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Phase diagram of neutral quark matter: Self-consistent treatment of quark masses
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We study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of
the Nambu–Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into
account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is
presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling
strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark
coupling strength.
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I. INTRODUCTION

Theoretical studies suggest that baryon matter at suffi-
ciently high density and sufficiently low temperature is a
color superconductor. (For reviews on color superconduc-
tivity see, for example, Ref. [1].) In nature, the highest
densities of matter are reached in central regions of com-
pact stars. There, the density might be as large as 10�0

where �0 � 0:15 fm�3 is the saturation density. It is pos-
sible that baryonic matter is deconfined under such con-
ditions and, perhaps, it is color superconducting.

In compact stars, matter in the bulk is neutral with
respect to the electric and color charges. Matter also should
remain in � equilibrium. Taking these constraints consis-
tently into account may have a strong effect on the com-
petition between different phases of deconfined quark
matter at large baryon densities [2–6]. In this paper, we
study this competition within the framework of a
Nambu–Jona-Lasinio (NJL) model. The results are sum-
marized in the phase diagram in the plane of temperature
(T) and quark chemical potential (�).

The first attempt to obtain the phase diagram of dense,
locally neutral three-flavor quark matter as a function of
the strange quark mass, the quark chemical potential, and
the temperature was made in Ref. [7]. It was shown that, at
zero temperature and small values of the strange quark
mass, the ground state of matter corresponds to the color-
flavor-locked (CFL) phase [8,9]. At some critical value of
the strange quark mass, this is replaced by the gapless CFL
(gCFL) phase [6]. In addition, several other phases were
found at nonzero temperature. For instance, it was shown
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that there should exist a metallic CFL (mCFL) phase, a so-
called uSC phase [10], as well as the standard two-flavor
color-superconducting (2SC) phase [11,12] and the gapless
2SC (g2SC) phase [5].

In Ref. [7], the effect of the strange quark mass was
incorporated only approximately through a shift of the
chemical potential of strange quarks, �s ! �s �
m2
s=�2��. While such an approach is certainly reliable at

small values of the strange quark mass, it becomes uncon-
trollable with increasing the mass. The phase diagram of
Ref. [7] was further developed in Refs. [13,14] where the
shift approximation in dealing with the strange quark was
not employed any more. So far, however, quark masses
were treated as free parameters, rather than dynamically
generated quantities. In this paper, we study the phase
diagram of dense, locally neutral three-flavor quark matter
within the NJL model, treating dynamically generated
quark masses self-consistently. Some results within this
approach at zero temperature also were obtained in
Refs. [3,15].

As in Refs. [7,13,14], we restrict our analysis to locally
neutral phases only. This automatically excludes, for ex-
ample, mixed [16] and crystalline [17] phases. Taking them
into account requires a special treatment which is outside
the scope of this paper.

This paper is organized as follows: In Sec. II, we in-
troduce the model and, within this model, derive a com-
plete set of gap equations and charge neutrality conditions.
The numerical results for the phase diagrams in the plane
of temperature and quark chemical potential in two quali-
tatively different regimes are presented in Sec. III. Finally,
our results are summarized in Sec. IV. The appendix con-
tains some useful formulas.

II. MODEL AND FORMALISM

In this paper, we use a three-flavor quark model with a
local NJL-type interaction. The Lagrangian density is
given by
-1  2005 The American Physical Society
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L 	 � �i6@� m̂� �GS

X8
a	0

�� � �a �2 � � � i�5�a �2

�GD

X
�;c

� � a�i�5�����abc� C�b�

� �� � C�r�i�5�����rsc s�

� Kfdet
f
� � �1� �5�  � det

f
� � �1� �5� g; (1)

where the quark spinor field  a� carries color (a 	 r; g; b)
and flavor (� 	 u; d; s) indices. The matrix of quark cur-
rent masses is given by m̂ 	 diagf�mu;md;ms�. Regarding
other notations, �a with a 	 1; . . . ; 8 are the Gell-Mann
matrices in flavor space, and �0 �

��������
2=3

p
1f. The charge-

conjugate spinors are defined as follows:  C 	 C � T and
� C 	  TC, where � 	  y�0 is the Dirac conjugate spinor

and C 	 i�2�0 is the charge conjugation matrix.
The model in Eq. (1) should be viewed as an effective

model of strongly interacting matter that captures at least
some key features of QCD dynamics. The Lagrangian
density contains three different interaction terms which
are chosen to respect the symmetries of QCD. Note that
we include the ’t Hooft interaction whose strength is
determined by the coupling constant K. This term breaks
U�1� axial symmetry.

The term in the second line of Eq. (1) describes a scalar
diquark interaction in the color-antitriplet and flavor-
antitriplet channel. For symmetry reasons there also should
be a pseudoscalar diquark interaction with the same cou-
pling constant. This term would be important to describe
Goldstone boson condensation in the CFL phase [18]. In
this paper, however, we neglect this possibility and there-
fore drop the pseudoscalar diquark term.

We use the following set of model parameters [19]:

mu;d 	 5:5 MeV; (2a)

ms 	 140:7 MeV; (2b)

GS�
2 	 1:835; (2c)

K�5 	 12:36; (2d)

� 	 602:3 MeV: (2e)

After fixing the masses of the up and down quarks at
equal values, mu;d 	 5:5 MeV, the other four parameters
are chosen to reproduce the following four observables of
vacuum QCD [19]: m 	 135:0 MeV, mK 	 497:7 MeV,
m!0 	 957:8 MeV, and f 	 92:4 MeV. This parameter
set gives m! 	 514:8 MeV [19].

In Ref. [19], the diquark coupling GD was not fixed by
the fit of the meson spectrum in vacuum. In general, it is
expected to be of the same order as the quark-antiquark
coupling GS. In this paper, we study in detail two possible
cases: the regime of intermediate coupling strength with
GD 	 3

4GS and the regime of strong coupling with GD 	

GS. The comparison of phase diagrams in these two cases
will turn out to be very instructive.
034004
The grand partition function, up to an irrelevant normal-
ization constant, is given by

Z � e��V=T 	
Z

D � D ei
R
X
�L� � �̂�0 �; (3)

where � is the thermodynamic potential density, V is the
volume of the three-space, and �̂ is a diagonal matrix of
quark chemical potentials. In chemical equilibrium (which
provides � equilibrium as a special case), the nontrivial
components of this matrix are extracted from the following
relation:

���
ab 	 ��$�� ��QQ

��
f �$ab

� ��3�T3�ab ��8�T8�ab$��: (4)

Here � is the quark chemical potential (by definition, � 	
�B=3 where �B is the baryon chemical potential), �Q is
the chemical potential of electric charge, while �3 and
�8 are color chemical potentials associated with two mu-
tually commuting color charges of the SU�3�c gauge group.
The explicit form of the electric charge matrix is Qf 	

diagf�
2
3 ;�

1
3 ;�

1
3�, and the explicit form of the color

charge matrices is T3 	 diagc�
1
2 ;�

1
2 ; 0� and

���
3

p
T8 	

diagc�
1
2 ;

1
2 ;�1�.

In order to calculate the mean-field thermodynamic
potential at temperature T, we first linearize the interaction
in the presence of the diquark condensates �c �

� � C�a�i�5���c�abc b� (no sum over c) and the quark-
antiquark condensates �� � � a� a� (no sum over �).
Then, integrating out the quark fields and neglecting the
fluctuations of composite order parameters, we arrive at the
following expression for the thermodynamic potential:

� 	 �L �
1

4GD

X3
c	1

j�cj
2 � 2GS

X3
�	1

�2
� � 4K�u�d�s

�
T
2V

X
K

ln det
S�1

T
; (5)

where we also added the contribution of leptons, �L,
which will be specified later.

We should note that we have restricted ourselves to field
contractions corresponding to the Hartree approximation.
In a more complete treatment, among others, the ’t Hooft
interaction term gives also rise to mixed contributions
containing both diquark and quark-antiquark condensates,
i.e., /

P3
�	1 ��j��j

2 [20]. In this study, as in Refs. [3,21],
we neglect such terms for simplicity. While their presence
may change the results quantitatively, one does not expect
them to modify the qualitative structure of the phase
diagram.

In Eq. (5), S�1 is the inverse full quark propagator in the
Nambu-Gorkov representation,
-2
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S�1 	
�G�

0 
�1 ��

�� �G�
0 

�1

� �
; (6)

with the diagonal elements being the inverse Dirac propa-
gators of quarks and of charge-conjugate quarks,

�G�
0 

�1 	 ��K� � �̂�0 � M̂; (7)

where K� 	 �k0;k� denotes the four-momentum of the
quark. At nonzero temperature, we use the Matsubara
imaginary time formalism. Therefore, the energy k0 is
replaced with �i!n where !n � �2n� 1� T are the fer-
mionic Matsubara frequencies. Accordingly, the sum over
K in Eq. (5) should be interpreted as a sum over integer n
and an integral over the three-momentum k.

The constituent quark mass matrix is defined as M̂ 	

diagf�Mu;Md;Ms� with

M� 	 m� � 4GS�� � 2K����; (8)

where �� are the quark-antiquark condensates, and the set
of indices ��;�; �� is a permutation of �u; d; s�.

The off-diagonal components of the propagator (6) are
the so-called gap matrices given in terms of three diquark
condensates. The color-flavor structure of these matrices is
given by

����
��
ab 	 �

X
c

���c�abc�c�5; (9)

and �� 	 �0����y�0. Here, as before, a and b refer to
the color components and � and � refer to the flavor
components. Hence, the gap parameters �1, �2, and �3

correspond to the down-strange, the up-strange, and the up-
down diquark condensates, respectively. All three of them
originate from the color-antitriplet, flavor-antitriplet di-
quark pairing channel. For simplicity, the color and flavor
symmetric condensates are neglected in this study. They
were shown to be small and not crucial for the qualitative
understanding of the phase diagram [7].

By making use of the results in the appendix, the deter-
minant of the inverse quark propagator can be decomposed
as follows:

det
S�1

T
	
Y18
i	1

�
!2
n � �2i
T2

�
2
; (10)

where �i are 18 independent positive energy eigenvalues.
The Matsubara summation in Eq. (5) can then be done
analytically by employing the relation [22]

X
n

ln
�
!2
n � �2i
T2

�
	

j�ij
T

� 2 ln�1� e��j�ij=T��: (11)

Then, we arrive at the following mean-field expression for
the pressure (p � ��):
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p 	
1

2 2

X18
i	1

Z �

0
dk k2�j�ij � 2T ln�1� e��j�ij=T��

� 4K�u�d�s �
1

4GD

X3
c	1

j�cj
2 � 2GS

X3
�	1

�2
�

�
T

 2

X
l	e;�

X
�	�

Z 1

0
dk k2 ln�1� e��El���l=T��; (12)

where the contribution of electrons and muons with masses
me � 0:511 MeV and m� � 105:66 MeV were included.
Note that muons may exist in matter in � equilibrium and,
therefore, they are included in the model for consistency.
However, being about 200 times heavier than electrons,
they do not play a big role in the analysis.

In this paper, we assume that there are no trapped
neutrinos in quark matter. This is expected to be a good
approximation for matter inside a neutron star after the
short deleptonization period is over. The effect of neutrino
trapping will be addressed elsewhere [23].

The expression for the pressure in Eq. (12) has a physi-
cal meaning only when the chiral and color-
superconducting order parameters, �� and �c, satisfy the
following set of six gap equations:

@p
@��

	 0; (13a)

@p
@�c

	 0: (13b)

To enforce the conditions of local charge neutrality in
dense matter, we also require three other equations to be
satisfied,

nQ �
@p
@�Q

	 0; (14a)

n3 �
@p
@�3

	 0; (14b)

n8 �
@p
@�8

	 0: (14c)

These fix the values of the three corresponding chemical
potentials, �Q, �3, and �8. After these are fixed, only the
quark chemical potential � is left as a free parameter.

III. RESULTS

In order to obtain the phase diagram, we have to find the
ground state of matter for each given set of the parameters
in the model. In the case of locally neutral matter, there are
two parameters that should be specified: temperature T and
quark chemical potential �. After these are fixed, one has
to compare the values of the pressure in all competing
neutral phases of quark matter. The ground state corre-
sponds to the phase with the highest pressure.

Before calculating the pressure, given by Eq. (12),
one has to find the values of the chiral and the color-
-3
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superconducting order parameters, �� and �c, as well as
the values of the three charge chemical potentials, �Q, �3,
and �8. These are obtained by solving the coupled set of
six gap Eqs. (13) together with the three neutrality con-
ditions (14). By using standard numerical recipes, it is not
extremely difficult to find a solution to the given set of nine
nonlinear equations. Complications arise, however, due to
the fact that often the solution is not unique.

The existence of different solutions to the same set of
equations, (13) and (14), reflects the physical fact that there
could exist several competing neutral phases with different
physical properties. Among these phases, all but one are
unstable or metastable. In order to take this into account in
our study, we look for the solutions of the following eight
types:
FIG. 1. The phase diagram of neutral quark matter in the
(1) N
ormal quark (NQ) phase: �1 	 �2 	 �3 	 0;

regime of intermediate diquark coupling strength, GD 	 3

4GS.
(2) 2
SC phase: �1 	 �2 	 0 and �3 � 0;

First-order phase boundaries are indicated by bold solid lines,
(3) 2
SCus phase: �1 	 �3 	 0 and �2 � 0;

whereas the thin solid lines mark second-order phase boundaries
(4) 2
SCds phase: �2 	 �3 	 0 and �1 � 0;

between two phases which differ by one or more nonzero
(5) u
SC phase: �2 � 0, �3 � 0, and �1 	 0;

diquark condensates. The dashed lines indicate the (dis)appear-
(6) d
SC phase: �1 � 0, �3 � 0, and �2 	 0;

ance of gapless modes in different phases, and they do not
(7) s
SC phase: �1 � 0, �2 � 0, and �3 	 0;

correspond to phase transitions.
(8) C
FL phase: �1 � 0, �2 � 0, �3 � 0.
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FIG. 2. The phase diagram of neutral quark matter in the
regime of strong diquark coupling, GD 	 GS. The meaning of
the various line types is the same as in Fig. 1.
Then, we calculate the values of the pressure in all
nonequivalent phases and determine the ground state as
the phase with the highest pressure. After this is done, we
study additionally the spectrum of low-energy quasipar-
ticles in search for the existence of gapless modes. This
allows us to refine the specific nature of the ground state.

In the above definition of the eight phases in terms of �c,
we have ignored the quark-antiquark condensates ��. In
fact, in the chiral limit (m� 	 0), the quantities �� are
good order parameters and we could define additional
subphases characterized by nonvanishing values of one or
more ��. With the model parameters at hand, however,
chiral symmetry is broken explicitly by the nonzero current
quark masses, and the values of �� never vanish. Hence, in
a strict sense it is impossible to define any new phases in
terms of ��.

Of course, this does not exclude the possibility of dis-
continuous changes in �� at some line in the plane of
temperature and quark chemical potential, thereby consti-
tuting a first-order phase transition line. It is generally
expected that the ‘‘would-be’’ chiral phase transition re-
mains first order at low temperatures, even for nonzero
quark masses. Above some critical temperature, however,
this line could end in a critical end point and there is only a
smooth crossover at higher temperatures. Among others,
this picture emerges from NJL-model studies, both without
[24] and with [25] diquark pairing (see also Ref. [21]). We
should therefore expect a similar behavior in our analysis.

Our numerical results for neutral quark matter are sum-
marized in Figs. 1 and 2. These are the phase diagrams in
the plane of temperature and quark chemical potential,
obtained in the mean-field approximation in model (1) in
the case of an intermediate diquark coupling strength,
034004
GD 	 3
4GS, and in the case of a strong coupling, GD 	

GS, respectively. The corresponding dynamical quark
masses, gap parameters, and three charge chemical poten-
tials are displayed in Figs. 3 and 4, respectively. All
quantities are plotted as functions of � for three different
fixed values of the temperature: T 	 0; 20; 40 MeV in the
case of GD 	 3

4GS (see Fig. 3) and T 	 0; 40; 60 MeV in
the case of GD 	 GS (see Fig. 4).

Let us begin with the results in the case of the diquark
coupling being GD 	 3

4GS. In the region of small quark
chemical potentials and low temperatures, the phase dia-
gram is dominated by the normal phase in which the
-4
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FIG. 3. Dependence of the quark masses, of the gap parameters, and of the electric and color charge chemical potentials on the quark
chemical potential at a fixed temperature, T 	 0 MeV (three upper panels), T 	 20 MeV (three middle panels), and T 	 40 MeV
(three lower panels). The diquark coupling strength is GD 	 3

4GS.
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FIG. 4. The dependence of the quark masses, of the gap parameters, and of the charge chemical potentials on the quark chemical
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panels). The diquark coupling strength is GD 	 GS.
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approximate chiral symmetry is broken, and in which
quarks have relatively large constituent masses. This is
denoted by 0SB in Fig. 1. With increasing the temperature,
this phase changes smoothly into the NQ phase in which
quark masses are relatively small. Because of explicit
breaking of the chiral symmetry in the model at hand,
there is no need for a phase transition between the two
regimes.

However, as pointed out above, the symmetry argument
does not exclude the possibility of an ‘‘accidental’’ (first-
order) chiral phase transition. As expected, at lower tem-
peratures we find a line of first-order chiral phase transi-
tions. It is located within a relatively narrow window of the
quark chemical potentials (336 MeV & � & 368 MeV)
which are of the order of the vacuum values of the light-
quark constituent masses. (For the parameters used in our
calculations one obtains Mu 	 Md 	 367:7 MeV and
Ms 	 549:5 MeV in vacuum [19].) At this critical line,
the quark chiral condensates, as well as the quark constitu-
ent masses, change discontinuously. With increasing tem-
perature, the size of the discontinuity decreases, and the
line terminates at the end point located at �Tcr; �cr� �
�56; 336� MeV, see Fig. 1.

The location of the critical end point is consistent with
other mean-field studies of NJL models with similar sets of
parameters [21,24,25]. This agreement does not need to be
exact because, in contrast to the studies in Refs. [21,24,25],
here we imposed the condition of electric charge neutrality
in quark matter. (Note that the color neutrality is satisfied
automatically in the normal phase.) One may argue, how-
ever, that the additional constraint of neutrality is unlikely
to play a big role in the vicinity of the end point.

It is appropriate to mention here that the location of the
critical end point might be affected very much by fluctua-
tions of the composite chiral fields. These are not included
in the mean-field studies of the NJL model. In fact, this is
probably the main reason for their inability to pin down the
location of the critical end point consistent, for example,
with lattice calculations [26]. (It is fair to mention that the
current lattice calculations are not very reliable at nonzero
� either.) Therefore, the predictions of this study, as well
as of those in Refs. [21,24,25], regarding the critical end
point cannot be considered as very reliable.

When the quark chemical potential exceeds some criti-
cal value and the temperature is not too large, a Cooper
instability with respect to diquark condensation should
develop in the system. Without enforcing neutrality, i.e.,
if the chemical potentials of up and down quarks are equal,
this happens immediately after the chiral phase transition
when the density becomes nonzero [25]. In the present
model, this is not the case at low temperatures.

In order to understand this, let us inspect the various
quantities at T 	 0 which are displayed in the upper three
panels of Fig. 3. At the chiral phase boundary, the up and
down quark masses become relatively small, whereas the
034004
strange quark mass experiences only a moderate drop of
about 84 MeV induced by the ’t Hooft interaction. This is
not sufficient to populate any strange quark states at the
given chemical potential, and the system mainly consists of
up and down quarks together with a small fraction of
electrons, see Fig. 5. The electric charge chemical potential
which is needed to maintain neutrality in this regime is
between about �73 and �94 MeV. It turns out that the
resulting splitting of the up and down quark Fermi mo-
menta is too large for the given diquark coupling strength
to enable diquark pairing and the system stays in the
normal phase.

At � � 432 MeV, the chemical potential felt by the
strange quarks, ���Q=3, reaches the strange quark
mass and the density of strange quarks becomes nonzero.
At first, this density is too small to play a sizeable role in
neutralizing matter, or in enabling strange-nonstrange
cross-flavor diquark pairing, see Fig. 5. The NQ phase
becomes metastable against the gapless CFL (gCFL) phase
at �gCFL � 443 MeV. This is the point of a first-order
phase transition. It is marked by a drop of the strange quark
mass by about 121 MeV. As a consequence, strange quarks
become more abundant and pairing gets easier. Yet, in the
gCFL phase, the strange quark mass is still relatively large,
and the standard BCS pairing between strange and light
(i.e., up and down) quarks is not possible. In contrast to the
regular CFL phase, the gCFL phase requires a nonzero
density of electrons to stay electrically neutral. At T 	 0,
therefore, one could use the value of the electron density as
a formal order parameter that distinguishes these two
phases [6].

With increasing the chemical potential further (still at
T 	 0), the strange quark mass decreases and the cross-
flavor Cooper pairing gets stronger. Thus, the gCFL phase
-7
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eventually turns into the regular CFL phase at �CFL �
457 MeV. The electron density goes to zero at this point,
as it should. This is indicated by the vanishing value of �Q

in the CFL phase, see the upper right panel in Fig. 3. We
remind that the CFL phase is neutral because of having
equal number densities of all three quark flavors, nu 	
nd 	 ns, see Figs. 5 and 6. This equality is enforced by the
pairing mechanism, and this is true even when the quark
masses are not exactly equal [27].

Let us mention here that the same NJL model at zero
temperature was studied previously in Ref. [3]. Our results
agree qualitatively with those of Ref. [3] only when the
quark chemical potential is larger than the critical value for
the transition to the CFL phase at 457 MeV. The appear-
ance of the gCFL phase for 443 & � & 457 MeV was not
recognized in Ref. [3], however. Instead, it was suggested
that there exists a narrow (about 12 MeV wide) window of
values of the quark chemical potential around � �
450 MeV in which the 2SC phase is the ground state. By
carefully checking the same region, we find that the 2SC
phase does not appear there.

This is illustrated in Fig. 7 where the pressure of three
different solutions is displayed. Had we ignored the gCFL
solution (thin solid line), the 2SC solution (dashed line)
would indeed be the most favored one in the interval
between � � 445 MeV and � � 457 MeV. After includ-
ing the gCFL phase in the analysis, this is no longer the
case.

Now let us turn to the case of nonzero temperature. One
might suggest that this should be analogous to the zero-
temperature case, except that Cooper pairing is somewhat
suppressed by thermal effects. In contrast to this naı̈ve
expectation, the thermal distributions of quasiparticles to-
gether with the local neutrality conditions open qualita-
 0.01
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FIG. 6. The dependence of the number densities of quarks,
electrons, and muons on the quark chemical potential at T 	
0 MeV for diquark coupling strength GD 	 GS. Note that the
densities of all three quark flavors coincide above � 	
414 MeV.
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tively new possibilities that were absent at T 	 0. As in the
case of the two-flavor model of Ref. [5], a moderate
thermal smearing of mismatched Fermi surfaces could
increase the probability of creating zero-momentum
Cooper pairs without running into a conflict with Pauli
blocking. This leads to the appearance of several stable
color-superconducting phases that could not exist at zero
temperatures.

With increasing the temperature, the first qualitatively
new feature in the phase diagram appears when 5 & T &

10 MeV. In this temperature interval, the NQ phase is
replaced by the uSC phase when the quark chemical po-
tential exceeds the critical value of about 444 MeV. The
corresponding transition is a first-order phase transition,
see Fig. 1. Increasing the chemical potential further by
several MeV, the uSC phase is then replaced by the
gCFL phase, and the gCFL phase later turns gradually
into the (m)CFL phase. (In this study, we do not distinguish
between the CFL phase and the mCFL phase [7].) Note
that, in the model at hand, the transition between the uSC
and the gCFL phase is of second order in the following two
temperature intervals: 5 & T & 9 MeV and T * 24 MeV.
On the other hand, it is a first-order transition when 9 &

T & 24 MeV. Leaving aside its unusual appearance, this is
likely to be an accidental property in the model for a given
set of parameters. For a larger value of the diquark cou-
pling, in particular, such a feature does not appear, see
Fig. 2.

The transition from the gCFL to the CFL phase is a
smooth crossover at all T � 0 [7,13]. The reason is that the
electron density is not a good order parameter that could be
used to distinguish the gCFL from the CFL phase when the
temperature is nonzero. This is also confirmed by our
numerical results for the electric charge chemical potential
 0.024

 0.028

 0.032

 440  450  460

p 
/ µ

4

µ [MeV]

CFL
gCFL

2SC
normal

FIG. 7. Pressure divided by �4 for different neutral solutions
of the gap equations at T 	 0 as functions of the quark chemical
potential �: regular CFL (bold solid line), gapless CFL (thin
solid line), 2SC (dashed line), normal (dotted line). The diquark
coupling strength is GD 	 3

4GS.
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�Q in Fig. 3. While at zero temperature the value of �Q

vanishes identically in the CFL phase, this is not the case at
finite temperatures.

Another new feature in the phase diagram appears when
the temperature is above about 11 MeV. In this case, with
increasing the quark chemical potential, the Cooper insta-
bility happens immediately after the 0SB phase. The cor-
responding critical value of the quark chemical potential is
rather low, about 365 MeV. The first color-superconducting
phase is the gapless 2SC (g2SC) phase [5]. This phase is
replaced with the 2SC phase in a crossover transition only
when � * 445 MeV. The 2SC is then followed by the
gapless uSC (guSC) phase, by the uSC phase, by the gCFL
phase and, eventually, by the CFL phase (see Fig. 1).

In the NJL model at hand, determined by the parameters
in Eq. (2), we do not find the dSC phase as the ground state
anywhere in the phase diagram. This is similar to the
conclusion of Refs. [7,14], but differs from that of
Refs. [10,13]. This should not be surprising because, as
was noted earlier [14], the appearence of the dSC phase is
rather sensitive to a specific choice of parameters in the
NJL model.

The phase diagram in Fig. 1 has a very specific ordering
of quark phases. One might ask if this ordering is robust
against the modification of the parameters of the model at
hand. Below we argue that some features are indeed quite
robust, while others are not.

It should be clear that the appearance of color-
superconducting phases under the stress of neutrality con-
straints is very sensitive to the strength of diquark cou-
pling. In the case of two-flavor quark matter, this was
demonstrated very clearly in Ref. [5] at zero as well as at
nonzero temperatures. Similar conclusions were reached
also in the study of three-flavor quark matter at zero
temperature [15].

In the model at hand, it is instructive to study the phase
diagram in the regime of strong diquark coupling, GD 	
GS. The corresponding results are summarized in the dia-
gram in Fig. 2. As we see, the main qualitative difference
between the diagrams in Figs. 1 and 2 occurs at intermedi-
ate values of the quark chemical potential. While at GD 	
3
4GS, there is a large region of the g2SC phase sandwiched
between the low-temperature and high-temperature NQ
phases, this is not the case at stronger coupling, GD 	 GS.

The last observation can easily be explained by the fact
that with increasing diquark coupling strength, the con-
densation energy also increases and therefore Cooper pair-
ing is favorable, even if there is a larger mismatch of the
Fermi surfaces due to charge neutrality constraints.
Moreover, in the presence of large gaps, the Fermi surfaces
are smeared over a region of order �. Therefore additional
thermal smearing is of no further help, and it is not surpris-
ing that the thermal effects in a model with sufficiently
strong coupling are qualitatively the same as in models
without neutrality constraints imposed: thermal fluctua-
034004
tions can only destroy the pairing. In the model with a
not very strong coupling, on the other hand, the interplay of
the charge neutrality and thermal fluctuations is more
subtle. The normal phase of cold quark matter develops a
Cooper instability and becomes a color superconductor
only after a moderate thermal smearing of the quark
Fermi surfaces is introduced [5].

Other than this, the qualitative features of the phase
diagrams in Figs. 1 and 2 are similar. Of course, in the
case of the stronger coupling, the critical lines lie system-
atically at higher values of the temperature and at lower
values of the quark chemical potential. In this context one
should note that the first-order phase boundary between the
two normal regimes ‘‘0SB’’ and ‘‘NQ’’ is insensitive to the
diquark coupling. Therefore, upon increasingGD it stays at
its place until it is eventually ‘‘eaten’’ up by the expanding
2SC phase. As a result, there is no longer a critical end
point in Fig. 2 but only a critical point where the first-order
normal(0SB)-2SC phase boundary changes into second
order.

IV. CONCLUSIONS

In this paper, we studied the T –� phase diagram of
neutral three-flavor quark matter within the NJL model of
Ref. [19] in which the chiral symmetry is broken explicitly
by small but nonzero current quark masses. As in the
previous studies [7,13,14], we use the mean-field approxi-
mation in the analysis. In contrast to Refs. [7,13,14], in this
paper the constituent quark masses are treated self-
consistently as dynamically generated quantities. The
main results are summarized in Figs. 1 and 2.

By comparing our results with those in Ref. [7] (see
Fig. 11b there), we notice several important differences.
First of all, we observe that a self-consistent treatment of
quark masses strongly influences the competition between
different quark phases. As was noticed earlier in Ref. [25],
there exists a subtle interplay between the two main effects.
On the one hand, the actual values of the quark masses
directly influence the competition between different nor-
mal and color-superconducting phases. On the other hand,
competing phases themselves determine the magnitude of
the masses. Very often, this leads to first-order phase
transitions, in which certain regions in the mass-parameter
space become inaccessible.

Some differences to the results in Ref. [7] are related to a
different choice of model parameters. Most importantly,
the value of the diquark coupling GD 	 3

4GS is consider-
ably weaker than in the NJL model of Ref. [7]. This easily
can be seen by comparing the magnitude of the zero-
temperature gap at a given value of the quark chemical
potential, say at � 	 500 MeV, in the two models. It is
��500�

0 � 76 MeV in this paper, and it is ��500�
0 � 140 MeV

in Ref. [7]. (Note that the strength of the diquark pairing in
Ref. [13] is even weaker, corresponding to ��500�

0 �
20 MeV.) It should be noted that even the case of the
-9
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strong coupling, GD 	 GS, which corresponds to ��500�
0 �

120 MeV, is still slightly weaker than that in Ref. [7]. In
this case, however, the corresponding results differ mostly
because the quark masses are treated very differently.

Because of the weaker diquark coupling strength, the
Cooper instabilities in Fig. 1 happen systematically at
higher values of the quark chemical potential than in
Ref. [7]. In particular, this is most clearly seen from the
critical lines of the transition to the (g)CFL phase. Another
consequence of the weaker interaction is the possibility of
a thermal enhancement of the (g)2SC Cooper pairing at
intermediate values of the quark chemical potential. This
kind of enhancement was studied in detail in Ref. [5].
Making use of the same arguments, one can tell immedi-
ately how the phase diagram in Fig. 1 should change with
increasing or decreasing the diquark coupling strength.

In particular, with increasing (decreasing) the diquark
coupling strength, the region of the (g)2SC phase at inter-
mediate values of the quark chemical potential should
expand (shrink) along the temperature direction. The re-
gions covered by the other (i.e., uSC and CFL) phases
should have qualitatively the same shape, but shift to lower
(higher) values of the quark chemical potential and to
higher (lower) values of the temperature. In the case of
strong coupling, in particular, these general arguments are
confirmed by our numerical calculations. The correspond-
ing phase diagram is shown in Fig. 2.

Several comments are in order regarding the choice of
the NJL model used here. The model is defined by the set
of parameters in Eq. (2) which were fitted to reproduce
several important QCD properties in vacuum [19]. (Note
that the same model also was used in Ref. [3].) It is
expected, therefore, that this is a reasonable effective
model of QCD that captures the main features of both
chiral and color-superconducting pairing dynamics. Also,
a relatively small value of the cutoff parameter in the
model, see Eq. (2e), should not necessarily be viewed as
a bad feature of the model. In fact, this might simply mimic
a natural property of the full theory in which the coupling
strength of relevant interactions is quenched at large
momenta.

In this relation, note that the approach of Ref. [13]
regarding the cutoff parameter in the NJL model is very
different. It is said there that a large value of this parameter
is beneficial in order to extract results which are insensitive
to a specific choice of the cutoff. However, we do not find
any physical argument that would support this require-
ment. Instead, we insist on having an effective model
that describes reasonably well the QCD properties at zero
quark chemical potential. We do not pretend, of course,
that a naı̈ve extrapolation of the model to large densities
can be rigorously justified. In absence of a better alterna-
tive, however, this seems to be the only sensible choice.

The results of this paper might be relevant for under-
standing the physics of (hybrid) neutron stars with quark
034004
cores, in which the deleptonization is completed. In order
to obtain a phase diagram that could be applied to
protoneutron stars, one has to generalize the analysis to
take into account neutrino trapping. This work is in
progress now [23].

In the end, it might be appropriate to mention that,
despite the progress in our understanding of the phase
diagram of neutral dense quark matter, there still exists a
fundamental problem here. The reason is that some regions
of the phase diagrams in Figs. 1 and 2 correspond to phases
that are known to be unstable [28]. Of course, it is of prime
importance to resolve this issue.
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APPENDIX: EVALUATION OF THE
THERMODYNAMIC POTENTIAL

We use the following ordering of the quark field com-
ponents:

 	 � ru;  rd;  
r
s;  

g
u;  

g
d;  

g
s ;  bu;  bd;  

b
s �
T: (A1)

In this basis, the matrices of quark current and constituent
masses read

m̂ 	 diag�mu;md;ms;mu;md;ms;mu;md;ms� (A2)

and

M̂ 	 diag�Mu;Md;Ms;Mu;Md;Ms;Mu;Md;Ms�; (A3)

respectively, with M� given by Eq. (8). Moreover, the
matrix of quark chemical potentials takes the general form

�̂ 	 diag��r
u;�

r
d; �

r
s; �

g
u; �

g
d; �

g
s ; �b

u; �
b
d; �

b
s �: (A4)

Finally, the explicit color-flavor structure of the gap ma-
trices �� [see Eq. (9)] is given by
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�� 	 ��5

0 0 0 0 �3 0 0 0 �2

0 0 0 ��3 0 0 0 0 0
0 0 0 0 0 0 ��2 0 0
0 ��3 0 0 0 0 0 0 0
�3 0 0 0 0 0 0 0 �1

0 0 0 0 0 0 0 ��1 0
0 0 ��2 0 0 0 0 0 0
0 0 0 0 0 ��1 0 0 0
�2 0 0 0 �1 0 0 0 0

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
; (A5)
and �� 	 �����y. By making use of the symmetries in
the model, we choose all three parameters �c to be real.

In order to calculate the last term in the thermodynam-
ical potential in Eq. (5), it is useful to rewrite the determi-
nant of the inverse full propagator as detS�1 	
det��0�0S�1� 	 det��0� det��0S�1� 	 det��0S�1�. One
should note also that the matrices �0�G�

0 
�1 and �0�

�

can be expressed in terms of the spin projectors,

�0�G
�
0 

�1 	
X
s

k0 � �̂� M̂ �sk
�sk k0 � �̂� M̂

 !
P s;

(A6)

�0�
� 	 �

X
s

0 �̂
��̂ 0

 !
P s; (A7)

where the two projectors are defined as

P s 	
1

2
�1� s� � k̂�; for s 	 �: (A8)

Here k̂ � k=k, k � jkj, and �̂ represents only the color-
flavor part of the gap matrix in Eq. (A5), i.e., �� �

��5�̂. By making use of the definition in Eq. (6), as
well as Eqs. (A6) and (A7) we obtain the following repre-
sentation:

�0S�1 	
X
s

Ŝ�1
s P s; (A9)

where Ŝ�1
s 	 1k0 �Ms, and

M s 	

��̂� M̂ sk 0 �̂
sk ��̂� M̂ ��̂ 0
0 ��̂ �̂� M̂ sk
�̂ 0 sk �̂� M̂

0BBB@
1CCCA;

(A10)

(with s 	 �) is real and symmetric. Since there is no
explicit energy dependence in Ms, their eigenvalues �i
determine the quasiparticle dispersion relations, k0 	
�i�k�. By using the matrix relation ln det�A� 	 Tr ln�A�
as well as the properties of projectors P s, we derive

ln det��0S
�1� 	 ln�detŜ�1

� � detŜ�1
� �: (A11)

It turns out that the two determinants appearing on the
right-hand side of this equation are equal, i.e., detŜ�1

� 	

detŜ�1
� . From the physics viewpoint, this identity reflects
034004
the twofold spin degeneracy of the spectrum of quark
quasiparticles. The formal proof of this degeneracy is
straightforward after noticing that the following matrix
relation is satisfied:

Ŝ�1
�s 	 RŜ�1

s R�1; (A12)

where

R 	

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

0BBB@
1CCCA (A13)

is a unitary matrix with unit determinant, detR 	 1.
Another observation, which turns out to be helpful in the

calculation, is that the determinant detŜ�1
s �k0� is an even

function of k0, i.e., detŜ�1
s ��k0� 	 detŜ�1

s �k0�. This is a
formal consequence of the following matrix relation:

Ŝ�1
s ��k0� 	 �BŜ�1

s �k0�B
�1; (A14)

where the explicit form of the unitary matrix B is

B 	

0 0 0 i
0 0 �i 0
0 i 0 0
�i 0 0 0

0
BBB@

1
CCCA: (A15)

It satisfies detB 	 1. The invariance of the determinant
detŜ�1

s �k0� with respect to the change of the energy sign,
k0 ! �k0, is directly related to the use of the Nambu-
Gorkov basis for quark fields. In this basis, for each qua-
siparticle excitation with a positive energy k0 	 ��k�, there
exists a corresponding excitation with a negative energy
k0 	 ���k�. Therefore, the result for the determinant
should read

det�S�1� 	
Y18
i	1

�k20 � �2i �
2: (A16)

In order to simplify the numerical calculation of the eigen-
values of the matrix M�, defined in Eq. (A10), we first
write it in a block-diagonal form. The total dimension of
this matrix is 36� 36. With a proper ordering of its rows
and columns, it decomposes into six diagonal blocks of
dimension 4� 4 and one diagonal block of dimension
12� 12. The explicit form of these blocks reads
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M�1�
� 	

��r
d �Md k 0 ��3

k ��r
d �Md �3 0

0 �3 �g
u �Mu k

��3 0 k �g
u �Mu

0
BBBB@

1
CCCCA; (A17a)

M�2�
� 	

�r
d �Md k 0 ��3

k �r
d �Md �3 0

0 �3 ��g
u �Mu k

��3 0 k ��g
u �Mu

0BBBB@
1CCCCA; (A17b)

M�3�
� 	

��r
s �Ms k 0 ��2

k ��r
s �Ms �2 0

0 �2 �b
u �Mu k

��2 0 k �b
u �Mu

0
BBBB@

1
CCCCA; (A17c)

M�4�
� 	

�r
s �Ms k 0 ��2

k �r
s �Ms �2 0

0 �2 ��b
u �Mu k

��2 0 k ��b
u �Mu

0BBBB@
1CCCCA; (A17d)

M�5�
� 	

��g
s �Ms k 0 ��1

k ��g
s �Ms �1 0

0 �1 �b
d �Md k

��1 0 k �b
d �Md

0BBBBB@

1CCCCCA; (A17e)

M�6�
� 	

�g
s �Ms k 0 ��1

k �g
s �Ms �1 0

0 �1 ��b
d �Md k

��1 0 k ��b
d �Md

0
BBBBB@

1
CCCCCA; (A17f)

and

M�7�
�

	

��r
u�Mu k 0 0 0 0 0 ��3 0 0 0 ��2

k ��r
u�Mu 0 0 0 0 �3 0 0 0 �2 0

0 0 �r
u�Mu k 0 �3 0 0 0 �2 0 0

0 0 k �r
u�Mu ��3 0 0 0 ��2 0 0 0

0 0 0 ��3 ��g
d�Md k 0 0 0 0 0 ��1

0 0 �3 0 k ��g
d�Md 0 0 0 0 �1 0

0 �3 0 0 0 0 �g
d�Md k 0 �1 0 0

��3 0 0 0 0 0 k �g
d�Md ��1 0 0 0

0 0 0 ��2 0 0 0 ��1 ��b
s�Ms k 0 0

0 0 �2 0 0 0 �1 0 k ��b
s�Ms 0 0

0 �2 0 0 0 �1 0 0 0 0 �b
s�Ms k

��2 0 0 0 ��1 0 0 0 0 0 k �b
s�Ms

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

(A17g)

Out of 36 eigenvalues from all seven blocks, there are 18 positive and 18 negative eigenvalues. Out of total 18 positive
eigenvalues, 9 of them correspond to quark type quasiparticles and the other 9 correspond to antiquark type quasiparticles.
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In our calculation, we extract all 36 eigenvalues numeri-
cally and then use them in the calculation of the pressure,
see Eqs. (10)–(12).

Here, it might be interesting to note that the eigenvalues
of the 4� 4 matrices can be calculated analytically in the
limit when two quark masses appearing in each of them are
equal. For example, when Md 	 Mu, the four eigenvalues
of matrix M�1�

� are given by

��1�i 	 �

�������������������������������������������������������������������
�r
d ��g

u

2
�

������������������
M2
u � k2

q �
2
��2

3

s
�
�r
d ��g

u

2
;

(A18)

while the eigenvalues of M�2�
� differ only by the sign in
034004
front of the second term,

��2�i 	 �

�������������������������������������������������������������������
�r
d ��g

u

2
�

������������������
M2
u � k2

q �
2
� �2

3

s
�
�r
d ��g

u

2
:

(A19)

When the value of $M � Md �Mu is nonzero but small,
the corrections to the above eigenvalues are

�Mu$M=�2
������������������
M2
u � k2

p
� with the plus sign in the case of

antiparticle modes, and the minus sign in the case of
particle modes. The eigenvalues of M�3�

� and M�4�
� in the

limit Ms 	 Mu, as well as the eigenvalues of M�5�
� and

M�6�
� in the limit Ms 	 Md, are similar.
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