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An assumption of isospin symmetry permits the determination of sin�2�� from the experimental study
of B! �� decays. Isospin, however, is merely an approximate symmetry; its breaking predicates a
theoretical systematical error �IB

� in the extraction of �. We focus on the impact of �0 � �;�0 mixing, as
well as the manner in which it is amenable to empirical constraint, and determine that �IB

� can potentially
be controlled to O�1��.
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I. INTRODUCTION

Probing the mechanism of CP violation in the B-meson
system demands that the angles of the unitarity triangle, �,
	, and 
, be extracted a plurality of ways [1]. The study of
B! �� decays, e.g., permits the determination of
sin�2��, where � � �2 � Arg��V�tbVtd=V

�
ubVud� and we

recall that �	 		 
 
 ��mod2�� in the standard model
[2]. The measurement of the time-dependent, CP-violating
asymmetries in B; �B! �	�� decays determine S�� and
C��; these measurements in themselves determine
sin�2�eff�, where

sin�2�eff� 

S��������������������

1� C2
��

p : (1)

Penguin contributions make the parameter �eff differ from
�. Gronau and London have noted, however, that the
‘‘pollution’’ �� � �eff � � can be determined and re-
moved with additional B; �B! �� data under an assump-
tion of isospin symmetry [3]. Isospin is an approximate
symmetry—the u and d quarks differ in both their charge
and mass; such isospin-breaking effects make the determi-
nation of �� imperfect. It is our purpose to study these
effects, to the end of assessing the irreducible theoretical
error �IB

� in the determination of �� via this method. Such
is crucial to precision tests of the standard model of CP
violation, realized through improved measurements at the
current B-meson factories and beyond [4]. Earlier work has
focused on the impact of j�Ij 
 3=2 electroweak penguins
[5] and on the role of �0 � �;�0 mixing on �� [6]. The
treatment of the latter, due to Gardner [6], has recently
been reexamined by Gronau and Zupan [7]. The purpose of
this article is to amend that work [7] and to update the
analysis of Ref. [6].

II. ISOSPIN ANALYSIS IN B! �� DECAY

We begin by reviewing the isospin analysis in the
isospin-perfect limit [3]. In this limit, the �	, �0, and
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�� mesons form a degenerate isospin triplet, and the B!
�	�� decay amplitude must be symmetric under the
exchange of the two pions, as per the constraint of Bose
symmetry. We can relate the two-pion states to states of
definite isospin I, j����Ii, via
j�	��i / j����0i 	
1���
2
p j����2i

j�0�0i / j����0i �
���
2
p
j����2i;

(2)
where the properly symmetrized state is j���	isym �
�j�	1 �

�
2 i 	 j�

�
1 �

	
2 i�=

���
2
p



���
2
p
j�	��i [8]. The particles

of the �0�0 final state are identical, so that this state need
not be symmetrized—if symmetrization is performed
nevertheless, an additional factor of 1=2 must be applied
to yield the correct branching ratio. The B�; �B0 form a
degenerate isospin doublet as well; evaluating the Clebsch-
Gordon coefficients allows us to write a decomposition in
terms of amplitudes AI of definite isospin [8]:
AB0!�	�� � h�
	��jHW jB

0i � A0 	
1���
2
p A2;

AB0!�0�0 � h�0�0jHW jB
0i � A0 �

���
2
p
A2;

AB	!�	�0 � h�	�0jHW jB	i �
3

2
A2;

(3)
where analogous relationships in the charge-conjugate
modes ( �A) are implied. We recall that A0 and A2 are
generated by j�Ij 
 1=2 and j�Ij 
 3=2 weak transitions,
respectively. Since the symmetrized states j���	isym and
j�	�0isym appear in the physical amplitudes, the B!
�	�� and B! �	�0 partial widths are a factor of 2
larger than suggested by Eq. (3) [9]. We note that the
reduced transition rate 
�B! �1�2� is related to the
partial width ��B! �1�2� via
-1  2005 The American Physical Society
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��B! �1�2� �
1

16�MB

����������������������������������������������������������������������������������������
1�
�M�1

	M�2
�2

M2
B

��
1�
�M�1

�M�2
�2

M2
B

�vuut 
�B! �1�2�: (4)
Employing experimental masses throughout, we find, in
specific,


	� � 
�B! �	��� 
 2jAB!�	��j
2;


	0 � 
�B	 ! �	�0� 
 2jAB	!�	�0 j2;


00 � 
�B! �0�0� 
 jAB!�0�0 j2:

(5)

We note that electromagnetic radiative corrections, which
may well be important, should be applied to yield the
empirical decay widths and ultimately the reduced transi-
tion rates [10]. Irrespective of such corrections, if we
rewrite the amplitudes of Eq. (3), which satisfy the ‘‘tri-
angle relation,’’

1���
2
p �AB!�	�� � AB!�0�0� 
 AB	!�	�0 ; (6)

in terms of the amplitudes

A	� �
���
2
p
AB!�	�� ; A00 � �AB!�0�0 ;

A	0 �
���
2
p
AB	!�	�0 ;

(7)

defined so that jAijj 

�������
ijp , we find

A	� 	
���
2
p
A00 


���
2
p
A	0: (8)

We assume
���
2
p
jA2j � jA0j, so that ReAB!�0�0 � 0. This

assumption is consistent with theoretical assays of B!
�� decay in an operator product expansion framework
[11], as well as with the pattern of empirical branching
ratios, given current errors [12]. Note that a similar triangle
relation holds for the charge-conjugate modes and thus

�A	� 	
���
2
p

�A00 

���
2
p

�A�0; (9)

where we note j �A�0j2 � 
�B� ! ���0�. The form of
Eqs. (8) and (9) is identical to that of earlier analyses
[3,6,7], once differing definitions are taken into account.
The upshot of the isospin analysis is that the shift of �eff

from � induced by the penguin amplitude in B! �	��,
namely

�� � �eff � � � 1
2 Arg�e

2i
 �A	�A
�
	��; (10)

can be expressed in terms of empirically determined quan-
034015
tities. In particular, with � � Arg�A	�A�	0� and �� �
Arg� �A	� �A��0�, we have [3,7]

��isospin � 1
2�
�����


 1
2�Arg�e

2i
 �A	�A�	�� � Arg�e2i
 �A�0A�	0��:

(11)

In the isospin-perfect limit, as we examine here, A	0 

exp�2i
� �A�0, so that the second term vanishes and
��isospin 
 ��. Geometrically this implies that the two
triangles share a common side; namely,

���������

	0
p



���������
�
�0
p

.
Let us now turn to an analysis of isospin-breaking effects.
Interestingly, the most significant uncertainty arises from
the manner in which ��isospin � ��, promoting the im-
portance of direct theoretical assays of �� [13].

III. ISOSPIN BREAKING IN B! �� DECAY

The charge and mass of the up and down quarks do
differ, so that the predictions of the isospin analysis we
have discussed cannot strictly hold. There are two different
effects to consider. Firstly, penguin contributions of j�Ij 

3=2 character can occur, mediated either by electroweak
penguin effects, or by isospin breaking in the strong-
penguin matrix elements [6,14,15]. Secondly, the triangle
relationships of Eqs. (8) and (9) need no longer hold [6].
For example, the physical, neutral-pion state contains iso-
scalar components due to mixing with the � and �0,
engendering an ‘‘I 
 1’’ amplitude in B! �� decay
[6]. The � and �0 admixtures in the �0 are generated by
the strong interaction in O�md �mu�. Alternatively, we
can regard this interaction as an I 
 1 ‘‘spurion,’’ encoding
isospin-violating effects so that the matrix elements with
the spurion are SU�2�f invariant [16]. In this latter picture,
the ‘‘extra’’ amplitude engendered by �0 � �;�0 mixing
can be recast as a j�Ij 
 5=2 amplitude, generated by
O�md �mu� or O��� effects in concert with a j�Ij 

3=2 weak transition. A j�Ij 
 5=2 transition can also be
realized by isospin-breaking effects in concert with a
j�Ij 
 1=2 weak transition [9], though, as per the spurion
picture, such is not engendered by �0 � �;�0 mixing in
leading order in isospin breaking. Writing Aj�Ij;I, we re-
place Eq. (3) with [8,17]

AB0!�	�� � A1=2;0 	
1���
2
p �A3=2;2 � A5=2;2�;

AB0!�0�0 � A1=2;0 �
���
2
p
�A3=2;2 � A5=2;2�;

AB	!�	�0 �
3

2
A3=2;2 	

���
3

2

s
A5=2;2:

(12)
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We note that this parametrization suffices to capture iso-
spin breaking in B! �� decay, as three theoretical am-
plitudes describe the three empirical ones. Isospin breaking
impacts the determination of �� in two distinct ways. For
example, it can break the triangle relation, Eq. (6). If the
triangle relation is broken in an ill-determined way, the
ability to assess the angles � and �� is compromised. If
the triangle relation is not broken, however, then the ap-
plication of the isospin decomposition given in Eq. (3)
permits the determination of � and �� regardless of
whether additional isospin-breaking effects are present.
Isospin breaking, however, can also make ��isospin differ
from ��; specifically, Arg�e2i
 �A�0A

�
	0� � 0, recalling

Eq. (11). If the impact of both effects can be estimated, if
not controlled via empirical constraints, we can assess the
irreducible theoretical error in the determination of ��.
Interpreting these two effects in terms of the parametriza-
tion of Eq. (12), a nonzero value of the A5=2;2 amplitude
signals the breaking of the triangle relation, whereas pen-
guin contributions to AB	!�	�0 , to A3=2;2, make
Arg�e2i
 �A�0A�	0� � 0 even if A5=2;2 
 0. Electroweak
penguin contributions are an example of the latter effect
[18]. Since current experimental data is consistent with
jA3=2;2j * jA1=2;0j in B! �� decay, we expect that �0 �

�;�0 mixing will play the most important role in the
realization of a A5=2;2 amplitude. In the limit that the
A5=2;2 amplitude is generated exclusively in this manner,
Arg�e2i
 �A�0A

�
	0� � 0 can only be realized through pen-

guin contributions of j�Ij 
 3=2 character. The phenome-
non of �0 � �;�0 mixing can generate both effects; let us
consider it explicitly.

A. �0 � �;�0 mixing

In what follows we examine the role of �0 � �;�0

mixing on the extraction of � from B! �� decays. We
distinguish the amplitude for decay to physical pion final
states, which suffer�0 � �;�0 mixing, e.g., AB!�0�0 , from
the amplitude in the isospin-perfect limit, AB!�3�3

, where
�3 denotes the isospin-triplet state with I3 
 0. Noting
earlier work on �0 � �;�0 mixing in K ! �� decay
[8,19,20], we have
AB	!�	�0 
 AB	!�	�3
	 "AB	!�	� 	 "

0AB	!�	�0 ;

AB!�0�0 
 AB!�3�3
	 2"AB!�3� 	 2"0AB!�3�0 ; (13)
where we assert "; "0 �O��md �mu�=�had� or O��� and
neglect all higher-order terms in isospin-breaking parame-
ters. To gain insight on the nature of �had, we note that the
analysis of the pseudoscalar meson octet in current algebra
[21], or in lowest order chiral perturbation theory [22],
determine the �0 � �8 mixing angle "8 to be
034015
"8 


���
3
p

4

�
md �mu
ms � m̂

�
; (14)

with m̂ 
 �mu 	md�=2, so that we expect �had �O�ms�.
The impact of isospin breaking is controlled by the mag-
nitude of SU�3�f breaking. The breaking of SU�3�f sym-
metry also engenders the mixing of the pseudoscalar octet
and singlet states, �8 and �0, to realize the observed � and
�0 states. Such considerations demand that we evaluate
AB!���0� in the presence of SU�3�f breaking effects. We
postpone specific estimates of " and "0 to the discussion of
our numerical results. We may use these relationships to
rewrite the triangle relation, Eq. (6), which now appears as

1���
2
p �AB!�	�� � AB!�3�3

� 
 AB	!�	�3
; (15)

in terms of amplitudes employing physical �0 states. That
is,

1���
2
p �AB!�	�� �AB!�0�0� 
 AB	!�	�0 �

���
2
p
"AB!�3�

�
���
2
p
"0AB!�3�0 �"AB	!�	�

� "0AB	!�	�0 ; (16)

where replacing AB!�3��0�
with AB!�0��0� generates correc-

tions of higher order in "; "0, which are negligible in the
order to which we work. Note that ��0� connotes either � or
�0 throughout. We observe that the triangle relation is
broken in the presence of isospin-breaking effects [6].

We turn to theory to assess the impact of the amplitudes
containing �;�0 on Eq. (16). The QCD factorization ap-
proach [23] to hadronic B-meson decay analyzes the decay
amplitudes in a systematic expansion in inverse powers of
the heavy-quark mass mb and the strong coupling constant
�s� �, where  �O�mb�. Crucial to the treatment of the
decay amplitudes in this case is that of the physical � and
�0 states themselves, as the � and �0 mix. These states are
not simple flavor-octet and flavor-singlet states, as SU�3�f
symmetry would suggest, but rather each physical state is a
mixture of these components. The presence of the flavor-
singlet component in decays to ��0� final states admits
novel decay mechanisms, in part mediated by the axial
anomaly, not present in other channels [24]. We empha-
size, as recognized in Ref. [24], that these flavor-singlet
contributions are not captured by the analysis of non-��0�

decay channels with an assumption of SU�3�f symmetry.
To implement �� �0 mixing, we employ the Feldmann-
Kroll-Stech scheme [25], also adopted in Refs. [24,26], in
which a single mixing angle characterizes the decomposi-
tion of j��0�i into the flavor states j�qi 
 �ju �ui 	 jd �di�=

���
2
p

and j�si 
 js�si. Beneke and Neubert thus determine [26]
-3
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���
2
p
ABN
B�!����0�

	 2ABN
�B0!�3��0�



X
p
u;c

$p



A���0�q �%pu�	1 	 	2 	 2	S1 	 2	S2��

	
���
2
p
A���0�s

�
%pu�	S1 	 	S2� 	

3

2
	pS3;EW 	

3

2
	pS4;EW

�

	 A��0�q �

�
%pu��1 	 �2 	 	1 	 	2� 	

3

2
�p3;EW 	

3

2
�p4;EW 	

3

2
	p3;EW 	

3

2
	p4;EW

�
; (17)
where $p � VpbV�pd, and we refer to Ref. [26] for all
details. In this expression, the meson masses, decay con-
stants, form factors, and light-cone distribution functions
are all evaluated in the isospin-symmetric limit. Note,
however, that the physical quark charges have been em-
ployed, so that, in particular, eu � ed, in the evaluation of
the electroweak penguin contributions. We note that the
role of a possible c �c component in the ��0� mesons has been
included in the computation of AB�!����0� and A �B0!�3��0�

,
although such effects are likely most significant in b!
sq �q transitions [27], which we do not treat here. The
amplitudes are computed in next-to-leading order in �s
and at leading power in �QCD=mb. The terms representing
034015
weak annihilation contributions are denoted by ‘‘	’’ and
are included, although they are formally suppressed by a
power ofmb. The computation of these contributions suffer
end-point divergences in QCD factorization, so that their
estimate is uncertain. The large direct CP asymmetry
found in the penguin-dominated mode B! K	�� [12]
suggests that annihilation contributions may well play a
larger phenomenological role than anticipated [26].
Nevertheless, if we do neglect the annihilation contribu-
tions, as they are power-suppressed and largely possess, in
this case, the same weak phase as the dominant contribu-
tions, we have
���
2
p
ABN
B�!����0�

	 2ABN
�B0!�3��0�



X
p
u;c

$p



A��0�q �

�
%pu��1 	 �2� 	

3

2
�p3;EW 	

3

2
�p4;EW

�
; (18)

where the �i implicitly depend on the order of the arguments of the Aij prefactor, so that ��p�i � �
�p�
i ��

�0�
q ��. By

comparison, we note that

���
2
p
ABN
B�!���3



X
p
u;c

$p



A��

�
%pu��1 	 �2� 	

3

2
�p3;EW 	

3

2
�p4;EW

�
; (19)
where we emphasize that��p�i � �
�p�
i ���� in this case. The

electroweak penguin contributions which appear in this
expression are explicitly of j�Ij 
 3=2 character. That is,
were the quark-charge dependence made manifest, we
would see that these contributions are proportional to eu �
ed, so that, in analogy to our discussion of �0 � �;�0

mixing, the electroweak contribution contains an effective
isovector interaction acting in concert with a j�Ij 
 1=2
transition. Thus we can write

ABN
B�!����0�

	
���
2
p
ABN

�B0!�3��0�

 ABN

B�!���3

�X��0�q ; (20)

where

�X ��0�q 

�A��0�q �
A��

�� �*���0�q ��
�*����

�
(21)

and

�*�M1M2� 

X
p
u;c

$p

�
%pu��1 	 �2� 	

3

2
�p3;EW

	
3

2
�p4;EW

�
; (22)
with ��p�i � �
�p�
i �M1M2�. We note ABi!�j�k 


ABN
Bi!�j�k

=
���
2
p

, so that the amplitudes ABN
Bi!�j�k

satisfy
both Eqs. (3) and (6), though the AI thus determined would
be

���
2
p

larger. Nevertheless, no physics can depend on this
normalization choice, so that we must have

jABN
B�!����0�

j

jABNB�!���3
j


jAB�!����0� j

jAB�!���3
j
;

jABN�B0!�3��0�
j

jABN�B0!�3�3
j


jA �B0!�3��0�

j

jA �B0!�3�3
j
;

(23)

as well as

AB�!����0� 	
���
2
p
A �B0!�3��0�


 AB�!���3
�X��0�q : (24)

Returning to Eq. (16), we find

1���
2
p �AB!�	�� � AB!�0�0� 
 �1� )�AB	!�	�0 ; (25)

where ), which need not be real, is given by

) 
 "�X�q 	 . . .� 	 "0�X�0q 	 . . .�: (26)
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We note that �X��0�q  !
CP
X��0�q , �*�M1M2� !

CP
*�M1M2�, and

$p !
CP
$�p under CP transformation, whereas each ellipsis

denotes neglected annihilation corrections. It is worth em-
phasizing that this result differs from its analogue in
Ref. [7] in an important way. That is, we have not assumed
SU�3�f symmetry in the construction of ), whereas Ref. [7]
neglects all SU�3�f-breaking effects save for �� �0 mix-
ing. In Ref. [7], ) is replaced by the parameter e0, namely

e0 

��
2
3

p
"	

��
1
3

p
"0: (27)

Let us examine the ingredients of Eqs. (21) and (26). The
ratios of �*�M1M2� differ from unity if SU�3�f is broken in
the light-cone distribution functions, through, specifically,
the hard-spectator contributions to �i�M1M2� [26]. The
latter are real if the contribution of the twist-3 distribution
amplitudes, which generate divergent, albeit formally
power-suppressed, contributions, are neglected. This im-
plies that the ratios of �*�M1M2� in Eq. (21) are real, if all
subleading corrections and electroweak penguin effects are
neglected. The latter do make the ratios of �*�M1M2�
complex in leading order in 1=mb; however, electroweak
penguin effects enter ) in O���md �mu�=�had�, so that
their inclusion is actually of higher order in isospin break-
ing. The remaining factors in Eq. (21) are given by

�A��0�q �
A��

�


FB!�

�0�

0 �0�

FB!�0 �0�
; (28)

where FB!M0 denotes a form factor for the decay to a
pseudoscalar meson M in the convention of Bauer, Stech,
and Wirbel [28]. Following Beneke and Neubert, we pa-
rametrize [24]

FB!�
�0�

0 �0� 
 F1

fq
��0�

f�
	 F2

���
2
p
fq
��0�
	 fs

��0����
3
p
f�

; (29)

noting that F1=F2 �O�1� in the heavy-quark limit. The
first term is related via SU�3�f breaking to FB!�0 �0�, where
one expects F1 � FB!�0 �0� in the Feldmann-Kroll-Stech
scheme [24]. The second term, however, is driven exclu-
sively by the flavor-singlet contribution and cannot be
related to FB!�0 �0�. It is ill-known, though likely of greater
impact on the B! �0 form factor [24].

1. Breaking the triangle relation

A nonzero value of the parameter ) in Eq. (25) signals
the breaking of the triangle relation, Eq. (6), and the
appearance of an amplitude of j�Ij 
 5=2 in character.
In the QCD factorization approach, ) is given by Eq. (26).
If ) can be determined with surety, and is real, an ‘‘isospin
analysis’’ based on Eq. (25) can determine � and ��
without theoretical error from this effect. Determining )
requires the isospin-breaking parameters " and "0, which
characterize �0 � �;�0 mixing, as well as X��0�q , as per

Eq. (21). We begin by determining X��0�q in the QCD
034015
factorization approach. The parameter X��0�q is controlled

by FB!�
�0�

0 =FB!�0 and *��q��=*���� exclusively, if
power-suppressed contributions are indeed negligible.
The former drives the numerical value of ). Using the
parameters of Ref. [24], we find

FB!�0 �0�

FB!�0 �0�

 0:83� 0:02! 0:89

� ���
2

3

s
� 0:82

�
;

FB!�
0

0 �0�

FB!�0 �0�

 0:68� 0:02! 1:1

� ���
1

3

s
� 0:58

�
;

(30)

where we emphasize that the uncertainties are dominated
by that in F2. To illustrate this, the first number in the
reported range for each ratio employs F2 
 0, whereas the
second number employs, rather arbitrarily, F2 
 0:1 as per
Ref. [24]. The reported errors in the F2 
 0 results are
determined exclusively from the errors in the other inputs,
assuming they are uncorrelated. For reference, we have
also included, in brackets, the ratios assumed in the SU�3�f
approach of Ref. [7]. The form factor ratio for the �0 can
differ substantially from that of Ref. [7], and varying the
�� �0 mixing angle does not capture the excursion found.
As for the remaining factor, we estimate, neglecting power
corrections and electroweak penguin contributions,

*��q��

*����
�
�1��

�0�
q �� 	 �2��

�0�
q ��

�1���� 	 �2����

� 1	
�s�fBq
MB$B

f�
FB!�0

�1	 ��2 ���
�0q
2 � �

�
2 �

� 1� 5� 10�3; (31)

where the deviation from unity is determined by SU�3�f
breaking in the light-cone distribution functions, as pa-
rametrized by �M2 , which appear in the hard-spectator
terms. We note, as in the case of annihilation contributions,
that end-point divergences can appear in the power correc-
tions. We employ the parameters given in Ref. [26] and
observe that this source of SU�3�f breaking appears to be
negligible. This observation is consistent with other recent
data. For example, SU�3�f breaking in the form factors and
decay constants suffices to explain the large difference in
the observed branching ratios for Bs ! K	K� and Bd !
�	�� decays [29,30]. We thus determine

X�q 
 0:83� 0:02! 0:89;

X�0q 
 0:68� 0:02! 1:1;
(32)

where the errors and ranges are determined precisely as
discussed after Eq. (30). It is worth noting that the form of
Eq. (24) is quite general; it does not rely on our adopted
framework for �� �0 mixing. If, instead, a general, two-
angle mixing formalism [31,32] in the octet-singlet basis
were employed to describe �� �0 mixing, an equation of
form Eq. (24) would nevertheless emerge [33]. We would
-5
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also find compatible numerical results.1 Indeed, we can use
the empirical decay amplitudes to define and determine an
effective parameter �Xeff

��0�q
via

AB�!����0� 	
���
2
p
A �B!�0��0� 
 AB�!���0 �Xeff

��0�q
; (34)

where if power corrections, as well as isospin-breaking
effects, are negligible, �Xeff

��0�q
is �X��0�q as defined in Eq. (21).

Empirical branching ratios for B� ! ����0�, �B! �0��0�,
and B� ! ���0 decays can thus eventually determine
j �Xeff
��0�q
j, and the angles Arg�AB�!����0�A

�
B�!���0

�Xeff;�
��0�q
� and

Arg�A �B!�0��0�A
�
B�!���0

�Xeff;�
��0�q
�, up to discrete ambiguities.

Data on the charge-conjugate modes would determine the
charge conjugates of these quantities in a similar manner.
Our theoretical analysis suggests that �Xeff

��0�q
is real to a good

approximation,2 so that the deduced empirical angles can
be interpreted as Arg�AB�!����0�A

�
B�!���0� and

Arg�A �B!�0��0�A
�
B�!���0� [7]. Nevertheless, verifying that

j �Xeff
��0�q
j 
 jXeff

��0�q
j, e.g., would serve as a consistency check.

We thus expect that this analysis would not only constrain
the ill-known B! ��0� form factors, but also help deter-
mine the extent to which ��isospin � ��, as we shall
explain.

Before turning to this issue, let us conclude by determin-
ing the expected value of the j�Ij 
 5=2 parameter ) and
the manner in which its uncertainty impacts ��isospin. To
compute ), we use the recent results of Kroll for the �0 �
�;�0 mixing angles [34]:

" 
 0:017� 0:003; "0 
 0:004� 0:001; (35)

to yield

) 
 0:017� 0:003! 0:020 �0:016�; (36)
1In a two-angle mixing formalism, assuming as per Ref. [24],
that the ratios of the B! ��0� and B! � form factors are
determined by the ratios of the related decay constants, we have

FB!�0 �0�

FB!�0 �0�



���
2
p

f�

�
f8 cos,8���

6
p �

f0 sin,0���
3
p

�
;

FB!�
0

0 �0�

FB!�0 �0�



���
2
p

f�

�
f8 sin,8���

6
p 	

f0 cos,0���
3
p

�
:

(33)

If f8 
 f0 
 f� and ,8 
 ,0 
 , and we assume the ideal
mixing angle , 
 sin�1��1=3� we recover
FB!�0 �0�=FB!�0 �0� 


��������
2=3

p
and FB!�

0

0 �0�=FB!�0 �0� 

��������
1=3

p
as

per Ref. [7]. If we employ the parameters in either Eq. (3.7) or
Eq. (3.8) of Ref. [32] we find results comparable to what we have
reported in the F2 
 0 case.

2The SU�3�f-breaking electroweak penguin contribution to
*���0�q �=*���� generates the only complex contribution in lead-
ing power in 1=mb. Note that of the neglected annihilation terms,
only the electroweak penguin annihilation contributions can be
complex.
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where the error in ) is determined from those of the inputs
alone, assuming their errors are uncorrelated. We have
incorporated the �0 � �;�0 mixing angles directly as
determined in low-energy experiments; we note that the
scale dependence of the light-cone distribution functions,
of which this is part, does not enter at next-to-leading order
accuracy in �s [23]. The results employ F2 as in Eq. (30)
and report, in brackets, the value found in the SU�3�f
analysis of Ref. [7] as well. Note that the greater uncer-
tainty in X�0q noted previously has little bearing on the final
error in ), as the �0 � �0 mixing angle "0 is relatively
small. Given an estimate of ) and its error, we can also
proceed to determine the uncertainty in � consequent to it.
To do this, we note that cos� can be determined from the
empirical decay amplitudes, determined from the empiri-
cal branching ratios via Eqs. (4) and (5), and the relation-
ship given in Eq. (25).3 We employ Eq. (3) for the neutral
modes, but define in this case

jA2j 
 2
3�1� )�jAB	!�	�0 j; (37)

to yield

cos� 
 cos�0 	 )
�
cos�0 �

���
2
p jAB	!�	�0 j

jAB!�	��j

�
	O�)2�;

(38)

where

cos�0 

1

2
���
2
p

�

�
jAB!�	��j

2 � jAB!�0�0 j2 	 2jAB	!�	�0 j2

jAB	!�	�0 jjAB!�	��j

�
:

(39)

The error in ) generates an error in the determination of�;
namely, �� 
 �)j@�=@)j, where we note that the error in
�� follows from replacing the amplitudes by their CP

conjugates. Assuming a 100% error in our estimate of
�), as F2 is ill-known and the �0 � �;�0 mixing angles
can have a small electromagnetic component, estimated to
be some 6% of "8 [20], we employ �) 
 0:006 and a
recent empirical compilation of CP-averaged branching
ratios [12], reported in Table I, to estimate �� 
 0:4�

and thus an error in ��isospin of 0:4�, as we add the errors
linearly. In contrast, the shift in � due to the O�)� con-
tribution is 1:2�. We note, in particular, that our error
estimate can be made more robust, if not reduced, through
the measurement of B! ���0� decays.

2. Breaking ��isospin 
 ��

Thus far we have determined the error in ��isospin

incurred through the uncertainty in the parameter ). The
error in ��, however, is determined by that in
3The sign of � is undetermined.
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TABLE I. CP-averaged branching ratios for selected B! PP modes from the compilation of Ref. [12], reported as 106 Br�B!
PP�. We display the experimental data, both preliminary and published, available since the compilation of Ref. [35] and included in the
averages of Ref. [12].

Mode PP PDG [35] BABAR Belle CLEO CDF [36] HFAG [12]

�	�0 5:6	0:9�1:1 5:8� 0:6� 0:4 [37] 5:0� 1:2� 0:5 [38] 4:6	1:8	0:6�1:6�0:7 [39] 5:5� 0:6
��	 <5:7 5:1� 0:6� 0:3 [40] 4:8� 0:7� 0:3 [41] 1:2	2:8�1:2 [42] 4:9� 0:5
�0�	 <7 4:0� 0:8� 0:4 [40] <7 [43] 1:0	5:8�1:0 [42] 4:0� 0:9
�	�� 4:8� 0:5 4:7� 0:6� 0:2 [44] 4:4� 0:6� 0:3 [38] 4:5	1:4	0:5�1:2�0:4 [39] 4:4� 1:3 4:5� 0:4
�0�0 1:9� 0:5 1:17� 0:32� 0:10 [37] 2:3	0:4	0:2�0:5�0:3 [45] <4:4 [39] 1:45� 0:29
��0 <2:9 <2:5 [46] <2:5 [41] <2:9 [42] <2:5
�0�0 <5:7 <3:7 [46] <5:7 [42] <3:7

TOWARDS A PRECISION DETERMINATION OF � IN . . . PHYSICAL REVIEW D 72, 034015 (2005)
�� 
 ��isospin 	 1
2 Arg�e

2i
 �A�0A
�
	0�: (40)

Defining - � Arg�AB	!�	�0T�� and �- �
Arg� �AB�!���0 �T��, where T is the tree-level contribution
to B	 ! �	�0 decay in the isospin-perfect limit, so that
jTj 
 j �Tj, we have

Arg �e2i
 �A�0A�	0� 
 �- � -: (41)

The interplay of these relationships is illustrated in Fig. 1.
As in the isospin-perfect case, the angle � has a discrete
ambiguity, as does the angle - : their overall sign is not
determined. This is realized as an ambiguity in the orien-
tation of 4ABC, that is, whether it points up or down. A
similar ambiguity also exists for the charge-conjugate
amplitudes, which yield �� and �- , to yield a four-fold
ambiguity in ��. The angles - and �- are nonzero if
penguin contributions of j�Ij 
 3=2 character occur. We
wish to estimate the extent to which �� � ��isospin, as
well as its uncertainty, though we shall begin by consider-
ing the contribution from �0 � �;�0 mixing exclusively.

In the presence of �0 � �;�0 mixing, we have

AB	!�	�0 
 AB	!�	�3
	 "AB	!�	� 	 "

0AB	!�	�0 ;

(42)

with AB	!�	�3

 T 	 Pew, where we emphasize that the
φ

T

A
B

C
Pζ

FIG. 1. Schematic illustration of the triangle relation in
B! �� decay in the presence of isospin breaking, Eq. (25).
Note that A � AB!�	��=

���
2
p

, B � AB!�0�0=
���
2
p

, and C � �1�
)�AB	!�	�0 . Moreover, ) is real, with AB	!�	�0 
 T 	 P,
where T is the tree-level contribution to B	 ! �	�0 decay in
the isospin-perfect limit.
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amplitude computed with the I 
 1, I3 
 0 state �3 can
contain an j�Ij 
 3=2 electroweak penguin contribution,
Pew, in addition to a tree-level contribution T. The angle -
can be written as

- 
 Arg�AB	!�	�0A�B	!�	�3
� 	 Arg�AB	!�	�3

T��;

(43)

where the first term is of O�"; "0� and the second is ren-
dered nonzero by Pew. Here we focus on the first term,
namely,

-�;�0 � Arg�AB	!�	�0A�B	!�	�3
�


 " sin,�
jAB	!�	�j

jAB	!�	�0 j
	 "0 sin,�0

jAB	!�	�0 j

jAB	!�	�0 j


 " sin,�

����������������������������������

�B	 ! �	��


�B	 ! �	�0�

s

	 "0 sin,�0

����������������������������������

�B	 ! �	�0�


�B	 ! �	�0�

s
; (44)

where we work in O�"; "0� throughout, with

,��0� � Arg�AB	!�	��0�A
�
B	!�	�0�: (45)

Defining analogous variables for the CP-conjugate ampli-
tudes, we determine that the contribution to ���
��isospin from �0 � �;�0 mixing is

1

2
� �-�;�0 � -�;�0 � 


"
2

�
sin �,�

����������������������������������

�B� ! ����


�B� ! ���0�

s

� sin,�

����������������������������������

�B	 ! �	��


�B	 ! �	�0�

s �

	
"0

2

�
sin �,�0

����������������������������������

�B� ! ���0�


�B� ! ���0�

s

� sin,�0

����������������������������������

�B	 ! �	�0�


�B	 ! �	�0�

s �
: (46)

Letting sin �,��0� 
 � sin,��0� 
 1 and employing the em-
-7
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pirical, CP-averaged branching ratios of the compilation of
Ref. [12], we estimate

1
2 �
�-�;�0 � -�;�0 � & 1:3�; (47)

at 67% confidence interval. An implicit error, of 0:2�,
follows from the errors in the branching ratios and �0 �
�;�0 mixing angles alone, assuming such are uncorrelated.
Note that we have added the errors in �-�;�0 and -�;�0
linearly. This numerical result can be compared to the
bound of 1:6� at 90% confidence level reported in
Ref. [7]; our bound is slightly smaller as it employs mea-
sured branching ratios, rather than experimental bounds.
Its provenance is also different, as the bound in our case
does not depend on an assertion of SU�3�f symmetry. Most
importantly, it is improvable, as it is driven by empirical
errors. In addition, the angles �,��0� and ,��0� are also subject
to empirical constraint, so that a direct assessment of
� �-�;�0 � -�;�0 �=2 should eventually prove possible.
Ultimately, it is the uncertainty in � �-�;�0 � -�;�0 �=2 which
matters, not its gross deviation from zero.

B. Other isospin-breaking effects

Thus far we have considered the disparate roles of �0 �
�;�0 mixing: this isospin-breaking effect can not only
engender a j�Ij 
 5=2 amplitude, breaking the triangle
relation of Eq. (6), but also generate a j�Ij 
 3=2 penguin
amplitude, forcing ��isospin ��� � 0. Yet isospin break-
ing is not limited to �0 � �;�0 mixing, and we can ask
what other effects might enter, as well as how we might
discern their presence from the experimental data.

As we have mentioned, j�Ij 
 3=2 electroweak pen-
guin contributions can contribute to ��isospin � �� � 0,
through the second term of Eq. (43). If one neglects the
electroweak penguin operators associated with small
Wilson coefficients, namely c7 and c8 [11], then the impact
of these contributions on �� can be assessed, without
theoretical ambiguity, up to isospin-violating corrections
[5], to yield [7]

���� ��isospin�ewp 
 1:5� � 0:3�; (48)

where the error arises from that in the empirical inputs.
Isospin breaking in the matrix elements of the strong-
penguin operators can also engender a j�Ij 
 3=2 contri-
bution [6,14], not captured by �0 � �;�0 mixing. For
example, corrections of O��� can distinguish A���3

from

A�3�� , or, specifically,FB
�!��

0 �0�f�3
fromFB

�!�3
0 �0�f�� .

In addition, md � mu effects beyond �0 � �;�0 mixing
can also occur [14,15], though in K ! �� decay, e.g.,
such terms do not appear in the weak chiral Lagrangian
in O�p2� [47]. The contributions from electroweak
penguin operators should yield the largest effect [6]. In
particular, we note, using the notation of Ref. [23], that
�jC4j=jC9j � 4%.
034015
Contributions to the j�Ij 
 5=2 amplitude, not medi-
ated by �0 � �;�0 mixing, can also occur. For example,
O��� effects in the evaluation of FB!�0 and f� can yield an
effective j�Ij 
 5=2 amplitude from either j�Ij 
 3=2 or
j�Ij 
 1=2 weak transition operators. Contributions built
on the former can be absorbed by modifying ) and �) and
enlarging their errors. Contributions built on the latter are
more problematic, as they will make ) and �) complex, as
well as ) � �). Consequently, the angle determined from
the analysis of Eq. (25), i.e., �0 � Arg�A	��1�
)��A�

B	!�	�0�, is not �. A similar conclusion emerges
from the study of the charge-conjugate amplitudes, where
we note ��0 � Arg� �A	��1� �)��A�

B	!�	�0� is not ��.
Generally we can rewrite Eq. (40) as

�� 
 1
2�
��0 ��0� 	 1

2�
�- � -� 	 1

2��
����� � � ��0 ��0��;

(49)

where the last term vanishes if ) and �) are real. Note that
the geometric interpretation of� and - illustrated in Fig. 1,
as well as of �� and �- , make the signed contributions of
� �����=2 and � �- � -�=2, and, by inference, � ��0 ��0�=2
and � �- � -�=2, add constructively. The sign of the term
�� ����� � � ��0 ��0��=2, however, is unclear. Never-
theless, in contradistinction to K ! �� decays [8,48,49],
we do expect the role of the j�Ij 
 1=2 weak transition in
generating an effective j�Ij 
 5=2 amplitude in B! ��
decays to be a relatively small effect. That is, on general
grounds, the pattern of empirical branching ratios shows
that the j�Ij 
 1=2 amplitude is not dominant, indeed that
jA3=2;2j * jA1=2;2j, and �=" � 0:4. It is worth noting,
though, that ) and �) can be complex from the inclusion
of �0 � �;�0 effects alone. However, such effects arise, in
leading power, from SU�3�f breaking in the light-cone
distributions functions of the ��0� and � which appear in
the electroweak penguin contributions and, in the power
corrections, through the electroweak penguin annihilation
contributions. We find the leading-power effect to be neg-
ligibly small, though testing, as per Eq. (34), whether
jXeff
��0�q
j 
 j �Xeff

��0�q
j is borne out by experiment should reveal

the presence of unexpectedly large complex contributions.

IV. SUMMARY

The study of B! �� decays under an assumption of
isospin symmetry permits the extraction of the angle �,
modulo discrete ambiguities. This is realized through the
determination of the penguin pollution ��, which is also
discretely ambiguous, yielding � 
 �eff ��� from the
directly measured quantity sin�2�eff�. Isospin symmetry is
broken in nature, as the up and down quarks differ in both
their mass and charge, and it is important to assess the error
thus incurred on ��. We have studied isospin-breaking
effects in B! �� decays, placing particular emphasis on
the role of �0 � �;�0 mixing, as it yields the most signifi-
cant effects. In particular, �0 � �;�0 mixing can not only
-8
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engender a j�Ij 
 5=2 amplitude, breaking the triangle
relation of Eq. (6), but also generate a j�Ij 
 3=2 penguin
amplitude, forcing ��isospin � �� � 0.

We recognize that, in nature, all flavor symmetries are
approximate, and we have computed the shift in �� to
leading order in isospin breaking, with an assessment of the
error in this shift. To realize this, we have worked within
the QCD factorization framework, though our results do
not depend on the details of such an analysis. Rather, the
essential point is the utility of a combined heavy-quark,
1=mb, and �s expansion of the theoretical decay ampli-
tudes. We use it to sort through the various effects, to
determine that the empirical B! �� amplitudes satisfy
a modified triangle relation, Eq. (25), with an isospin-
breaking parameter )which is real, to good approximation.
Moreover, under the assumption that ) is real and deter-
mined exclusively by �0 � �;�0 mixing, its value can be
determined from experiment, once information on the
�0 � �;�0 mixing angles is employed. Indeed, the essen-
tial improvements over the analysis of Ref. [6] are these:
that a relationship of form Eq. (25) exists with a real
parameter ) and that empirical information on B! ���0�

decays exists and can be employed to constrain the impact
of isospin-breaking effects. This is important, as the B!
��0� form factors contain contributions which are not con-
strained by SU�3�f symmetry [24]. The empirical data on
B! ���0� decays is incomplete, though it can be expected
to improve. Nevertheless, enough information currently
exists to realize a crucial shift in our perception of
isospin-breaking effects. What matters is not the shift in
�� per se, but rather the surety with which we can assess
that shift. We assess that the change in �� due to isospin-
breaking effects, namely %���� � �����0, where
��0 represents the penguin pollution in the isospin-perfect
limit, is

%����
 1:2��)�	1:5��Pew�	1:3��P�0��;�0 ;bound�	 . . .

� 4�; (50)
034015
where we have resolved the discrete ambiguity in �� by
assuming that ��> 0 and �< 0. We note, currently, that
� 
 �101	16�9 �

� [12,50]; no corrections from isospin-
breaking effects have been included. The contribution
labeled ‘‘)’’ is the shift in �� due to the presence of a
A5=2;2 amplitude, realized through �0 � �;�0 mixing only.
This is neglected in the numerical estimates of Ref. [7].
The contributions labeled ‘‘Pew’’ and ‘‘P�0��;�0’’ represent
the shift in �� due to penguin contributions of effective
j�Ij 
 3=2 character. We emphasize that the latter number
is a bound, rather than an explicit estimate. The ellipsis
includes neglected isospin-breaking contributions, such as
A5=2;2 contributions generated by O��� effects on the
j�Ij 
 1=2 weak transition, which should be rather
smaller than the estimate labeled by ). However, the errors
in these estimates are smaller and are insensitive to the
manner in which the discrete ambiguity in �� is resolved:

�IB
� 
 0:4��)� 	 0:3��Pew� 	 1:3��P�0��;�0 ; bound� 	 . . .

� 2�; (51)

and it is improvable. Note, in particular, the error associ-
ated with the A5=2;2 amplitude comes from doubling the
error in the theoretical computation of ); here we employ

the theoretical range in the FB!�
�0�

0 form factors recom-
mended by Ref. [24]. This error can be tested, if not
mitigated, through the use of anticipated empirical data.
Note, too, that we have included the bound from penguin
contributions to B� ! ���0 decays from �0 � �;�0

mixing in our theory error. This can be mitigated with
improved empirical data. Ultimately, we believe that a
theoretical systematic error �IB

� of O�1�� is attainable.
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