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Generalized parton distributions in the impact parameter space with nonzero skewedness
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We investigate the generalized parton distributions (GPDs) with nonzero � and �? for a relativistic
spin-1=2 composite system, namely, for an electron dressed with a photon, in light-front framework by
expressing them in terms of overlaps of light-cone wave functions. The wave function provides a template
for the quark spin-one diquark structure of the valence light-cone wave function of the proton. We verify
the inequalities among the GPDs with different helicities and show the qualitative behavior of the fermion
and gauge boson GPDs in the impact parameter space.
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I. INTRODUCTION

Generalized parton distributions (GPDs) have attracted a
considerable amount of theoretical and experimental atten-
tion recently. An interesting physical interpretation of
GPDs has been obtained in [1,2] by taking their Fourier
transform with respect to the transverse momentum trans-
fer. When the longitudinal momentum transfer � � 0, this
gives the distribution of partons in the nucleon in the
transverse plane. They are called impact parameter depen-
dent parton distributions q�x; b?�. In fact they obey certain
positivity constraints which justify their physical interpre-
tation as probability densities. This interpretation holds in
the infinite momentum frame (even the forward parton
distribution functions have a probabilistic interpretation
only in this frame) and there is no relativistic correction
to this identification because in light-front formalism, as
well as in the infinite momentum frame, the transverse
boosts act like nonrelativistic Galilean boosts. It is to be
remembered that the GPDs, being off-forward matrix ele-
ments of light-front bilocal currents do not have a proba-
bilistic interpretation, rather they have interpretation as
probability amplitudes. q�x; b?� is defined in a proton state
with a sharp plus momentum p� and localized in the
transverse plane such that the transverse center of momen-
tum R? � 0 (normally, one should work with a wave
packet state which is very localized in transverse position
space, in order to avoid the state to be normalized to a delta
function [2,3]). q�x; b?� gives simultaneous information
about the longitudinal momentum fraction x and the trans-
verse distance b of the parton from the center of the proton
and thus gives a new insight to the internal structure of the
proton. The impact parameter space representation also has
been extended to the spin-dependent GPDs [1] and chiral
odd ones [4].

GPDs Hq�x; 0; t� have been investigated in the impact
parameter space in several approaches, for example, in the
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transverse lattice formalism for the pion [5], in a two
component (spectator) model [6] for the nucleon, in the
chiral quark model for the pion [7], and using a power law
wave function for the pion [8]. The spin-flip GPD Eq has
not been addressed in these. The connection of Eq in the
impact parameter space and the Siver’s effect has been
shown in [9] within the framework of the scalar diquark
model of the proton. In a previous work [10], we have
calculated both H�x; 0; t� and E�x; 0; t� in the impact pa-
rameter space for a spin-1=2 composite relativistic system,
namely, for an electron dressed with a photon in QED. The
state can be expanded in Fock space in terms of light-cone
wave functions. The GPDs are expressed as overlaps of
light-cone wave functions [11]. The wave functions in this
case can be obtained from perturbation theory, and thus
their correlations are known at a certain order in the
coupling constant. Their general form provides a template
for the effective quark spin-one diquark structure of the
valence light-cone wave function of the proton [12]. Such a
model is self consistent and has been used to investigate the
helicity structure of a composite relativistic system [12].
An interesting advantage is that the two-body Fock com-
ponent contains a gauge boson as one of its constituents
and so it is possible to investigate the gauge boson GPDs
Hg and Eg. Studies of the deep inelastic scattering structure
functions in this approach and for a dressed quark state also
yield interesting results [13,14].

So far we have discussed GPDs in impact parameter
space for � � 0. However, deeply virtual Compton scat-
tering experiments probe GPDs at nonzero �. In this case, a
Fourier transform with respect to the transverse momen-
tum transfer �? is not enough to diagonalize the GPDs and
thus giving a density interpretation. As the longitudinal
momentum in the final state is different from that in the
initial state, the resulting matrix element would still be off
diagonal. Recently, certain reduced Wigner distributions,
when integrated over the transverse momenta of the par-
tons, were shown to be the Fourier transforms of GPDs
[15], and they can be interpreted as the 3D density in the
-1  2005 The American Physical Society
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rest frame of the proton for the quarks with light-cone
momentum fraction x. In fact, integration over the z coor-
dinate relates them to the impact parameter dependent
parton distributions with � � 0. In [3] it has been shown
that for nonzero �, the Fourier transform of the GPDs with
respect to �? probes partons at transverse position b?,
with the initial and final protons localized around 0? but
shifted from each other by an amount of order �b?. At the
same time, the longitudinal momentum of the protons are
specified. This difference of the transverse position of the
protons depends on � but not on x and thus this information
should be present in the scattering amplitudes measurable
in experiments where the GPDs enter through a convolu-
tion in x. This aspect makes it interesting to investigate the
GPDs in the impact parameter space for nonzero �. Here
also, a useful approach is based on the overlap representa-
tion of GPDs in terms of light-cone wave functions [11].
The overlap representation also can be formulated directly
in the impact parameter space, in terms of overlaps of light-
cone wave functions  �x; b?�, which are the Fourier trans-
forms of the wave functions with definite transverse mo-
menta  �x; k?�.

Here, we calculate the GPDs Hq;g�x; �; t� and
Eq;g�x; �; t� for an effective spin-1=2 system of an electron
dressed with a photon in QED and we investigate them in
the impact parameter space. The plan of the paper is as
follows: The definitions of the fermion and gauge boson
GPDs are given in Sec. II. The fermion and gauge boson
GPDs are calculated, respectively, in Secs. III and IV for a
dressed electron state. The GPDs are expressed in the
impact parameter space in Sec. V. The issue of certain
inequalities among the GPDs in the impact parameter
space is addressed in Sec. VI. The summary and discus-
sions are given in Sec. VII.

II. GENERALIZED PARTON DISTRIBUTIONS

The GPDs are defined in terms of off-forward matrix
elements of light-front bilocal currents. In the light-front
gauge A� � 0 we have
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where the ellipses indicate higher twist terms. The mo-
menta of the initial (final) state is P�P0� and helicity ���0�.
U��P� is the light-front spinor for the proton. The momen-
tum transfer is given by �� � P0� � P�, skewedness � �

� ��

2 �P� . The average momentum of the initial and final state
proton is �P� � P��P0�

2 . We take the frame where �P? � 0.
Without any loss of generality, we take � > 0. t is the
invariant momentum transfer in the process, t � �2. For
simplicity we suppress the flavor indices. Following [3] we
define
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1� �
�

P?

1� �
�

�?

1� �2
: (2.3)

Hq;g and Eq;g are the twist two fermion and gauge boson
GPDs. Using the light-cone spinors [16] we get
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(2.4)
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Note that Eq;g appear both in helicity flip and helicity
nonflip parts. For � � 0, Hq;g correspond to nucleon he-
licity nonflip and Eq;g correspond to the helicity flip part.
III. FERMION GPDS

We take the state j P;�i to be a dressed electron con-
sisting of bare states of an electron and an electron plus a
photon:
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Here ay and by are bare photon and electron creation
operators, respectively, and "1 and "2 are the multiparton
wave functions. They are the probability amplitudes to find
one bare electron and one electron plus photon inside the
dressed electron state, respectively.

We introduce Jacobi momenta xi, q?i such that
P
ixi � 1

and
P
iq

?
i � 0. They are defined as

xi �
k�i
P�

; q?i � k?i � xiP
?: (3.2)

Also, we introduce the wave functions,
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 1 � "1;  2�xi; q?i � �
�������
P�

p
"2�k�i ; k

?
i �; (3.3)

which are independent of the total transverse momentum
P? of the state and are boost invariant. The state is nor-
malized as

hP0; �0 j P;�i

� 2�2��3P�#�;�0#�P
� � P0��#2�P? � P0?�:

(3.4)

The two-particle wave function depends on the helicities of
the electron and photon. Using the eigenvalue equation for
the light-cone Hamiltonian, this can be written as [13]
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m is the bare mass of the electron, ~�2 � ��1 and ~�1 �
�2.  1 actually gives the normalization of the state [13]:
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within order �. Here ' is a small cutoff on x, the longitu-
dinal momentum fraction carried by the fermion. We have
taken the cutoff of the transverse momenta to be �2 [13].
This gives the large scale of the process. The above ex-
pression is derived using Eqs. (3.4), (3.1), and (3.5).

The helicity nonflip part of the matrix element F�q
��

gives information about both Hq and Eq, as can be seen
from (2.4). In terms of the wave function this can be written
as
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We restrict ourselves to the Dokshitsa-Gribov-Lipatov-
Altarelli-Parisi region 1> x> �. As we are considering
no antiparticles 0< x< 1 in our case. It is known that in
the Efremov-Radyushkin-Brodsky-Lepage region, �� <
x < � the GPDs are expressed as off-diagonal overlaps of
light-cone wave functions involving higher Fock compo-
nents [11].

The normalization of the state j  1 j
2 given by Eq. (3.6)

gives another O��� contribution. The q? integral in the
above expression is divergent and can be performed using
the same cutoffs as discussed above. We get, using
Eq. (3.5),
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where I �
R d2q?

L1L2
, L1��q?��1�x�D?�2�m2�1�x1�

2,

and L2 � �q?�2 �m2�1� x2�
2; x1 �

x��
1�� , x2 �

x��
1�� .

It is especially interesting to investigate (3.7) in the
forward limit. For simplicity, we consider the massless
case. We get

F�q
���x;0;0� �j  1 j

2 #�1� x�

�
Z
d2q? �

2��x;q
?� 2��x;q

?�

�j  1 j
2 #�1� x�� j  1 j

2 �
2�

1� x2

1� x
log

�2

�2 ;

(3.9)

here � is a scale, �<<�.
The normalization in this case gives
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Thus we have
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Here the plus prescription is defined in the usual way. Now
we know that in the forward limit Hq�x; 0; 0� � q�x� which
is the (unpolarized) quark distribution of a given flavor in
the proton. From (2.4) we then get F�q

���x; 0; 0� � q�x�, so
from (3.11) we get the splitting function for the leading
-3
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order evolution of the fermion distribution

Pqq�x� �
1� x2

1� x
: (3.12)

Note that the ' dependence is no longer there in Eq. (3.11).
This result is obtained also in [14] by calculating the
structure function of a quark dressed with a gluon (here
one also would get the color factor Cf). In the nonforward
case, one obtains the splitting function for the LO evolution
of the GPDs [17]. Finally, it can be shown from (3.11) that

Z 1

0
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where F1�0� is the Dirac form factor at zero momentum
transfer.

Next we calculate the helicity flip matrix element
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Contribution to (3.14) comes from the two-particle sec-
tor of the state. The mass cannot be neglected here. It can
be written as
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Using Eq. (3.5) we get

F�q
�� �

e2

�2��3
�im�

Z d2q?

L1L2

1����������������������������������
�1� x1��1� x2�

p ��iq1 � q2�

	 �x1�1� x2�
2 � x2�1� x1�

2� � �iD1 �D2�

	 �1� x�x1�1� x2�
2�: (3.16)

The q? integration can be performed either using the
Feynman parameter method or by using
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Here we use the latter method and obtain
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The other integral can be done in a similar way:
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Substituting in Eq. (3.18) we obtain
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In the forward limit, � � 0, x1 � x2 � x, D? � 0, and we obtain, using Eq. (2.5),
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which gives the Schwinger value for the anomalous magnetic moment of an electron in QED [10]:
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IV. GAUGE BOSON GPDS

We calculate the helicity nonflip part of the gauge boson matrix element F�g
�� for the same state as before. This gives

information on the gauge boson GPDs Hg and Eg. Contribution comes from the two-body wave function, which has one
fermion and one gauge boson as constituents. This can be written as an overlap
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The q? integral is divergent. The above can be calculated using (3.5):
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Like the quark case, it is again interesting to look at the forward limit of the above expression. We get
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Here we have neglected the electron mass for simplicity. F�g
���x; 0; 0� gives the (unpolarized) gluon distribution in the

nucleon and the above expression gives the splitting function [14]

Pgq�x� �
1� �1� x�2

x
: (4.4)

In the off-forward case, the splitting functions can be found using the same approach [17].
We now calculate the helicity flip gauge boson GPD Eg given in (2.2) for the same state. The matrix element is given by
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Contribution comes from the two-particle sector. As in the fermion case, the mass cannot be neglected here. This can be
written as
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Using Eq. (3.5) we get
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The q? integration can be performed in a similar way as for the fermions and we get
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In the forward limit, x1 � x2 � 1� x and we get, in agreement with [10],

Eg�1� x; 0� � �
�
�

�1� x�2

x
; (4.9)

here Eg is given by Eq. (2.5). Note that x in the forward case is the momentum fraction of the gauge boson. The second
moment of Eq;g�x; 0�;

R
dxxEq;g�x; 0� gives in units of 1

2m by how much the transverse center of momentum of the parton
q; g is shifted away from the origin in the transversely polarized state. When summed over all partons, the transverse center
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of momentum would still be at the origin. Indeed it is easy
to check for a dressed electron [10]

Z 1

0
dxxEq�x; 0� �

Z 1

0
dx�1� x�Eg�x; 0� � 0; (4.10)

which is due to the fact that the anomalous gravitomagnetic
moment of the electron has to vanish [1]. Note that in the
second term, �1� x� is the momentum fraction of the
gauge boson.
V. GPDS IN THE IMPACT PARAMETER SPACE

Fourier transform of the GPDs with respect to the trans-
verse momentum transfer �? brings them to the impact
parameter space. When the longitudinal momentum trans-
fer � � 0, this gives the density of partons with longitudi-
nal momentum fraction x and transverse distance b from
the center of the proton. For nonzero �, the Fourier trans-
forms are defined as [3],
FIG. 1 (color online). (a) Eq vs b? for � � 0:1 , (b) Eq vs � for b? �
of x. We have taken � � 0:001.

034013
Iq;g���x; �; b
?� �

Z d2D?

�2��2
e�iD

?�b?F�q;g
�� �x; �; D?�

�
1

4�

Z 1

0
d�D?�2J0�j D jj b j�

	

�
Hq;g �

�2

1� �2
Eq;g

�
; (5.1)

Iq;g���x; �; b
?� �

Z d2D?

�2��2
e�iD

?�b?F�q;g
�� �x; �; D?�

�
1

4�
b2 � ib1

j b? j

Z 1

0
d�D?�2J1�j D jj b j�

	
j D j

2m
Eq;g; (5.2)

where J0 and J1 are Bessel functions and b? is called the
impact parameter. In order to avoid infinities in the inter-
mediate steps, we take a wave packet state

Z d2p?

16�3 "�p
?� j p�; p?; �i; (5.3)
0:1 MeV�1, (c) E1
q vs b? for � � 0:1 and three different values
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which have a definite plus momentum. Following [3] we
take a Gaussian wave packet,

"�p?� � G�p?; �2�; (5.4)

where

G�p?; �2� � e���p?�2=2�2�: (5.5)

� gives the width of the wave packet. It is the accuracy to
which one can localize information in the impact parame-
ter space [3]. The states centered around b0 with an accu-
racy � are normalized as

hp0�; b0?;�0 j p�; b?;�i �
1

16�2�2

1

p�
G�b0? � b?;2�2�

	#�p� �p0��: (5.6)

Fourier transform of the matrix elements in Eqs. (5.1) and
(5.2) with the Gaussian wave packet probe partons in the
nucleon at transverse position b but when the initial and
final state protons are centered around 0 but shifted from
each other by an amount of the order of � j b? j . In our
FIG. 2 (color online). (a) Eg vs b? for � � 0:1 and three different
values of �. (c) E1

g vs b? with � � 0:1 and three different values o

034013
case, they probe a bare electron or a photon in an electron
dressed with a photon.

It is interesting to look at the qualitative behavior of the
helicity-flip GPDs Eq and Eg in the impact parameter
space. The contribution in this case comes purely from
the two-body sector, that is it involves the wave function  2

of the relativistic spin-1=2 system. The overlap is given in
terms of the light-cone wave functions whose orbital an-
gular momentum differ by �Lz � �1 [12]. The scale
dependence, as mentioned before, is suppressed here, un-
like Hq and Hg. We use the notations

E q;g�x; �; b?� �
1

4�

Z 1

0
d�D?�2J0�j D jj b j�Eq;g; (5.7)

E 1
q;g�x; �; b?� �

1

4�

Z 1

0
d�D?�2J1�j D jj b j�

j D j

2m
Eq;g;

(5.8)

which contribute to Eq. (5.1) and (5.2), respectively.
Figure 1(a) shows Eq vs b? for fixed � � 0:1 and three
different values of x > �. We have plotted for positive b?.
values of x. (b) Eg vs x for b? � 0:1 MeV�1 and three different
f x. We have taken � � 0:001.
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The functions are symmetrical in j b? j . For all numerical
studies, we have taken a Gaussian wave packet. Eq is
positive and has a maximum for j b? j� 0 and decreases
smoothly with increasing j b? j . For fixed j b? j , Eq is
higher in magnitude for higher x. The qualitative behavior
for nonzero � is the same as � � 0. We have taken the
normalization to be �

2� � 1 and m � 0:5 MeV. Figure 1(b)
shows Eq vs � for fixed b? � 0:1 MeV�1 and three differ-
ent values of x > �. Eq is again a smooth function of � and
increases as � increases for given b? and x. For fixed �, Eq
increases as x increases. We have plotted E1

q in Fig. 1(c) as
a function of b? for � � 0:1 and three different values of x.
The rise near b? � 0 is much more sharp here than in
Fig. 1(a).

In Fig. 2(a) we have shown Eg�x; �; b
?� vs b? for fixed

� � 0:1 and for three different values of x. Eg is negative
for positive b?. It has a negative maximum at b? � 0 and
smoothly decreases in magnitude as b? increases. Again,
the qualitative behavior is the same as � � 0. For a given
b?, Eg decreases in magnitude for increasing x. Figure 2(b)
shows Eg as a function of x for fixed b? � 0:1 MeV�1 and
three different values of � < x. Eg vanishes at x � 1. For
� � 0, it also vanishes at x � 0. For � > 0, Eg increases in
magnitude as � increases. The curves cannot be continued
for x < � as there will be contribution from the higher Fock
components in this region. Figure 2(c) shows E1

g vs b? for
� � 0:1 and three different values of x. The qualitative
behavior is the same as in 2(a)—again the rise near b? �
0 is much sharp like the fermion case. For large b?, E1

g

behaves in the same way independent of x. For complete-
ness, in Fig. 3(a) and 3(b) we show Hq�x; 0; t� and
Hg�x; 0; t� in the impact parameter space, H q�x; b?� and
FIG. 3 (color online). (a) H q�x; b
?� vs b?, (b) H g�x; b

?�

034013
H g�x; b
?�, respectively, for a definite scale � � 5 GeV:

The width of the Gaussian is � � 0:1. Both of them are
smooth functions of b?, increasing as j b? j decreases. We
have omitted the very small b? region in order to show the
resolution of the different curves at higher b?. For a given
b?, H q�x; b?� increases as x becomes closer to 1 and at
x! 1 it becomes a delta function [10] which can be seen
analytically. H g�x; b?�, on the other hand, decreases in
magnitude for a given b? as x goes closer to 1.
VI. INEQUALITIES

GPDs in the impact parameter space obey certain in-
equalities, which impose severe constraints on phenome-
nological models of GPDs. The most general forms of
these inequalities were derived in [18] from positivity
constraints. The spin-flip GPDs Eq;g�x; b

?� defined as the
Fourier transform of Eq;g�x; b?� for � � 0 obey two in-
equalities given in [19]; both of them can be shown to hold
for a dressed electron state. For nonzero �, a general
inequality can be derived [3],

�1� �2�3 j Iq;g�0��x; �; b
?� j2

� Iq;g��

�
x� �
1� �

; 0;
b?

1� �

�
Iq;g��

�
x� �
1� �

; 0;
b?

1� �

�
;

(6.1)

for � � x � 1 and for any combinations of helicities �0; �.
For �0 � �, the inequality is easy to prove, as there are
large logarithmic contributions to Iq;g�� from the scale de-
pendent part. For �0 � �, the inequality is nontrivial and
can be verified numerically. Figure 4 shows the left-hand
side and right-hand side of Eq. (6.1) vs b? for the fermions
vs b? for three different values of x. � is given in MeV.
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FIG. 4 (color online). Inequality for I��. � is given in MeV.
Here x1 �

x��
1�� , b1 �

b?
1�� , x2 �

x��
1�� , b2 �

b?
1�� .

GENERALIZED PARTON DISTRIBUTIONS IN THE . . . PHYSICAL REVIEW D 72, 034013 (2005)
for two different choices of the scale � � 7 GeV and � �
5 GeV. The scale dependence comes entirely from Hq. In

the plot x1 �
x��
1�� , x2 �

x��
1�� , b1 �

b?
1�� , and b2 �

b?
1�� . We

have taken � � 0:1 and x � 0:5 and � � 0:1. For large
b?, the magnitudes of both the left-hand side and the right-
hand side decrease but the inequality does not saturate,
even for higher b? not plotted in the figure.
034013
VII. SUMMARY AND DISCUSSIONS

In this work, we have investigated the GPDs for an
effective spin-1=2 composite relativistic system, namely,
for an electron dressed with a photon in QED. It is known
[12] that the light-cone wave function of this two-body
state gives a template for the effective quark spin-one
diquark structure of the proton light-cone wave function,
which provides the phenomenological relevance of our
study. The GPDs are expressed as overlaps of the light-
cone wave functions, which in this case are known order by
order in perturbation theory. We keep both the skewedness
� and the transverse momentum transfer �? nonzero,
which is relevant for deeply virtual Compton scattering
experiments to probe the GPDs. Fourier transform with
respect to the transverse momentum transfer brings the
GPDs to the impact parameter space. We showed that the
GPDs for the effective state obey the necessary inequal-
ities, and we investigated the qualitative behavior of the
fermion and the gauge boson GPDs in the impact parame-
ter space.
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