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In this paper, we study the chiral symmetry restoration in the hadronic spectrum in the framework of
generalized Nambu–Jona-Lasinio quark models with instantaneous confining quark kernels. We inves-
tigate a heavy-light quarkonium and derive its bound-state equation in the form of a Schrödinger-like
equation and, after the exact inverse Foldy-Wouthuysen transformation, in the form of a Diraclike
equation. We discuss the Lorentz nature of confinement for such a system and demonstrate explicitly the
effective chiral symmetry restoration for highly excited states in the mesonic spectrum. We give an
estimate for the scale of this restoration.
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I. INTRODUCTION

Chiral symmetry is spontaneously broken in QCD with
light quarks. This immediately implies the existence of
light mesons which become Goldstone bosons in the chiral
limit, with dynamics described by chiral perturbation the-
ory. Being an effective low-energy reduction of QCD, this
theory does not describe the property of confinement.

While the property of color confinement is expected
from general considerations and is supported by lattice
calculations, no effective theory exists which derives con-
finement directly from the QCD Lagrangian, and one is left
to rely upon models, such as the constituent quark model,
to describe confinement. These models work surprisingly
well in the light-quark sector, reproducing the spectrum of
low-lying mesonic states, with the exception of ground-
state pseudoscalars. So, the conventional wisdom of quark
model practitioners is to assume that constituent quarks are
indeed the correct degrees of freedom in the nonperturba-
tive domain, with light pseudoscalars being a special case.
As there is no hope to obtain Goldstone bosons within any
naive quark model which does not address the question of
QCD vacuum structure, the sector of light pseudoscalars
has to be left outside the scope of the constituent picture.

Phenomenological successes of constituent models are
in fact quite remarkable, but there is yet another feature of
QCD which they fail to reproduce. Namely, for highly
excited hadronic states, we have quark typical momenta
much larger than the scale of chiral symmetry breaking so
that chiral symmetry should be restored towards the high
end of hadronic spectra. The phenomenon signalling this
restoration is parity doubling.

Parity doubling has been discussed for many years in
connection with the baryon spectrum (see, for example,
[1]). Quite recently, the observation of the low-mass
Ds�2317� and Ds�2460� mesons [2] caused a resurgence
of interest in the issue of chiral symmetry restoration [3,4].
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Detailed arguments in favor of parity doubling for higher
mesonic states are given in [5].

Quite obviously, chiral symmetry restoration is a con-
sequence of fully relativistic dynamics of light quarks and
chirally-symmetric quark interaction. Besides, it implies
the confining quark interaction, so the models exhibiting
parity doubling should interweave confinement and chiral
symmetry breaking into one single mechanism. These
models do exist in the literature [6–8], and the possibility
of parity doubling in such models was briefly discussed in
[9]. These models are introduced in Sec. II and generic
mesonic bound-state equations are derived for arbitrary
kernels. Section III is devoted to the setting up of both
the heavy-light bound-state equation and its equivalent
Diraclike equation. The heavy-light meson can be thought
of as a kind of hydrogen atom of soft QCD, with the heavy-
quark spin symmetry [10], allowing us to study the dy-
namics of the light quark ignoring complications related to
the full relativistic two-body problem. Then, for arbitrary
noncompact (that is, confining) quark kernels, it is shown
in Sec. III that these equations necessarily lead to chiral
restoration for high momenta. Finally, we end this section
with a numerical study of the heavy-light mesonic spec-
trum, using, for the sake of clarity, a simple harmonic
oscillator quark kernel (which allows for a differential
mass-gap equation) and explicitly show the mechanism
of chiral restoration at work. We conclude with Sec. IV.
II. MESONIC STATES IN POTENTIAL QUARK
MODELS

In this section, we briefly give the necessary details of
the model to be considered below. The potential quark
model, which we call the Nambu–Jona-Lasinio (NJL)-
type model after the original paper [11] is given by the
Hamiltonian [6–9]:
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Ĥ �
Z
d3x 	 � ~x; t���i ~� � ~5�m� � ~x; t�

�
1

2

Z
d3xd3yJa�� ~x; t�Kab

��� ~x� ~y�Jb�� ~y; t�; (1)

with the quark currents, Ja�� ~x; t� � 	 � ~x; t���
�a
2  � ~x; t�, in-

teracting through an instantaneous kernel,

Kab
��� ~x� ~y� � g�0g�0�

abV0�j ~x� ~yj�: (2)

A remarkable feature of the given model is the robustness
of the results against variations of the form and parameters
of the confining potential V0� ~x�. Usually a powerlike form
is adopted,

V0�j ~xj� � K��1
0 j ~xj�; (3)

with 0 	 � 	 2. The case of the linearly rising potential
� � 1 (see, for example, [12,13]) is strongly supported by
hadronic phenomenology, whereas the marginal case of
� � 2—the harmonic oscillator potential—leads to sim-
pler, differential equations and is considered by many
authors [6–9,14] because, despite of its mathematical sim-
plicity, it already yields a physical picture for the mecha-
nism of dynamical chiral symmetry breaking not unlike the
one given by linear confinement.

The quark models of this class fulfill the well-known
low-energy theorems of Gell-Mann, Oakes, and Renner
[15], Goldberger and Treiman [16], Adler’s self-
consistency zero [17], the Weinberg theorem [18], and so
on. For an early derivation of the Gell-Mann–Oakes–
Renner relation, for this class of models, see Ref. [9]. For
the derivation of the Weinberg theorem see Ref. [19]. The
Salpeter equations for these models can be seen in detail in
Ref. [7]. Using this formalism it is possible to give, for the
class of models embodied in Eq. (1), an analytic proof of
the Goldberger-Treiman relation [20]. The same formalism
can be used to give an analytic proof of all the above low-
energy theorems. The axial anomaly and the��� coupling
constant can be derived naturally in the framework of the
given model as well, following, for example, the lines of
the textbook [21] and using the asymptotic freedom and the
Ward identity for the dressed axial vertex [20] (see also
Ref. [22] for an independent derivation of this relation in
the Dyson-Schwinger approach to the dressed-quark
propagator).

The standard approach—valid for any �—to the model
(1) is the Bogoliubov transformation from bare to dressed
quarks, parametrized through the chiral angle ’p:

 �� ~x; t� �
X
s�";#

Z d3p

�2��3
ei ~p ~x�b̂�s� ~p; t�us� ~p�

� d̂y�s�� ~p; t�vs�� ~p��; (4)
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8<
:
u� ~p� � 1��

2
p �

���������������������
1� sin’p

p
�

���������������������
1� sin’p

p
� ~� ~̂p��u�0�;

v�� ~p� � 1��
2

p �
���������������������
1� sin’p

p
�

���������������������
1� sin’p

p
� ~� ~̂p��v�0�;

(5)

where Ep stands for the dispersive law of the dressed
quarks; � being the color index, � � 1; NC. In what
follows the limit NC � 1 is assumed. It is convenient to
define the chiral angle varying in the range� �

2 <’p 	
�
2 ,

with the boundary conditions ’�0� � �
2 , ’�p! 1� ! 0.

The Hamiltonian (1) normally ordered in the basis (4)
can be split into three parts,

Ĥ � Evac � :Ĥ2:� :Ĥ4:; (6)

the first part being the vacuum energy, and the second and
the third parts being quadratic and quartic in terms of
single-quark operators. The requirement that :Ĥ2: should
be diagonal—the anomalous Bogoliubov term be ab-
sent—leads one to the mass-gap equation for the chiral
angle,

Ap cos’p � Bp sin’p � 0; (7)

with

Ap � m�
1

2

Z d3k

�2��3
V� ~p� ~k� sin’k;

Bp � p�
1

2

Z d3k

�2��3
� ~̂p ~̂k�V� ~p� ~k� cos’k:

(8)

We absorb the fundamental Casimir operator CF into the
definition of the potential V� ~p� ~k� � CFV0� ~p� ~k� by
rescaling the parameter K0.

For the chiral angle—solution to the mass-gap
Eq. (7)—the Hamiltonian (6) takes the form:

Ĥ � Evac �
X
�

X
s�";#

Z d3p

�2��3
Ep�b̂

y
�s� ~p�b̂�s� ~p�

� d̂y�s�� ~p�d̂�s�� ~p�� �O
�

1�������
NC

p

	
; (9)

with the corrections coming from the :Ĥ4: part. This
completes diagonalization of the Hamiltonian (1) in the
single-particle sector of the theory (the so-called BCS level
[23]). The dressed-quark dispersive law can be built as

Ep � Ap sin’p � Bp cos’p: (10)

It was found in Ref. [24] that the ’t Hooft model for two-
dimensional QCD [25] in the axial gauge, which is iden-
tical to the model (1) in two dimensions [26], admits a
further diagonalization in terms of colorless mesonic
states, which is a step beyond the BCS approximation.
This method was generalized, in Ref. [27], to the class of
NJL-type four-dimensional models (1). The key idea was
to rewrite the Hamiltonian (6), in the center-of-mass frame,
-2
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Ĥ � E0vac �
Z d3P

�2��3
Ĥ � ~P�; Ĥ �0� � Ĥ ;

in terms of compound quark-antiquark operators,

M̂ ss0 � ~p; ~p
0� �

1�������
NC

p
X
�

d̂�s�� ~p�b̂�s0 � ~p
0�; (11)

and to perform a second, generalized, Bogoliubov trans-
formation, ‘‘dressing’’ the bare operators (11) with the
coherent cloud of quark-antiquark pairs. The operators
creating/annihilating the physical mesonic states in the
theory are given by8<

:
m̂n� �

R p2dp
�2��3 �M̂��p�’�n��p� � M̂y

��p�’�n��p��

m̂y
n� �

R p2dp
�2��3

�M̂y
��p�’�n��p� � M̂��p�’�n��p��;

(12)
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where the operators (11) are expanded first,

M̂ ss0 � ~p; ~p� �
X
�

�.�� ~̂p��ss0M̂��p�; (13)

using an appropriate basis diagonalizing the spin-angular
structure of the Hamiltonian. Such a basis is known to be
formed by the fnJPCg states (n being the radial quantum
number), for which we use the shorthand notation fn�g.

The center-of-mass Hamiltonian Ĥ takes a diagonal form,

Ĥ �
X
n;�

Mn�m
y
n�mn� �O

�
1�������
NC

p

	
; (14)

provided the mesonic wave functions obey the bound-state
equation,
8<
:
�2Ep �Mn��’

�
n��p� �

R k2dk
�2��3 �T

��
� �p; k�’�n��k� � T��� �p; k�’�n��k��

�2Ep �Mn��’
�
n��p� �

R k2dk
�2��3 �T

��
� �p; k�’�n��k� � T��� �p; k�’�n��k��;

(15)
with the orthonormality conditions

Z p2dp

�2��3
�’�n��p�’�m��p� � ’�n��p�’�m��p�� � �nm;

Z p2dp

�2��3
�’�m��p�’�n��p� � ’�m��p�’�n��p�� � 0;

(16)

which follow directly from the canonical bosonic commu-
tation relations of the operators (12). This completes the
diagonalization of the theory (1), in terms of the physical
observable degrees of freedom. The bound-state Eq. (15)
can be derived alternatively from the Bethe-Salpeter equa-
tion for mesonic states [6–9]. We resort to this method
below. The eigenvalue problem (15) is subject to numerical
investigation (see Ref. [6] and also Ref. [8] where, in
particular, the evolution of the vector-pseudoscalar mass
splitting as a function of the current quark mass is studied
in detail), and no problem is met when building the mes-
onic spectrum for the whole class of theories (1).

III. A HEAVY-LIGHT SYSTEM

A. The bound-state equation

An important feature of the bound-state Eq. (15) is the
fact that each mesonic state is described by means of a two-
component wave function, ’�n��p�. The physical meaning
of these two components is obvious: ’�n��p� describes the
forward motion, in time, of the mesonic quark-antiquark
pair and ’�n��p� its time backward motion. Strictly speak-
ing, for a given set of quantum numbers, four eigenfunc-
tions should be considered—two for the eigenvalue Mn�
and two for �Mn�. Meanwhile, the bound-state Eq. (15)
supports the symmetry

fMn�; ’
�
n��p�g $ f�Mn�; ’

�
n��p�g; (17)

that can be easily verified using its explicit form. Because
of the instantaneous interaction, both particles in the meson
move forward and backward in time in unison. This leads
us to an immediate conclusion that the heavy-light meson,
with the static-quark Zitterbewegung suppressed by its
infinite mass, can be described with a one-component
wave function, so that

’�n��p� � ’n��p�; ’�n��p� � 0; (18)

and the bound-state equation can be considerably simpli-
fied in this case. Although Eq. (15) is written for the single-
flavor theory, its generalization for two flavors is trivial
yielding for the heavy-light bound-state equation:

�m 	Q � Ep �Mn��’n��p� �
Z k2dk

�2��3
T��� �p; k�’n��k�;

(19)

with m 	Q being the static-antiquark mass. The amplitude
T��� �p; k� can be built using the Hamiltonian approach
described in the previous section, though we find it more
instructive to derive the heavy-light bound-state Eq. (19)
using an alternative approach, employing the Bethe-
Salpeter equation. To this end, we start from the homoge-
neous Bethe-Salpeter equation for the mesonic Salpeter
amplitude 1� ~p;M�,
-3
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1� ~p;M� � �i
Z d4k

�2��4
V� ~p� ~k��0Sq� ~k; k0 �M=2�

� 1� ~k;M�S 	Q� ~k; k0 �M=2��0; (20)

where

Sq� ~p; p0� �
��� ~p��0

p0 � Ep � i4
�

��� ~p��0

p0 � Ep � i4
(21)

is the dressed light-quark propagator. The projectors are
defined as

��� ~p� � TpP�T
y
p ; P� �

1� �0

2
;

Tp � exp
�
�

1

2
� ~� ~̂p�

�
�
2
� ’p

	�
:

(22)

Since, for the static particle, the chiral angle is simply
’ 	Q�p� �

�
2 , then the dispersive law and the projectors

become trivial, giving for the heavy-quark propagator:

S 	Q� ~p; p0� �
P��0

p0 �m 	Q � i4
�

P��0

p0 �m 	Q � i4
: (23)

It is convenient to define a modified vertex,

~5� ~p� �
Z dp0

2�
Sq� ~p; p0 �M=2�1� ~p;M�S 	Q� ~p; p0 �M=2�;

(24)

and to perform its Foldy-Wouthuysen transformation by
means of the operator Typ ,

5 � ~p� � Typ ~5� ~p�1̂; (25)

where, for the sake of transparency, we kept the unity on
the right-hand side for the operator rotating the static
antiquark. The resulting matrix bound-state equation reads:

�E� Ep�5� ~p� � P�

�Z d3k

�2��3
V� ~p� ~k�TypTk5� ~k�

�
P�;

(26)

where we defined the energy excess over the static-particle
mass, E � M�m 	Q. The form of the right-hand side of
Eq. (26) suggests that the matrix 5� ~p� should have the
structure

5 � ~p� �
0  � ~p�
0 0

� 	
�

 � ~p�
0

� 	
q
� 0 1
 �

	Q; (27)

where, for future convenience, we split the matrix into the
direct product of the light- and heavy-particle components.
Then the eigenstate equation for the wave function  � ~p�
can be derived in the form of a Schrödinger-like equation,

Ep � ~p��
Z d3k

�2��3
V� ~p� ~k��CpCk�� ~6 ~̂p�� ~6 ~̂k�SpSk� � ~k�

� E � ~p�; (28)
034020
with

Cp � cos
1

2

�
�
2
� ’p

	
; Sp � sin

1

2

�
�
2
� ’p

	
: (29)

The heavy-light bound-state Eq. (28) is the main object for
studies in the present paper. However, it is instructive to
rewrite it in the Diraclike form, which allows one to
investigate the Lorentz nature of confinement in the
heavy-light quarkonium. First, notice that Eq. (26) is writ-
ten for the positive-energy solutions, M � m 	Q � E> 0.
Similarly, for the negative-energy solutions, M � �m 	Q �

E< 0, although the same Schrödinger-like Eq. (28) holds,
but the matrix 5� ~p� takes a different form,

5 � ~p� �
0 0

 � ~p� 0

� 	
�

0
 � ~p�

� 	
	q
� 1 0
 �

Q; (30)

which can be easily guessed from the symmetry (17) and
the specific property of the heavy-light system (18). Thus
the Foldy-rotated wave functions of the light component of
the system, responsible for the positive- and negative-
energy solutions, can be written, according to Eqs. (27)
and (30), as

�� ~p� �
 � ~p�

0

� 	
;

for positive energies and as

�� ~p� �
0

 � ~p�

� 	
;

for negative energies. In view of the passive role played by
the static particle, we shall refer to �� ~p� as to the wave
function of the entire heavy-light system. Consequently,
the bound-state Eq. (28) can be rewritten for �� ~p�,

Ep�� ~p� �
1

2

Z d3k

�2��3
V� ~p� ~k��TpT

y
k � TypTk��� ~k�

� �0E�� ~k�: (31)

As it follows immediately from Eq. (25), the Foldy opera-
tor which splits the positive- and negative-energy compo-
nents of this wave function is Typ : �� ~p� � Typ ~�� ~p�.
Therefore, the pre-Foldy bound-state equation for the
wave function ~�� ~p� follows from Eq. (31) after the counter
rotation with the operator Tp,

EpUp
~�� ~p� �

1

2

Z d3k

�2��3
V� ~p� ~k��Up �Uk� ~�� ~k�

� E ~�� ~p�; (32)

where, for future convenience, we introduced the unitary
operator

Up � Tp�0T
y
p � �0 sin’p � � ~� ~̂p� cos’p: (33)
-4
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Then, using the mass-gap Eq. (7), rewritten in the form:

EpUp � ~� ~p��m�
1

2

Z d3k

�2��3
V� ~p� ~k�Uk; (34)

we arrive at the heavy-light bound-state equation in the
form of a Diraclike equation for the light quark, in coor-
dinate space,

� ~� ~p��m� ~�� ~x� �
Z
d3z�� ~x; ~z�K� ~x; ~z� ~��~z� � E ~�� ~x�;

(35)

with

K� ~x; ~z� �
1

2
�V� ~x� � V�~z� � V� ~x� ~z�� (36)

and

�� ~p; ~q� � �2��3��3�� ~p� ~q�Up: (37)

Notice that the matrix �� ~p; ~k� [13] can be related to the
Green’s function as

�� ~p; ~k� � 2i
Z d!

2�
S�!; ~p; ~k��0; (38)

where we can use either the dressed light-quark propagator
Sq, defined in Eq. (21),

S�!; ~p; ~k� � �2��3��3�� ~p� ~k�Sq� ~p;!�;

or the entire heavy-light Green’s function, built using the
standard spectral decomposition, with the help of the so-
lutions of the eigenstate problem (35),

S�!; ~p; ~k� �
X
En>0

~�n� ~p� ~�y
n � ~k��0

!� En � i0
�

X
En<0

~�n� ~p� ~�y
n � ~k��0

!� En � i0
:

This feature should not come as a surprise since, as men-
tioned before, the static antiquark decouples from the
system, providing the overall color neutrality of the bound
state.

The Lorentz nature of confinement in the effective one-
particle Eq. (35) follows from the matrix structure of
�� ~p; ~k� [13], or equivalently, of Up for the given values
of the relative momentum p involved. Below, we consider
in detail the three regimes which can be identified in the
spectrum of hadrons. Although the heavy-light system was
used before to arrive at the quark-antiquark bound-state
equation, all qualitative conclusions obviously hold for an
arbitrary hadronic system.

For small relative momenta the chiral regime takes
place. Chiral symmetry breaking—spontaneous or ex-
plicit—plays a dominating role, the chiral angle being
close to �

2 . As a result, Up � �0 and the effective inter-
quark interaction becomes purely scalar (even in the ab-
sence of any microscopic scalar force). For light quarks,
the dressed-quark dispersive law Ep differs drastically
034020
from the free-particle form of
������������������
~p2 �m2

p
, it may even

become negative at small momenta—a necessary feature
to have the light (massless) chiral pion. This chiral re-
gime—where the effective interaction is purely scalar—
holds below some effective dynamically generated low-
energy scale, which we call the BCS scale �BCS, that is,
holds for the mean relative interquark momentum p &

�BCS. The BCS scale gives a measure of chiral symmetry
breaking in the low-energy domain of the theory and it is
closely related to the scale of confinement or, equivalently,
to �QCD: �BCS ’ �QCD. As soon as the mass of the quark-
antiquark state grows, as does the mean relative interquark
momentum, the vectorial part of the interquark interaction
becomes more important. Finally, the chiral angle becomes
negligibly small and the interaction acquires a purely
vectorial nature. Thus, we arrive at the chiral symmetry
restoration in the spectrum discussed in the literature
[1,4,5].

Note, in passing, that the Dirac structure of the matrix
�� ~p; ~k� is saturated by the scalar and space-vectorial part,
so there is no room for the time-vectorial interaction,
dangerous from the point of view of the Klein paradox.

B. Chiral symmetry restoration in the spectrum

1. General remarks

It is argued in the literature [1,4,5,9] that, for highly
excited states in the hadronic spectrum, the chiral symme-
try should be restored and the states with opposite parity
should come in doublets. This statement can be proved
using the properties of the bound-state Eq. (28). Indeed, let
 � ~p� be a solution to Eq. (28) with the eigenvalue E.
Consider

 0� ~p� � � ~6 ~̂p� � ~p�; (39)

which, by construction, possesses an opposite parity to
 � ~p�. The eigenvalue problem for the new wave function
 0� ~p� can be easily derived by multiplying Eq. (28) by
� ~6 ~̂p� from the left,

Ep 0� ~p��
Z d3k

�2��3
V� ~p� ~k��SpSk�� ~6 ~̂p�� ~6 ~̂k�CpCk� 0� ~k�

�E 0� ~p�; (40)

whereCp and Sp are interchanged as compared to Eq. (28).
Notice that, for large momenta, one arrives at the relation
Cp � Sp �

1��
2

p , which follows directly from the definition

of the functions Cp and Sp (29) and the large-momentum
behavior of the chiral angle, ’p!p!10 (see the first plot at
Fig. 1). Therefore, for highly excited states, which possess
a large relative interquark momentum, the bound-state
Eqs. (28) and (40) coincide, being simply
-5
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FIG. 1. Solutions to the mass-gap Eq. (7) (the first plot) and the
coefficients C2

p and S2
p (the second plot) for the potential V�r� �

K��1
0 r� with various �’s. We plot the curves for � � 0:3, 0.5,
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Ep � ~p� �
1

2

Z d3k

�2��3
V� ~p� ~k��1� � ~6 ~̂p�� ~6 ~̂k�� � ~k�

� E � ~p�; (41)

so that the states  � ~p� and � ~6 ~̂p� � ~p� become degenerate.
Thus, in the framework of the potential quark model (1),
one can investigate the explicit mechanism of the chiral
symmetry restoration high in the hadronic spectrum. For
further convenience, in addition to the BCS scale �BCS

defined above, which can be related, for example, to the
chiral condensate,
034020
h 	qqi � �
3

�2

Z 1

0
dpp2 sin’p � ���BCS�

3; (42)

we introduce the scale of the symmetry restoration �rest, to
be defined as the scale at which the splitting within the
chiral doublet is much smaller than the BCS scale �BCS.
Such a definition is natural since, alternatively, the BCS
scale can be defined as the splitting within a chiral doublet
at small values of the relative interquark momentum, that
is, in the region where this splitting is essentially dictated
by chiral symmetry. The numerical estimate for �rest in the
case of the harmonic confinement (� � 2) is given below.

For large interquark momenta, the functions Cp and Sp
are smooth and slow, remaining almost constant when
approaching their large-p asymptote of 1��

2
p . Therefore,

since, for confining potentials, the distribution given by
the Fourier transform V� ~p� ~k� has the support at ~k � ~p, it
is possible to consider, approximately, CpCk � C2

p,
SpSk � S2

p and to study C2
p and S2

p (see the second plot
at Fig. 1). This approximation can be easily checked for
the harmonic oscillator potential, for which V� ~p� ~k� /
!k��3�� ~p� ~k�. Taking the corresponding integral by parts,
one can omit, for large momenta, the terms containing
derivatives of the almost constant functions Ck and Sk.
Thus, the chiral symmetry is restored as soon as the dif-
ference C2

p � S2
p becomes negligible. Using the definition

(29), one can find that C2
p � S2

p � sin’p � ’�� �p�, with
’�� �p� being the wave function of the chiral pion, with
coinciding positive- and negative-energy components [6–
9]. Therefore, we conclude that chiral symmetry is restored
in the spectrum if the pionic wave function vanishes for the
given values of the relative interquark momentum. This
gives us an explicit physically transparent relation between
the BCS scale and the scale of the symmetry restoration.
Although, formally, both scales �rest and �BCS are defined
by the only dimensional parameter in the theory K0, we
expect, due to numerical factors, the relation �rest � �BCS

to hold. Below, we perform a numerical check of this
relation and estimate the value of the restoration scale.

2. Numerical estimates: Harmonic oscillator potential

In this paragraph and in order to illustrate the general
results obtained so far, we perform an explicit numerical
study of the heavy-light mesonic spectrum. To avoid un-
necessary complications, we consider the case of the har-
monic oscillator potential, which allows us to formulate the
mass-gap equation and the bound-state problem through
differential equations. This corresponds to the case � � 2
for the potential (3). Then the Fourier transform of the
potential is the Laplacian of the three-dimensional delta-
function,

V� ~p� ~k� � �K3
0!k�

�3�� ~p� ~k�; (43)

the chiral angle is the solution to the differential mass-gap
-6



TABLE I. The masses of orbitally excited states and the split-
tings for the radial quantum number n � 0 as solutions to the
bound-state Eq. (51) with the potential (52). The solutions of the
Salpeter Eq. (55) are also listed for the sake of comparison. All
energies are given in units of K0.

j 1=2 3=2 5=2 7=2

El�j��1=2� 2.04 3.51 4.51 5.35
El�j��1=2� 2.66 3.69 4.57 5.36
!Ej 0.62 0.18 0.06 0.01

ESalp
l�j��1=2� 2.34 3.36 4.24 5.05

ESalp
l�j��1=2� 3.36 4.24 5.05 5.79

!ESalp
j 1.02 0.88 0.81 0.74
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equation,

p3 sin’p �
1

2
K3

0�p
2’00p � 2p’0p � sin2’p� �mp2 cos’p;

(44)

and the dressed-quark dispersive law can be calculated as

Ep � m sin’p � p cos’p � K3
0

�
�’0p�2

2
�

cos2’p
p2

�
: (45)

In order to introduce the BCS scale we, following the
approach suggested before, evaluate the chiral condensate,

h 	qqi � �
3

�2

Z 1

0
dpp2 sin’p � ��0:51K0�

3

� ���BCS�
3; (46)

which gives us

K0 � 490 MeV; (47)

if the standard value of the chiral condensate of
��250 MeV�3 is used in order to fix �BCS. Following the
definition of the symmetry restoration formulated above,
we demand that the mass splitting in a chiral doublet !E
should be much less than �BCS, being, at most, just a few
percent of 250 MeV.

In order to solve the bound-state Eq. (28), we use, as a
conventional scheme for the quantum numbers �, the
angular momentum l, and the total momentum j � l� 1

2
of the light quark, so that the wave function  � ~p� can be
expanded as

 � ~p� � &jlm� ~̂p�
u�p�
p

; (48)

with u�p� being the radial wave function, and the spherical
spinors are defined as

&jlm� ~̂p� �
X
�1�1

Cjm
l�1

1
2�2
Yl�1

� ~̂p�1�2
: (49)

Then, the eigenvalue equation for the radial wave func-
tion u�p� can be readily derived from the bound-state
Eq. (28) in the form:

u00 � �Ep�E�u�K3
0

�
�’0p�2

4
�
�j� 1=2�2

p2 �
.

p2 sin’p

�
u;

(50)

where

. �
�
l; for j � l� 1

2
��l� 1�; for j � l� 1

2

� �

�
j�

1

2

	
:

Notice that Eq. (50) can be rewritten in the form of a
034020
Schrödinger-like equation,

�K3
0u

00 � V�j;l��p�u � Eu; (51)

with the effective potential

V�j;l��p� � Ep � K3
0

�
1

4
’02p �

�j� 1=2�2

p2 �
.

p2 sin’p

�
:

(52)

The well-known property of the spherical spinors,

� ~6 ~̂p�&jlm� ~̂p� � �&jl0m� ~̂p�; l� l0 � 2j; (53)

ensures that the states with j � l� 1
2 possess opposite

parity. The splitting between such states is the subject of
our investigation, and it follows immediately from Eq. (52)
that, for the given total momentum j, this splitting is due to
the .-dependent term in this effective potential. Thus, for
. � ��j� 1

2�, one finds for the difference of the opposite-
parity potentials:

!V � �
�2j� 1�K3

0

p2 sin’p; (54)

which gives us an explicit example of the relation between
the pionic wave function sin’p and the opposite-parity
state splitting, discussed above in general terms.

It is clear from Eq. (54) and from the form of the chiral
angle (the first plot at Fig. 1) that the splitting vanishes for
excited states, since the excited wave function is localized
at larger relative momenta, whereas the chiral angle de-
creases fast with p. In order to prove this property explic-
itly, we solve the bound-state Eq. (50) numerically. The
results are listed in Tables I and II. They demonstrate a
clear pattern of chiral symmetry restoration for orbitally
excited heavy-light mesons. For the sake of comparison,
we calculate also the spectrum of the Salpeter equation
-7
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FIG. 2. Regge trajectories for Eq. (51) with the potential (52)
(solid lines) and for the Salpeter Eq. (55) (dashed lines). In each
pair, the lower curve corresponds to l � j� 1

2 and the upper
curve corresponds to l � j� 1

2 .

TABLE II. The masses of orbitally excited states and the
splittings for the radial quantum number n � 1 as solutions to
the bound-state Eq. (51) with the potential (52). The solutions of
the Salpeter Eq. (55) also are listed for the sake of comparison.
All energies are given in units of K0.

j 1=2 3=2 5=2 7=2

El�j��1=2� 3.91 5.03 5.87 6.60
El�j��1=2� 4.39 5.17 5.92 6.61
!Ej 0.48 0.14 0.05 0.01

ESalp
l�j��1=2� 4.09 4.88 5.63 6.33

ESalp
l�j��1=2� 4.88 5.63 6.33 7.00

!ESalp
j 0.79 0.75 0.70 0.67
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� ������������������
~p2 �m2

q
� K3

0 ~x
2

�
 � ~x� � E � ~x�; (55)

which, in momentum space, also has the form of Eq. (51)
with the potential (52), with the quark dispersive law
substituted by the free energy and the chiral angle put
equal to �

2 in the interaction, which is,

VSalp
�j;l� �p� �

������������������
p2 �m2

q
� K3

0

�j� 1=2�2 � .

p2

�
������������������
p2 �m2

q
� K3

0

l�l� 1�

p2 : (56)

The results are also listed in Tables I and II.
In Fig. 2 we plot the Regge trajectories for the bound-

state Eqs. (51) and (55), as E3=2 versus j,1 for the radial
quantum numbers n � 0 (the first plot) and n � 1 (the
second plot). For the bound-state Eq. (51), the trajectories
for j � l� 1

2 merge in such a way that at j � 5=2 the
splitting is 0.06 (in the units of K0), whereas for j � 7=2
it is already 0.01. Now the BCS scale �BCS is 0:51K0.
Therefore, if we require that the splitting constitutes a few
percent of 0.51 (say, about 10%), then the splitting should
be below 0.051, which happens between j � 5=2 and j �
7=2, at E3=2 ’ 11. This gives the bound-state energy E �
5K0. Let us define this energy to be the restoration scale
�rest. For j � 7=2 we have a mass splitting which, despite
being already 50 times smaller than �BCS, yields a bound-
state energy (of � 5:3) just slightly above �rest. It is then
clear that �rest can be thought of as the onset scale for the
chiral restoration regime. In other words: for a mass split-
ting 10 times smaller than the BCS scale �BCS we have
�rest 10 times bigger than the BCS scale �BCS,
1The quasiclassical spectrum of Eq. (55) gives E / l2=3.
Therefore, for this equation, for the given radial excitation
number n and the total momentum j, one expects two neighbor-
ing nearly parallel straight line trajectories E3=2�j�, correspond-
ing to l � j� 1

2 . Figure 2 clearly exhibits such a behavior.

034020
�rest � 5K0 � 2:5 GeV � 10�BCS; (57)

where the estimate (47) was used for the parameter K0. The
result (57) is in good agreement with other estimates of the
restoration scale known in the literature [5]. In Fig. 3 we
illustrate, for the sake of completeness, the behavior of
the splitting !Ej � El�j��1=2� � El�j��1=2� as a function of
the averaged bound-state energy Ej �

1
2 �El�j��1=2� �

El�j��1=2��.
In contrast, the trajectories for Eq. (55) remain parallel

for all values of the total momentum j. This contrast
provides an explicit demonstration of the role played for
the restoration of the symmetry by the pionic wave func-
tion sin’p in the potential (52).
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3. Generalization to a generic form of the potential

The results obtained in the framework of the potential
quark model (1) are known to be robust against variations
of the form of the quark kernel—although the values of
various physical quantities might change, for example,
with the change of the shape of the confining potential,
the relations between such quantities are left intact.

In Fig. 4, for the sake of clarity, we plot the coefficients
C2
p and S2

p versus the relative momentum p, measured in
GeV. To this end we extracted the corresponding scale K0,
for the given power �, from the definition of the BCS
scale—see Eqs. (46) and (47). This plot is to be compared
with the second plot in Fig. 1, where the same quantities
are plotted in the units of K0. One can see the universality
of the behavior of these functions, regardless of the explicit
form of the confining potential. A similar conclusion holds
for the dressed-quark dispersive law Ep which, for excited
states in the spectrum, tends to the �-independent free-

quark limit of
������������������
p2 �m2

p
. We conclude, therefore, that the

only ingredient of the bound-state Eq. (28) which changes
with the change of the confining potential is the Fourier
transform V� ~p� ~k�, the net result of this change being
simply the modification of the Regge trajectory form, from
E3=2 vs j, for the harmonic oscillator potential, for E���1�=�

vs j, for the generic potential (3). Therefore, we dare to
extend the relation (57) beyond the harmonic oscillator
potential case of � � 2, generalizing it to the entire family
of allowed confining potentials. We find it remarkable that
the chiral potential model suggested for studies of chiral
low-energy phenomena in QCD appears able to address the
034020
problem of the chiral symmetry restoration in the spectrum
of highly excited hadrons and to give a reasonable robust
prediction for the corresponding restoration scale.

IV. CONCLUSIONS

In this paper, we investigate the chiral symmetry resto-
ration for highly excited states in the hadronic spectrum.
We consider the NJL-type model (1), with an arbitrary
confining quark kernel and use it to study the heavy-light
quarkonium. We derive the bound-state equation for the
given system in the form of a Schrödinger-like equation
and also in the form of an effective Diraclike equation for
the light quark in the field of the static antiquark. We give
an explicit expression for the matrix structure of the effec-
tive interaction of the light quark with the antiquark source
for all relative interquark momenta and study the Lorentz
nature of this interaction. Thus, we identify explicitly the
following three regimes: (i) the chiral regime, p & �BCS,
with chiral symmetry breaking playing a dominating role
in the interaction—the latter being predominantly scalar,
(ii) the restoration regime, �rest & p, which realizes for
highly excited states in the spectrum, with the effective
interaction being vectorial and, as a result, states with
opposite parity coming in doublets, and (iii) the intermedi-
ate regime, which interpolates the two aforementioned
ones. We perform a numerical investigation of the heavy-
light bound-state equation for the harmonic oscillator po-
tential and demonstrate explicitly the effect of chiral sym-
metry restoration in the spectrum for orbitally excited
states. We estimate the restoration scale to be �rest �
10�BCS � 2:5 GeV, where the BCS scale �BCS, defining
the low-energy properties of the theory, for example, re-
lated to the chiral condensate, is chosen to take the stan-
-9
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dard value of about 250 MeV. Bearing in mind robustness
of predictions of the theory (1) for relations between
various physical parameters with respect to variations of
the quark kernel, we dare to extend this conclusion to an
arbitrary confining interquark kernel in the Hamiltonian
(1). Thus, we conclude that there is a sufficient window for
the intermediate regime in which, on one hand, chiral
symmetry does not play a dominating role anymore,
whereas, on the other hand, the parity doubling still
does not happen in the spectrum. We find that the scale
of the chiral symmetry restoration in the spectrum, eval-
uated in the framework of the potential models (1), is in
034020
good agreement with other estimates known in the
literature.
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