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Even- and odd-parity charmed meson masses in heavy hadron chiral perturbation theory
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We derive mass formulas for the ground state, JP � 0� and 1�, and first excited even-parity, JP � 0�

and 1�, charmed mesons including one-loop chiral corrections and O�1=mc� counterterms in heavy
hadron chiral perturbation theory. We show that including these counterterms is critical for fitting the
current data. We find that certain parameter relations in the parity doubling model are not renormalized at
one-loop, providing a natural explanation for the observed equality of the hyperfine splittings of ground
state and excited doublets.
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1The FOCUS collaboration reports structures in excess of
background in the D�	� and D0	� invariant mass spectra
which could be interpreted as scalar resonances [5]. However,
if these resonances exist their masses are 99 MeV higher than the

�

I. INTRODUCTION

Excited charmed mesons with angular momentum and
parity JP � 0� and 1� have been observed in several
experiments. The masses of the JP � 0� and 1� charmed
strange mesons, Ds�2317� and Ds�2460� [1,2], are below
threshold for decays into ground state charmed mesons and
kaons. The only strong decay modes are via isospin-
violating 	0 emission, making the states quite narrow (� <
5:5 MeV). Other experiments [3–5] claim to observe the
nonstrange JP � 0� and 1� states. These states can decay
to the ground states by S-wave pion emission and therefore
are quite broad (� � 300 MeV).

The spectrum of the JP � 0� and 1� charmed mesons
presents a number of puzzles for theory. Before their dis-
covery, quark model and lattice calculations predicted that
the masses of the JP � 0� and 1� charmed strange mesons
would be significantly higher than observed [6–10].
Further, the hyperfine splittings of all ground state charmed
mesons and the hyperfine splitting of the Ds�2317�
and Ds�2460� are all equal to within 2%. This is surprising
because there is no obvious symmetry of quantum chro-
modynamics (QCD) which predicts these equalities.
Finally, the SU�3� splittings of the JP � 0� and 1�

charmed mesons are much smaller than theoretical
expectations.

In the heavy quark limit, the coupling of the heavy quark
spin to the light degrees of freedom in the heavy meson
vanishes and the angular momentum and parity of the light
degrees of freedom, jp, can be used to classify heavy
meson states. The spectrum consists of degenerate heavy
meson doublets with definite jp. The JP � 0� and 1�

heavy mesons are members of the jp � 1
2
� ground state

doublet. The lowest lying excited states, the JP � 0� and
1� heavy mesons, are members of the jp � 1

2
� doublet.
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There is also an excited doublet of heavy mesons with jp �
3
2
�, whose members have JP � 1� and 2�. The jp � 3

2
�

mesons decay to the ground state by D-wave pion emis-
sion, typically have widths � � 20 MeV, and therefore
have well-measured masses. The hyperfine splittings for
all of these heavy quark doublets are suppressed by 1=mQ,
where mQ is the heavy quark mass.

The experimental data on the masses of the known
charmed mesons is summarized in Table I. The lowest
lying flavor SU�3� antitriplets are JP � 0� (cu, cd, cs)
� (D0, D�, D�

s ) and JP � 1� (D�0, D��,D��
s ). The first

excited states are JP � 0� (D0
0, D�

0 ,D�
0s) and JP � 1�

(D00
1 , D�0

1 , D�0
1s ). The members of the jp � 3

2
� doublet are

JP � 1� (D0
1, D�

1 , D�
1s) and JP � 2� (D0

2, D�
2 , D�

2s). Not
shown is a narrow charmed strange meson, D�

s �2632�,
recently observed by the SELEX collaboration [11]. The
spin and parity of this meson and its place in the charmed
meson spectrum is currently unknown. For all mesons
except the nonstrange jp � 1

2
� doublet, we use numbers

from the Particle Data Group [12]. For nonstrange jp � 1
2
�

mesons, we use the Belle [4] measurement of the D0
0 mass

and average the CLEO [3] and Belle [4] measurements of
the D0

1 mass.1

As stated earlier, the hyperfine splittings of the jp � 1
2
�

and jp � 1
2
� doublets are nearly equal. The known hyper-

fine splittings of the jp � 1
2
� and jp � 1

2
� charmed mesons

are:
Belle measurement and 80 MeV higher than the mass of the Ds0.
It is implausible that such resonances are related to the D�

s0 by
SU�3� symmetry so we do not use this data to determine the
JP � 0� nonstrange meson masses.
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TABLE I. The spectrum of charmed mesons. jp is the angular momentum and parity of the
light degrees of freedom. JP is the angular momentum and parity of the meson.

jp JP c �u c �d c�s

name M�MeV� name M�MeV� name M�MeV�
3=2� 2� D0

2 2458:9 	 2:0 D�
2 2459 	 4 D�

s2 2572:4 	 1:5
3=2� 1� D0

1 2422:2 	 1:8 D�
1 2427 	 5 D�

s1 2535:4 	 0:6
1=2� 1� D00

1 2438 	 31 � � � � � � D�0
s1 2459:3 	 1:3

1=2� 0� D0
0 2308 	 36 � � � � � � D�

s0 2317:4 	 0:9
1=2� 1� D�0 2006:7 	 0:5 D�� 2010:0	 0:5 D��

s 2112:1 	 0:7
1=2� 0� D0 1864:6 	 0:5 D� 1869:4	 0:5 D�

s 1968:3 	 0:5
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mD�0 � mD0 � 142:1	 0:07 MeV

mD�� � mD� � 140:6	 0:1 MeV

mD��
s
� mD�

s
� 143:8	 0:4 MeV

mD�0
s1
� mD�

s0
� 141:9	 1:6 MeV

mD00
1
� mD0

0
� 130	 48 MeV:

(1)

Here, the first three numbers are the hyperfine splittings
quoted by the Particle Data Group [12]. The last two
numbers are obtained by taking the difference of the
masses in Table I. The error in the last two lines of
Eq. (1) is obtained by adding the errors in the individual
masses in quadrature. All four hyperfine splittings which
have been measured accurately are 
 142 MeV to within
2 MeVor less. Hyperfine splittings in different heavy quark
doublets are unrelated by heavy quark symmetry. For
example, the hyperfine splitting for jp � 3

2
� doublets is

�40 MeV, which differs significantly from the jp � 1
2
�

and 1
2
� hyperfine splittings. In the SU�3� limit, the hyper-

fine splittings of nonstrange and strange ground state me-
sons are the same. That this SU�3� prediction holds to
within 2% is surprising given the typical size of SU�3�
breaking effects in QCD.

Another puzzling feature of the spectrum is the pattern
of SU�3� violation in the splittings within the even-parity
doublets. Finite light quark (mu, md, and ms) masses and
electromagnetic effects cause flavor-splitting among the
mesons. The isospin splitting seen in the charmed meson
mass spectrum is of expected size, but the splitting between
the strange and nonstrange sector is unexpected. The mass
difference between strange and nonstrange mesons whose
other quantum numbers are identical is expected to be
�100 MeV. For the ground state charmed mesons this is
indeed the case. For the excited states, however, the SU�3�
breaking is

mD�0
s1
� mD00

1
� 21 	 31 MeV

mD�
s0
� mD0

0
� 9 	 36 MeV:

(2)

Even allowing for the large errors due to the uncertainty in
034006
the masses of the nonstrange jp � 1
2
� charmed mesons, the

SU�3� splitting is far below theoretical expectations.
The Ds�2317� and Ds�2460� are only 40 MeV below the

DK and D�K threshold, respectively. This fact as well as
the puzzles mentioned above have led to the hypothesis
that they are bound states of D��� and K [13–15]. Several
papers analyze the spectroscopy of excited charm mesons
by extending the quark model to include couplings to the
DK continuum. This coupled channel effect has been
analyzed within the quark model [16], chiral quark models
[17,18] as well as unitarized meson models [19–21]. The
unitarized meson model has also been used to make pre-
dictions for the spectroscopy of excited B mesons [20,22].
However, if one assumes that the Ds�2317� and Ds�2460�
are nonrelativistic DK and D�K bound states, respectively,
heavy hadron chiral perturbation theory (HH�PT) [23] can
be used to predict their electromagnetic branching ratios.
These predictions are found to be in serious disagreement
with experiment [24]. On the other hand, if one assumes
that the Ds�2317� and Ds�2460� are conventional states,
then HH�PT predictions for strong and electromagnetic
decays are consistent with available data [24,25]. An alter-
native interpretation of these particles as exotic c�s �q q
tetraquarks has also been proposed [14,26–30]. For a
review of theoretical work on Ds�2317� and Ds�2460�,
see Ref. [31].

In this paper we analyze the spectroscopy of charmed
mesons using HH�PT. This theory can be used to analyze
the low energy strong interactions of heavy mesons in a
systematic expansion in light quark masses, mq, and in-
verse heavy quark masses, 1=mQ. Nonanalytic corrections
from loops with Goldstone bosons can be calculated in this
formalism. The masses of the ground state heavy mesons
have been studied in the heavy quark limit [32,33], includ-
ing leading corrections from finite heavy quark masses and
nonzero light quark masses [34–39]. These papers use a
version of HH�PT which includes only the lowest lying
jp � 1

2
� heavy quark doublets. Many recent studies of

excited JP � 0� and 1� heavy mesons use Lagrangians
that include only jp � 1

2
� and jp � 1

2
� heavy quark dou-

blets as explicit degrees of freedom. However, the excited
jp � 3

2
� doublets are only separated from the jp � 1

2
�
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doublets by & 130 MeV. Further, the jp � 3
2
� doublets

couple to the jp � 1
2
� doublets at leading order in the chiral

expansion, while the coupling of the jp � 3
2
� doublets to

the ground state doublets is higher order in the chiral
expansion [40]. For these reasons, loops with virtual ex-
cited jp � 3

2
� could have important effects on the physics

of jp � 1
2
� doublets. In this paper we will study the version

of HH�PT containing only the jp � 1
2
� and jp � 1

2
� heavy

quark doublets and leave investigation of loop effects from
more highly excited states for future work.

A model of heavy mesons closely related to HH�PT is
the parity doubling model of Refs. [41–44]. The parity
doubling model is the analog of the linear sigma model for
heavy mesons. Heavy meson doublets transforming line-
arly under SU�3�L � SU�3�R couple in a chirally invariant
way to a field � transforming in the ��3; 3� of SU�3�L �
SU�3�R. The field � develops a vacuum expectation value
and the resulting theory of heavy mesons has the same
form as HH�PT for the low lying odd- and even-parity
doublets. Unlike HH�PT, the parity doubling model pre-
dicts relationships among otherwise independent parame-
ters in the theory. One important prediction is that the
hyperfine splittings of the jp � 1

2
� and jp � 1

2
� doublets

are equal at tree level. This interesting prediction could
partially explain the observed pattern of heavy meson
hyperfine splittings, but it is not clear from Refs. [41–44]
whether this prediction survives beyond tree level. This is a
concern because loop corrections in HH�PT can be
significant.

In this paper, we calculate the one-loop HH�PT correc-
tions to the masses of jp � 1

2
� and jp � 1

2
� heavy meson

doublets. We include all O�1=mQ� heavy quark spin-
symmetry violating operators that appear to this order. A
brief review of the HH�PT formalism is given in Sec. II
and explicit formulas for the masses at one-loop appear in
the Appendix. In Sec. III, we attempt to fit the observed
mass spectrum with our one-loop formulas. The large
number of free parameters makes it possible to reproduce
the spectrum of jp � 1

2
� and jp � 1

2
� charmed mesons. In

the mQ ! 1 limit our calculation of the difference of the
SU�3� splittings in HH�PT agrees with Ref. [45]. Our
analysis differs from that in Ref. [45] in that we include
1=mQ operators and perform a global fit to the spectrum
with all counterterms treated as free parameters. In the
approximation used in Ref. [45] there is a single counter-
term constrained using lattice data.

In Sec. IV, we examine corrections to the hyperfine
splittings and discuss the naturalness of the parity doubling
model. The parity doubling model predicts that the hyper-
fine splittings and the magnitudes of the axial couplings of
the jp � 1

2
� and jp � 1

2
� doublets are equal at tree level.

We find that these parameter relations are preserved by the
one-loop corrections so that the model provides a natural
explanation for the equality of hyperfine splittings. Finally,
in Sec. V, we use heavy quark effective theory (HQET) to
034006
estimate the masses of the jp � 1
2
� B mesons, which have

not yet been observed. These predictions may be helpful to
experimentalists looking for these states.
II. HH�PT MASS COUNTERTERMS

In HH�PT, the ground state doublet is represented by
the fields [23]

Ha �
1� v6

2
�H�

a �� � Ha�5�; (3)

where a is an SU�3� index. In the charm sector, Ha consists
of the �D0; D�; D�

s � pseudoscalar mesons and H�
a are the

�D�0; D��; D��
s � vector mesons. The jp � 1

2
� doublet is

represented by the fields [46]

Sa �
1� v6

2
�S�

a ���5 � Sa�; (4)

where the scalar states in the charm sector are Sa � D0a
and the axial vectors are S�

a � D0
1a. The kinetic terms of

these fields are included in:

Lkinetic
v � �Tr�Ha�iv � Dba � "H"ab�Hb�

� Tr�Sa�iv � Dba � "S"ab�Sb�; (5)

where "H and "S are the residual masses of the H and S
fields, respectively, and Dba is the chirally covariant de-
rivative. In the theory with only H fields one is free to set
"H � 0. Since the only dimensionful parameters entering
the loops in this theory are hyperfine splittings and
meson masses, the UV divergences (in dimensional regu-
larization) vanish in the mq ! 0 and mQ ! 1 limit.
Divergences in loop corrections are canceled by counter-
terms which are O�mq� or O�1=mQ�. Once the S fields are
added to the theory, there is another dimensionful quantity,
"S � "H, which does not vanish as mq ! 0 and mQ ! 1.
The H self-energy diagrams with virtual S fields give a UV
divergent contribution which survives in the mq ! 0 and
mQ ! 1 limit. Such a divergence must be canceled by a
mass counterterm which respects SU�3� and heavy quark
spin symmetry and the only available counterterm is
"H TrHaHa. However, after one-loop divergences are
canceled one is free to define the finite part of "H for
convenience.

The fields have axial couplings to the pseudo-Goldstone
bosons,

L axial
v � gTr�HaHbA6 ba�5� � g0 Tr�SaSbA6 ba�5�

� hTr�HaSbA6 ba�5 � h:c:�; (6)

where g, g0, and h are dimensionless constants to be
determined from experiment. The other terms in the
Lagrangian required are higher order mass counterterms.
We use the notation of Ref. [38] and generalize it to include
the S fields as well as the H fields.
-3
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Lmass
v � �

!H

8
Tr�Ha&

�'Ha&�'� �
!S

8
Tr�Sa&

�'Sa&�'� � aH Tr�HaHb�m
(
ba � aS Tr�SaSb�m

(
ba � &H Tr�HaHa�m

(
bb

� &S Tr�SaSa�m
(
bb �

!�a�
H

8
Tr�Ha&�'Hb&�'�m

(
ba �

!�a�
S

8
Tr�Sa&�'Sb&�'�m

(
ba �

!�&�
H

8
Tr�Ha&�'Ha&�'�m

(
bb

�
!�&�

S

8
Tr�Sa&�'Sa&�'�m

(
bb; (7)
where m(
ba � 1

2 �(mq( � (ymq(
y�ba, mq � diag�mu;

md;ms� and ( �
����
�

p
� exp�i%=f�, where % is the matrix

of Goldstone bosons. The !H and !S terms in Eq. (7) are
spin-symmetry violating operators which give rise to hy-
perfine splittings. The aH, aS, &H, and &S terms are O�mq�
and preserve heavy quark spin symmetry. The remaining
terms are O�mq� and violate heavy quark spin symmetry.

At tree level the residual masses are

m0
Ha

� "H �
3

4
!H �&Hm� aHma �

3

4
!�&�

H m�
3

4
!�a�

H ma

m0
H�

a
� "H �

1

4
!H �&Hm� aHma �

1

4
!�&�

H m�
1

4
!�a�

H ma

m0
Sa
� "S �

3

4
!S �&Sm� aSma �

3

4
!�&�

S m�
3

4
!�a�

S ma

m0
S�

a
� "S �

1

4
!S �&Sm� aSma �

1

4
!�&�

S m�
1

4
!�a�

S ma;

(8)

where ma � �mu;md; ms� and m � mu � md � ms. Here
the asterisk denotes the spin-1 member of the heavy quark
doublet. In the isospin limit mu � md. HH�PT is a double
expansion in &QCD=mQ and Q=&�, where Q � m	;
mK; m* and &� � 4	f 
 1:5 GeV. The parameters "H,
"S, !H, and !S are treated as O�Q� in the power counting
[24]. Since mq / m2

	 � Q2 the remaining terms in Eq. (8)
are formally higher order in the power counting. The loop
corrections to the masses are shown in Fig. 1. Single lines
represent the H fields and double lines represent the S
fields. All diagrams are O�Q3�. The loop corrections are
regulated using dimensional regularization. Complete one-
loop expressions for the masses are given in the Appendix.
a) b)

c) d)

FIG. 1. One-loop self-energy diagrams for the H and S fields.
H fields are single lines, S fields are double lines and Goldstone
bosons are dashed lines.

034006
III. CHARMED MESON SPECTRUM

In this section we analyze the charmed meson spectrum
using the one-loop mass formulas given in the Appendix.
We will work in the isospin limit, where the masses of H1

and H2, for instance, are identical. Then there are eight
different residual masses: mH1

, mH3
, mH�

1
, mH�

3
, mS1

, mS3
,

mS�
1
, and mS�

3
. To determine the experimental values of mH1

and mH�
1
, we average the masses of the two known isospin

states. The residual masses are defined to be the difference
between the real masses and an arbitrarily chosen reference
mass of O�mQ�. We will measure all masses relative to the
nonstrange spin averaged H mass, so �mH1

� 3mH�
1
�=4 �

0. Therefore, the experimentally measured residual masses
we will fit to are:

mH1
� �106:1 MeV mH3

� �4:75 MeV

mH�
1
� 35:4 MeV mH�

3
� 139:1 MeV

mS1
� 335:0 MeV mS3

� 344:4 MeV

mS�
1
� 465:0 MeV mS�

3
� 486:3 MeV:

(9)

The tree-level expressions in Eq. (8) reproduce these val-
ues with "S � &Sm � "H � &Hm � 432 	 26 MeV,
!H � !�&�

H m � 146	 1 MeV, !S � !�&�
S m � 129 	

50 MeV, aH � 1:14	 0:06, aS � 0:21	 0:29, !�a�
H �

�0:03 	 0:01, and !�a�
S � 0:14 	 0:55. The errors used

to obtain this fit are the experimental ones, dominated by
the uncertainty in the nonstrange 0� and 1� masses. This
gives rise to the large uncertainties seen in parameters in
the Lagrangian involving the S fields. The fits presented in
this section use Mathematica [47] and/or Minuit [48].

The loop corrections depend on 11 parameters: g, g0, h,
aH, aS, !�a�

H , !�a�
S , "H � &Hm, "S � &Sm, !H � !�&�

H m,
and !S � !�&�

S m. The parameters &H, &S, !�&�
H , and !�&�

S
cannot be separately determined because they always ap-
pear in linear combination with the parameters "H, "S, !H,
and !S, respectively. Below we will absorb the contribu-
tion of the parameters &H, &S, !�&�

H , and !�&�
S into the

measured values of "H, "S, !H, and !S, respectively.
An analysis of D� decays using a one-loop calculation

without explicit excited states yields g � 0:27�0:06
�0:03 [49].

From the widths of the nonstrange resonances observed by
Belle we have extracted h � 0:69 	 0:09 at tree level [24].
Both couplings are of order unity and therefore consistent
-4
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with naive power counting. The remaining parameters are
unknown.

We use f � 120 MeV, which is the value extracted in
Ref. [49] using the one-loop formulas for pion and kaon
decay constants, first derived in Ref. [50]. We set mu �
md � 4 MeV and ms � 90 MeV. Below we show several
different fits. In the first case we fix g and h to the values
(given above) extracted from previous analyses. This
leaves nine remaining free parameters. Performing a least
chi-squared fit to the meson spectrum, using experimental
uncertainties, we obtain the following central values

mH1
� �106 MeV mH3

� �5 MeV

mH�
1
� 35 MeV mH�

3
� 139 MeV

mS1
� 160 MeV mS3

� 344 MeV

mS�
1
� 296 MeV mS�

3
� 486 MeV:

(10)

The parameters extracted from this fit are: g0 � 0:09 	
0:03, "H � �83	 3 MeV, "S � 244 	 1 MeV, !H �
133 	 2 MeV, !S � 136	 1 MeV, aH � 1:70	 0:01,
aS � 0:25	 0:08, !�a�

H � �0:07	 0:01, and !�a�
S �

0:04	 0:03. Six of the mass parameters are reproduced
quite well while mS1

and mS�
1

are lower than the central
values of experiments by about 175 and 169 MeV, respec-
tively. This qualitative picture persists without much sen-
sitivity to the value of g0. However, these fits are not very
good and such a procedure may not be very realistic. The
values of g and h used above were extracted using a fit to a
one-loop calculation not including the S fields, and a tree-
level fit, respectively. There is no reason to believe that
these values are the ones which are appropriate for a
calculation that includes graphs with internal S states.
Note that large changes between tree- versus loop-
extracted parameter values do not necessarily indicate
poor convergence; what is important is that the observables
do not suffer large changes between orders.

If we include g and h as free parameters in an 11-
parameter fit, there are many solutions which yield central
values identical to the experimental residual masses given
in Eq. (9). In addition to the experimental errors we also
include 20% ‘‘theoretical’’ errors to mimic the fact that our
analysis is only accurate to O�Q3�. The masses obtained
are then accompanied by errors at the 	 30 to 40 MeV
level. Examples of parameter sets which give these results
are:
(a) jg
j � 1:15	 0:06, jg0j � 0:90 	 0:06, jhj � 2:3	
0:2, "H � 195	 41 MeV, "S � 332 	 31 MeV,
!H � 465	 24 MeV, !S � 597 	 28 MeV,
aH � 7	 1, aS � �4	 1, !�a�

H � �4:4	 0:7,
and !�a�

S � �10 	 2.

(b) jg
j � 0:65	 0:06, jg0j � 0:89 	 0:08, jhj � 0:2	

0:1, "H � 117	 21 MeV, "S � 646 	 40 MeV,
!H � 68	 42 MeV, !S � 447	 23 MeV, aH �
034006-5
3:8 	 0:7, aS � 3:1	 0:7, !�a�
H � �0:3	 1, and

!�a�
S � �2:8 	 1.
(c) jg
j � 0:89	 0:07, jg0j � 0:24	 0:13, jhj �
0:98 	 0:11, "H � 203	 39 MeV, "S �
399 	 26 MeV, !H � 242	 25 MeV, !S �
116 	 59 MeV, aH � 5:8	 1:1, aS � �1:4	
1:5, !�a�

H � �1:7	 0:8, and !�a�
S � 2:1	 1:7.
(d) jg
j � jg0j � 0:70	 0:03, jhj � 2:4	 0:2, "H �
114 	 64 MeV, "S � 231	 36 MeV, !H �
682 	 4 MeV, aH � 4:3	 0:7, aS � �3:0	 2:1,
!�a�

H � �0:89 	 0:96, and !�a�
S � �2:7	 0:9. (In

this fit, the constraint !S � !H � 30 MeV was
used.)
There are clearly many local minima which Minuit [48]
may find. Some of these values of g and h significantly
exceed values extracted from experiment in Refs. [49,51]
and Ref. [24], respectively. They also exceed estimates
based on the quark model [52], extraction from lattice
QCD simulations [53,54] as well as sum rule constraints
[55]. Again, however, it is not clear what can be concluded
when comparing parameters which are by themselves un-
physical and whose definition depends upon the details of a
calculation. Of perhaps more concern is that these fits
produce large values for the hyperfine coefficients. The
operators which cause hyperfine splitting should be 1=mQ

suppressed compared to the leading order ones. Set (d) is
an example of a solution where jgj is near jg0j and !S is
within 30 MeV of !H. The relevance of that result will
become apparent in the next section. Finally, an example fit
where g and h are restricted to lie between 0 and 1 yields
central values of parameters as follows:

jgj � 0:43; jg0j � 0; h � 0:31;

"H � 25 MeV; "S � 443 MeV;

!H � 124 MeV; !S � 131 MeV; aH � 2:4;

aS � �0:3; !�a�
H � �0:2; !�a�

S � 0:1:

These parameter values lead to a prediction for the mass
spectrum that also agrees with Eq. (9).

The underconstrained nature of the various fits makes
strong conclusions impossible. In particular, the uncer-
tainty in the parameter space is very large and the uncer-
tainty in individual parameters is much greater than
indicated by the errors quoted in the individual fits listed
above. The situation should improve with a global fit to
both masses and decay rates which uses a consistent set of
next-to-leading order calculations that include the excited
states. This work is in progress.
IV. HYPERFINE SPLITTINGS

In this section we study the one-loop corrections to the
hyperfine splittings to see if HH�PT can provide insight
into the observed near equality of the hyperfine splittings.
Using the formulas in the Appendix we find that the next-
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to-leading order difference between even-parity and odd-parity hyperfine splittings in the strange sector is given by
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3
� mS3
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3
� mH3
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3
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� � �m0

H�
3
� m0

H3
� �

g02

f2

�
2

3
K1�m

0
S1
� m0

S�
3
; mK� �

2

9
K1�m

0
S3
� m0

S�
3
; m*�

�
4

3
K1�m

0
S�
1
� m0

S�
3
; mK� �

4

9
K1�0; m*� � 2K1�m

0
S�

1
� m0

S3
; mK� �

2

3
K1�m

0
S�

3
� m0

S3
; m*�

�

�
g2

f2

�
2

3
K1�m

0
H1

� m0
H�

3
; mK� �
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K1�m

0
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� m0
H�

3
; m*� �

4
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K1�m

0
H�

1
� m0

H�
3
; mK�

�
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K1�0; m*� � 2K1�m

0
H�

1
� m0

H3
; mK� �

2

3
K1�m

0
H�

3
� m0

H3
; m*�

�

�
h2

f2

�
2K2�m

0
H�

1
� m0

S�
3
; mK� �

2

3
K2�m

0
H�

3
� m0

S�
3
; m*� � 2K2�m

0
H1

� m0
S3

; mK�

�
2

3
K2�m0

H3
� m0

S3
; m*� � 2K2�m0

S�
1
� m0

H�
3
; mK� �
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3
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3
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� 2K2�m
0
S1
� m0

H3
; mK� �

2
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K2�m

0
S3
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H3
; m*�

�
: (11)

Suppose one imposes at tree level the condition that all hyperfine splittings in each of the doublets are degenerate:

m0
H�

a
� m0

Ha
� m0

S�
a
� m0

Sa
� !: (12)

This can be arranged by invoking the tree-level prediction of the parity doubling model, !H � !S � ! and neglecting the
terms proportional to mq in Eq. (8), which are formally higher order in the power counting. Then m0

S�
a
� m0

H�
a
� m0

Sa
� m0

Ha

and it is easy to verify that all contributions proportional to h2 vanish, and the remaining terms are:

�mS�
3
� mS3

� � �mH�
3
� mH3

� �
g02

f2

�
2

3
K1��!; m	� �

2

9
K1��!; m*� �

16

9
K1�0; mK� � 2K1�!; mK� �

2

3
K1�!; m*�

�

�
g2

f2

�
2

3
K1��!; m	� �

2

9
K1��!; m*� �

16

9
K1�0; mK� � 2K1�!; mK� �

2

3
K1�!; m*�

�
:

(13)

This vanishes if g2 � g02, which is consistent with the parity doubling model prediction. A similar cancellation occurs for
the nonstrange hyperfine splittings. So the parity doubling model explanation for the equality of the jp � 1

2
� and 1

2
�

hyperfine splittings is robust in the sense that one-loop corrections do not spoil the prediction.
The parity doubling model prediction for the axial couplings and hyperfine splittings singles out a subspace of the

parameter space of HH�PT that is preserved under renormalization group evolution. From our mass formulas it is easy to
derive the following renormalization group equations for the renormalized parameters !H and !S:

�2 d

d�2 !H �
4g2

9	2f2 !3
H �

h2

3	2f2 �!S �!H�

�
3�"S � "H�

2 �
3

2
�!S � !H��"S � "H� �

7

16
�!S �!H�

2

�
; (14)

�2 d

d�2 !S �
4g02

9	2f2 !3
S �

h2

3	2f2 �!S � !H�

�
3�"S � "H�

2 �
3

2
�!S �!H��"S � "H� �

7

16
�!S � !H�

2

�
: (15)

This leads to

�2 d

d�2 �!S �!H� �
4

9	2f2 �g
02!3

S � g2!3
H� �

2h2

3	2f2 �!S �!H�

�
3�"S � "H�

2 �
3

2
�!S � !H��"S � "H�

�
7

16
�!S � !H�

2

�
: (16)
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FIG. 2. One-loop diagrams for renormalization of the coupling g. H fields are single lines, S fields are double lines and Goldstone
bosons are dotted lines. Diagrams for renormalization of the coupling g0 are obtained by interchanging H and S fields.
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We also derive the one-loop renormalization group
equation for the couplings g and g0. For this we need the
wavefunction renormalization of the fields H and S, which
is obtained from the graphs in Fig. 1, and the one-loop
corrections to the axial couplings. The relevant graphs for
the renormalization of g are shown in Fig. 2, and the graphs
for g0 can be obtained from those in Fig. 2 by interchanging
H and S lines. Note that we only need the ultraviolet
divergences of these graphs to obtain the renormalization
group equation. Furthermore, the counterterms for the
wavefunction renormalization and the axial couplings are
defined to be independent of mq and mQ.2 Ultraviolet
divergences proportional to mq and 1=mQ are absorbed
into higher order counterterms. For example, a divergence
proportional to mq in the one-loop correction to the
axial coupling of the H fields should be renormalized by
counterterms with structures like Tr�HaHbA6 bc�5�m

(
ca,

Tr�HaHbA6 ba�5�m
(
cc, etc. Therefore we can ignore

Goldstone boson masses and hyperfine splittings in com-
puting the ultraviolet divergences, which greatly simplifies
the calculation. The graphs in Figs. 1(a), 1(c), 2(a), and
2(e) vanish in this limit because the integrals are scaleless.
Graphs in Figs. 2(c) and 2(d) do not contribute either. This
is because the H-S-	 coupling in Figs. 2(c) and 2(d) gives
a factor of v � k, where k� is the four-momentum of
the external Goldstone boson. Ultraviolet divergences
in Figs. 2(c) and 2(d) are proportional to v � k and are
canceled by counterterms with an additional covariant
derivative acting on the fields A�

ab, such as Tr�HaHbiv �
DbcA6 ca�5�. Therefore, all that is needed to obtain the
running of g are the ultraviolet divergent parts of
Figs. 1(b) and 2(b) in the limit where Goldstone bosons
and hyperfine splittings are neglected. The running of g0 is
obtained from Fig. 1(d) and the analog of Fig. 2(b) with S
and H lines interchanged. The result can be obtained from
the corresponding graphs for the renormalization of g by
simply substituting g $ g0 and "S � "H ! ��"S � "H�.
The renormalization group equations for g and g0 are
2If the theory is not renormalized this way, dependence on the
underlying theory parameters mq and mQ would no longer be
explicit in the chiral Lagrangian.
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�
d

d�
g � �

h2

4	2f2 �"S � "H�
2�g0 � 8g�

�
d

d�
g0 � �

h2

4	2f2 �"H � "S�
2�g � 8g0�;

(17)

which can be rewritten as

�
d

d�
�g � g0� � �

9h2

4	2f2 �"H � "S�
2�g � g0�

�
d

d�
�g � g0� � �

7h2

4	2f2 �"H � "S�
2�g � g0�:

(18)

To understand the significance of this result, consider the
naive quark model prediction g0 � g=3 [40]. From the
renormalization group equations in Eq. (17) one sees that
g and g0 vary with changes of the renormalization scale in
such a way that the condition g0 � g=3 can only hold at
one value of �. The quark model prediction is meaningless
beyond tree level without also specifying a particular
renormalization scheme and scale at which the relation is
expected to hold. However, if g � 	g0 holds at any �, it
will hold for all � (at least at one-loop order). Also, if g2 �
g02 and !S � !H the right hand side of Eq. (16) vanishes.
Thus the predictions of the parity doubling model, !H �
!S and g � �g0, are invariant under renormalization
group flow in HH�PT to one-loop order.
V. HQET AND PREDICTIONS FOR EXCITED B
MESONS

In this section, we comment on the theoretical expecta-
tions for the spectrum of excited even-parity bottom me-
sons which have yet to be discovered. Our HH�PT results
for the charmed meson spectrum may be used, but there are
unknown O�1=mQ� effects which make it difficult to obtain
precise predictions for the B mesons. For finite quark
masses, to obtain the bottom meson spectrum from the
charmed meson results, the hyperfine operators should be
rescaled by mc=mb, which is not very well determined.
Other parameters can receive O�&QCD=mc �&QCD=mb�

corrections. For instance, the reduced kinetic energy of
the b quark significantly reduces the mass splitting of the
-7
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H and S doublets in the b sector relative to what is
observed in the charmed system. These O�1=mQ� correc-
tions introduce significant uncertainty in HH�PT
predictions.

We will instead use the O�1=mQ� HQET formulas for the
mass of a heavy hadron X which contains a heavy quark Q
[56]:

m�Q�
X � mQ � �&X �

-X
1

2mQ
� nJ

-X
2

2mQ
; (19)

where -X
1 and -X

2 are hadronic matrix elements of the
HQET operators �h�iD�2h and gs

�h&�'G�'h=2, respec-
tively, and nJ � �1 for J � 1 states and nJ � �3 for J �
0 states. The first 1=mQ correction, �-X

1 =�2mQ�, is the
kinetic energy of the heavy quark. The second 1=mQ

correction contributes to hyperfine splittings. The differ-
ence between the spin averaged masses of the jp � 1

2
� and

jp � 1
2
� mesons, m�Q�

H � �3m�Q�
H� � m�Q�

H �=4 and m�Q�
S �

�3m�Q�
S� � m�Q�

S �=4, respectively, is given by

m �Q�
S � m�Q�

H � �&S � �&H �
-S

1

2mQ
�

-H
1

2mQ
; (20)

which leads to the following formulas for the splitting of
the even- and odd-parity states in the bottom sector:

m �b�
S � m�b�

H � m�c�
S � m�c�

H � �-S
1 � -H

1 �

�
1

2mc
�

1

2mb

�
:

(21)

A recent global fit to B decays yields -H
1 � �0:20 	

0:06 GeV2 [57]. The parameter -S
1 is unknown. From the

spectroscopy of excited jp � 3
2
� D and B mesons,

Ref. [58] extracts -3=2
1 � -H

1 � �0:23 GeV2, where -3=2
1

is the -1 matrix element for the jp � 3
2
� doublet. The sign

here indicates that the kinetic energy of the heavy quark in
the excited heavy meson is larger than that in the ground
state, which agrees with intuition. We expect the kinetic
energy of the heavy quark in the jp � 1

2
� states to be

comparable to that of jp � 3
2
� states. To estimate m�b�

S
with conservative errors, we take -S

1 � -H
1 � �0:2	

0:1 GeV2, mc � 1:4 GeV, and mb � 4:8 GeV to find

m �b�
S � m�b�

H � m�c�
S � m�c�

H � 50	 25 MeV: (22)

In the bottom nonstrange sector, m�b�
H1

� 5279 MeV and

m�b�
H�

1
� 5325 MeV, which yields m�b�

H1
� 5314 MeV and

therefore Eq. (22) predicts m�b�
S1

� 5696	 30 	 25 MeV.
The first error comes from the uncertainty in the charm
nonstrange jp � 1

2
� masses and the second is the estimated

uncertainty in -S
1 . These states are well above the threshold

for S-wave pion decays to the ground state and should be
broad like their charm counterparts.
034006
In the bottom strange sector, only the 0� state with mass
m�b�

H3
� 5370 MeV has been observed. To proceed we need

to estimate the mass of the bottom strange 1� state. Note
that

m�b�
H� � m�b�

H

m�c�
H� � m�c�

H

�
m�b�

S� � m�b�
S

m�c�
S� � m�c�

S

�
mc

mb
: (23)

up to O�1=mQ� corrections. Thus, all the hyperfine split-
tings in the bottom sector are related to those in the charm
sector by a universal factor. Combining this with the mea-
sured value of m�b�

H�
1
� m�b�

H1
leads to the prediction that

m�b�
H�

3
� m�b�

H3
� m�b�

S�
3
� m�b�

S3
� 46 MeV, and m�b�

S�
1
� m�b�

S1
�

42 MeV. These predictions have approximately 25% un-
certainty due to higher order O�&QCD=mc � &QCD=mb�

corrections and the prediction for m�b�
S�
1
� m�b�

S1
estimate

has an additional 20% uncertainty due to the poorly known
m�c�

S�
1

and m�c�
S1

masses. Given these hyperfine splittings, one

expects m�b�
H3

� 5404 MeV and then Eq. (22) predicts

m�b�
S3

� 5702	 25 MeV. Here the error is dominated by
our ignorance of -1

S. Note that the excited bottom strange
mesons are expected to lie well below the threshold for
decays to ground state B mesons and kaons and should be
narrow like jp � 1

2
� charmed strange mesons.
VI. CONCLUSIONS

We have enumerated the leading and subleading opera-
tors which describe the even-parity charmed meson masses
in heavy hadron chiral perturbation theory (HH�PT). We
performed a loop calculation to analyze the lowest lying
even- and odd-parity charmed meson masses to O�Q3�.
There are nominally 11 unknown parameters in the pre-
diction, and only eight experimental masses. Two of the
parameters, the axial coupling g for the lowest doublet of
charmed mesons, and the coupling h which dominates the
strong decay between the even-parity and ground state
doublets, have been extracted from previous calculations.
See Ref. [49] and Ref. [24], respectively. However, the
even-parity states were not included in the extraction of g
in Ref. [49]. Also, the extraction of h was only performed
at tree level. Since these values for g and h were not
obtained under the same conditions as the mass calcula-
tions performed in this paper, it is not clear that the values
should be used in our fit. Indeed, if the values from
Refs. [24,49] are used, it is not possible to obtain the
nonstrange even-parity masses as large as they are ob-
served to be. If the g and h parameters are not fixed but
simply constrained to lie between 0 and 1, which is the
prejudice from other analyses, then a fit to the even-parity
masses is possible. Because of the numerous undetermined
parameters, HH�PT can accommodate, but not explain,
-8
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the unusual pattern of SU�3� breaking observed in the
excited charmed meson spectrum.

If we perform an unconstrained fit to the charmed meson
mass spectrum using all 11 parameters, many solutions are
possible, including ones whose values of g and h are not
unreasonably far from their previously extracted values.
However, then the parameter values found for the hyperfine
operators are of concern. These hyperfine operators should
have coefficients which scale as O�&2

QCD=mQ� relative to
the O�&QCD� coefficients of the leading operators. The fact
that unconstrained global fits find coefficients which are
sometimes larger for the hyperfine operators than for the
leading order operators may signal a problem in the 1=mQ

expansion. On the other hand, this may simply be a con-
sequence of not properly incorporating the constraints on g
and h from the decay widths. Before more definitive state-
ments can be made, a global fit including even-parity
intermediate states and terms up to O�Q3� for both the
odd-parity and even-parity meson decay rates must be
done. That will be the subject of a subsequent paper.

Next we consider the parity doubling model introduced
in Refs. [41–44]. While the parity doubling model is not a
result of QCD, but requires additional assumptions, it is
interesting because it provides an explanation of the ob-
served equality of the hyperfine splitting in the even-parity
doublet and the hyperfine splitting in the odd-parity dou-
blet. QCD symmetries alone do not dictate any relationship
between these hyperfine splittings. While the parity dou-
bling model provides an explanation for the equality of the
hyperfine splittings, the question we address here is
whether it is a natural explanation. That is, does it survive
beyond tree level? Is it stable under renormalization group
flow? We find that there are ‘‘fixed lines’’ at jgj � jg0j.
(These are axial operator coefficients from Eq. (6).) That
is, if at any time in their evolution g � g0 or g � �g0,
renormalization group analysis shows that the relationship
will be maintained. This in turn assures that if at tree level
the parameters !H and !S in Eq. (7) are equal, they remain
so to one-loop. This lends credence to the parity doubling
model. The stability found in the parity doubling model
does not exist for other models, such as the nonrelativistic
quark model, which predicts g0 � g=3. Going back to the
parameter fit, we do find that solutions with jgj near jg0j are
possible, as are fits with !H near !S. However, such fits
yield values for !H and !S which are larger than expected
by power counting. In addition, there are fits which repro-
duce the observed hyperfine splittings without jgj 
 jg0j.

Finally, we discuss how the charmed meson spectrum
results can be used to make predictions for the analog B
meson spectrum. It is necessary to know the charm and
bottom quark masses in order to rescale the operators,
which brings in significant uncertainty. Also, there are
additional 1=mQ operators with unknown parameters.
However, it is possible to use heavy quark effective theory
to estimate that the even-parity strange spin-zero B meson
034006
has mass �5667 MeV while its spin-one partner has mass
�5714 MeV. This places them below the threshold for
decay to a kaon and the ground state B. Therefore, we
expect narrow B�

s meson analogs to the narrow D�
s excited

mesons.
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APPENDIX

We express our results in terms of the functions

K1�*; M� �
1

16	2

�
��2*3 � 3M2*� ln

�
M2

�2

�

� 2*�*2 � M2�F
�
*
M

�
� 4*3 � 5*M2

�

K2�*; M� �
1

16	2

�
��2*3 � M2*� ln

�
M2

�2

�

� 2*3F
�
*
M

�
� 4*3 � *M2

�
; (A1)

where

F�x� � 2

��������������
1� x2

p

x

�
	
2
� tan�1

�
x��������������

1� x2
p

��
jxj < 1

(A2)

� �2

��������������
x2 � 1

p

x
ln�x �

��������������
x2 � 1

p
� jxj > 1 (A3)

The function K1�*; M� appears whenever the virtual heavy
meson inside the loop is in the same doublet as the external
heavy meson, while K2�*; M� appears when the virtual
heavy meson is from the opposite parity doublet.

In the limit M � * these functions become

K1�*; M� �
1

16	2

�
�2*3 ln

�
4*2

�2

�
� 3*M2 ln

�
4*2

�2

�

�
3M4

4*
ln
�
M2

4*2

�
� . . .

�

K2�*; M� �
1

16	2

�
�2*3 ln

�
4*2

�2

�
� *M2 ln

�
4*2

�2

�

�
M4

4*
ln
�
M2

4*2

�
� . . .

�
: (A4)
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In these equations we have dropped polynomials of *; M.
The functions K1�*; M� and K2�*; M� have well-defined
M ! 0 limits. Furthermore, the dependence on M is ana-
lytic when M=* ! 0, so in this limit the S fields can be
integrated out and their effect on the chiral corrections can
be absorbed into local counterterms as expected. This limit
is not relevant to the real world as * � M. In the opposite
limit, * � 0, which is relevant for loops in which external
034006
and virtual heavy mesons are the same,

K1�*; M� � �
M3

8	
�

3

16	2 *M2 ln
�
4*2

�2

�
� O�*3�

K2�*; M� �
1

16	2 *M2 ln
�
4*2

�2

�
� O�*3�:

(A5)

Including the one-loop diagrams we find:
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1
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�
: (A8)
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: (A9)
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: (A10)
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(A11)
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2
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1
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1
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1
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3
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mS�
3
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�
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�
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3

�
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S�
1
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3
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2

3
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�

�
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�
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0
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1
� m0

S�
3
; mK� �

2

3
K2�m

0
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3
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S�
3
; m*�

�
: (A13)

We agree with Ref. [38] for the H fields in the limit where m	 ! 0, m2
* ! 4

3 m2
K and *=M � 1. Our answer also agrees

with that of Ref. [45], which computes mass corrections to the H and S masses including SU�3� breaking corrections but
not hyperfine splittings.
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