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Evolution of the parton dihadron fragmentation functions
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Quark and gluon parton dihadron fragmentation functions and their evolution are studied in the process
of e�e� annihilation. We provide definitions of such dihadron fragmentation functions in terms of parton
matrix elements and derive the momentum sum rules and their connection to single hadron fragmentation
functions. We parametrize results from the Lund Monte Carlo model JETSET as the initial conditions for
the parton dihadron fragmentation functions at the scale Q2

0 � 2 GeV2. The evolution equations for the
quark and gluon fragmentation functions are solved numerically and the results at different higher scales
Q2 agree well with JETSET results. The importance of the input from the single fragmentation functions is
pointed out.
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I. INTRODUCTION

In the analysis of particle production from jets in e�e�

annihilation or in p� p� �p� collisions, a primary observ-
able is the single particle inclusive cross section. Within
perturbative QCD (pQCD) and at leading twist, the single
particle inclusive cross section in e�e� annihilation can be
proved to factorize into a calculable perturbative hard
partonic part and a nonperturbative single inclusive frag-
mentation function [1]. In elementary particle collisions it
is also possible to measure multiple particle production
cross sections. This has led to the construction and study of
multiparticle observables such as event shapes [2,3]. These
offer further insight into the substructure of jets produced
in high-energy particle collisions. In the analysis of jets
produced in high-energy heavy-ion collisions or in semi-
inclusive deeply inelastic scattering (DIS) off large nuclei,
however, the latter analysis is quite infeasible. Along with
the single inclusive cross section [4] another measurable
quantity which may offer insight into the modification of
jet properties in a medium are two high momentum particle
correlations.

Dihadron correlations have indeed been measured re-
cently in a variety of experiments. In the study of jet
suppression in heavy-ion collisions, correlations between
two high pT hadrons in azimuthal angle are used to study
the medium modification of jet structure in heavy-ion
collisions at the Relativistic Heavy-ion Collider (RHIC)
[5,6]. While the back-to-back correlations are suppressed
in central Au� Au collisions, indicating large parton en-
ergy loss in the dense medium, the same-side correlations
remain approximately the same as in p� p and d� Au
collisions. This is to be contrasted with the large suppres-
sion observed in single inclusive spectra [7]. Two-hadron
correlations within the same jet are also measured in DIS
off various nuclei at the HERMES experiment [8]. In such
experiments the dihadron correlations surprisingly display
minimal variation with the choice of nuclear target, even
though the single inclusive production of leading hadrons
is significantly suppressed with increasing atomic number
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of the nuclear target [9]. Given the experimental kinemat-
ics of both experiments, this may be considered as an
indication of parton hadronization outside the medium.
However, since the same-side correlation corresponds to
the two-hadron distribution within a single jet, the ob-
served phenomenon is highly nontrivial.

To study systematically such phenomena, an extension
of the single inclusive fragmentation formalism of QCD is
required, to include correlations between pairs of particles
produced in the same jet. Toward this end, we had pro-
posed dihadron fragmentation functions in a recent paper
[10]. In that effort, the double differential cross section for
the same-side production of two hadrons in the e�e�

annihilation was factorized into the well-known hard cross
section for e� � e� ! �� ! q �q and the quark dihadron
fragmentation functions. The essential purpose of this
fragmentation function is to measure the distribution of
hadron pairs produced in the fragmentation of a hard
quark.

As shown in the case of single hadron fragmentation
functions [11], the medium modification of the fragmenta-
tion function due to multiple scattering and induced gluon
radiation closely resembles that of radiative corrections
due to gluon bremsstrahlung in vacuum. Therefore, it is
important to understand first the QCD evolution of the
dihadron correlations in quark and gluon jets in vacuum.
In the last study [10], we had concentrated on the definition
of the dihadron fragmentation functions and derived the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [12–14] for the nonsinglet quark dihadron
fragmentation function. In this paper, we will consider
singlet quark and gluon dihadron fragmentation functions
which will be directly relevant to the study of medium
modification of jets in high-energy heavy-ion and DIS
collisions. In addition, we will explore momentum sum
rules for the dihadron fragmentation functions and their
relationship to single hadron fragmentation functions.

In the factorized form for the inclusive hadron produc-
tion cross section, the short distance parton cross section
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.034007


A. MAJUMDER AND XIN-NIAN WANG PHYSICAL REVIEW D 72, 034007 (2005)
can be computed order by order as a series in 	s�Q2� for
reactions with momentum transfer much higher above
	QCD. The long distance objects or the inclusive
n-hadron fragmentation functions contain the nonpertur-
bative information of parton hadronization [1,10]. These
fragmentation functions can be defined in an operator
formalism [15,16] and hence are valid beyond the pertur-
bative theory. They, however, cannot be calculated pertur-
batively and have to be instead inferred from experiments.
Since the definitions of these functions are universal or
process independent, once measured in one process, e.g.
e�e� annihilation, they can be applied to another, e.g. deep
inelastic scattering or p� p collisions, and therein lies the
predictive power of pQCD. Yet another predictive power of
pQCD rests in the fact that once these fragmentation
functions are measured or given at one energy scale, they
can be predicted for all other energy scales via the DGLAP
evolution equations.

While hadronization of the outgoing quark and gluon
jets is a nonperturbative phenomenon, inclusive hadron
production cross sections in e�e� collisions have turned
out to be one of the many successful predictions of pertur-
bative QCD [13,17,18]. To the best of our knowledge,
however, measurements of dihadron fragmentation func-
tions have not been performed in e�e� experiments. In the
numerical study of the nonsinglet quark dihadron fragmen-
tation functions in Ref. [10], we used a simple ansatz for
the initial condition as DNS�z1; z2� � D�z1� �D�z2�,
which at best was just a guess and, as we will show later,
differs significantly from the inherent hadron correlations
in a single jet. To facilitate a more accurate numerical
study of the singlet quark and gluon dihadron fragmenta-
tion functions in this paper, we will parametrize the results
of the Lund Monte Carlo model JETSET [19], which has
successfully described many aspects of jet fragmentation
in both e�e�and DIS experiments.

In an earlier effort [20–22], a computation of one and
two hadron distributions in jets was studied. The evolution
of the fragmentation functions was derived in a generating
functional approach based on the coherent branching for-
malism [23,24]. Here one resums both large logarithms in
Q2 and in 1=z. Such a resummation is clearly warranted in
the small z region. One calculates the evolution of the
moments of the fragmentation functions, and resurrects
the evolution of the fragmentation functions from these
moments. However, as pointed out by the authors of
Ref. [22] this formalism is most effective for small values
of z where, in the case of the single inclusive measure-
ments, it demonstrates excellent agreement with data. Such
a resummation, however, displays a growing disagreement
with the data for values of z > 0:1 [22]. Another assump-
tion of this study is the local parton hadron duality.
Therefore, there are no intrinsic two hadron correlations
due to hadronization of a single parton. All final hadron
correlations are generated from parton correlations. Such a
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duality is stringently tested in the case of two particle
distributions [22]. The results of such an effort for two
particle distributions were tested against data from the
OPAL experiment [25], where the agreement remained
less than excellent. This was also in the region of very
small z1; z2. In the present effort the focus will be exclu-
sively on the large z region, i.e., z1; z2 > 0:1. This is the
region of interest for current heavy-ion experiments. We
will also present our analysis in an operator formalism,
following the approach outlined by the authors of Ref. [1].
We will also be interested in the possible role of two hadron
correlations that emerge in the fragmentation of a single
parton. As a result, we restrict this effort to the factorized
formalism of Ref. [1]. The evolution equations presented
will arise in the resummation of large logarithms of Q2.

The remaining sections of this paper are organized as
follows. In Sec. II we review the definition of the double
hadron fragmentation function. We outline how such a
function may be isolated in the expression for a double
differential inclusive cross section. In Sec. III we derive
and discuss various sum rules that are obeyed by the
dihadron fragmentation functions and their connection to
single hadron fragmentation functions. In Sec. IV we out-
line the derivation of the DGLAP [12–14] evolution equa-
tions for the quark and gluon dihadron fragmentation
functions. The initial conditions for the dihadron fragmen-
tation functions are extracted from JETSET at a scale Q0 in
Sec. V. They are then evolved numerically via the DGLAP
evolution equations to different scales Q and compared to
the results from JETSET. Finally in Sec. VI we discuss the
results of our calculation and present our conclusions.
II. DIHADRON FRAGMENTATION FUNCTIONS

In this section, we will review the definition and prop-
erties of dihadron fragmentation functions in the semi-
inclusive process e� � e� ! �� ! h1 � h2 � X via
single jet fragmentation where two hadrons are identified.
In most cases we will be concerned with back-to-back
quark and antiquark jets. Study of the gluon fragmentation
function, however, will involve three-jet events. In both
cases, our focus will always be on two hadrons produced in
the same jet.

The cross section for the process of e�e�annihilation
into hadrons may be expressed as

� �
1

2s
e4

4�q2�2
X
Shad

�4�k1 � k2 � PS�L��h0jJ
��0�jShadi

� hShadjJ
��0�j0i

�
e4

2sq4
L��W��

4
; (1)

where J� �
P
qQq

� q�
� q is the hadronic electromag-

netic current (Qq is the electric charge of the quark q in
units of the charge of the positron), L�� the leptonic tensor
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and W�� the hadronic tensor. The four momentum of
the virtual photon is q � k1 � k2 � �Q; 0; 0; 0� and the
Mandelstam variable s � q2 � Q2. In the remaining, the
sum over Shad will include both the sum over the complete
set of states and the phase space integration
�f2Shadd

3pf=2Ef�2��3 and PS �
P
fpf.

The definition and factorization of dihadron fragmenta-
tion functions involve identifying two hadrons with nearly
parallel momenta p1 and p2 among hadronic states along
the direction of one of the partons and replacing the
remaining sum over hadronic states with a sum over the
rest of all partonic states (see Fig. 1). This is followed by an
extraction of the leading twist component (see Ref. [10] for
details). Differentiating the total inclusive cross section
with respect to the forward momentum fractions of the
two hadrons i.e., z1; z2, the leading order (LO) factorized
form of the double differential cross section may be ex-
pressed as

d2�
dz1dz2

�
X
q

�q �q0 �Dh1h2
q �z1; z2� �Dh1h2

�q �z1; z2��; (2)

where �q �q0 is the total LO hard cross section for an
e�e�pair to annihilate into hadrons. The two functions
Dh1h2
q �z1; z2� and Dh1h2

�q �z1; z2� represent the dihadron frag-
mentation functions for a quark and an antiquark. The
quark dihadron fragmentation function in light-cone gauge
(A� � 0 gauge) is obtained as,
q

k

p

p1

p2

FIG. 1. The leading order Feynman diagram contributing to
the double inclusive fragmentation function.
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Dh1;h2
q �z1; z2� �

z4h
4z1z2

Z d2q?
4�2��3

�
Z d4p

�2��4
Tq�p;p1; p2��

�
zh �

p�
h

p�

�
:

(3)

The forward momentum fractions of the identified hadrons
z1; z2 are z1 � p�

1 =p
� and z2 � p�

2 =p
�. The momentum

ph represents the sum of the hadronic momenta i.e., ph �
p1 � p2. Henceforth, the direction identified by ~ph will be
considered the same as the direction of the jet. The trans-
verse spread of the two hadrons around the jet direction is
indicated by the relative transverse momentum ~q? �
~p1? � ~p2?. As is indicated by the final �-function in the
above equation, the momentum fraction zh � z1 � z2. The
matrix element of the operator product Tq�p; z1; z2� is
given as (in the light-cone gauge)

Tq�p;p1; p2� � Tr

"
��

2p�
h

Z
d4xeip�x

X
S�2

h0j q�x�

� jp1; p2; S� 2ihp1; p2; S� 2j � q�0�j0i

#
:

(4)

The above expression for the dihadron fragmentation func-
tions includes the integration over the transverse momenta
q?. As a result the angular correlation between the de-
tected hadrons is also integrated over in such a definition.
In order to observe such correlation a differentiation of the
dihadron fragmentation function with respect to the trans-
verse angle must be carried out. In this paper, we will
continue to focus on the integrated fragmentation function.

The above definition for the dihadron fragmentation
function also admits a simple diagrammatic interpretation
in terms of the cut-vertex method of Mueller [15]. The
diagrammatic rule in terms of the quark cut-vertex is out-
lined in Fig. 2. The product of these rules along with the
FIG. 2 (color online). The cut-vertex representation of the
quark dihadron fragmentation function.
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FIG. 3 (color online). The cut-vertex representation of the
gluon dihadron fragmentation function.
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factor z4h=�4z1z2� is the integrated dihadron fragmentation
function.

The gluon dihadron fragmentation function can be simi-
larly constructed by identifying two hadrons moving with
almost parallel momenta in the direction of the outgoing
gluon in a three-jet event in e�e� annihilation processes.
Factorizing the hard cross section from the soft matrix
element one obtains the gluon dihadron fragmentation
function at leading twist as (see Ref. [10] for details),

Dg�z1; z2� �
z3h

2z1z2

Z dq2?
8�2��2

Z d4l

�2��4

� �
�
zh �

p�
h

l�

�
Tg�l;p1; p2�: (5)

In the above equation, the meanings of various momenta
and forward momentum fractions are the same as for the
quark dihadron fragmentation function. The gluon overlap
matrix element Tg�l;p1; p2� is defined as

Tg�l;p1; p2� �
Z
d4xeil�x

X
S�2

h0jAa��x�jp1; p2; S� 2i

� hp1; p2; S� 2jAb��0�j0i
�abd���l�

16
; (6)

where d���l� is the gluon’s polarization tensor in the light-
cone gauge and sum over the color indices of the gluon
field is implied.

The gluon dihadron fragmentation function also admits
a simple diagrammatic interpretation in terms of the cut-
vertex method. The diagrammatic rule in terms of the
gluon cut-vertex is outlined in Fig. 3. The product of these
rules along with the factor z2h=�2z1z2� is the integrated
dihadron fragmentation function.
III. SUM RULES

One of the many interesting properties obeyed by the
single inclusive fragmentation functions are the various
sum rules. Primary among them are the momentum sum
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rules X
h

Z
dzzDh

q�z� �
X
h

Z
dzzDh

g�z� � 1: (7)

Here the single inclusive fragmentation functions are de-
fined as [15,26,27],

Dh
q�z� �

z3

2

Z d4p

�2��4
�
�
z�

p�
h

p�

�
Tq�p; ph�; (8)

Dh
g�z� � z2

Z d4l

�2��4
�
�
z�

p�
h

l�

�
Tg�p; ph�; (9)

in terms of parton matrix elements

Tq�p; ph� � Tr

"
��

2p�
h

Z
d4x

X
S�1

h0j q�0�jph; S� 1i

� hph; S� 1j � q�x�j0ie
ip�x

#
; (10)

Tg�l; ph� �
Z
d4x

X
S�1

h0jAa��x�jph; S� 1i

� hph; S� 1jAb��0�j0i
�abd���l�

16
eil�x: (11)

They can be interpreted as single inclusive hadron multi-
plicity distributions within fractional momentum zh and
zh � dzh from parton fragmentation. Similarly, one can
derive the momentum sum rules for dihadron fragmenta-
tion functions. Furthermore, one can also derive sum rules
that relate dihadron fragmentation functions to single frag-
mentation functions.

Given ~p?h � ~p?1 � ~p?2 and ~q? � ~p?1 � ~p?2, we
have assumed that the total transverse momentum of the
two hadrons ~p?h is parallel to the parton’s transverse
momentum in the definition of parton dihadron fragmen-
tation functions in Eqs. (3) and (5). Similarly, if we con-
sider single hadron fragmentation, the hadron transverse
momentum ~p?;1 is also parallel to the parton’s transverse
momentum. We should then have the following identity,Z d2p?h

2�z2hp
�2
q

�
Z d2p?1

2�z21p
�2
q

� 1; (12)

which is just integration over the angle of the initial parton.
Using the above identity, one can recast the momentum
integration as

dz2
z2
d2p?h

d2q?
4�2��3

� 2d2p?1
d3p2

2E2�2��
3 : (13)

Here, the external quark momentum is p�
q and hadrons

momenta are p�
1 � z1p�

q and p�
2 � z2p�

q . One can also
rewrite the �-function ��zh � p�

h =p
�� � �z1=zh���z1 �

p�
1 =p

�� in the definition of the dihadron fragmentation
functions.
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FIG. 4. The contribution from the quark fragmentation to the
NLO correction of the quark dihadron fragmentation function.
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Since a dihadron fragmentation function is essentially a
two-hadron multiplicity distribution, its sum rules must
involve the information of the number of hadron pairs.
An example of this isX

h1;h2

Z
dz1dz2D

h1h2
q;g �z1; z2� � hN�N � 1�i; (14)

where hN�N � 1�i is the second cumulant moment of the
multiplicity distribution and

hNi �
X
h

Z
dzDh

q;g�z� (15)

is the mean multiplicity from parton fragmentation. Inside
the parton matrix elements of the fragmentation function,
one can rewrite

X
h2;S�2

Z d3p2

2E2�2��
3 jp1; p2; S� 2ihp1; p2; S� 2j

�
X
h2

Z d3p2

2E2�2��3
âyh1�p1�â

y
h2
�p2�âh2�p2�âh1�p1�;

(16)

� âyh1�p1�âh1�p1��N̂ � 1�; (17)

where âyh and âh are creation and annihilation operators for
hadron h, and

N̂ �
X
h

Z d3p

2E�2��3
âyh �p�âh�p�; (18)

is the total multiplicity operator. Here we have assumed
hadrons as bosons. Using a similar expression,X

S�1

jp1; S� 1ihp1; S� 1j � âyh1�p1�âh1�p1�; (19)

for single inclusive states, one can effectively have the
identity

X
h2;S�2

Z d3p2

2E2�2��3
jp1; p2; S� 2ihp1; p2; S� 2j

�
hN�N � 1�i

hNi

X
S�1

jp1; S� 1ihp1; S� 1j: (20)

Using Eqs. (12), (13), and (20), one can obtain the
following relationship,

X
h2

Z
dz2D

h1h2
q;g �z1; z2� �

hN�N � 1�i

hNi
Dh1
q;g�z1�; (21)

between dihadron and single hadron fragmentation func-
tions. Using the momentum sum rules for the single hadron
fragmentation functions, one has the following momentum
sum rule for dihadron fragmentation functions,
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X
h1;h2

Z
dz1dz2

z1 � z2
2

Dh1h2
q;g �z1; z2� �

hN�N � 1�i

hNi
: (22)

Note that both hNi and hN�N � 1�i in Eqs. (14) and (15) are
not infrared safe and therefore not well-defined in the
collinear leading log approximation for the fragmentation
functions. Consequently, these sum rules for dihadron
fragmentation functions are also not well-defined in the
leading log approximation. These are however, computable
in a double log resummed theory at the partonic level
[21,22]. One still requires the determination of a handful
of unknown constants that describe the hadronization pro-
cess. Such a calculation is valid at very small z1; z2 <
<0:1. No doubt, this region presents the largest contribu-
tion to the total multiplicity of a jet. However, as we are
strictly interested in the large z1; z2 region (0:1< z1; z2 <
1), which is the region accessible to heavy-ion experi-
ments, results of a resummed calculation will not be in-
voked. The sum rules, though not defined at the leading log
level, may still provide useful phenomenological con-
straints for practical modeling of these fragmentation
functions.
IV. DGLAP EVOLUTION

One of the many successes of the factorized pQCD is the
prediction of the scaling violation of the single inclusive
fragmentation functions via the DGLAP equations. If the
fragmentation functions are measured at an initial large
scale Q0 >>	QCD, they can be predicted at any higher
-5
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FIG. 5. The contribution of gluon fragmentation to the NLO
correction of the quark dihadron fragmentation function.
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FIG. 6. The mixed contribution to the NLO correction of the
quark dihadron fragmentation function.
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scale Q. In terms of the physical pictures afforded by the
parton model, one imagines that the initiating quark loses
its large virtuality through the radiation of multiple soft
gluons and finally fragments into hadrons. Such a picture is
validated within field theory by considering the leading
twist contributions of higher order diagrams in e�e� an-
nihilation. The leading log (LL) contributions from all such
diagrams are resummed and a set of coupled differential
equations for the rate of change of the fragmentation
functions with the momentum scale is derived.

In Ref. [10], a QCD evolution equation for the non-
singlet quark dihadron fragmentation function in an opera-
tor formalism was derived. The resulting evolution
equation also admits a simple physical interpretation in
034007
terms of the diagrams shown in Figs. 4–6. The reader will
note the new contribution from the diagram indicated in
Fig. 6: the two detected hadrons emerging from the frag-
mentation of two separate partons. This contribution will
turn out to be essential in determining the QCD evolution
of dihadron fragmentation functions.

The resulting DGLAP evolution equation for the quark
dihadron fragmentation function is given as
@Dh1h2
q �z1; z2; Q2�

@ logQ2
�
	s
2�

"Z 1

z1�z2

dy

y2
Pq!qg�y�D

h1h2
q

�
z1
y
;
z2
y
;Q2

�
�

Z 1�z2

z1

dy
y�1� y�

P̂q!qg�y�D
h1
q

�
z1
y
;Q2

�
Dh2
g

�
z2

1� y
;Q2

�

�
Z 1�z1

z2

dy
y�1� y�

P̂q!qg�y�D
h2
q

�
z2
y
;Q2

�
Dh1
g

�
z1

1� y
;Q2

�
�

Z 1

z1�z2

dy

y2
Pq!gq�y�D

h1h2
g

�
z1
y
;
z2
y
;Q2

�#
:

(23)
Where Dh
q�z;Q

2� and Dh
g�z;Q

2� are the single inclusive
quark and gluon fragmentation functions, and
Dh1h2
g �z1; z2; Q2� is the gluon dihadron fragmentation func-

tion [see Eq. (5)]. In the above equation Pq!qg�y� is the
splitting function for a quark to radiate off a gluon and keep
a fraction y of its initial forward light-cone momentum. It
is identical to the splitting function kernel of the DGLAP
equation for the single fragmentation function, i.e.,

Pq!qg�y� � CF

�
1� y2

1� y

�
�
: (24)

The subscript ‘‘�’’ indicates that the negative virtual cor-
rection has been added within the splitting function. The
splitting function in the second line of Eq. (23), P̂q!qg, is
identical to the above equation except that it lacks the
negative virtual correction. The last splitting function is
the probability for a quark to radiate off a gluon with a
fraction y of its forward momentum and has an expression
identical to the case for the single fragmentation case. It
should be pointed out in passing that Pq!gq�y� also has no
virtual correction and thus no negative contribution. In the
evolution of the dihadron fragmentation function the sole
negative contribution arises from the virtual piece in
Pq!qg�y�; all other contributions are positive. Another
difference from the case of the single inclusive fragmenta-
tion function are the measures 1=y2 and 1=y�1� y�. These
can be understood on the basis that the origin of the
dihadron fragmentation function lies in the evaluation of
a double differential inclusive cross section (see Sec. II of
Ref. [10]). We also point out that Eq. (23) may also be
derived in the cut-vertex formalism via the renormalization
of the bare cut-vertex presented in Fig. 2.

The evolution of the gluon dihadron fragmentation func-
tion may be derived in the cut-vertex formalism via the
-6
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renormalization of the bare cut-vertex shown in Fig. 3. It
should be pointed out that the evolution equations for the
quark and gluon dihadron fragmentation functions may be
motivated using parton model arguments such as those of
Refs. [18,28]. The evolution equation for the gluon diha-
034007
dron fragmentation functions now includes four pieces: the
gluon may split into a quark-antiquark pair or into two
gluons. The detected hadrons may both emanate from the
same parton (quark, antiquark or gluon) or from the two
different partons resulting from the split, i.e.,
@Dh1h2
g �z1; z2; Q

2�

@ logQ2 �
	s
2�

�Z 1

z1�z2

dy

y2
2nfPg!q �q�y�D

h1h2
q

�
z1
y
;
z2
y
;Q2

�

�
Z 1�z2

z1

dy
y�1� y�

nfPg!q �q�y�D
h1
q

�
z1
y
;Q2

�
Dh2

�q

�
z2

1� y
;Q2

�

�
Z 1�z1

z2

dy
y�1� y�

nfPg!q �q�y�D
h2
q

�
z2
y
;Q2

�
Dh1

�q

�
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(25)
In the above equation, nf is the number of flavors of quarks
assumed. In the remainder of this paper we will assume nf
to be 3. Henceforth, the quark and antiquark fragmentation
functions will not be distinguished; in both cases the
singlet fragmentation function will be assumed i.e., Dq �
D �q � �Dq �D �q�=2. The splitting function Pg!q �q is the
probability for the initial gluon to decay into a quark-
antiquark pair with the quark carrying a fraction y of the
forward momentum of the gluon. It is given as

Pg!q �q � TF�y
2 � �1� y�2�; (26)

where TF is the Casimir. It may be noted that interchanging
quark and antiquark may also be achieved by the switch
y! 1� y. In Eq. (25), Pg!gg�y� is the probability for the
gluon to split into two gluons, and has the expression

Pg!gg�y� � 2CA

�
y

�1� y��
�

1� y
y

� y�1� y�
	

� ��1� y�
�
11

6
CA �

2

3
nfTF

	
: (27)

The presence of the ‘‘�’’-function as well as the
�-function is the result of virtual contributions from gluon
and quark-antiquark loops. The final splitting function in
Eq. (25) is essentially the above splitting function without
the virtual corrections, i.e.,

P̂ g!gg�y� � 2CA

�
y

�1� y�
�

1� y
y

� y�1� y�
	
; (28)

since there are no virtual corrections to the independent
fragmentation contributions at the same order. As hadrons
with finite momentum fractions originating from both
gluons are detected, the range of values of the intermediate
momentum fraction y may approach neither 0 nor 1.
Therefore, there is no infrared divergence even without
cancellation by virtual corrections. As one can see now
there exist two new contributions to the evolution of the
gluon dihadron fragmentation function: from independent
single fragmentation functions after a split to a quark-
antiquark and to two gluons. Both these contributions are
positive. This again will turn out to be an essential part in
the equation that influences the QCD evolution of gluon
dihadron fragmentation functions. The reader will note that
Eqs. (23) and (25) are very similar in structure to the
evolution equations derived in Ref. [22] within the modi-
fied leading log approximation, using a generating func-
tional technique. The fact that we obtain similar results
from somewhat different starting assumptions provides an
important check on the consistency of our approach.

V. RESULTS OF EVOLUTION: COMPARISON
WITH JETSET

To date, measurements of single inclusive cross sections
in e�e� collisions remain the primary set of data used in
the parametrization of the fragmentation functions and
testing their scaling violations. In many ways this provides
an independent justification of the factorized pQCD ap-
proach to high energy collisions. The absence of any initial
state interactions makes e�e� experiments ideal for base-
line measurements of parton fragmentation in vacuum,
while allowing for tractable calculations of their evolution.
However, no such measurements have been performed for
double inclusive cross sections. In the absence of such
measurements and in the interest of simplicity we turn to
Monte Carlo event generators for both the extraction of the
initial conditions and for comparison to the numerical
results of the evolution equation for dihadron fragmenta-
tion functions.

Monte Carlo event generators such as JETSET [19] have
enjoyed great success as simulators of e�e� collision
events. They provide reliable predictions not only for
single inclusive measurements but also for many particle
observables such as event shape and interjet particle flows.
-7



FIG. 7 (color online). The gluon dihadron fragmentation
function.

FIG. 8 (color online). The result of the fit of the function of
Eq. (31) to Fig. 7. See text for details.
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Hence, it is reasonable to assume that two particle corre-
lations extracted from a ‘‘tuned’’ event generator will
closely mimic such correlations measured in real experi-
ments. The events generated will be restricted to two-jet
events for a measurement of the quark dihadron fragmen-
tation function and to three-jet events for the gluon diha-
dron fragmentation function. Single inclusive hadron
fragmentation functions for both quarks and gluons will
also be measured in the same set of events.

In the extraction of the quark fragmentation functions
3� 106 dijet events distributed equally over three flavors
were simulated using JETSET. The





s

p
of the reaction was

set to 20 GeV. In all such events the direction of the
initiating quark and its initial virtuality were controlled.
The virtuality of the initiating quark Q sets the scale of the
fragmentation function. The forward light-cone momen-
tum of the initiating quark was read off from the event list.
In such experiments the single fragmentation function is
defined as

Dq�z� �
1

Nevt

dN�z�
dz

: (29)

In this paper, we restrict the flavor of the detected particles
to �� and ��. The variable z � p�

�=p
�
q , where pq is the

momentum of the fragmenting quark. The denominator
Nevt is the number of events, whereas dN�z� represents
the number of particles, over all events, that fall between z
and z� dz of the momentum fraction. The dihadron frag-
mentation function is measured as

Dq�z1; z2� �
1

Nevt

d2P�z1; z2�
dz1dz2

; (30)

where, d2P�z1; z2� represents the number of pairs of pions
with momentum fractions between �z1; z1 � dz1� and
�z2; z2 � dz2�. In constructing these functions, z1 was al-
ways restricted to be larger than z2.

For the extraction of the gluon fragmentation function,
an identical procedure as above was carried out with the
sole restriction that all events be three-jet events and a large
fraction of the energy be concentrated in the gluon. The
latter requirement guarantees that events are predomi-
nantly composed of cases where the gluon and the quark-
antiquark pair are always contained in opposite hemi-
spheres. Tracking the final hadrons in the gluon’s hemi-
sphere leads to the construction of the gluon fragmentation
function. It should be pointed out that in the Lund model of
fragmentation, which is the underlying fragmentation
model in JETSET, an outgoing gluon is represented by a
kink in the fragmenting string which begins at the quark
and terminates at the antiquark. Perturbative showers
within JETSET modify this picture and allow for multiple
strings to form and fragment. A plot of the gluon dihadron
fragmentation function thus extracted is shown in Fig. 7.

For the convenience of providing initial conditions to the
evolution equations, the fragmentation function of Fig. 7 is
034007
parametrized by fitting to a function of the type

D�z1; z2� � Nz	1
1 z

	2
2 �z1 � z2�	3�1� z1�.1�1� z2�.2

� �1� z1 � z2�.3 : (31)

There are seven parameters in the above fit: N, 	1, 	2, 	3,
-8



TABLE I. Values of different parameters used in the fit to the fragmentation functions.

Parton Q2 N 	1 	2 	3 .1 .2 .3

Quark 2 GeV2 4.080 �0:673 �0:440 �0:707 0.196 1.717 1.359
Quark 109 GeV2 5.872 �1:103 �0:425 �0:436 0.410 2.997 2.164
Gluon 2 GeV2 8.000 �6:246 �1:319 6.736 4.324 15.214 1.351
Gluon 109 GeV2 1.090 �8:848 �1:430 8.568 6.216 22.031 �0:145
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FIG. 9 (color online). Results of the evolution of the quark
(triangles) and gluon (squares) fragmentation function
[Dq�z1; z2�; Dg�z1; z2�]. In all cases z1 is held fixed at 0.5.
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.1, .1, .3. The reader will note that the structure of the
function is a simple generalization of the parametrization
of the single fragmentation functions. The fit is carried out
on the logarithm of the fragmentation function by the
method of minimum unbiased /2 (assuming that the error
in the logarithm of the data points is the same for all
points). The reader will note that this is essentially a least
squares fit to the logarithm of the function, which ensures
equal weight to all points. The logarithm ensures that the fit
is better at larger values of z1 and z2, where the absolute
value of the logarithm of the function is large. A plot of the
final result of the fit for the gluon dihadron fragmentation
function is shown in Fig. 8. One notes that the fit function
of Eq. (31) mimics the function closely except at very
small z1 and z2. This is unimportant as in the evolution
we will always restrict our attention away from very small
z1 and z2. We will not explicitly show the quark dihadron
fragmentation function and its fit here. Suffice to say that
the fit is even better for the quark, which, as is the case for
the single fragmentation function, generically has a harder
spectrum in momentum fraction. Values for the various
parameters of the fits to the quark and gluon fragmentation
functions at the two different values of the Q2 used in this
paper are presented in Table I.

One unique feature of the DGLAP evolution equations
for dihadron fragmentation functions is that the equations
couple dihadron to single hadron fragmentation functions.
The single hadron fragmentation functions themselves
evolve independently according to their own DGLAP evo-
lution equations. We find that the single hadron fragmen-
tation functions obtained from JETSET simulations can be
described very well by Binneswies-Kniehl-Kramer (BKK)
parametrization [29] of the actual experimental data.
Therefore, in our numerical study of the evolution equa-
tions for dihadron fragmentation functions, we will simply
use the BKK parametrization for the single hadron frag-
mentation functions and their evolution with the momen-
tum scale Q.

The fit function shown in Fig. 8 as well as its analogue
for the quark will provide the initial conditions to the
differential equations outlined in Eqs. (25) and (23), re-
spectively. In both cases, the initial scale of the fragmen-
tation functions is set to Q2

0 � 2 GeV2. This corresponds
to log�Q2

0� � 0:693. These are shown as the filled triangles
for the quarks and the filled squares for the gluons in Fig. 9.
We have chosen a fixed z1 � 0:5 and let z2 vary from 0 to
1� z1, since several experiments that measure medium
034007
modification of the dihadron fragmentation functions,
which we will discuss in separate studies, have similar
kinematic range. Note the orders of magnitude difference
between the two distributions. This feature holds for most
of the range of z1 and z2 except at very small momentum
fractions where the gluon fragmentation function overtakes
that of the quark.

Similar to the procedure carried out in Ref. [10] for
nonsinglet quark dihadron fragmentation functions, results
of the evolution will be presented in increments of
log�Q2� � 1. As expected, we note a softening of the
spectrum with rising scale. We terminate the evolution at
log�Q2� � 4:693, corresponding to scale Q2 � 109 GeV2.
To compare the results of the evolution equations in
Eqs. (23) and (25) to Monte Carlo event simulations,
dihadron fragmentation functions at the highest scale are
-9
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FIG. 10 (color online). Results of the evolution of the ratio of
the dihadron fragmentation function to the single fragmentation
function for quarks (triangles) and gluons (squares).
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once again extracted from JETSET. The number of events
used to sample the fragmentation functions and the method
of the fit remain identical to the case at lower Q2 described
above. The results are presented as open triangles for the
quarks and open squares for the gluons. As shown they are
in excellent agreement with the results of the evolution
equations. This provides the most crucial test of the evo-
lution equations we have presented in this paper.

In the recent experimental studies e.g., two high pT
particle production in p� p, p� A and A� A collisions
at RHIC, or two particle correlation in inclusive DIS by the
HERMES experiment, one usually measures dihadron cor-
relations in the form of inclusive spectra of associated
particles produced in correlation with a high momentum
trigger hadron. These measurements are essentially the
ratios of the number of trigger and associated particle pairs
divided by the number of triggers. They are equivalent to
the ratios of the dihadron fragmentation functions to the
single fragmentation functions. This quantity is plotted in
Fig. 10 for the same range of scales as that in Fig. 9. The
value of z1 is once again held fixed at 0.5. The single
hadron fragmentation functions are given by BKK parame-
trization [29] at same Q2 which can also be derived from
the same Monte Carlo simulations or evolved with the
DGLAP equations for single hadron fragmentation func-
tions. We have checked that all three methods give almost
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identical results. While it may come as no surprise that the
evolution of this ratio is also predicted by the dihadron
DGLAP evolution equations, it must be pointed out that the
ratio of the dihadron and single hadron fragmentation
functions do not display substantial change with variation
of the scale. This is especially true for the gluon fragmen-
tation function.
VI. DISCUSSIONS AND CONCLUSIONS

In this study, a very general discussion of the properties
of the dihadron fragmentation functions has been carried
out. Various results have been outlined: the momentum
sum rules have been discussed, evolution equations for
both the singlet quark and gluon dihadron fragmentation
functions have been derived and solved numerically, com-
parisons with results from Monte Carlo event generators
(in the absence of experimental measurements) are made.
Very good agreement has been obtained from such com-
parisons. In the remaining, we cast a backward glance at
dihadron fragmentation functions, summarizing the senti-
nel points of the aforementioned analysis, and present an
overview of future studies.

Factorization ensures that fragmentation functions are
well defined and universal. Once defined and measured in a
given process they must admit the same definition and
hence numerical value in another experiment. Such defi-
nitions in light-cone gauge were presented in Ref. [10] in
LO of QCD. Gauge invariance of the definition is apparent
and the generalization involves little more than the similar
procedure invoked in the case of the single inclusive frag-
mentation function [1]: The partonic operators at two space
time points were connected by a Wilson line of the gauge
field. In the case of the gluon fragmentation function, the
gluon vector potential was replaced with gauge invariant
field operators.

Single inclusive fragmentation functions, which have
the interpretation of single inclusive hadron distributions,
obey well-defined sum rules. The momentum sum rules for
the dihadron fragmentation functions, which have the in-
terpretation of the pair multiplicity in a jet, have been
derived in Sec. III. One can relate the dihadron to single
hadron fragmentation functions through these sum rules.
However, they will involve first and second order cumulant
moments of the multiplicity distribution since dihadron
fragmentation functions involve pair multiplicity. The ap-
pearance of the cumulant moments makes the sum rules for
dihadron fragmentation functions less rigorous since they
are not well defined in the collinear factorization approxi-
mation. However, in practice, they will provide useful
guidance for phenomenological modeling of the dihadron
fragmentation functions.

Though fragmentation functions are well defined in
terms of parton matrix elements, yet they still involve
nonperturbative objects. Therefore, the exact form of a
fragmentation function may not be estimated purely from
-10



FIG. 11 (color online). Results of the DGLAP evolution of the
dihadron fragmentation function without the independent frag-
mentation terms. All parameters are the same as Fig. 9.
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QCD. They, however, can be measured at a given energy
scale for a whole set of continuous forward momentum
fractions. Once such a measurement is made, one may
derive the value at any other higher scale via the evolution
equations in pQCD. Comparing these with experimental
results at higher scales amounts to a test of the QCD
evolution equations. In this paper, the lack of experimental
results was circumvented by the use of the JETSET event
generator which is tuned to fit a variety of experimental
data on e�e� annihilation. Note that event generators can
reproduce not only the single inclusive measurements in
e�e� events, but also a multitude of many particle observ-
ables. We used dihadron fragmentation functions from
JETSET simulations at the scale of Q0 � 2 GeV2 as the
initial condition for the DGLAP evolution equations. We
demonstrated that the results at higher scales, e.g., Q2 �
109 GeV2 from the numerical solution to the evolution
equations are in excellent agreement with that extracted
from JETSET simulations at the same scale, as shown in
Figs. 9 and 10. This comparison provided a stringent test to
the new evolution equations presented in this study.

The effect and validity of each component of the
DGLAP equations may be further tested by a simple ex-
ercise. The various terms presented in Eqs. (23) and (25)
may be broadly divided into two categories. The regular
components, which we call correlated two-hadron frag-
mentation, are contained in the first and last lines of
Eq. (23) and the first and fourth lines of Eq. (25). These
are simple generalizations of the single inclusive DGLAP
equations and depend solely on dihadron fragmentation
functions. The new components, which we call indepen-
dent two-hadron fragmentation, make up the second and
third line of Eq. (23) and the second, third and last line of
Eq. (25). These depend on products of single inclusive
fragmentation functions, and therefore couple the evolu-
tion of the dihadron fragmentation functions with that of
the single fragmentation functions. We may compute the
evolution of dihadron fragmentation functions without the
contribution from the components of independent frag-
mentation. This leads to the results presented in Fig. 11.
As the reader may note, the calculated evolution is now a
poorer fit to the results from JETSET. While this may not be
very noticeable for the quark fragmentation function, the
gluon fragmentation function, which is at least an order of
magnitude smaller than the quark fragmentation function,
shows a very noticeable difference. The evolution of the
gluon fragmentation function depends on two separate
pieces of independent fragmentation. One receives contri-
butions from the product of two gluon single fragmentation
functions, while another from the product of a quark and an
antiquark distribution function. It is the removal of the
latter that produces the majority of the difference in the
evolution of the gluon dihadron fragmentation function
between Figs. 10 and 11. This is due to the fact that we
restrict our attention to large z where the quark fragmenta-
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tion function dominates over the gluon, and the product of
two single quark fragmentation functions is larger than the
gluon dihadron fragmentation function at large z1 and z2.
Thus each component of the evolution has a role to play in
the change of the fragmentation function from one scale to
another. The contributions from the new components of
independent fragmentation are always positive. Therefore,
they slow down the scale evolution of the dihadron frag-
mentation functions, particularly for gluon jets at large z1
and z2. This is also the reason why the triggered distribu-
tions (the ratio between dihadron and single hadron frag-
mentation functions) change very little with the scale for
gluon jets as shown in Fig. 10.

With the question of evolution of the dihadron fragmen-
tation functions set aside, we now focus on certain general
properties of the fragmentation function as have been
exposed by this analysis. It may be noted from Fig. 10
that the ratio of the dihadron fragmentation function to the
single fragmentation function of the leading hadron
(Dh1h2

q �z1; z2; Q
2�=Dh1

q �z1; Q
2� ) shows little change as a

function of Q2 even as Q2 ! 100 GeV2. This is especially
true of the ratio in the case of the gluon fragmentation
function, which shows practically no change with Q2 over
the range of z1 and z2 explored. The results of evolution are
strongly dependent, however, on the initial conditions and
thus on the actual values of z1 and z2. This is consistent
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with the observations noted in our previous study of quark
nonsinglet dihadron fragmentation functions [10].

In recent experiments at RHIC [5], correlations of two
high p? hadrons have been measured in p� p, d� Au
and Au� Au collisions. Hadrons with p? � 4 GeV are
used as a trigger. Once such a ‘‘leading’’ particle is iden-
tified, the experiment measures the differential probability
of the ‘‘next-to-leading’’ hadrons or associated high p?

particles emanating from the same collision with trans-
verse momentum in the range 2< p? < 4 GeV at a given
azimuthal angle 0 with respect to the direction of the
leading particle. In Ref. [5], results for dN=d0=Ntrig are
measured. While a large suppression was noted for 0 � �
(away side) in central collisions, almost no change was
seen in the vicinity of 0 � 0 (near side). Assuming both
hadrons (leading and associated) with the same-side corre-
lation come from fragmentation of a jet, the initial jet
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FIG. 12 (color online). Comparisons between the ratio of the
dihadron fragmentation function to the single fragmentation
functions of the leading hadron (indicated as D/S) and the
fragmentation function of the associated hadron (indicated as
S). The D/S curves are the same as in Fig. 10. The single
fragmentation functions are obtained from the BKK parametri-
zation of Ref. [29]. The dashed lines are for the gluon and the
solid lines for the quark fragmentation function. The dot-dashed
lines represent a rescaled quark fragmentation function
2Dh2

q �2z2�. The Q2 of a particular dot-dashed line is the same
as the Q2 of the solid line in the same order.
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energy is at least about 7 to 10 GeV. This is about the
same range of momentum scale we have considered in
studying the evolution of dihadron fragmentation func-
tions. This range of Q2 is also relevant to the experiments
of DIS on nuclei [8], where medium modification of the
ratio of the dihadron fragmentation function to the single
fragmentation function of the leading hadron was reported.
A double ratio of the above quantity RA=RD with a large
nucleus versus that in deuteron showed minimal change
with the atomic number. A complete understanding of the
relevance of this observation requires a repeat of the cal-
culation presented in this article with the inclusion of a
medium modification. While the study with medium modi-
fication will be presented in a forthcoming article, we can
already see the trend by analyzing the analogous effects of
QCD evolution in the vacuum.
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FIG. 13 (color online). Comparisons between the ratio
Dq�z1; z2�=Dq�z1� and the rescaled single fragmentation function
Dq�z2=�1� z1��=�1� z1� as a function of z2 for different values
of Q2. Comparisons are presented at three different values of z1
the momentum fraction of the leading hadron at z1 � 0:26,
0.675, 0.875. The symbols represent the ratio at two different
values of log�Q2� � 0:693 and 4.693 as indicated in the legend.
The various lines show the variation of the corresponding
rescaled single fragmentation function: the black line is at
log�Q2� � 0:693, the dotted line at log�Q2� � 1:693, the dashed
line is for log�Q2� � 2:693, the dot-dashed line for log�Q2� �
3:693 and the dotted-double-dashed line represents the function
at log�Q2� � 4:693. Note: only the lines corresponding to a z1 �
0:26 underpredict the ratio at that z1.
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If the results of Ref. [5] for dN=d0=Ntrig are integrated
over the angle 0 in the vicinity of 0 � 0, one should
obtain, in effect, the ratio of the dihadron fragmentation
function to the single fragmentation function. This is, no
doubt, based on the assumption that both the leading and
the next-to-leading particles emerge from the same parent
parton. In the results of Ref. [5] the ratio is essentially
integrated from z2 � 0:3, z1 � 0:6 to z2 � 0:4, z1 � 0:4.
Within this kinematic range, there is not much change of
the ratio of the fragmentation functions as a function of the
Q2 due to gluon bremsstrahlung in vacuum. Therefore, it
may not be entirely surprising that no variation was noted
in the same side two-hadron correlations in Ref. [5] due to
medium induced gluon bremsstrahlung, in particular, if
one takes into account the trigger bias caused by parton
energy loss [30].

It has been pointed out recently that the ratio of the
dihadron fragmentation function to the single fragmenta-
tion function of the leading hadron (i.e., D�z1; z2�=D�z1�)
may be numerically similar to the single fragmentation
function of the associated hadron i.e., D�z2� [31]. This
was noted experimentally and in simulations. We point
out that there is indeed some truth to this observation. In
Fig. 12 we plot the ratios of the dihadron fragmentation
function to the fragmentation function of the leading had-
ron for the quark and gluon. This is compared with the
single inclusive fragmentation functions of a quark (solid
lines) and gluon (dashed lines). In the range 0< z2 < 0:3,
the single inclusive fragmentation functions do indeed
closely approximate the ratio Dq�z1; z2�=Dq�z1�. This fact
is, however, only true for the quark; no such similarity is
noted for the gluon. The primary reason for the difference
between Dq�z2� and Dq�z1; z2�=Dq�z1� for z2 > 0:3 is the
differences in kinematic bounds experienced by the two
quantities: Dq�z2� ! 0 as z2 ! 1 whereas Dq�z1; z2� ! 0
as z2 ! 1� z1. In Fig. 12, z1 is held fixed at 0.5, thus the
maximum value of z2 � 0:5. These differences in kine-
matic bounds may be circumvented by considering a re-
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scaled single fragmentation function Dq�z2=�1� z1��=
�1� z1� � 2Dq�2z2� which experiences a similar kine-
matic bound as Dq�z1; z2�=Dq�z1� for z1 � 0:5. This re-
scaled function is represented by the dot-dashed lines in
Fig. 12 which is very similar to Dq�z1; z2�=Dq�z1� with the
same momentum scale Q. Such a rescaled function turns
out to be a very good approximation to the ratio of the
double to the single fragmentation function. Comparisons
of the ratio to the rescaled fragmentation function are
presented in Fig. 13 for different values of the momentum
fraction of the leading hadron z1. As will be readily noted,
the rescaled single fragmentation function closely follows
the evolution of the ratio Dq�z1; z2�=Dq�z1� except at very
small values of z1 where it under predicts the ratio.

Finally, we point out that in the derivation of results
presented in this paper, we depended on the assumption
that the energy scales of the processes in question were
high enough for the applicability of pQCD methods. We
also required the fragmentation functions to be defined at a
scale larger than a semihard scale �?, such that 	2

QCD <
<�2

? <<Q2. This semihard scale�? restricts the relative
transverse momentum between hadrons such that they are
considered as from one parton jet. We thus required Q2 to
be high enough for a hierarchy of scales to exist. The
evolution equations are applicable solely when this hier-
archy of scales exists.
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