 2ifBM
X
&

X1
n�0

eP �&��'0�"0�$0�

�'�"�$�jn	1
��iP~x�n

n!
�v'0v�"0~x$0� 	 g'0�"0v$0��v~x��%�&�

Tjn�#�:

(3.14)
Here, some remarks are in order:
First, since the field strength F') in the trilocal operators

(3.8)—(3.14) is contracted with ~x) and, consequently, the
kinematic terms Ka�v; ~x�, according to relations (2.18)—
(2.21), have scale dimension 1, the local LC projection
operators are to be taken for n	 1. Let us remind that in
Schwinger-Fock gauge ~x)A)�~x� � 0 the field strength is
related to the gauge potential, �~x)F')��~x� � ��1 	

�@=@��A'��~x�.
Second, although any tensor of second rank can be split

into a symmetric and an antisymmetric part, it is impos-
sible to yield an input parametrization for the matrix
element in (3.9) with only one set of LCDAs %�&�

Asjn�#�

associated with the symmetric and another set %�&�
Aajn�#�

associated with the antisymmetric coefficients. The reason
is that the input parametrization has to vanish if addition-
ally contracted with ~x'. Therefore, both LCDAs interfere
for the g'" term.

Third, as mentioned above, concerning expression (3.14)
we do not know the explicit structure of the projection

operator eP �&��'0�"0�$0�

�'�"�$�jn . Furthermore, a projection operator
034023
eP �&��'0"0$0�

�'"$�jn does not occur since an . structure on the right-
hand side is forbidden for pseudoscalar mesons.

Finally, looking at the expressions (3.9), (3.11), and
(3.13), we observe again that a huge number of LCDAs
of definite twist vanishes, thereby having in mind that an
additional free index ' besides � comes into play. In the
pseudoscalar case only the highest twist part %�5�

Pjn and in

the vector case only %�4�
Vjn occur (also here %�4�

Vj0 � 0); in the
axial vector case, despite being more complicated, only the
LCDAs %�4�

Aijn and %�6�
Aijn occur. Since the on-shell constraint

reduces the number of independent DAs by two, we sup-
pose that in the skew-tensor case only two additional
independent DAs may occur.

Independently, there occurs another possible set of tri-
local vacuum-to-meson matrix elements and their corre-
sponding LCDAs, denoted by (, which are related to the
three-particle operators �q�~x�F')�#~x�!'~x)�hv�0�. Ac-
cording to their tensor structure they are analogously de-
fined as the bilocal ones, Eqs. (3.5), (3.6), and (3.7).
Therefore, we note only their form in terms of Mellin
moments as follows:
h0j �q�~x�F')�#~x�!'~x)!5hv�0�jB�v�i � ifBM�v~x�
X1
n�0

��iP~x�n

n!
(�4�
Pjn�#�; (3.15)

h0j �q�~x�F')�#~x�!'~x)!5!"hv�0�jB�v�i � ifBM�v~x�
X1
n�0

��iP~x�n

n!

�
v"(

�3�
Ajn�#� �

~x"
2�v~x�

n
n	 1

�(�3�
Ajn�#� � (�5�

Ajn�#��


;

(3.16)

h0j �q�~x�F')�#~x�!'~x)!5i#"$hv�0�jB�v�i � 2ifBM�v~x�
X1
n�1

��iP~x�n

n!

v�"~x$�
�v~x�

(�4�
Tjn�#�: (3.17)

Obviously, the matrix elements of Eqs. (3.15), (3.16), and (3.17) are related to those of Eqs. (3.8)—(3.14) by identities of
Dirac matrices. In particular, these relations read

h0j �q�~x�F')�#~x�!'~x)!5!"hv�0�jB�v�i � �h0j �q�~x�F")�#~x�~x)!5hv�0�jB�v�i

	 g/'h0j �q�~x�F')�#~x�~x)!5i#/"hv�0�jB�v�i; (3.18)

h0j �q�~x�F')�#~x�!'~x)!5hv�0�jB�P�i � �g/'h0j �q�~x�F')�#~x�~x)!5!/hv�0�jB�v�i; (3.19)
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h0j �q�~x�F')�#~x�!'~x)!5i#"$hv�0�jB�v�i � �g'"g
/
$ � g'$g

/
"�h0j �q�~x�F')�#~x�~x)!5!/hv�0�jB�v�i

	 i.'/"$h0j �q�~x�F')�#~x�~x)!/hv�0�jB�v�i: (3.20)
This leads to relations for the corresponding LCDAs which
allows us to express the (’s via the %’s. From Eqs. (3.19)
and (3.20) we receive the following two relations,

(�4�
Pjn�#� � 3%�4�

A1jn�#� 	 %�4�
A2jn�#�; (3.21)

(�4�
Tjn�#� � 2%�4�

Vjn�#� 	 %�4�
A1jn�#� 	 %�4�

A2jn�#�; (3.22)

corresponding to expressions %̂1 and %̂2 in Eq. (A42).
However, since we cannot manage the tensor of third
rank in Eq. (3.18), two further relations concerning
(�3�
Ajn�#� and (�5�

Ajn�#� are missing.
The matrix elements containing F')�#~x�v'~x) follow

immediately from the expressions (3.8)—(3.14) by multi-
plication with v'. Regarding this we should remark that,
contrary to the expressions just derived, the corresponding
result has not the same structure as it would follow from
the bilocal operator.

B. Twist decomposition: nonlocal representation in
terms of distribution amplitudes

From the local results, we yield the corresponding non-
local representation by going back to integral expressions.
034023
The fractions in n transform thereby to a second integral
according to

1

n� r	 1
 n �

Z 1

0
du un

Z 1

u

dw
w

�
w
u

	
r
 �w�: (3.23)

Moreover, we have to respect that not all summations
include the zeroth moment. Rewriting such sums by the
exponentials minus the missing moment we use the follow-
ing formula:

Z 1

0
du�e�iuP~x � 1� �u� �

Z 1

0
du e�iuP~x

 
 �u�

�
Z 1

u

dw
w
7
�
u
w

	
 �w�

!
: (3.24)

We thereby yield expressions all multiplied by the same
exponential which will be essential, later on, for compari-
son with the distribution amplitudes of dynamical twist.

The twist-decomposed two-particle distribution ampli-
tudes read in the nonlocal representation
h0j �q�~x�!5hv�0�jB�v�i � ifBM
Z 1

0
du’�3�

P �u�e�iuP~x; (3.25)

h0j �q�~x�!5!"hv�0�jB�v�i � ifBM
Z 1

0
du

(
v"’

�2�
A �u� �

~x"
2�v~x�

 
�’�2�

A � ’�4�
A ��u� �

Z 1

u

dw
w

�’�2�
A � ’�4�

A ��w�

!)
e�iuP~x;

(3.26)

h0j �q�~x�!5i#"$hv�0�jB�v�i � 2ifBM
v�"~x$�
�v~x�

Z 1

0
du

 
’�3�
T �u� �

Z 1

u

dw
w
7
�
u
w

	
’�3�
T �w�

!
e�iuP~x: (3.27)

The corresponding nonlocal twist-decomposed three-particle distribution amplitudes are given by

h0j �q�~x�F')�#~x�~x)!5hv�0�jB�v�i � ifBM~x'
Z 1

0
Dui%

�5�
P �ui�e

�i�u1	#u2�P~x; (3.28)

h0j �q�~x�F')�#~x�~x)!5!"hv�0�jB�v�i � ifBM
Z 1

0
Dui

(
�v'~x" � g'"�v~x��%�4�

A1�ui� � ~x'v"%
�4�
A2�ui�

�
~x'~x"
2�v~x�

 
�%�4�

A1 � %�6�
A1 � %�4�

A2 	 %�6�
A2��ui�

�
Z 1

u1

dw
w

�%�4�
A1 � %�6�

A1 � %�4�
A2 	 %�6�

A2��w; u2�

!)
e�i�u1	#u2�P~x; (3.29)
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h0j �q�~x�F')�#~x�~x)!"hv�0�jB�v�i � �fBM.'"�/v
�~x/

Z 1

0
Dui

 
%�4�
V �ui� �

Z 1

u1

dw
w
7
�
u1

w

	
%�4�
V �w; u2�

!
e�i�u1	#u2�P~x:

(3.30)
The nonlocal DAs corresponding to the tensor case (3.17)
are missing here.

Since, up to now, we did not apply the on-shell con-
straint, the results (3.25)—(3.30) can be compared to the
well-known DAs for the � meson [12]. Of course, up to
mass factors which we did not consider, the lowest twist
DAs coincide. However, due to the factors n=�n	 1� for
the moments of higher twist, Wandzura-Wilczek-like com-
binations and, due to missing zeroth moments analogous
combinations occur. Furthermore, as was mentioned in the
introduction, the dynamical higher twist contributions are
related to geometric twist of the same as well as lower
order.
IV. RELATIONS BETWEEN DISTRIBUTION
AMPLITUDES OF GEOMETRIC AND

DYNAMICAL TWIST

This section is devoted to exhibit the relations between
the DAs of definite dynamical twist on the one hand and of
definite geometric twist on the other hand. Thereby we get
also relations among the DAs of definite geometric twist
due to the heavy quark limit. (Of course, these relations
could have been obtained by applying the on-shell con-
straint on the expressions (3.5), (3.6), and (3.7) in the
bilocal case and (3.9), (3.11), and (3.13) in the trilocal
case as well.) By construction, both types of DAs coincide
at leading order but, in general, differ at higher order.

First, let us present these relations for the two-particle
DAs in terms of Mellin moments by comparing expres-
sions (2.15), (2.16), and (2.17) with expressions (3.5), (3.6),
and (3.7), respectively:

�	jn � �’�2�
Ajn;

1

2
��	jn � ��jn� � �

n
2�n	 1�

�’�2�
Ajn � ’�4�

Ajn�;
(4.1)

1

2
��	jn 	 ��jn� � �’�3�

Pjn;
1

2
��	jn � ��jn� � ’�3�

Tjn:

(4.2)

Equations (4.1) as well as (4.2) lead to independent rela-
tions for ��. Because of the on-shell constraint in the
heavy quark limit, the matrix elements of an axial vector
operator is related to the matrix elements of a pseudoscalar
and a tensor operator. Consequently, we find:

�	jn � �’�2�
Ajn � ’�3�

Tjn � ’�3�
Pjn; (4.3)
034023
��jn � �
1

n	 1
�’�2�

Ajn 	 n’�4�
Ajn� � ��’�3�

Tjn 	 ’�3�
Pjn�:

(4.4)

Because of these relations, it is sufficient to consider only
either the axial vector operator or the pseudoscalar and
skew-tensor operator without losing information about the
heavy quark Mellin moments ��jn. Also the relations
between the Mellin moments ’�2�

Ajn, ’�4�
Ajn, ’�3�

Pjn, and

’�3�
Tjn—as well as their dependence on ��jn—may be

read off quite simply. Especially, one finds

0 � �	j0 � ��j0; (4.5)

’�4�
Ajn � ���jn 	

1

n
��	jn � ��jn�; n � 1; (4.6)

’�4�
Aj0 � ���j0 	

Z 1

0
du lnu��	�u� � ���u��;

n � 0:
(4.7)

Equation (4.5) reflects the normalization ��j0 � 1 and,
with (4.3) and (4.4) we get ’�2�

Aj0 � ’�3�
Pj0 � �1, ’�3�

Tj0 � 0.
Expression (4.7) is obtained by taking into account
Eqs. (4.5) and (4.6) and using l’Hospital’s rule.

By making use of Eq. (2.12), we are able to obtain the
corresponding nonlocal expressions as follows:

�	�u� � �’�2�
A �u� � ’�3�

T �u� � ’�3�
P �u�; (4.8)

���u� � �’�4�
A �u� �

Z 1

u

dw
w

�’�2�
A �w� � ’�4�

A �w��

� ��’�3�
T �u� 	 ’�3�

P �u��: (4.9)

The last relation looks like a (geometric) Wandzura-
Wilczek relation but with missing nonintegrated leading-
twist term or, stated otherwise, the difference �	 � �� is
a pure WW-term in the difference ’�2�

A � ’�4�
A ,

�	�u� � ���u� � ��’�2�
A �u� � ’�4�

A �u��

	
Z 1

u

dw
w

�’�2�
A �w� � ’�4�

A �w��: (4.10)

Obviously, normalization of the LCDAs corresponds to
Burkhardt-Cottingham-like sum rules:Z 1

0
du���u� �

Z 1

0
du�	�u� � 1; (4.11)
-9
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Z 1

0
du’�2�

A �u� �
Z 1

0
du’�3�

P �u� � �1;Z 1

0
du’�3�

T �u� � 0:
(4.12)

The representation of the DAs of geometric twist by those
of dynamic twist reads (omitting trivial ones),

’�3�
P �u� � �

1

2
��	�u� 	 ���u��; (4.13)

’�3�
T �u� �

1

2
��	�u� � ���u��; (4.14)

’�4�
A �u� � ����u� 	

1

u

Z 1

u
dw��	�w� � ���w��:

(4.15)

Integrating both sides of (4.15) over the range 0 � u � 1
and observing (4.11) the result (4.7) is reobtained.

Now, let us present the relations between three-particle
DAs of definite dynamical and geometric twist in terms of
double Mellin moments by comparing expressions (2.18),
(2.19), and (2.21) with expressions (3.9), (3.11), and (3.13),
respectively. In case of the third order tensor structure we
have no projection operator as required in the expression
(3.14) at our disposal. Therefore we are unable to present
the full set of relations between DAs of dynamical and of
geometric twist. But, according to the definition of the DAs
of geometric twist we know at least that relation which
results from the identity, 7�'

0

�' 7
�"0�
�"� 7

$0�
$� , of the projection

operator eP �&��'0�"0�$0�

�'�"�$�jn , which has to be compared with the
corresponding expression in Eq. (2.20).

Thereby, we finally obtain the following relations:

�Vjn�#� � %�4�
Vjn�#�; (4.16)

�Ajn�#� � %�4�
A1jn�#� � %�4�

Vjn�#� 	 %�5�
Tjn�#�; (4.17)

XAjn�#� � %�4�
A2jn�#�

� �%�5�
Pjn�#� 	

n
2�n	 1�

�%�4�
A2jn � %�4�

A1jn � %�6�
A2jn

	 %�6�
A1jn��#�; (4.18)

YAjn�#� � %�4�
A2jn�#� 	 %�5�

Pjn�#�

�
n

2�n	 1�
�%�4�

A2jn � %�4�
A1jn � %�6�

A2jn 	 %�6�
A1jn��#�:

(4.19)

Looking at Eq. (2.20) we observe that at most two relations
connecting �Vjn�#� and YAjn�#� with some higher twist
contributions %�&�

Tjn�#�, & � 5 are missing. Inverting
Eqs. (4.16)—(4.19) the LCDAs of geometric twist are
034023
simply expressed in terms of LCDAs of dynamical twist.
Thereby, only relations (4.18) and (4.19) are nontrivial
leading in the same manner as for the inversion of relation
(4.4) to vanishing zeroth moments:

1

2
�%�6�

A1jn�#� � %�6�
A2jn�#�� �

1

2
��Ajn�#� � XAjn�#��

	
n	 1

n
YAjn�#�; n � 1:

(4.20)

The nonlocal expressions are again obtained by recon-
verting the double moments to integral expressions:

�V�ui� � %�4�
V �ui�; (4.21)

�A�ui� � %�4�
A1�ui� � %�4�

V �ui� 	 %�5�
T �ui�; (4.22)

XA�ui� � %�4�
A2�ui� � YA�ui� � %�5�

P �ui�; (4.23)

YA�ui� � %�4�
A2�ui� 	 %�5�

P �ui�

� �
1

2
�%�4�

A2jn � %�4�
A1jn � %�6�

A2jn 	 %�6�
A1jn��ui�

	
1

2

Z 1

u1

dw
w

�%�4�
A2jn � %�4�

A1jn � %�6�
A2jn 	 %�6�

A1jn�


 �w; u2�; (4.24)

with YA�ui� being a pure WW term. Omitting the trivial
relations, the inversions read,

1

2
�%�6�

A1�ui� � %�6�
A2�ui�� �

1

2
��A�ui� � XA�ui�� 	 YA�ui�

	
Z 1

u1

dw
u1
YA�w; u2�; (4.25)

%�5�
P �ui� � YA�ui� � XA�ui�; (4.26)

%�5�
T �ui� � �A�ui� � �V�ui�: (4.27)

In the same manner as for the bilocal case we obtain
Burkhardt-Cottingham-like sum rules,Z 1

0
DuiYA�ui� � 0;Z 1

0
Dui�%

�4�
A2�ui� 	 %�5�

P �ui�� � 0:
(4.28)

In addition, due to vanishing of (�4�
Tj0�#� � 2%�4�

Vj0�#� 	

%�4�
A1j0�#� 	 %�4�

A2j0�#� and %�4�
Vj0�#�, we getZ 1

0
Dui%

�4�
V �ui� � 0;

Z 1

0
Dui(

�4�
T �ui� � 0;Z 1

0
Dui�%

�4�
A1�ui� 	 %�4�

A2�ui�� � 0;

(4.29)
-10
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the last relation is consistent with expressions (3.10) and
(3.11). From these relations we obtainZ 1

0
Dui�V�ui� � 0;

Z 1

0
Dui��A�ui� 	 XA�ui�� � 0:

(4.30)

Again, relations (4.28), (4.29), and (4.30) may be consid-
ered as normalization conditions of corresponding LCDAs.
Furthermore, in complete analogy to (4.7), from relation
(4.20) together with (4.28) and (4.30) we get,

1

2

Z 1

0
Dui�%

�6�
A1�ui� � %�6�

A2�ui��

�
Z 1

0
Dui�A�ui� 	

Z 1

0
Dui lnu1YA�u1; u2�: (4.31)

For the remaining LCDAs (�4�
P �ui�, (�3�

A �ui�, and
(�5�
A �ui�, because of their similarity with the bilocal

LCDAs, one gets relations analogous to Eqs. (4.1)—
(4.15) with the ’’s replaced by (’s (at higher twist).
V. CONCLUSION

Two- and three-particle LCDAs of definite geometric
twist have been introduced and discussed in the case of B
mesons. Comparing them with the corresponding LCDAs
of dynamical twist [17] we were able to derive relations
between these different types of DAs as well as those
relations which are due to the heavy quark limit halving
the number of independent DAs. Some of these relations,
especially those for �	 � �� and YA are of pure
Wandzura-Wilczek type. In addition, since some zeroth
Mellin moments vanish various sum rules of Burkhardt-
Cottingham type appeared. Concerning conventional
LCDAs, the expressions (4.11) are just the well-known
normalization conditions whereas relations (4.28) and
(4.30), to our knowledge, have not been considered in the
literature. This appears surprising since, quite similar to the
derivation of the normalizations ��j0 � 1 from
Eqs. (2.15), (2.16), and (2.17) in the limit ~x! 0, relations
(4.28) and (4.30) could have been derived from
Eqs. (2.18)—(2.21), adopting the light-cone gauge.

In principle, applying the heavy quark symmetry analo-
gous relations for heavy vector mesons could be obtained.
However, these relations would be more complicated than
those considered here. Concerning the two-particle LCDAs
they could be obtained from the already known relations
between geometric and dynamic twist for the �meson [34]
by applying the on-shell constraint.

The derivation of these new DAs makes use of projec-
tion operators onto local light-cone operators of definite
twist, sandwiched between vacuum-to-meson matrix ele-
ments. Therefore, it was necessary to work with (double)
Mellin moments and resum afterwards into nonlocal
LCDAs. The twist-decomposed three-particle LCDAs for
034023
third rank tensors are missing since the corresponding twist
projectors were not available.

The projection operators onto local operators of definite
twist, given here on the light cone, are also known off the
light cone [31]. This opens the possibility to consider, at
least in principle, mass corrections analogous to an earlier
study for �-meson DAs [24]. Of course, such corrections
will interfere with and, therefore, supplement the mass
expansion in HQET. Concerning B mesons such correc-
tions could be obtained, at least partly, from an earlier
consideration of �-meson DAs by Lazar (see, Ref. [29],
page 68).

We expect that the discussion of the relations between
LCDAs of dynamic and geometric twist improves the
understanding of B mesons. In addition, since the
LCDAs of geometric twist behave reasonable under renor-
malization, this approach may help to extend the study of
renormalization properties of leading-twist LCDA �	�u�
[19] also to the nonleading ���u� and three-particle ones.

In a subsequent paper, we are going to establish relations
between two- and three-particle DAs forced by the equa-
tion of motion. In order to do so the knowledge of two-
particle DAs off the light cone is required. A first step in
that direction has been made in Appendix A where the
parametrization of vacuum-to-meson matrix elements is
considered off cone.
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APPENDIX A: DERIVATION OF INDEPENDENT
DISTRIBUTION AMPLITUDES OF DYNAMICAL

TWIST IN THE HEAVY QUARK LIMIT

In this appendix we derive, in the heavy quark limit, the
linearly independent kinematic structures—together with
Lorentz-invariant DAs in x space—which are compatible
with the tensor structure of the various bilocal and trilocal
light-ray operators when sandwiched between vacuum and
B-meson state. Thereby, for the sake of convenience, all
the Dirac structures (1.5) are taken into account, consider-
ing !5i#"$ and its dual i#"$ � ��i=2�."$�/!5i#

�/ on
equal footing. Because of the on-shell constraint (1.3) and
because of the well-known relations on Dirac matrices we
are enabled to derive all these parametrizations from a
single general ansatz. By flavor symmetry, that parametri-
zation is valid for any heavy meson. In addition, since in
HQET spin symmetry relates pseudoscalar and vector
mesons, a single ansatz is sufficient for both.

Furthermore, the general structure of matrix elements
for bilocal operators h0j �q�x��hv�0�jB�v�i may be obtained
from the trilocal operators h0j �q�x�F')�#x��hv�0�jB�v�i by
-11
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multiplying it with v'x)=�vx�, ignoring the dependence on
#x and renaming the obtained DAs. Of course, also matrix
elements built with the dual field strength can be obtained
this way. The consideration of trilocal operators is neces-
sary for the study of Wandzura-Wilczek relations in the
framework of dynamical twist. For the same reason it is
necessary to know as much as possible about the kinematic
structure and the DAs off the light cone. Therefore, we
restrict our consideration to the light cone only at the end.

Let us begin with the trilocal operators. In order to be
able to apply the on-shell constraint (1.3) we choose to
034023
parametrize the following matrix element:

h0j �q�x�F')�#x�!5!�i#"$hv�0�jB�v�i

� �ifBM�hF')!5!�i#"$i:

Here and in the following, matrix elements are simply
represented by the different parts of their operators, also
omitting the various variables. The most general ansatz for
the independent kinematic structures which can be built for
a tensor of rank five with two pairs of antisymmetric
indices reads
hF')!5!�i#"$i � g"�'g)�$g�#Z
#
1 	 g#�'g)��"g$��Z

#
2 	 g#�"g$��'g)��Z

#
3 	

v�'x)�
vx

g��"g$�#Z
#
4 	

v�"x$�
vx

g��'g)�#Z
#
5

	
v�'x)�v�"x$�

�vx�2
g�#Z

#
10 	 g��'g)�&g/�"g

&
$�g�#

�
v�v/

v2 Z#6 	
v�x/

vx
Z#7 	

x�v/

vx
Z#8 	

v2x�x/

�vx�2
Z#9

	
;

(A1)
where Z#i :� v#Xi 	 �x#=vx�Yi; i � 1; . . . ; 10, with Xi �
Xi�vx; v

2; x2;#� and Yi � Yi�vx; v
2; x2;#� are altogether

20 linearly independent, Lorentz-invariant three-particle
amplitudes of equal dimension and parity; furthermore,
in this appendix, the bracket notation (2.5) is used without
the factor 1=2.

Because of the on-shell constraint (1.3) and the well-
known identities of gamma matrices, the various matrix
elements for different Dirac structures can be related to
(A1). In particular, it holds

hF')!�i#"$i � �i=2�."$#&hF')!5!�i#
#&i; (A2)

hF')!5!"i � �i=6�."�#&hF')!�i##&i; (A3)

hF')!5i � v"hF')!5!"i; (A4)

hF')!5i#"$i � v�hF')!5!�i#"$i 	 2�v"hF')!5!$i

� v$hF')!5!"i�; (A5)

hF')!"i � �i=6�."�#&hF')!5!
�i##&i; (A6)

hF')i � v"hF')!"i; (A7)

hF')i#"$i � v�hF')!�i#"$i 	 2�v"hF')!$i

� v$hF')!"i�: (A8)

Relation (A2) avoids the introduction of dual amplitudes
and by Eqs. (A3)—(A8) the parametrizations for all the
basic Dirac structures (1.5) can be derived from the general
ansatz (A1).

Up to now, these parametrizations do not respect those
dependencies due to the identities for the gamma matrices.
In fact, it suffices to require the Chisholm identity,
!'!)!" � �g')g"$ � g'"g)$ 	 g'$g)"�!$

	 i.')"$!5!$;

for the left-hand side of (A1),

hF')!5!�i#"$i � g$�hF')!5!"i � g"�hF')!5!$i

� i.�"$#hF')!
#i: (A9)

This requirement results in a linear system of algebraic
equations for the DAs Xi; Yi with unique solution:

X3 � X1; Y3 � Y1; Y6 � �X7 � X5;

Y8 � �X9 � Y5;

X6 � Y7 � X8 � Y9 � X10 � Y10 � 0;

(A10)

whereas the remaining eight DAsX1, Y1,X2, Y2, X4, Y4,X5,
Y5 are independent ones.

Applying these restrictions to (A1), computing (A2) and
the six matrix elements (A3)—(A8) one gets:

hF')!5i � �v�'g)�#Z#2 �
1

vx
v�'x)�v#Z#4 ; (A11)

hF')!5!"i � �g"�'g)�#Z
#
2 �

1

vx
v�'x)�g"#Z

#
4 ; (A12)

hF')!5i#"$i � v�.�"$&.
&
')#Z

#
1 � v�"g$��'g)�#Z

#
2

�
1

vx
v�'x)�v�"g$�#Z

#
4

	
1

vx
v�x/v�.�"$&.

&
�/�'g)�#Z

#
5 ;

(A13)
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hF')!5!�i#"$i � .�"$&.
&
')#Z

#
1 	 g��"g$��'g)�#Z

#
2

	
1

vx
v�'x)�g��"g$�#Z

#
4

	
1

vx
v�x/.�"$&.

&
�/�'g)�#Z

#
5 ;

(A14)

hF')!�i#"$i � �g��"i.$�')#Z
#
1 	 i.�"$�'g)�#Z

#
2

	
1

vx
v�'x)�i.�"$#Z

#
4

�
1

vx
v�x/g��"i.$��/�'g)�#Z#5 ;

(A15)

hF')i#"$i � v�"i.$�')#Z#1 	 iv�.�"$�'g)�#Z#2

	
1

vx
v�'x)�iv�.�"$#Z#4

	
1

vx
v�x/iv�".$��/�'g)�#Z#5 ; (A16)

hF')!"i � i.')"#Z#1 	
1

vx
ig#�'.)�"�/v�x/Z#5 ; (A17)

hF')i � i.')�#v
�Z#1 ; (A18)

i.e., one gets eight independent distribution amplitudes.
Since v is dimensionless, all the matrix elements are of
(mass) dimension M3 —two dimensions are due to F')
and one due to the bound state and, therefore, the structure
functions are �M2. Furthermore, concerning dynamical
twist, the DAs Yi are subleading in comparison with the
DAs Xi.

Now, let us truncate expressions (A11)—(A18) with x).
Thereby, Y1 disappears and, effectively, only the following
four combinations remain as independent ones (( �
v2x2=�vx�2):

�V � X1 � X5 � (Y5; �A � X2 � (Y4;

XA � �X4; YA � Y2 	 Y4:
(A19)

As result we obtain:

hF')x
)!5i �

�
x' �

x2

vx
v'

	
�YA � XA�; (A20)

hF')x
)!5!"i � �v'x" � �vx�g'"��A

	
1

vx
�x'x" � x2g'"�YA

�

�
x' �

x2

vx
v'

	
v"XA; (A21)
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hF')x
)!5i#"$i � �v'x�" � �vx�g'�"�v$���V � �A�

�
1

vx
�x'x�" � x2g'�"�v$�YA

	 g'�"x$��V; (A22)

hF')x)!5!�i#"$i � g��"g$�/�x
/v' � �vx�g/'��A

	 g��"g$�/�x
/x' � x2g/'�

1

vx
YA

� .�"$&.
&
'�/v

�x/�V

� g��"g$��v
�
�
x' �

x2

vx
v'

	
XA;

(A23)

hF')x)!�i#"$i � �i.�"$/�x/v' � �vx�g/'��A

� i.�"$/�x/x' � x2g/'�
1

vx
YA

	 ig��".$�'�/v
�x/�V

	 i.�"$�v
�
�
x' �

x2

vx
v'

	
XA; (A24)

hF')x)i#"$i � i."$�/v�
�
�x/v' � �vx�g/'���V � �A�

	
x/x' � x2g/'

vx
YA

�
� i.'"$/x/�V;

(A25)

hF')x)!"i � i.'"�/v�x/�V; (A26)

hF')x)i � 0: (A27)

Obviously, according to the antisymmetry of F'), after a
further truncation with x', any expression vanishes. In the
course of the computation we have used

i ."$�/v��x/v' � g/'�vx�� � i.'/"$x/v2

� �i."$�/�g
�
'g

/
)g

�
# 	 g�)g

/
#g

�
' 	 g�#g

/
'g

�
)�x)v�v

#;

�v'x�" � �vx�g'�"�v$� 	 v2g'�"x$�

� g"��g/�$�g
�
'g

/
)g

�
# 	 g�)g

/
#g

�
' 	 g�#g

/
'g

�
)�x)v�v

#;

together with the well-known relations concerning prod-
ucts of . tensors and its contractions, especially,

.�"$&.
&
')# � g�#g"�'g)�$ 	 g��'g)��"g$�#:

Now, truncating also with v' the matrix elements
(A20)—(A26) simplify considerably:

hF')x)v'!5i � ��vx��1 � (��2; (A28)
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hF')x)v'!5!"i � x"�1 � v"�vx���1 	 �1 � (��2�;

(A29)

hF')x
)v'!5i#"$i � �v"x$ � v$x"��1

� ��i=2�."$�/hF')x)v'i#�/i;

(A30)

hF')x)v'!"i � 0 � hF')x)v'i; (A31)

with �1 � �A 	 YA, �2 � XA � YA; truncating with g'",
we obtain

hF')x)!'!5i � �vx��%2 	 (%3�; (A32)

hF')x
)!'!5!"i � x"%1 � v"�vx��%1 � �%2 	 (%3��;

(A33)

hF')x)!'!5i#"$i � �v"x$ � v$x"�%1

� ��i=2�."$�/hF')x
)!'i#�/i;

(A34)

hF')x
)!'!"i � 0 � hF')x

)!'i; (A35)

with %1 � 2�V 	 �A 	 XA, %2 � 3�A 	 XA, %3 �
3YA � XA.

Despite the different definitions of the DAs �i; i � 1; 2
and %i; i � 1; 2; 3, we observe a striking similarity in the
structure of the two kinds of matrix elements (A28)–(A30)
and (A32)–(A34).

Let us now consider the case of bilocal operators. The
matrix elements h�i can be read off from the relations
(A28)—(A31), taking advantage of the similar tensor
structures and assuming the two-particle DAs not to de-
pend on #. After division by vx one gets

h!5i � ���	 	 ���=2; (A36)

h!5!"i � �v"�	 	
x"

2�vx�
��	 � ���; (A37)

h!5i#"$i �
v"x$ � v$x"

2�vx�
��	 � ���

� ��i=2�."$�/hi#
�/i; (A38)

h!"i � 0 � h1i; (A39)

where, for the sake of convenience, we introduced
���vx; v

2; x2� � ��1 � (��2 � �1��vx; v
2; x2�, i.e., the

additional x2 dependence from ( � v2x2=�vx�2 has been
included into the definition of the new DAs.

Now, let us restrict onto the light cone x2 ! ~x2 � 0.
Then the linearly independent LCDAs, which do not de-
pend on x2, will be written with a ‘‘hat,’’ i.e., X̂�v~x;#�,
Ŷ�v~x;#� and so on. The kinematical coefficients of rela-
034023
tions (A20)—(A27) are shortened, and the distribution
amplitudes are reduced as follows:

�̂ V � X̂1 � X̂5; �̂A � X̂2; X̂A � �X̂4;

ŶA � Ŷ2 	 Ŷ4;
(A40)

�̂ 1 � �̂A 	 ŶA; �̂2 � X̂A � ŶA; (A41)

%̂ 1 � 2�̂V 	 �̂A 	 X̂A; %̂2 � 3�̂A 	 X̂A;

%̂3 � 3ŶA � X̂A;
(A42)

�̂	 � X̂2 � X̂4; �̂� � X̂2 	 X̂4 	 2�Ŷ2 	 Ŷ4�:

(A43)

Making use of these conventions and the restriction to
the LC, the above derived representations of the various
matrix elements completely coincide with those obtained
by Kawamura et al. [17] using the trace formalism, cf.
Eqs. (2.7)—(2.10) and (2.2), (2.3), and (2.4) in the trilocal
and bilocal case, respectively, (cf. Sec. II). Hence, we
named the invariant DAs already in accordance with that
reference.

APPENDIX B: ON-CONE PROJECTION
OPERATORS ONTO GEOMETRIC TWIST

In Sec. III we made use of (local) projections onto LC
tensor operators of well-defined geometric twist. The gen-
eral procedure of decomposing nonlocal QCD tensor op-
erators, either on cone or off cone, into a sum of such
operators having definite geometric twist has been devel-
oped in a series of papers [27–31]. There, it has been
shown that this twist decomposition crucially depends on
the tensorial structure of the operator under consideration
and that it can be obtained by using appropriate projection
operators. That procedure makes use of the representation
of nonlocal tensor operators into a series of local ones and
the decomposition of local tensor operators with respect to
irreducible representations of the Lorentz group. The pro-
cedure simplifies if light-cone operators are under consid-
eration. Since local and nonlocal LC expansion are related
mutually we can freely choose if we calculate the twist
decomposition in the local or the nonlocal representation.

The local LC tensors which are to be decomposed into
tensors of definite twist are given, according to the repre-
sentations (3.4), by K�s�a

f#0g
�v; ~x��P~x�n. In the following they

are denoted as

Nn�x�; O"jn�x�; M�"$�jn�x�; M�"$�jn�x�;

(B1)

in the (pseudo)scalar, (axial) vector, antisymmetric, and
symmetric tensor case, respectively. Below, we present the
corresponding local LC projection operators. The LC pro-
jection operators for tensors of third rank are available only
-14
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in the totally symmetric case, but this is of no relevance
here.

The most compact representation of the LC projections
makes use of the ‘‘interior’’ derivative [38] acting on the
light cone,

~d " �

�
�1 	 �x@��@" �

1

2
x"�


��������x�~x
; (B2)

which, together with ~x"; X :� 1 	 �x@�i and X"$ :�
~x$@" � ~x"@$ spans the conformal algebra so�4; 2�. In
that order, these operators are the generators of special
conformal transformations, translations, dilations, and ro-
tations, respectively. Especially, it holds

�~d"; ~x$� � g"$X	 X"$; (B3)

�X; ~x"� � ~x"; �X"$~x'� � g'"~x$ � g'$~x"; (B4)

�X; ~d"� � �~d"; �X"$~d'� � g'"~d$ � g'$~d": (B5)

From this it follows

�X� 1�~d�"~x$� � ��X	 1�~x�"~d$�; (B6)

~d �"~x$� � ~x�"~d$� 	 Xg"$: (B7)

The various LCDAs of definite geometric twist as well
as their moments are labeled by & � &0 	 r [30]. Thereby,
&0 is that part of the twist which corresponds (or would
correspond) to the totally symmetric tensor operator, and
r � 0; 1; . . . ; labels higher order contributions due to the
actual symmetry type characterizing the irreducible repre-
sentations of the orthochronous Lorentz group which ap-
pear in the decomposition of the light-cone operators. In
fact, for the operators � 1�~x�� 2�0� with � � 1; !"; i#"$
we obtain &0 � 3; 2; 1 	 1, respectively, namely, if the
minimal twist of M�"$� is &0 then the minimal twist of
M�"$� is &0 	 1. In principle, there may occur different
LCDAs of the same twist & accompanying equal kinemati-
cal structures. This takes place for tensors of higher rank
but will not be made explicit here, i.e., only their sum will
be given.

Now, we state all generic nonvanishing local on-cone
operators of definite geometric twist up to tensors of sec-
ond rank [31,32]:
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N�&0�
n �~x� � Nn�~x�; (B8)

O�&0	0�
"jn �~x� �

1

�n	 1�2
~d"~x'O'jn�~x�; (B9)

O�&0	1�
"jn �~x� �

�
7'" �

1

�n	 1�2
�~d"~x' 	 ~x"~d'�

	
O'jn�~x�;

(B10)

O�&0	2�
"jn �~x� �

1

�n	 1�2
~x"~d'O'jn�~x�; �n � 1�; (B11)

M�&0	1�
�"$�n �~x� � �

2

�n	 1��n	 2�
~d�"

�
7�'
$� �

1

�n	 2�2


�~d$�~x�' 	 ~x$�~d
�'�

	
~x)�M�')�jn�~x�;

(B12)

M�&0	2�
�"$�jn�~x� �

�
7�'
�"7

)�
$� �

4

n3�n	 2�
~x�"~d$�~x�'~d)�

	
2

�n	 1��n	 2�
~d�"7

�'
$�~x

)�

	
2

n�n	 1�
~x�"7

�'
$�

~d)�
	
M�')�jn�~x�; �n � 1�;

(B13)

M�&0	3�
�"$�jn�~x� � �

2

n�n	 1�
~x�"

�
7�'$� �

1

n2 �
~d$�~x�'

	 ~x$�~d
�'�

	
~d)�M�')�jn�~x�; �n � 1�; (B14)

M�&0	0�
�"$�jn�~x� �

1

�n	 1�2�n	 2�2
~d"~d$~x'~x)M�')�jn�~x�;

(B15)

M�&0	1�
�"$�jn�~x� �

2

n�n	 1�
~d�"

�
7�'$� �

1

�n	 2�2
�~d$�~x�'

	 ~x$�~d
�'�

	
~x)�M�')�jn�~x�; �n � 1�; (B16)
M�&0	2�
�"$�jn�~x� �

�
7�'
�"7

)�
$� 	

1

n�n	 1�2�n	 2�
�~d"~d$~x'~x) 	 ~x"~x$~d'~d)� �

2

n�n	 1�
~d�"7

�'
$�~x

)� �
2

�n	 1��n	 2�
~x�"7

�'
$�

~d)�

	
4

n2�n	 2�2
~x�"~d$�~x�'~d)� 	

2

n�n	 2�2
~x�"~d$�7') 	

2

n�n	 2�2
7"$~x�'~d)� 	

2�n	 1�

n�n	 2�2
7"$7

')


M�')�jn�~x�;

�n � 1�; (B17)
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M�&0	3�
�"$�jn�~x� �

2

�n	 1��n	 2�
~x�"

�
7�'
$� �

1

n2 �
~d$�~x�' 	 ~x$�~d

�'�

	
~d)�M�')�jn�~x�; �n � 1�; (B18)
M�&0	4�
�"$�jn�~x� �

1

n2�n	 1�2
~x"~x$~d'~d)M�')�jn�~x�;

�n � 2�:

(B19)

Let us remark that the restrictions in n, appearing in
Eqs. (B13) and (B14) as well as Eqs. (B16)—(B19) are
automatically fulfilled due to the definitions of these ex-
pressions, i.e., the zeroth and first moments, respectively,
vanish by construction. Furthermore, the second term in
the right-hand side of Eq. (B12) and the last term of
Eq. (B14) vanish—they are written only because of analo-
gous terms in case of the symmetric tensor. Finally, we
should mention that M�&0	2�

�"$�jn�~x� contains two and
M�&0	2�

�"$�jn�~x� contains five independent components corre-
sponding to irreducible representations of the Lorentz
group which, in principle, could be accompanied by inde-
pendent DAs. But in that paper we associate only one and
the same with them. Any other expression corresponds
only to a single irreducible representation.

Obviously, these operators of definite twist are obtained

by applying the corresponding projection operators eP �&�
n ,eP �&�'

"jn , eP �&��')�
�"$�jn , eP �&��')�

�"$�jn (including the fractions in n) on
034023
the undecomposed operators:

N�&�
n �~x� � �eP �&�

n Nn��~x�; (B20)

O�&�
"jn�~x� � �eP �&�'

"jn O'jn��~x�; (B21)

M�&�
�"$�jn�~x� � �eP �&��')�

�"$�jn M�')�jn��~x�; (B22)

M�&�
�"$�jn�~x� � �eP �&��')�

�"$�jn M�')�jn��~x�: (B23)

In addition, they obey the common property of projections:

�eP �&� eP �&0�
��

0n0
�n � 7&&

0 eP �&��0n0

�n ; (B24)

X&max

&�&min

eP �&�
� 1: (B25)

In order to prove these properties the conformal algebra
and the relations (B6) and (B7) have to be used.
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