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Quarkonium-hadron interactions in perturbative QCD
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The next to leading order quarkonium-hadron cross section is calculated in perturbative QCD. The
corresponding leading order result was performed by Peskin more than 20 years ago using the operator
product expansion. In this work, the calculation is performed using the Bethe-Salpeter amplitude and the
factorization formula. The soft divergence appearing in the intermediate stages of the calculations are
shown to vanish after adding all possible crossed terms, while the collinear divergences are eliminated by
mass factorization. Applying the result to the Upsilon system, one finds that there are large higher order
corrections near the threshold. The relevance of the present result to the charmonium case is also
discussed.
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I. INTRODUCTION

Twenty five years ago, Peskin [1] and Bhanot and Peskin
[2] showed that in the heavy quark limit, the interaction
between a hadron and a heavy quark bound state could be
described in perturbative QCD, and calculated the disso-
ciation cross section of the quarkonium by a hadron to
leading order (LO). According to their calculation, which
was based on operator product expansion (OPE), the J= 
dissociation cross section by a hadron was found to be very
small and in the order of �barn in the threshold region.
Later the result was rederived and the target mass correc-
tion calculated [3–6], but the qualitative result remained
the same. Initially, such a small cross section strongly
supported that the J= suppression seen in relativistic
heavy ion collision at Super Proton Synchrotron was a
consequence of QGP (quark gluon plasma) formation [7].
On the other hand, other approaches, such as the quark
exchange model [8,9], the meson exchange model [10–
16], the QCD sum rule method [17–19], and other non-
perturbative methods [20], predicted a much larger cross
section of few mbarn. The discrepancy is particularly large
near the threshold region [21]. Although the model calcu-
lations themselves have large uncertainties and model
dependencies, it is generally believed that such discrep-
ancy exists because the QCD LO calculation, especially
near threshold, is valid only for a very large quark mass,
larger than that of the bottom quark. However, no system-
atic analysis has been worked out in this context, as the
formalism based on the OPE is quite complicated even in
the LO.

A few years ago, Oh, Kim, and Lee [6] used Bethe-
Salpeter amplitude and factorization formula to reproduce
Peskin’s result on the dissociation cross section. Because
this method is relatively simple, it opened the possibility to
calculate the higher order correction, which will be carried
out in the present work.
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There are two types of initial and final states in the NLO
calculation. One is � � q! Q� �Q� q, and the other is
� � g! Q� �Q� g, where � is a quarkonium. In the
course of the calculations, collinear divergence, infrared
divergence, and soft-collinear divergence appear. Infrared
divergence disappears after adding the one loop diagram
with Q� �Q final state, while the collinear divergence is
eliminated by mass factorization. Dimensional regulariza-
tion in the MS scheme is used throughout this work,
including the parton distribution function. The counting
scheme, introduced by Peskin, to systematically study
heavy bound states is used and applied to NLO. In addition,
the large Nc limits are taken throughout this work.

In Sec. II, the Bethe-Salpeter amplitude and the LO
calculation are reviewed. In Sec. III, the elementary cross
section of � � q! Q� �Q� q is calculated and mass
factorization is introduced. In Sec. IV, the calculation for
the � � g! Q� �Q� g process is presented. The effec-
tive four-point vertex is introduced in Sec. V. It is then
shown how the infrared divergences disappear when the
relevant crossed terms of Born and one loop correction are
included. Mass factorizations in the process � � g! Q�
�Q� g are presented separately when the emitted gluons

are hard and soft in Sec. IV and V, respectively. In Sec. VI,
the result is applied to the upsilon dissociation cross sec-
tion. Limitations when applied to the charmonium case is
also discussed briefly. Appendix A summarizes the 2 and
3-body phase space. Appendix B contains the derivation
and the list of angular integration used in the present work.
Appendix C gives detailed calculations of � � g! Q�
�Q� g diagrams. Appendix D gives some comments about

order counting.
II. LO (�� g ! Q� �Q) CALCULATION

Here, the LO result, rederived by OKL [6] using the
Bethe-Salpeter amplitude, is presented again for
completeness.

The Bethe-Salpeter equation, represented diagrammati-
cally in Fig. 1, is written as
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FIG. 1. The Bethe-Salpeter equation for quarkonium.
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���p1;�p2���ig2CF
Z d4K

�2��4
��i��K�p1�p2���

��K�p1�p2;K�i��K���V�K�p2�; (1)
where CF � �N2
c � 1�=Nc, i��K� is the quark propagator,

and iV�K� the gluon propagator.
In the heavy quark limit, the K0 contour integration is

dominated by the residue at k0 � �m� ~K2=2m� i" over
that at k0 � �q0 �m� ~K2=2m� i". In this limit, V�K �
p2� becomes three dimensional,
V�K � p2�jK0��m� ~K2=2m ’
1

j ~K � ~p2j
2
: (2)
If ����q; ~p� is defined as,
Z p0

2�
i��p1����p1;�p2�i���p2� 
 ����q; ~p�; (3)
where q � p1 � p2, p 
 �p1 � p2�=2, the Bethe-Salpeter
equation becomes
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FIG. 2. Leading order diagrams for � � g! Q� �Q. Th
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����q; ~p� � ig2CF
Z dp0

2�
��p1�

�Z d3K

�2��3
�� ����q; ~K

� ~q=2���
1

j ~K � ~pj2

�
���p2�

’ �
g2CF

�o � ~p2=m

Z d3K

�2��3

�
1 � �0

2
�� ����q; ~K���

1 � �0

2

1

j ~K � ~pj2
;

(4)

in the heavy quark limit and in the q rest frame.
�o � 2m�m� is the binding energy of the quarkonium.
If we assume ����q; ~p� to have a structure of
1��0

2 �igi�
1��0

2  �j ~pj�, the Bethe-Salpeter equation reduces
to the nonrelativistic Schrödinger equation for the
Coulombic bound state,

��o� ~p2=m� �j ~pj��g2CF
Z d3K

�2��3
1

j ~Kj2
 �j ~K� ~pj�; (5)

whose spatial form is�
1

2�
r2 �

g2CF
4�

1

r

�
 �r� � � �r�; (6)

where � � m=2 is the reduced mass.
At the same time, the Bethe-Salpeter vertex reduces to

��

�
q
2
� p;�

q
2
� p

�
�

�
�o �

~p2

m

�
 �j ~pj�

�

��������
m�

Nc

s
1 � �0

2
�igi�

1 � �0

2
:

(7)

Figure 2 is the leading order diagrams for quarkonium
dissocation � � g! Q� �Q. Among them, the first three
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e two lower diagrams are suppressed in large Nc limit.
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diagrams are of the same order in the large Nc limit, while
the last two diagrams are suppressed by 1=Nc. Such Nc
countings are easily obtained using the double quark line
representation for the gluon lines, since one notes that
compared to the first two diagrams, the third diagram has
additionally a quark loop and two factors of g. This alto-
gether gives a factor of Ncg2, which scales as O�1� in the
large Nc limit, as the coupling g scales as 1=�Nc�1=2. In
contrast, the last two diagrams do not have an additional
quark loop while they have the two additional factors of g,
and hence are suppressed by 1=Nc compared to the third
diagram. Technically, this can be rephrased in terms of
color matrices, as the last two diagrams carry the color
factor TbTaTb � �Ta=�2Nc� and hence is suppressed by
1=Nc compared to the third diagram [6].

The counting scheme in scales starts from noting that the
binding energy �o � m�Ncg2=16��2 �O�mg4�. This sug-
gests from Eq. (5) that the three momenta of the heavy
quarks are ofO�mg2�. The next important step is to take the
external gluon momentum j ~kj and its energy k0 to be of
O�mg4�, which are smaller than the typical heavy quark
034002
momentum of O�mg2� inside the bound state. This is the
essence of the factorization in the present approach,
namely, the separation scale is taken to be of O�mg4� so
that the bound state property of O�mg2� can be taken into
account as Wilson coefficients. Then, from the energy
conservation m� � k0 � 2m� j ~p1j

2=2m� j ~p2j
2=2m,

one has [1]

j ~p1j � j ~p2j �O�mg2�; k0 � j ~kj �O�mg4�: (8)

Counting in the NLO process � � q�g� ! Q� �Q�
q�g� are obtained similarly by assuming that the incoming
and outgoing parton momentum are of O�mg4�. That is

j ~p1j� j ~p2j�O�mg2�; k0
1 �j ~k1j�k0

2 �j ~k2j�O�mg4�;

(9)

where k1 is the incoming quark (gluon) momentum, and k2

is the outgoing quark (gluon) momentum. Under this order
counting scheme, quark propagators are expanded as be-
low.
��p� k� �
1 � �0

2

1

k0 � i"
�

1 � �0

2

~p 
 ~k

m�k0 � i"�2
�

~6p
2mk0 � i"

;

��p� k� �
1 � �0

2

�1

k0 � i"
�

1 � �0

2

� ~p 
 ~k

m�k0 � i"�2
�

~6p
�2mk0 � i"

;

���p� k� �
1 � �0

2

�1

k0 � i"
�

1 � �0

2

� ~p 
 ~k

m�k0 � i"�2
�

~6p
2mk0 � i"

;

���p� k� �
1 � �0

2

1

k0 � i"
�

1 � �0

2

~p 
 ~k

m�k0 � i"�2
�

� ~6p
2mk0 � i"

:

(10)
Here, p is the on-shell momentum of heavy quark. The first
term is of 1=mg4 order, and the next two terms are 1=mg2

order. The third diagram of Fig. 2 seems to be a higher
order than previous two diagrams with respect to the
coupling g. But they are of same order under the above
counting scheme. Detail is given in Appendix D.

Using the Bethe-Salpeter amplitude Eq. (7) and the
heavy quark propagators Eq. (10), the leading order am-
plitude may be derived as

M�$
LO � �g

��������
m�

Nc

s �
~k1 


@ � ~p�
@ ~p

g$0

� k10
@ � ~p�
@pj

g$j
�
g�iu�p1�

�
1 � �0

2
�i

1 � �0

2
Tav�p2�: (11)

The total cross section then becomes

)��g�*� �
27g2

3Nc
a2
o

� *�o
� 1�3=2

� *�o
�5

; (12)

where * � q 
 k1=m�, and the quarkonium is assumed to
be in the Coulombic 1S state,

r 1s� ~p� � ia5=2
o 32

����
�

p ao ~p

�jao ~pj2 � 1�3
; (13)

and ao � 16�=�g2Ncm� is the Bohr radius. The coupling g
and the heavy quark mass m are determined by fitting the
measured quarkonium spectrum, such as  and  0 for the
charmonium states, with those of the Coulomb bound
states. Details of the derivations are given in Ref. [6].

The hadronic cross section is obtained by folding the
partonic cross section with the parton distribution function,
using the factorization formula,

)�h�*� �
Z 1

0
dx)��parton�x*;Q�Dparton�x;Q�; (14)

where x is the momentum fraction of a parton, and Q is the
separation scale. As has been stated earlier, the scale Q is
set to be the binding energy, which is of O�mg4�, then it is
natural to include the ‘‘bound state‘‘ properties obtained
from the momentum scale of O�mg2� in the Wilson
coefficient.

At this point, it should be noted that the factorization
theorem in Eq. (14) is valid only when the mass of the
-3
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quark is very large, so that the binding energy of O�mg4�
becomes larger than the typical hard scale >1 GeV.
Otherwise, the two standard sets of corrections will not
be small. Namely, the higher order correction to the per-
turbative cross section will not converge and the higher
twist effects will not be negligible.

If the heavy quark is not sufficiently heavy, the time
scale involved in forming the bound state will not be short
enough compared to the typical time scale involved for the
bound state to interact with the external partons, and hence,
the contributions from multiple gluonic interactions will
not be negligible. Such multiple gluonic effects correspond
to the higher twist effects. Moreover, even if one calculates
the Wilson coefficients for such higher twist effects, noth-
ing much is known about the higher twist distribution
functions inside the hadrons, and the corresponding
contribution to the hadronic cross sections cannot be
calculated.

The perturbative cross section of the leading twist also
has its own problems when the quark mass is not heavy
enough. To begin with, to implement Eq. (14) at the
separation scale Q � �o, one needs the parton distribution
function Dparton�x; �� defined at that scale. Moreover, the
perturbative calculation for the leading order cross section
)��parton�x*; �� may not be convergent. Nonetheless, all
such questions can be answered by the explicit NLO
calculation, which will provide a quantitative estimate of
the correction to the LO cross section, and also determine
the valid energy range of the LO cross section.

The binding energies for both the charmonium and the
Upsilon systems are around 0.75 GeV, and the aforemen-
tioned corrections are potentially not small. However, by
applying our formal NLO calculation to the Upsilon sys-
tem, we will investigate the convergence and the valid
energy range of the leading twist cross section. As for
the parton distribution function, we will use the parton
distribution function by Martin, Roberts, Stirling, Thorne
(MRST) at its minimum scale Q2 � 1:25 GeV2, and in-
vestigate its uncertainty due to the variation in the scale to
larger values.

III. NLO PROCESS �� q ! Q� �Q� q

A. Collinear divergent elementary cross section

Figure 3 represents the lowest order diagrams involving
the quarks, � � q! Q� �Q� q. The invariant matrix
q

k2

k1

p1

−p2 q

k1

FIG. 3. Next to leading order diagram w
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element for this process is given by

M�
NLO�q � gu�k2��$Tau�k1�

1

�k1 � k2�
2

� g

��������
m�

Nc

s �
� ~k1 � ~k2� 


@ � ~p�

@ ~k
g$0

� �k10 � k20�
 � ~p�
@pj

g$j

�
u�p1�

1 � �0

2
�ig

�i

�
1 � �0

2
Tav�p2�: (15)

The averaged square in D-dimension is

jMj
2
NLO�q �

212

3
�g4m2m�

�
�o
m

�
5=2 k10 � k20 � �o

�k10 � k20�
6

�

�
�

1

2
�
k2

10 � k2
20

2k1 
 k2
��D� 4�

�k10 � k20�
2

4k1 
 k2

�
:

(16)

It may be modified to the following covariant form,

jMj 2
NLO�q �

211

3
�g4m2�2m��

6

�
�o
m

�
5=2 �s� �u� 2m��o

� �s� �u�6

�

�
�

1

2
�

�s2 � �u2

�2m��
2 �t
� �D� 4�

��s� �u�2

2�t

�
;

(17)

where �s 
 2q 
 k1, �u 
 �2q 
 k2, and �t 
 �2k1 
 k2.
The parametrization of the three body phase space fol-

lows Ref. [22]. The initial and final momenta are set to the
following

q� �Eq;0; :::;0;0; j ~pjsin’; j ~pjcos’�k10�;

k1 � �k10;0; :::;0;0;0;k10�;

p1 � �E1;0; :::;0;�k20 sin31 sin32;�k20 sin31 cos32;

�k20 cos31�;

p2 � �E2;0; :::;0;0; j ~pjsin’; j ~pjcos’�;

k2 � �k20;0; :::;0;k20 sin31 sin32;k20 sin31 cos32;k20 cos31�:

(18)
k2

−p2

p1

p1

q

−p2
k1

k2

ith initial quark � � q! Q� �Q� q.
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The following new invariant variables are introduced,

t1 
 �k1 � p2�
2 �m2 � �2k1 
 p2;

u1 
 �q� p2�
2 �m2

� �m2 � �2q 
 p2;

s4 
 �k2 � p1�
2 �m2 � 2k2 
 p1 � s� t1 � u1;

(19)

where s � �q� k1�
2.

Eq; k10; E1 . . . may be expressed in terms of the invariant
variables s� �s�; t1; u1; s4.

Eq �
s�u1 �m2

�

2
�����������������
s4 �m2

p ; k10 �
s� t1 �m2

�

2
�����������������
s4 �m2

p ;

E1 �
s4 � 2m2

2
�����������������
s4 �m2

p ; E2 ��
t1 �u1 � 2m2

2
�����������������
s4 �m2

p ;

k20 �
s4

2
�����������������
s4 �m2

p ; j ~pj �

�������������������������������������
�u1 � t1�

2 � 4m2s
p

2
�����������������
s4 �m2

p ;

cos’�
t1s4 � s�u1 � 2m2�� �s4 � s� 2m2�m2

�

�s� t1 �m2
��

�������������������������������������
�t1 �u1�

2 � 4m2s
p : (20)

Using these relations, Eq. (17) is expressed by five
variables s� �s�; t1; u1; 31; 32, because

�u � �q� k2�
2 �m2

�

� 2k20��Eq � �j ~pj cos’� k10� cos31

� j ~pj sin’ sin31 cos32�;

�t � �k1 � k2�
2 � �2k10k20�1 � cos31�: (21)
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The differential cross section for the three body decay is

�s 2 d2)
dt1du1

�
1

2

1

�4��D
��D�4

��D� 3�

�

�
�su1t1 �m2

�t
2
1 �m2 �s2

�s2�2

�
�D�4�=2

�
sD�3
4

�s4 �m2��D=2��1

�
Z �

0
d31sin

D�331

Z �

0
d32sin

D�432jMj2:

(22)

The derivation is given in Appendix A. When 31 � 0,
�t � 0 and the term 1=�t in Eq. (17) gives collinear diver-
gence. Defining I�i;j� as below,

I�i;j� 

Z �

0
d31sin

D�331

Z �

0
d32sin

D�432
1

�ti� �u� �s�j
; (23)

and expanding it with respect to D� 4

I�1;j� �
1

D� 4
I�1;j��1 � I�1;j�0 �O�D� 4�; (24)

the differential cross section of � � q! Q� �Q� q is
regularized as below,
�s2
d2)NLO�q

dt1du1
�

28

3

1

�4��3
g4m2�2m��

4

�
�o
m

�
5=2 s4

s4 �m2

�
1

D� 4
��I�1;3��1 � 2��s�m��o�I

�1;4�
�1 � 2�s� �s� 2m��o�I

�1;5�
�1

� 4�s2m��oI
�1;6�
�1 � � 2m2

�I
�0;5� � 4m3

��oI
�0;6� � I�1;3�0 � 2��s�m��o�I

�1;4�
0 � 2�s� �s� 2m��o�I

�1;5�
0

� 4�s2m��oI
�1;6�
0 �

�
�E � ln

s4
���������������������������������������������
�su1t1 �m2

�t
2
1 �m2 �s2

q
4� �s�2

�����������������
s4 �m2

p �
��I�1;3��1 � 2� �s�m��o�I

�1;4�
�1

� 2�s��s� 2m��o�I
�1;5�
�1 � 4�s2m��oI

�1;6�
�1 � �

1

2
I�1;3��1 �m��oI

�1;4�
�1

�
: (25)
From the list of integration in Appendix B

I�1;j��1 �
2�
a

1

�A� B�j
�

2�
a

1

��sX�j
; (26)

where X � ��u1 �m2
��=��s� t1�, which is 1 � k20=k10 in

the quarkonium rest frame. The definition of a, A, and B
are given in Appendix B. The terms proportional to
1=�D� 4� come from collinear divergence, and are elim-
inated by mass factorization.

B. Mass factorization

Collinear divergence is eliminated by mass factoriza-
tion, which moves the divergent contribution to the parton
distribution function. When one parton is seen with finer
scale, it is not seen as one parton, but a sum of several
collinear partons as shown in Fig. 4. In other words, parton
distribution function has scale dependence, and the col-
linear parton with transverse momentum less than the scale
should be included in the parton distribution function. Only
the parton with larger transverse momentum is included in
the perturbative calculations. Therefore, collinear partons
should be subtracted from the perturbative calculation. In
the MS scheme, mass factorization is defined as

�s2
d2)̂NLO�i

dt1du1
� �s2

d2)NLO�i

dt1du1
�
�s
2�

Z 1

0

dx
x
Pji�x�

�
2

D� 4

� �E � ln
Q2

4��2

�
�̂s2
d2)̂LO�j

dt̂1du1
; (27)

where �̂s � x�s, t̂1 � xt1. The parenthesis signifies the
-5
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FIG. 4. Scale dependence of parton distribution function.
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integration of transverse momentum from zero to momen-
tum scale Q. )NLO�i is the next leading order cross section
of quarkonium and parton i. )̂NLO�i is the reduced cross
034002
section after mass factorization, which is finite. )LO�j is
the leading order cross section of quarkonium and parton j,
and )̂LO�j � )LO�j.Pji is the splitting function of parton i
to parton j. In the � � q! Q� �Q� q process,

Pgq�x� �
N2
c � 1

2Nc

�
1 � �1 � x�2

x

�
(28)

is needed. The LO differential cross section is

�̂s2
d2)̂LO�j

dt̂1du1
�

27

3Nc
g2m2�2m��

4

�
�o
m

�
5=2 �sx� 2m��o

� �sx�4
9��sx

� t1x� u1 �m2
��
D� 2

2

1

��D=2 � 1�

�

�
�su1t1 �m2

�t
2
1 �m2 �s2

4��2 �s2

�
�D�4�=2

: (29)

The LO differential cross section can be obtained from
substituting Eq. (11) into Eq. (A10) in Appendix A.

After mass factorization, the reduced differential cross
section is
�s2
d2)̂NLO�q

dt1du1
�

27

3

1

�4��2
g4m2�2m��

4

�
�o
m

�
5=2 1

�s� t1

�
m2

�� �s� t1�

�
s4

s4 �m2 ��I
�0;5� � 2m��oI�0;6�� �

1

��sX�3

�
ln

s2
4

Q2�s4 �m2�

� I�1;3��0

�
�

2� �s�m��o�

� �sX�4

�
ln

s2
4

Q2�s4 �m2�
� I�1;4��0

�
�

2�s

� �sX�4
�

2�s��s� 2m��o�

� �sX�5

�
ln

s2
4

Q2�s4 �m2�

� I�1;5��0 � 1
�
�

4m��o �s2

��sX�6

�
ln

s24
Q2�s4 �m2�

� I�1;6��0 � 1
��
; (30)
1 1 u1

m  t +m s’22 2

1
1t s’u =

2
Φ

s+t +u =0

Dalitz
Plot

t 1
t =s’/2(−1−  1−4m /s)1 t =s’/2(−1+  1−4m /s)1

2 2

FIG. 5. Dalitz plot for � � q! Q� �Q� q.
where I�1;j��0 
 a�A� B�jI�1;j�0 =� � a� �sX�jI�1;j�0 =�.
One should also note that the cross sections to NLO in

Eq. (30) and to LO in Eq. (12) have the same large Nc
scaling as the coupling constant g scales as 1=

������
Nc

p
.

The threshold of differential cross section in (30) is �s �
2m��o. This comes from the quarkonium wave function
(13). However, the physical threshold is �s � 2m��o � �2

o.
The term �2

o was ignored because g is of O�mg4�. We
circumvent this problem by substituting �o � �2

o=2m�

for �o in the differential cross section.

C. Dalitz plot

Figure 5 is the Dalitz plot, which is drawn under the
following two conditions.

s4 � �s� u1 � t1 �m2
� � 0 (31)

j cos:j2 �








�2u1s� �s�m2

���t1 � u1�

�s
��������������������������������������
�t1 � u1�

2 � 4sm2
p 







2

� 1; (32)

where : is the angle between ~q and ~p2, or ~q and ~p1 � ~k2 in
center of mass frame Eq. (A8). The elementary total cross
section
is obtained by numerically integrating Eq. (30) over
the Dalitz plot. Furthermore, the hadronic cross section
is obtained by folding it with the quark distribution
function.
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IV. HARD PART OF THE �� g ! Q� �Q� g
PROCESS

A. Soft and/or collinear divergent elementary cross
section

Figure 6 represents the diagrams for the process � �
g! Q� �Q� g. Among them, diagrams (13), (14), and
< 1 >

< 3 >

< 5 >

< 7 >

p1

p1

p1

p1

−p2

−p2

−p2

−p2

q

q

q

q

k1

k1

k1

k1

k2

k2

k2

k2

< 2 >

< 4 >

p1

p1

−p2

−p2

q

q

k1

k1
k2

k2

< 6 >

< 8 >

p1

p

−p2

−p

q

q

k1

k1
k2

k2

FIG. 6. Next to leading order diagram w

034002
(15) are ignored because they are higher order in g com-
pared to the rest of the diagrams in the present counting
scheme, where the momentum of the internal gluon, which
binds heavy quark and antiquark, is of O�mg2� [from
Eq. (5)], and that of the external gluon is of O�mg4�
[from Eq. (9)]. Details are given in Appendix D.

The invariant amplitude in the quarkonium rest frame is
M�$*�a;b�
NLO�g �

��
@ �p�
@ ~p


 ~k1

��
�g*0g

$
0

1

k20
�

1

k1 
 k2
�g*0k

$
2 � g$0k

*
1 � g$*k20�

�

�

�
@ �p�
@ ~p


 ~k2

��
g*0g

$
0

1

k10
�

1

k1 
 k2
�g*0k

$
2 � g$0k

*
1 � g$*k10�

�
� �k10 � k20�

 �p�
@pj

�

�
�g*j g

$
0

1

k10
� g*0g

$
j

1

k20
�

1

k1 
 k2
�g$j k

*
1 � g*j k

$
2�

��
g2

��������
m�

Nc

s
u�p1�

1 � �0

2
�ig

�i 1 � �0

2
�Ta; Tb�v�p2�: (33)
1

2

< 9 >

< 11 >

< 13 >

< 15 >

q

q

q

q

p1

p1

p1

p1

−p2

−p2

−p2

−p2k1

k1

k1

k1

k2

k2

k2

k2

< 14 >

< 16 >

q

q

p1

p1

−p2

−p2

k1

k1

k2

k2

< 10 >

< 12 >

q

q

p1

p1

−p2

−p2
k1

k1
k2

k2

ith initial gluon � � g! Q� �Q� g.
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The detailed derivation of this result is given in Appendix C. It was checked that the following current conservation
conditions are satisfied.

q�M
�$*
NLO�g � k1$M

�$*
NLO�g � k2*M

�$*
NLO�g � 0:

The averaged squared amplitude is

jMj
2
NLO�g �

211

3
�g4m2�2m��

6

�
�o
m

�
5=2

�
1

� �s� �u�5
�

2m��o
� �s� �u�6

��
�2m��

2

2

�t
�s �u

�
D� 2

2

�
2�s
�u
�

2 �u
�s
�

�u2

�s2 �
�s2

�u2

�
�D

�
D� 2

2m2
�

�t

�
��s2 � �u2�2

�s �u
� 2�s2 � 2 �u2 � �s �u

��
: (34)

The first line is of order �t, the second line of order �t0, and the third line of order �t�1.
The differential cross section from the first line is

27

3

1

�4��3
g4m2�2m��

8

�
�o
m

�
5=2 s4

s4�m2

��
1�

2m��o
�s

��
J��1;1�

�s6
�
I��1;1�

�s6
�
I��1;2�

�s5
�
I��1;3�

�s4 �
I��1;4�

�s3
�
I��1;5�

�s2

�
�

2m��o
�s2 I��1;6�

�
;

(35)

where J�i;j� is defined as follows,

J�i;j� 

Z �

0
d31sin

D�331

Z �

0
d32sin

D�432
1

��t�i� �u�j
�

Z �

0
d31

Z �

0
d32

sinD�331sin
D�432

�a� a cos31�
i� �A� �B cos31 � �C sin31 cos32�

j
;

and, �A � �2Eqk20, �B � B, and �C � C. The products of invariant variables are decomposed as below.

1

��s� �u�5 �u
�

1

�u �s5
�

1

��s� �u� �s5
�

1

� �s� �u�2 �s4 �
1

��s� �u�3 �s3 �
1

��s� �u�4 �s2
�

1

� �s� �u�5 �s
(36)

The first line has no divergent term.
The differential cross section from the second line is
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�
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2
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2
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�
��s�2m��o

�s4
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�I�0;1�
�
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�s5

�
�I�0;2�

�
�2�s�6m��o
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�
�I�0;3�

�
�2�s�4m��o

�s3

�
�

4m��o
�s2 I�0;4��2I�0;5��4m��oI�0;6�

�
: (37)

J�0;2� is the soft divergent term, because it is proportional to 1= �u2, which is 1=k2
20 in the quarkonium rest frame.

The differential cross section from the third line is
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�4��3
g4m2�2m��

4
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�o
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s4�m2

��
1

D�4
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�������������������������������������������
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2
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1

2
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a

�
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�s3

1

�s�x�1�

�
�s�2m��o

�s3

1

�sx
�

2m��o
�s2

1

��sx�2
�2

1

��sx�3
�� �s�4m��o�

1

� �sx�4
� �s� �s�2m��o�

1

� �sx�5
�2m��o �s2 1

� �sx�6

�

�
�s�2m��o

�s3 J�1;1�0 �
�s�2m��o

�s3
I�1;1�0 �

2m��o
�s2 I�1;2�0 �2I�1;3�0 �� �s�4m��o�I

�1;4�
0 � �s��s�2m��o�I

�1;5�
0 �2m��o �s2I�1;6�0

�
;

(38)

where J�1;j� is expanded with respect to D� 4 B. Mass factorization in hard gluon emitted region
J�1;j� �
1

D� 4
J�1;j��1 � J�1;j�0 �O�D� 4�; (39)

and

J�1;j��1 �
2�
a

1

� �A� �B�j
�

2�
a

1

� �s�X� 1��j
: (40)

1=�D� 4� term of Eq. (38) is collinearly divergent.
Additionally 1=a�1 � X� term gives soft divergence, be-
cause both a and 1 � X are proportional to k20. Thus this
term gives soft-collinear divergence.
034002
The Dalitz plot for � � g! Q� �Q� g is the same as
� � q! Q� �Q� q. But it is separated as soft gluon
emitting region and hard gluon emitting region as shown
in Fig. 7. The boundary line is s4 � � which is an arbi-
trarily small value. That is, if s4 is smaller (larger) than �,
it corresponds to the region where soft (hard) gluon are
emitted. Because all infrared divergences exit in soft gluon
emitting region, hard gluon region has only collinear di-
vergence. This collinear divergence is eliminated by mass
factorization.
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�s2
d2)̂NLO�g

dt1du1
� s2

d2)NLO�g

dt1du1
�
�s
2�

Z 1

0

dx
x
Pgg�x�

�
2

D� 4

� �E � ln
Q2

4��2

�
�̂s2 d

2)̂LO

dt̂1du1
; (41)

where Pgg�x� is a gluon to gluon splitting function, and
may be separated into hard part and soft part, which are
proportional to 3 function and 9 function respectively [22].

Pgg�x� � Nc3�1 � x� 9�
�

2

1 � x
�

2

x
� 4 � 2x� 2x2

�

� Nc9�1 � x�
�
2 ln9�

11

6
�
Nf
3Nc

�

 3�1 � x� 9�PHgg � 9�1 � x�PSgg: (42)

We ignore the factor proportional to Nf(the number of
light quark flavor) in the soft part, because it is suppressed
in the large Nc limit. The boundary of hard and soft mass
factorization is x � 1 � 9. 9 is related to � by 9 �
�=��s� t1�, because x � 1 � 9 means s4 � 9� �s� t1�.
After hard part mass factorization, Eq. (38) becomes
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; (43)

where J�1;1��0 
 a� �A� �B�J�1;i�0 =� � a�X� 1�J�1;i�0 =�. After mass factorization, collinear divergence 1=�D� 4� of Eq. (38)
is removed.

V. SOFT PART OF THE �� g ! Q� �Q� g PROCESS

A. Differential cross section for soft gluon emitted part

In the hard gluon emitted region, the differential cross section is the sum of Eqs. (35), (37), and (43). But in the soft gluon
emitted region, �t! 0, �u! 0, and s4 ! 0. In this limit, only soft and soft-collinear divergent terms contribute and the
differential cross section becomes

�s2 d
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Z �
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dt1du1
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where
034002-9



TAESOO SONG AND SU HOUNG LEE PHYSICAL REVIEW D 72, 034002 (2005)
" 
 2Li2

�
�

�B�
������������������
�B2 � �C2

p
�A�

������������������
�B2 � �C2

p �
� 2Li2

� �B�
������������������
�B2 � �C2

p
�A� �B

�

� ln2
�A�

������������������
�B2 � �C2

p
�A� �B

�
1

2
ln2

�A�
������������������
�B2 � �C2

p
�A�

������������������
�B2 � �C2

p ; (45)

and we used the limiting values �A2 � �B2 � �C2 !
s2

4m
2
�=m

2, a� �A� �B� ! �ss24=�2m
2�, and � �A� �B�2=� �A2 �

�B2 � �C2� ! � �sm=m�� �s� t1��2. For the definition of soft
gluon differential cross section, refer to [22]. In Eq. (44),
the first line in the square bracket comes from soft diver-
gence, and the others come from soft-collinear divergence.
These soft divergences may be eliminated by adding the
mixed term of the Born diagram and its one loop
corrections.

B. Effective four-point vertex

Before considering the one loop correction, it is helpful
to introduce the effective four-point vertex. This vertex is
attached to a quarkonium, a gluon, a heavy quark, and a
heavy antiquark line and defined as

M�a�
�$�k� 
 �g

��������
m�

Nc

s �
~k 

@ �p�
@ ~p

g$0 �

�
j ~pj2

m
� �0

�

�
@ �p�
@pj

g$j
�

1 � �0

2
�ig�i

1 � �0

2
Ta: (46)

It is just the leading order invariant amplitude given in
Eq. (11), except that k10 is substituted by j ~pj2=m� �0.
Although j ~pj2=m� �0 � k10 to LO, it is not so in general.
Using this effective vertex, the matrix element for the
process � � g! Q� �Q� g represented in Fig. 6 can
k 2

( a )

( b )

p1

q qp  + k

k1

a

b
k 2

−p2

λ

ν

21

q

p1

q

a

b

p  − k1

k 2

−p2

k1

λ

ν

−p  + k2

bλ

1

1

FIG. 8. Diagrams for � � g! Q� �Q� g using four-point vertex
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be reproduced by five diagrams shown in Fig. 8.
Specifically,

M�$*�a;b�
1 � �g �u�p1���*Tb��p1 � k2�M�$�a��k1�

�M�$�a��k1����p2 � k2��
*Tb�v�p2�

� g
g*0

k20 � i"
�u�p1�M�$�k1��Ta; Tb�v�p2�;

(47)

where M�$�a��k1� � M�$�k1�Ta.
M2 is the same as M1 with �k1; a; $� and ��k2; b; *�

exchanged.

M�$*�a;b�
2 � g

g$0

�k10 � i"
�u�p1�M�*��k2��Tb; Ta�v�p2�:

(48)

M3 is a diagram which emits a gluon from the external
gluon leg.

M�$*�a;b�
3 � �igfabc �u�p1�M

�)�c��k1 � k2�v�p2�

�
1

�k1 � k2�
2 � i"

��k1 � k2�)g$*

� �k1 � 2k2�
$g*) � ��2k1 � k2�

*g$)� (49)

The sum of all diagrams is exactly the same as Eq. (33).

M�$*�a;b�
1 �M�$*�a;b�

2 �M�$*�a;b�
3 � M�$*�a;b�

NLO�g (50)

Introduction of this effective vertex has some benefits. It
makes the calculation much easier and one does not need to
consider the inner structure of the four-point vertex, which
is very complicated when considering the one loop
corrections.
2

−p2

k1

−p2

λb

k1

k 2

−p

( c )

p1

−p  − k

k1

2 2

a b
k 2

ν λ

p1

p1

q

k  − k1

aν

2

a ν

. (a), (b), and (c) are diagrams for M1, M2, and M3 respectively.
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C. One loop correction

Several comments are in order before considering the
one loop correction. In dimensional regularization,

��D=2�

�D=2i

Z dDq
��q��

�
#DI�2�

DI=2 � �
�

#DU�2�

DU=2 � �
: (51)

DI is the dimension which regularizes the infrared diver-
gence, and DU the ultraviolet divergence. # is the cutoff
of the momentum integral. Generally this integration is
zero. But we have left over � � 2 case, because it shows
clearly the cancellation of infrared divergence and ultra-
violet divergence separately. Second, in contrast to the
order of typical loop momentum appearing in Eq. (5),
which is of O�mg2�, we set the order of gluon loop mo-
mentum in the one loop corrections to be of O�mg4�. This
is to explicitly separate the soft part that cancels the soft
divergence coming from emitted gluons of O�mg4�.
Keeping these comments, all divergences may be elimi-
nated systematically.

Diagram (1) of Fig. 9 is the one loop correction of heavy
quark and antiquark external lines. The product of the on-
shell heavy quark propagator and its self energy is

i��p1�$�p1���ig2
Z dDk
�2��D

����p1

�k�����p1�T
aTa

1

k2�i"

��ig2TaTa
1��0

2

Z dDk
�2��D

�
4m2

�p1�k�2�m2�i"

1

p2
1�m

2�i"

1

k2�i"
:

(52)
k1 k1

k1k1

k1

< 3 >
q

q

p1p1

−p2−p2

< 1 >

q qp1 p1

−p2−p2

< 2 >
qq p1p1

−p2−p2

k1

FIG. 9. One loo
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We assumed that p1 is slightly off-shell, and used the
heavy quark propagators as in Eq. (10). Moreover, ��p1 �
k� is replaced by ���p1 � k� � ��p1 � k��=2. Then one
has
i��p1�$�p1� � ig2TaTa
1 � �0

2

Z dDk
�2��D

�
1

�k0 � i"��k0 � i"��k2 � i"�

� g2 1

�4���D�1�=2��D�1
2 �

�
#D�4

DI � 4

�
#D�4

DU � 4

�
TaTa

1 � �0

2
: (53)
In the k0 contour integration, the residue at k0 � i" or at
k0 � �i"makes the one loop correction purely imaginary.
Therefore, in these cases, the mixed term of LO and its one
loop correction vanishes. The self energy of the antiquark
is the same except that �1 � �0�=2 is replaced by �1 �
�0�=2. However, it has the same contribution to the differ-
ential cross section, because spinor wave function u�p1� is
proportional to �1 � �0�=2, while v�p2� is to �1 � �0�=2 in
the heavy quark limit.

As can be seen from Eq. (53), the renormalization
constant of the heavy quark mass has no divergence.
Only the renormalization constants of the heavy quark
and antiquark fields have both ultraviolet and infrared
divergences. The differential cross section from the mixed
term of Born diagram and the same diagram but with the
self energy insertion to the external heavy quark or anti-
k1 k1

k1 k1

k1

< 4 >

qq

q q

p1 p1

p1p1

−p2−p2

−p2−p2

< 5 >

q

q p1p1

−p2 −p2

k1

p corrections.
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quark line is

�s2 d
2)BV1

dt1du1
�

29

3

1

�4��2
g4m2�2m��

4

�
�o
m

�
5=2

�
�s� 2m��o

�s4
9�s� t1 � u1�

�

�
1

DI � 4
�

1

DU � 4

�
: (54)
034002
Note that the result was divided by 2, because half of the
divergence is used for the renormalization constant of the
external quark antiquark wave function. It may be checked
that the above infrared divergence cancels the soft diver-
gence of Eq. (44).

Diagram (2) of Fig. 9 is the external gluon line correc-
tion. The self energy of the external gluon is
%ba
�$�k1� �

1

2
g2Nc9ba

Z dDk
�2��D

��2k2 � 2k 
 k1 � 5k2
1�g�$ � �4D� 8�k�k$ � �2D� 4��k�k1$ � k$k1�� � �D

� 6�k1�k1$�
1

�k� k1�
2k2

�
1

2
g2Nc9

bag�$
Z 1

0
dx

Z dDk
�2��D

�
�6 � 8=D�k2

�k2 � x�1 � x���k2
1��

2 �
�2x2 � 2x� 5�k2

1

�k2 � x�1 � x���k2
1��

2

�
: (55)

Here, we ignored quark loop contribution, as it is suppressed in the largeNc limit. Terms proportional to k1� and k1$ will
vanish due to the current conservation condition of the LO amplitude. Assuming k1 to be slightly off-shell, the gluon self
energy may be expanded with respect to k2

1.

k2

�k2 � x�1 � x���k2
1��

2
�

1

k2 �
2x�1 � x���k2

1�

k4 � 
 
 
;
1

�k2 � x�1 � x���k2
1��

2 �
1

k4 �
2x�1 � x���k2

1�

k6
� 
 
 
:

(56)

Keeping only the 1=k4 terms,

�i

k2
1

%ba
�$�k1� � 9bag�$

g2Nc
�4��D=2��D=2�

10

3

�
#D�4

DI � 4
�

#D�4

DU � 4

�
: (57)

The differential cross section obtained from multiplying this and the Born cross section is

�s 2 d
2)BV2

dt1du1
�

29

3

1

�4��2
g4m2�2m��

4

�
�o
m

�
5=2 �s� 2m��o

�s4 9�s� t1 � u1�
5

6

�
1

DI � 4
�

1

DU � 4

�
: (58)

Again, the result was divided by 2 for the same reason.
Diagram (3) of Fig. 9 is the quarkonium external line correction. For the quarkonium external line, there is no direct

one loop correction in QCD. But we assume that its one loop correction is the same as that of heavy quark and antiquark
lines in Eq. (54). This assumption can be proven to be true from noting that the quarkonium is the bound state of a
heavy quark and an antiquark, and therefore its field operator is a composite operator composed of a quark and an antiquark
field.

Diagram (4) of Fig. 9 is another type of one loop correction. However, it vanishes and has no contribution.

M�a�V4
�$ � g2CF

Z dDk
�2��D

�i

k2 � i"
�u�p1���$��p1 � k1��?��p1 � k1 � k�M?��k� � �$��p1 � k1�M?��k����p2

� k��? � �?��p1 � k�M?��k����p2 � k1��$ �M?��k����p2 � k1 � k��?���p2 � k1��$�Tav�p2�

� g3CF

��������
m�

Nc

s
�u�p1�

1 � �0

2
�ig�i

1 � �0

2
Tav�p2�

Z dD�1k

�2��D�1
~k 

@ �p�
@ ~p

1

k10

�
1

j ~kj2
�

1

k10j ~kj
�

1

k10�j ~kj � k10�

�
� 0:

(59)

Finally, diagram (5) of Fig. 9 is the vertex correction. Soft-collinear divergence of Eq. (44) is eliminated by these
diagrams. Such cancellation can be anticipated, because the soft-collinear divergence of Eq. (44) and the cross section
coming from multiplying diagram (5) with a Born diagram are coming from the different cutting of a two loop diagram for
-12
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the self energy of the quarkonium with no infrared divergence. The amplitude becomes

M�a�V5
�$ � g2fabc

Z dDk

�2��D
�u�p1��M

�c�
���k� k1����p2 � k��?T

b � �?T
b��p1 � k�M�c�

���k� k1��v�p2�

�
��2k1 � k�?g�$ � �k1 � k��g?$ � �k1 � 2k�$g�?

�k2 � i"���k1 � k�2 � i"�

� g3
�������������
m�Nc

p
�u�p1�

1 � �0

2
�ig�i

1 � �0

2
Tav�p2�

Z dD�1k

�2��D�1

�

�2k10
@ �p�
@ ~p 
 ~k1g$0 � k10�2k10 � j ~kj� @ �p�@pj

gj$ � 2kj
@ �p�
@ ~p 
 � ~k� ~k1�g

j
$

4j ~kj2�k10j ~kj � ~k 
 ~k1�

�
�2k10

@ �p�
@ ~p 
 ~k1g$0 � k10�k10 � j ~kj� @ �p�@pj

gj$ � 2�k� k1�j
@ �p�
@ ~p 
 ~kgj$

4j ~kj�k10 � j ~kj��k10j ~kj � ~k 
 ~k1�

�
: (60)

Two terms of the last equation are residues at k0 � �j ~kj � i", and at k0 � �k10 � j ~k� ~k1j � i", respectively. In the
second term, ~k� ~k1 was substituted by ~k. If each momentum is set to be

q � �m�; 0; 
 
 
 ; 0; 0; 0; 0�; k1 � �k10; 0; 
 
 
 ; 0; 0; 0; k10�; p1 � �E1; 0; 
 
 
 ; 0; 0; j ~pj sin31; j ~pj cos31�;

p2 � �E2; 0; 
 
 
 ; 0; 0;�j ~pj sin31;�j ~pj cos31 � k10�; k � �k0; 0; 
 
 
 ; 0; j ~kj sin3 sin’; j ~kj sin3 cos’; j ~kj cos3�; (61)

then,

M�a�V5
�$ � g3

�������������
m�Nc

p
�u�p1�

1 � �0

2
�ig�i

1 � �0

2
Tav�p2�

Z dD�1k

�2��D�1

�
k2

10

2j ~kj2�k10 � j ~kj��j ~kjk10 � ~k 
 ~k1�

�

�
~k1 


@ �p�
@ ~p

g$0 � k10
@ �p�
@pj

gj$

�
� g$2

1

2k10�k10 � j ~kj�
j ~pj sin31

@ �p�

@ ~p2

�
; (62)

where g$2 means transverse direction with respect to ~k1. It is manifest that the current conservation condition k$1M
�a�V
�$ � 0

is satisfied from Eq. (62), because Eqs. (53) and (57) are intrinsically zero. The differential cross section from MV5, after
multiplying it with the Born diagram, is

�s2d
2)BV5

dt1du1
�

29

3

1

�4��2
g4m2�2m��

4

�
�o
m

�
5=2 �s�2m��o

�s4 9�s� t1 �u1�

�
�

2

�D�4�2
�

2

D�4

�

�
�E� ln

�������������������������������������������
�su1t1 �m2

�t
2
1 �m2 �s2

q
4��2m�

�
1

2

�
� ln2

�������������������������������������������
�su1t1 �m2

�t
2
1�m2 �s2

q
4��2m�

��2�E�1� ln

�������������������������������������������
�su1t1 �m2

�t
2
1 �m2 �s2

q
4��2m�

�
�2

6
��2

E��E�
1

DU�4
� ln

�������������������������������������������
�su1t1 �m2

�t
2
1 �m2 �s2

q
4��2m�

��E�
1

2

�
: (63)
The double pole 1=�D� 4�2 is canceled with that of
Eq. (44).

D. Coupling constant renormalization and soft part
mass factorization

The ultraviolet divergence in one loop correction may be
removed by renormalization of the coupling constant g.

gb ! g
�
1 �

�s
8�

�
2

D� 4
� �E � ln

m2

4��2

�
?0

�
; (64)
034002
where the renormalization scale is set to the heavy quark
mass. ?0 �

11
3 Nc in the large Nc limit.

The sum of soft differential cross section Eq. (44) and
the terms obtained by multiplying the Born term and its
one loop correction Eqs. (54), (58), and (63) still has col-
linear divergence, where Eq. (54) should be doubled be-
cause of the quarkonium external leg correction. This
remaining divergence is removed by the soft mass factori-
zation in Eq. (42), which corresponds to substituting the
second part of Eq. (42) proportional to 9�1 � x� into
Eq. (41) becomes divergence-free.
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�s 2 d2)S

dt1du1
� �s2 d

2)BV

dt1du1
�

29

3

1

�4��2
g4m2�2m��

4

�
�o
m

�
5=2 �s� 2m��o

�s4
9�s� t1 � u1�

�
ln29� 2 ln9 ln

�s
m�Q

� ln9

� ln2 m�s
m���s� t1�

� ln
m �s

m�� �s� t1�
�
�2

3
� 1 �

"

2
�

11

6
ln
m
Q

�
; (65)

where d2)BV
dt1du1

is the sum of d
2)BV1

dt1du1
through d2)BV5

dt1du1
.

Below is the summary of the elementary total cross section for � � g! Q� �Q� g.

)NLO�g � lim
�!0

1

�s2

Z � �s
2s�s���

����������������������
�s���2�4m2s

p
�

� �s
2s�s���

����������������������
�s���2�4m2s

p
�
dt1

Z m2
�
t2
1
�m2 �s2

t1 �s

��s�t1
du1 �s2

d2)H

dt1du1
� lim

�!0

1

�s2

�
Z � �s

2�1�
���������������
1�4m2=s

p
�

� �s
2�1�

���������������
1�4m2=s

p
�
dt1

Z ��s�t1

�s�t1
du1

�
�s2 d2)S

dt1du1
� �s2 d

2)BV

dt1du1

�
: (66)
Here, �s2 d2)H
dt1du1

is the sum of Eqs. (35), (37), and (43). The
first line and the second line depend on � (or 9). But their
sum is independent of it, because it appears as the lower cut
in the first line and as the upper cut in the second line. The
results are shown in Fig. 10.

VI. UPSILON DISSOCIATION CROSS
SECTION

As an explicit application, the above result is applied to
the upsilon dissociation cross section. The two independent
parameters of the theory are determined by fitting the
physical masses of m'�1S� and m'�2S� to the energies of
the Coulomb bound states. Specifically, from the relation
m'�2S� �m'�1S� � 3=4�o, the binding energy is found to
be 750 MeV. Also, the bottom quark mass is found to be
5.1 GeV from equating it to �m'�1S� � �o�=2. The coupling

constant g is then found to be 2.53 from g2 �

16�=Nc
������������
�o=m

p
.

FIG. 10. The left figure is the elementary cross section for � � q!
�g�. In the right figure, (a) the dashed line is the Born term given in Eq
integration of the sum of Eq. (35), (37), and (43) over the hard part of
Eq. (65) over the soft part of the Dalitz plot. (c) The dotted line is the
excluding the ‘‘ln9’’ dependent part over the soft part of the Dalitz

034002
The left and right graphs in Fig. 10 represent the ele-
mentary total cross sections of � � q! Q� �Q� q and
� � g! Q� �Q� g, respectively. In both graphs, there
are regions of energy where the cross sections become
negative. These negative cross sections originate from
mass factorization, where finite parts of the differential
cross section have been subtracted out and put into the
definition of the distribution function. Therefore, the cross
section becomes physical only after folding the elementary
cross sections with the parton distribution functions (PDF)
and adding them to the LO contribution.

To obtain the total cross section, we used the
MRST2001LO PDF [23] for the LO result, and the
MRST2001NLO PDF [24] for the NLO. We used the
PDF calculated in the MS scheme, because our perturba-
tive calculations, including the subtractions in the mass
factorization, were performed in the MS scheme. If differ-
ent schemes were used in the perturbative calculation and
in the PDF, the scheme dependent finite pieces would not
Q� �Q� q and the right figure is that for � � g! Q� �Q�
. (12). (b) The dash-dotted line is the hard gluon part, namely, the
the Dalitz plot plus the integration of the ‘‘ln9’’ dependent part of
soft plus one loop correction, namely, the integration of Eq. (65)
plot. The solid line is the sum of (a), (b), and (c).
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FIG. 11. The left figure is the '�1S� � nucleon total cross section to LO (dashed line) and to NLO (solid line). The right figure is the
corresponding ratio between NLO and LO results.
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match, and the result would be inconsistent. In the original
scheme of Peskin, the scale of the PDF was be taken to be
the binding energy of the system, which is 0.75 GeV in the
present system. However, in the present example, we will
take it to be 1:25 GeV2, which is the minimum Q2 scale in
the MRST PDF.

The left graph of Fig. 11 shows the total dissociation
cross section to LO and to NLO. The ratio between the
cross sections calculated to NLO and to LO, plotted in the
right graph of Fig. 11, shows that perturbative QCD ap-
proach is acceptable only in a limited region of energy and
large corrections exist in the threshold region.

The separation scale of 1:25 GeV2 is low, making it
questionable whether one can apply the present formalism
to the Upsilon system. On the other hand, one cannot take
the separation scale to be arbitrarily large in this example,
as one would invalidate all the counting schemes and the
nonrelativistic approximations used in deriving the for-
mula. Nevertheless, to asses the uncertainties associated
FIG. 12. The left figure is the '�1S� � nucleon total cross section
(dashed line). The right figure is the ratio between NLO and LO w

034002
with taking the scale of the PDF to be low, we modified the
scale Q2 of PDF to 2:0 GeV2, and compared the result to
that obtained with Q2 � 1:25 GeV2. As shown in Fig. 12,
the total cross section changes by less than 10% for

���
s

p
<

25 GeV. As shown in the right graph of Fig. 12, 25 GeV is
also the upper limit of the window of energy region where
the ratio between NLO to LO is minimal. Hence, although
the scale dependence is non-negligible in the present ex-
ample, the uncertainties are within the estimated errors
coming from the perturbative expansion.

We also applied the present calculation to the J= 
dissociation cross section. But in the J= case, the soft
plus one loop correction has a large negative value making
the hadronic cross section negative. This suggests that the
formalism breaks down for the charmonium system. As the
quarkonium is heavier, the relative contribution of this
negative part is smaller. Therefore, we conclude that a
charm quark is not heavy enough to use the present formal-
ism in the present form.
with Q2 � 1:25 GeV2 (straight line) and with Q2 � 2:0 GeV2

hen Q2 � 2:0 GeV2.
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VII. CONCLUSION

We have reported on the NLO calculation for the quark-
onium parton cross section in QCD. All the collinear
divergences have been shown to cancel through mass
factorization and the soft divergences among themselves.
The result constitutes an exact QCD calculation at the NLO
in the formal heavy quark limit.

Explicit application to the Upsilon system shows that
there are large NLO corrections especially near the thresh-
old, as has been originally anticipated by Peskin [1].
Nevertheless, we have identified a window of energy range
where the NLO are under control, such that the perturba-
tive QCD results are reliable. Moreover, we have identified
the origin of large corrections and assessed the uncertain-
ties through the magnitude of the higher order correction.

The application to the charmonium system confirmed
that the discrepancies existing between the LO QCD result
and the hadronic model result on the charmonium disso-
ciation cross section by hadrons especially near threshold
are partly due to large higher order corrections in QCD.
Nevertheless, since the separation scale is in the order of
the binding energy, a thermal mass of few hundred MeV
for the partons will be enough to soften the NLO correction
and to make a perturbative treatment meaningful at finite
temperature.

ACKNOWLEDGMENTS

Authors are grateful to W. Beenakker for his kind help,
and also to T. Hatsuda, and C. Y. Wong for useful discus-
sion. This work was supported by KOSEF under Grant
No. M02-2004-000-10484-0.

APPENDIX A

Here the phase space of 2-body and 3-body decay are
reviewed. The initial flux F is

F � 4
�������������������������������������
�q 
 k1�

2 �m2
qm

2
k1

q
� 2�s; (A1)

and the total cross section of 2-body decay is

) �
��D�4

2�s

Z dDp1

�2��D�1

Z dDp2

�2��D�1 9
��p2

1 �m2�9�

� �p2
2 �m2��2��D9D�p1 � p2 � q� k1�jMj2

�
��D�4

2�s

Z dDp2

�2��D�2 9
��p2

2 �m2�9�

� ��q� k1 � p2�
2 �m2�jMj2: (A2)

Because
034002
Z
dDp29��p2

2 �m2� �
1

2

Z
dp20dj ~p2j

2j ~p2j
D�3d(D�29�

� �p2
20 � j ~p2j

2 �m2�

�
�D=2�1

��D=2 � 1�

�
Z
dE2d cos:�E2

2 �m2��D�3�=2

� �1 � cos2:��D�4�=2; (A3)

where we have used the formulaZ �

0
sinDd3 �

����
�

p ��D=2 � 1=2�
��D=2 � 1�

; (A4)

and

d(D�2 � sinD�331sin
D�432 
 
 
 sin3D�3d31d32 
 
 
d3D�2

�
2�D=2�1

��D=2� 1�
sinD�331d31; (A5)

the cross section becomes

) �
��D�4

2�s
1

�2��D�2

�D=2�1

��D=2 � 1�

Z
dE2d cos:�E2

2

�m2��D�3�=2�1 � cos2:��D�4�=29�s� t1 � u1�jMj2;

(A6)

where �q� k1 � p2�
2 �m2 � s� t1 � u1.

In the center of mass frame of q and k1,

q � �Eq; 0; 
 
 
 ; 0; k10�; k1 � �k10; 0; 
 
 
 ; 0;�k10�;

p2 � �E2; 0; 
 
 
 ; j ~pj sin:; j ~pj cos:�; (A7)

and

Eq �
s�m2

�

2
���
s

p ; k10 �
�s

2
���
s

p ; E2 � �
t1 � u1

2
���
s

p ;

j ~pj �

��������������������������������������
�t1 � u1�

2 � 4sm2
p

2
���
s

p ;

cos: �
2u1s� �s�m2

���t1 � u1�

�s
��������������������������������������
�t1 � u1�

2 � 4sm2
p : (A8)

From the above relations, the Jacobian from u1; t1 to
E2; cos: is

dE2d cos: �

���
s

p

�s
��������������������������������������
�t1 � u1�

2 � 4sm2
p dt1du1: (A9)

Then the differential cross section is
�s 2 d2)
dt1du1

�
�

��D=2 � 1�

�
1

4�

�
D=2

�
�su1t1 �m2

�t
2
1 �m2 �s2

�2 �s2

�
�D�4�=2

9�s� t1 � u1�jMj2: (A10)

Next, the 3-body phase space is
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)�
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(A11)

In the above equation, new variable p is introduced andD-dimensional p integration andD-dimension delta function of
p are inserted into phase space. The last line is the same as the two body phase space, and it becomes

��D=2
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�jMj2: (A12)

Moving to q and k1 center of mass frame, the differential cross section for three body decay is
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dt1du1
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(A13)

APPENDIX B

Here the angular integration which is used throughout this work is derived. The required angular integration has the form

I�i;j�D 

Z �

0
d31sin

D�331

Z �

0
d32sin

D�432
1

�ti� �u� �s�j
�

Z �

0
d31

Z �

0
d32

sinD�331sin
D�432

�a� b cos31�
i�A� B cos31 � C sin31 cos32�

j ;

(B1)

where

A � 2Eq�k10 � k20� � 2k10�k10 � j ~pj cos’�; B � 2k20�j ~pj cos’� k10�; C � 2k20j ~pj sin’; a � �2k10k20:

(B2)

D denotes that it is D-dimensional angular integration. If b � �a; A2 � B2 � C2, the solution has an explicit form
[22,25].

I�i;j�D �
2�

�2a�i�2A�j
��D=2 � i� 1���D=2 � j� 1���D� 3�

�2�D=2 � 1���D� i� j� 2�
F1;2

�
i; j;

D
2
� 1;

A� B
2A

�
: (B3)

F1;2 is the hypergeometric function.

F1;2�a; b; c; x� 

��c�

��b���c� b�

Z 1

0
dttb�1�1 � t�c�b�1�1 � tx��a; (B4)

which has the following properties

F1;2�a; b; c; x� � F1;2�b; a; c; x�; F1;2�0; b; c; x� � 1: (B5)

In the present case b � �a, and A2 � B2 � C2. First, considering I�1;1�D ,

I�1;1�D �
Z �

0
d31

Z �

0
d32

sinD�331sin
D�432

a�1 � cos31��A� B cos31 � C sin31 cos32�

�
1

a�A� B�

Z �

0
d31

Z �

0
d32

sinD�331sin
D�432

�1 � cos31�
�

1

a�A� B�

Z �

0
d31

Z �

0
d32

sinD�331sin
D�432

�1 � cos31�

�

�
1 �

A� B
A� B cos31 � C sin31 cos32

�

 I1 � I2; (B6)

where I is separated into infinite part I1 and finite part I2 in 4-dimension.
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From Eq. (B3)

I1 �
I�1;0�D

A� B
�

�
a�A� B�

2

D� 4
(B7)

and

I2 ��
1

a�A�B�

Z 1

�1
dcos31

Z �

0
d32

1

�1�cos31�

�
1�

A�B
A�Bcos31�Csin31 cos32

�
�"�D�4�

��
�

a�A�B�

Z 1

�1

dcos31

1�cos31

�
1�

A�B�����������������������������������������������������
�A�Bcos31�

2�C2sin231

p �
�"�D�4�

�
�

a�A�B�
ln
�
�A�B�2��1�cos31��B

2�C2�AB���A�B�
�����������������������������������������������������
�A�Bcos31�

2�C2sin231

q �







cos31��1

cos31��1
�"�D�4�

�
�

a�A�B�
ln

�A�B�2

A2�B2�C2�"�D�4�: (B8)

As a result,

I�1;1�D �
�

a�A� B�

�
2

D� 4
� ln

�A� B�2

A2 � B2 � C2

�
� "�D� 4�: (B9)

I�1;j�D with higher order j is derived by differentiating I�1;1�D with respect to A.

I�1;j�D �
��1�j�1

�j� 1�!

dj�1

dAj�1 I
�1;1�
D : (B10)

Below are the summary of the results. (the subscript ‘‘D’’ is omitted for simplicity).

I�1;0� �
2�
a

1

D� 4
; (B11)
I�1;1� �
�

a�A� B�

�
2

D� 4
� ln

�
�A� B�2

A2 � B2 � C2

�
�
D� 4

2

�
ln2 A�

������������������
B2 � C2

p

A� B
�

1

2
ln2 A�

������������������
B2 � C2

p

A�
������������������
B2 � C2

p

� 2Li2

�
�
B�

������������������
B2 � C2

p

A�
������������������
B2 � C2

p

�
� 2Li2

�
A�

������������������
B2 � C2

p

A� B

��
�O��D� 4�2�

�
; (B12)
I�1;2� �
�

a�A� B�2

�
2

D� 4
� ln

�
�A� B�2

A2 � B2 � C2

�
�O�D� 4�

�
; (B13)
I�1;3� �
�

a�A� B�3

�
2

D� 4
� ln

�
�A� B�2

A2 � B2 � C2

�
�

2A�A� B�

A2 � B2 � C2 � �A� B�2
A2 � B2 � C2

�A2 � B2 � C2�2
� 3 �O�D� 4�

�
;

(B14)
I�1;4� �
�

a�A� B�4

�
2

D� 4
� ln

�
�A� B�2

A2 � B2 � C2

�
�

2A�A� B�

A2 � B2 � C2 � �A� B�2
A2 � B2 � C2

�A2 � B2 � C2�2
� �A� B�3

�
2A3 � 6AB2 � 6AC2

3�A2 � B2 � C2�3
� 11=3 �O�D� 4�

�
; (B15)
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I�1;5� �
�

a�A� B�5

�
2

D� 4
� ln

�
�A� B�2

A2 � B2 � C2

�
�

2A�A� B�

A2 � B2 � C2 � �A� B�2
A2 � B2 � C2

�A2 � B2 � C2�2
� �A� B�3

�
2A�A2 � 3B2 � 3C2�

3�A2 � B2 � C2�3
� �A� B�4

�
4A2�B2 � C2�

�A2 � B2 � C2�4
�

1

�A2 � B2 � C2�2

�
� 25=4 �O�D� 4�

�
; (B16)

I�1;6� �
�

a�A� B�6

�
2

D� 4
� ln

�
�A� B�2

A2 � B2 � C2

�
�

2A�A� B�

A2 � B2 � C2 � �A� B�2
A2 � B2 � C2

�A2 � B2 � C2�2

� �A� B�3
2A�A2 � 3B2 � 3C2�

3�A2 � B2 � C2�3
� �A� B�4

�
4A2�B2 � C2�

�A2 � B2 � C2�4
�

1

�A2 � B2 � C2�2

�

� �A� B�5
�

32A5

5�A2 � B2 � C2�5
�

2A�3A2 � B2 � C2�

�A2 � B2 � C2�4

�
� 137=30 �O�D� 4�

�
: (B17)

I�0;j� and I��1;j� may be obtained from [22] and by the same method,

I�0;1� �
� ln�A�

�����������
B2�C2

p

A�
�����������
B2�C2

p �������������������
B2 � C2

p ; (B18)

I�0;2� �
2�

A2 � B2 � C2 ; (B19)

I�0;3� �
2�A

�A2 � B2 � C2�2
; (B20)

I�0;4� � �
2��3A2 � B2 � C2�

3�A2 � B2 � C2�3
; (B21)

I�0;5� �
2�A�A2 � B2 � C2�

�A2 � B2 � C2�4
; (B22)

I�0;6� �
2��5A2 � 10A2�B2 � C2� � �B2 � C2�2�

5�A2 � B2 � C2�5
; (B23)

I��1;1� � �a
�
�

2B

B2 � C2 �
B2 � C2 � AB

�B2 � C2�3=2
ln
�
A�

������������������
B2 � C2

p

A�
������������������
B2 � C2

p

��
; (B24)

I��1;2� � �a
�

2�AB� B2 � C2�

�B2 � C2��A2 � B2 � C2�
�

B

�B2 � C2�3=2
ln
�
A�

������������������
B2 � C2

p

A�
������������������
B2 � C2

p

��
; (B25)

I��1;3� �
2�a�A� B�

�A2 � B2 � C2�2
; (B26)

I��1;4� �
2�a�3A2 � 4AB� B2 � C2�

3�A2 � B2 � C2�3
; (B27)

I��1;5� �
2�a�3A3 � 5A2B� �3A� B��B2 � C2��

3�A2 � B2 � C2�4
; (B28)

I��1;6� �
2�a�5A4 � 10A3B� �10A2 � 6AB��B2 � C2� � �B2 � C2�2�

5�A2 � B2 � C2�5
: (B29)
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APPENDIX C

Here the detailed calculation of Fig. 6 is presented. M1 through M8 correspond to tree diagrams (1)–(8).
M1 is

M�1�
�$* � �ig�2 �u�p1����p1; p1 � q�i��p1 � q��$Tai���p2 � k2��*Tbv�p2�

� g2

��������
m�

Nc

s
�u�p1�

1 � �0

2
�ig

i� 1 � �0

2
TaTbv�p2� �p�

�
g0
$g

0
*

�1

k20
� g0

$g
0
*

~p2 
 ~k2

mk2
20

� g0
$
p2jg

j
*

mk20
� g0

*

p1jg
j
$

mk20

�
: (C1)

The first line in the bracket is of 1=�mg4� order, and the second line is of 1=�mg2� order from Eq. (9). As will be shown
later, the sum of 1=�mg4� order terms from M1 to M8 vanishes. As a result, the 1=�mg2� order becomes the leading order.
M2 is

M�2�
�$* � �ig�2 �u�p1��*Tbi��p1 � k2��$Tai��q� p2�����p2; q� p2�v�p2�

� g2

��������
m�

Nc

s
�u�p1�

1 � �0

2
�igi�

1 � �0

2
TbTav�p2�

�
g0
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0
*
�1
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 �p� �
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0
*
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 ~k2
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�
 �p�

� g0
$g

0
*

�1

k20

@ �p�
@ ~p


 �� ~k1 � ~k2�

�
: (C2)

The third line in the bracket comes from the expansion of the Bethe-Salpeter amplitude.

���p1 � k2;�p2 � k1� � ��� ~p1 � ~k2; ~p1 � ~k2� � ��� ~p1; ~p1� �
@��� ~p1; ~p1�

@ ~p

 ~k2; (C3)
����p2; q� p2� � ��� ~p1 � ~k1 � ~k2; ~p1 � ~k1 � ~k2� � ��� ~p1; ~p1� �
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@ ~p

 �� ~k1 � ~k2�; (C4)
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 �� ~k1�: (C5)

M3 is
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~p1 
 ~k1� ~p1 
 ~k2
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 ~k2

��
; (C6)

Notice that j ~p2j
2 � j ~p1j

2 � 2 ~p1 
 � ~k1 � ~k2� from the order counting of Eq. (9). The last line in the last equation comes
from the expansion of the Bethe-Salpeter amplitude in Eq. (C3).

Similarly, M4 to M8 are given as below.
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Next we consider the others (9-16),
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: (C16)

Because M�13� �M�15� are higher order in the order counting of Eq. (9) compared to the other terms, they were ignored.
Summing all amplitudes from M�1� to M�16�, the total invariant amplitude is given as
034002-22
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APPENDIX D

In this appendix, we summarize the present counting
scheme and give details on determining the scaling prop-
erties of certain diagrams. To begin with, the binding
energy of the quarkonium scales as

� � m�Ncg2=16��2 �O�mg4�: (D1)

In the quarkonium rest frame, the energy conservation
condition for the process � � q; g�k1� ! Q�p1� �

�Q�p2� � q; g�k2� is

�0 � k10 � k20 �
j ~p1j

2

2m
�

j ~p2j
2

2m
; (D2)

where �0 is the binding energy of the quarkonium, and k10,
k20 are the energies of the incoming and outgoing partons,
respectively. ~p1 and ~p2 are, respectively, the three mo-
menta of the heavy quark and antiquark from the quark-
onium. From this relation, the following order counting can
be deduced.

j ~p1j � j ~p2j �O�mg2�; k10 � k20 �O�mg4�: (D3)

The counting for the internal gluon loop momentum K,
which connects the heavy quark and antiquark within the
bound state, can be deduced from Eq. (5). Since the left-
hand side of Eq. (5) is ofO�mg4�, K must be ofO�mg2�. In
contrast, the order of gluon momenta appearing in the
perturbative one loop correction should be of O�mg4�.
This is so because the separation scale, which sets the cut
off in the perturbative diagrams, are set to the binding
energy, which is of O�mg4�. Within the bound state loop,
the internal energy and heavy quark propagator can be
counted as O�mg4�.
TABLE I. Order counting for

Feynman diagram

Heavy quark (antiquark) propagator
Bound gluon propagator
External gluon momentum
Bound gluon momentum
Three gluon vertex (two bound and one external
Three gluon vertex (three external gluons)

034002
From the above considerations, the order of each
Feynman rules can be deduced and the results are listed
in Table I. Bound gluon means that it is the internal gluon,
which produces the Coulomb bound state, and whose
momentum K scales as O�mg2�. There are two types of
the three gluon vertex. In the first one, the vertex combines
two bound gluons and one external gluon, while in the
other, it combines three external gluons.

The order of a diagram can be deduced from the above
order counting scheme. For example, the left and the right
diagrams of the Bethe-Salpeter equation in Fig. 1 can be
shown to be of the same order. Compared to the left
diagram, the right diagram has an addition internal loop
[�mg4� � �mg2�3], two heavy quark propagator [�mg4��2],
a bound gluon propagator [(�mg2��2], and two coupling
constant (g2), which altogether gives order 1, as the left
diagram.

The suppression of diagrams (13), (14), and (15) to the
other diagrams in Fig. 6 may also be explained. Comparing
diagrams (13) and (14) to (9), diagram (9) has additionally
a heavy quark propagator (�mg4��1) and a quark gluon
vertex (g), while diagrams (13) and (14) have additionally
a bound gluon propagator (�mg2��2) and a three gluon
vertex (two bound gluon plus one external gluon of
[O�mg3�]. Hence diagrams (13) and (14) are suppressed
by O�g2� relative to diagram (9). Similarly, diagram (15)
does not have a three gluon vertex [O�mg3�)] nor a heavy
quark propagator [�mg4��1] but an additional four gluon
vertex (g2) compared to diagram (9), and hence is rela-
tively suppressed by a factor of g2.

In certain cases, the simple counting scheme has to
be implemented with care. As an example, consider com-
paring the order of the first two diagrams to the third
various Feynman diagrams

Order Reference

�mg4��1 Equation (10)
�mg2��2 Equation (5)
mg4 Equation (9)
mg2

gluons) mg3

mg5

-23
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diagram in Fig. 2. Using our naive counting scheme above,
the third diagram can be shown to be suppressed by g2

compared to the first two diagrams. However, in this case,
034002
the first two diagrams cancel to leading order in the count-
ing and combine to give the same order as the third
diagram.
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