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Motivated by the possibility that nonets of scalar mesons might be described as mixtures of ‘‘two
quark’’ and ‘‘four quark’’ components, we further study a toy model in which corresponding chiral nonets
(containing also the pseudoscalar partners) interact with each other. Although the ‘‘two quark’’ and ‘‘four
quark’’ chiral fields transform identically under SU�3�L � SU�3�R transformations, they transform differ-
ently under the U�1�A transformation which essentially counts total (quark � antiquark) content of the
mesons. To implement this, we formulate an effective Lagrangian which mocks up the U�1�A behavior of
the underlying QCD. We derive generating equations which yield Ward identity type relations based only
on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars
and scalars, as well as their ‘‘excitations.’’ Assuming isotopic spin invariance, it is possible to disentangle
the amount of ‘‘two quark’’ vs ‘‘four quark’’ content in the pseudoscalar �;K;�-type states and in the
scalar �-type states. It is found that a small ‘‘four quark’’ content in the lightest pseudoscalars is consistent
with a large ‘‘four quark’’ content in the lightest of the scalar � mesons. The present toy model also allows
one to easily estimate the strength of a ‘‘four quark’’ vacuum condensate. There seems to be a rich and
interesting structure.
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I. INTRODUCTION

The past few years have seen a renewal of interest [1–
30] in the low energy scalar sector of QCD. Many phys-
icists now believe in the existence of the light, broad I �
J � 0 resonance, sigma in the 500–600 MeV region as
well as a light broad I; J � 1=2; 0 resonance, kappa in the
700–900 MeV region. Together with the well established
f0�980� and a0�980� scalar resonances, these comprise a
putative nonet of ‘‘elementary particles.’’ Furthermore, this
nonet seems likely to have a quark structure like qq 	q 	q
rather than the conventional q 	q [31]. This of course raises
the question of where are the conventional q 	q p-wave
scalars expected in the quark model. Arguments have
been given [32] that the experimental data are better fit
when the two scalar nonets mix with each other and the
resulting ‘‘level repulsion,’’ pushes the conventional sca-
lars to higher masses than otherwise expected.

In order to further explore the feature of mixing between
q 	q-type and qq 	q 	q -type states it seems interesting to con-
sider a linear SU�3� � SU�3� sigma model which contains
also the pseudoscalar nonet partners of these two scalar
nonets. Parenthetically, we remark that, while the nonlin-
ear sigma model [33,34] and its extension to the chiral
perturbation theory program [35] are often more efficient
for systematic calculations, linear sigma models have a
very long history of furnishing important insights into the
nature of strong hadron dynamics. The SU(2) linear sigma
model was first given in Ref. [33]. It was used as a basis for
understanding the current algebra treatment of �� scatter-
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ing near threshold in Ref. [36]. The SU(3) version was
given in the first of Ref. [37]. A detailed application to the
low energy pseudoscalar mass spectrum was given [38]
before QCD in which, among other things, it was shown
how a U�1�A violating term natural in the SU(3) model
could solve the �0 problem. Such a term was later discov-
ered to arise from instanton effects [39]. The connection
was pointed out in Ref. [40] and emphasized by ’t Hooft
[41].

The model containing two different chiral nonets to be
discussed here was proposed in Sec. V of Ref. [29] and an
initial treatment, neglecting flavor symmetry breaking, was
given. A discussion, taking the flavor symmetry breaking
into account, has very recently been presented in Ref. [42].
Actually, it turns out that the model is very complicated
since many different terms can be included and various
assumptions about the nature of the symmetry breaking
can be made. In this paper we will set up the formalism for
treating consequences of the model which hold (at tree
level) just due to the symmetry structure of the model and
will give a numerical treatment using what might be the
simplest choice of symmetry breaking terms.

Section II begins with a review of the flavor transforma-
tion properties of the two chiral nonet fields, M and M0,
which are used in the model. Each contains nine pseudo-
scalar and nine scalar fields. Under chiral SU�3�L �
SU�3�R transformations both fields transform in an identi-
cal manner. Thus a chiral Lagrangian which respects only
this symmetry cannot directly distinguish between a ‘‘two
quark’’ (i.e. q 	q) or a ‘‘four quark’’ scalar, for example.
However, it is noted again that the U�1�A transformation
actually counts the number of quarks in these mesons and
provides a way to distinguish them. In order to make use of
this, the Lagrangian should of course be set up appropri-
-1  2005 The American Physical Society
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ately. We implement this by requiring that the Lagrangian
mock up the anomalous U�1�A equation of the underlying
QCD and that the analogs of the quark mass terms also
mock up the U�1�A transformation properties of the quark
mass terms in the underlying theory. A reasonable initial
thought on which terms to include in the Lagrangian is to
restrict it to be renormalizable. It is noted, with details in
Appendix A, that the renormalizable M �M0 Lagrangian
has however very many more terms than does the renor-
malizable single M Lagrangian. An alternate way, which
still satisfies generality, is to consider any number of terms,
renormalizable or not, and just use the information which
follows from the symmetry behavior of the Lagrangian.

In order to exploit this symmetry information we derive,
in Sec. III, vector-type and axial vector-type ‘‘generating
equations’’ for the model. These can be differentiated with
respect to the fields to yield many tree level Ward identities
which are independent of the number of symmetric terms
included in the Lagrangian. In addition to the analog of
‘‘two quark’’ condensates which occur in the single M
model, the present model also brings ‘‘four quark’’ con-
densates into the picture.

In Sec. IV, we derive predictions for the mass spectrum
which follow from this symmetry approach. The character-
istic feature is mixing between ‘‘two quark’’ and ‘‘four
quark’’ mesons with the same quantum numbers.
Assuming isospin invariance, predictions are made for
the �� �0 mixing sector, the K � K0 mixing sector, the
strange scalar �� �0 mixing sector and the sector involv-
ing mixing of the four isoscalar pseudoscalars (�-type
particles). It is shown how to formulate the first three of
these mixing sectors in a parallel and economical way.

In Sec. V, the mass spectrum relations are compared
with experiment. First the three 2� 2 mixing sectors are
treated. The inputs are taken to be the six masses of the
well-known and not so well-known particles, the pion and
kaon decay constants and a model parameter denoted x�,
which is the squared mass of the unmixed (or ‘‘bare’’) pion.
These are enough to determine all the relevant parameters
of these three systems. The pseudoscalar mixing is very
sensitively dependent on x�; as it increases from the ex-
perimental value, m2

�, the four quark components of the
pion and the kaon increase. On the other hand, the scalar �
has a large four quark component. This feature thus pro-
vides some support for a more exotic structure of the low
lying scalars. Another interesting feature of the present
model, discussed in this section, is that it permits one to
estimate the strength of a four quark vacuum condensate.
Finally, Sec. V contains a brief summary, the connection
with other results on the same model and directions for
future work.
II. SYMMETRIES AND LAGRANGIAN

First, let us briefly review [29] the fields of the model
and their transformation properties. The schematic struc-
034001
ture for the matrix M�x� realizing a q 	q composite in terms
of quark fields qaA�x� can be written

Mb
a � �qbA�

y�4
1� �5

2
qaA; (1)

where a and A are, respectively, flavor and color indices.
Our convention for matrix notation is Mb

a ! Mab. Then M
transforms under chiral SU�3�L � SU�3�R as

M ! ULMUy
R; (2)

where UL and UR are unitary, unimodular matrices asso-
ciated with the transformations on the left-handed [qL �
1
2 �1� �5�q] and right-handed [qR � 1

2 �1� �5�q] quark
projections. For the discrete transformations charge con-
gugation C and parity P, one verifies

C: M ! MT; P: M�x� ! My��x�: (3)

The U�1�A transformation acts as qaL ! ei�qaL, qaR !
e�i�qaR and results in

M ! e2i�M: (4)

Next, consider the qq 	q 	q -type fields. One interesting
model [43] postulates that the light scalars are ‘‘mole-
cules’’ made out of two pseudoscalar mesons. The chiral
realization of this picture would result in the following
schematic structure:

M�2�b
a � �acd�bef�My�ce�My�df: (5)

One can verify that M�2� transforms exactly in the same
way as M under SU�3�L � SU�3�R, C and P. Under U�1�A
it transforms as

M�2� ! e�4i�M�2�; (6)

which differs from Eq. (4). Another interesting approach
[31] to explaining the light scalar mesons was formulated
by Jaffe in the framework of the MIT bag model. It was
observed that the spin-spin (hyperfine) piece of the one
gluon exchange interaction between quarks gives an excep-
tionally strong binding to an s-wave qq 	q 	q scalar state. The
scalar states of this type may be formally written as bound
states of a ‘‘dual quark’’ and ‘‘dual antiquark.’’ There are
two possibilities if the dual antiquark is required to belong
to a 	3 representation of flavor SU(3). In the first case it
belongs to a 	3 of color and is a spin singlet. This has the
schematic chiral realization,

LgE � �gab�EABqT
aAC

�1 1� �5

2
qbB;

RgE � �gab�EABqT
aAC

�1 1� �5

2
qbB;

(7)

where C is the charge conjugation matrix of the Dirac
theory. A suitable form for the M matrix is

M�3�f
g � �LgA�yRfA: (8)
-2
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M�3� can be seen to transform in the same way as M�2�

under SU�3�L � SU�3�R, C, P and U�1�A. In the second
case the dual antiquark belongs to a 6 representation of
color and has spin 1. It has the corresponding schematic
chiral realization:

Lg
$�;AB � Lg

$�;BA � �gabqT
aAC

�1%$�
1� �5

2
qbB;

Rg
$�;AB � Rg

$�;BA � �gabqT
aAC

�1%$�
1� �5

2
qbB;

(9)

where %$� � 1
2i 
�$; ���. This choice leads to an M matrix

M�4�f
g � �Lg

$�;AB�
yRf

$�;AB; (10)

where the dagger operation includes a factor ��1�&$4�&�4 .
M�4� also transforms like M�2� and M�3� under all of
SU�3�L � SU�3�R, C, P and U�1�A. The specific form
favored by the MIT bag model calculation actually corre-
sponds to a particular linear combination of M�3� and M�4�.
Furthermore one can verify that M�2� in Eq. (5) is related by
a Fierz transformation to a linear combination of M�3� and
M�4�. Thus only two of M�2�, M�3� and M�4� are linearly
independent. In any event, at the present effective
Lagrangian level, there are no quantum numbers to distin-
guish M�2�, M�3�, and M�4� from each other so we may as
well just denote an arbitrary linear combination of them to
be our qq 	q 	q field, M0. Note that M and M0 are distin-
guished from each other by their different U�1�A trans-
formation properties. These fields may be decomposed into
Hermitian scalar (S) and pseudoscalar (() nonets as

M � S� i(; M0 � S0 � i(0: (11)

We will be interested in the situation where nonzero vac-
uum values of the diagonal components of S and S0 may
exist. These will be denoted by

hSb
ai � )a&b

a; hS0b
a i � *a&b

a: (12)

In the isospin invariant limit, )1 � )2 and *1 � *2 while
in the SU(3) invariant limit, )1 � )2 � )3 and *1 �
*2 � *3.

The Lagrangian density which defines our model is

L � �
1

2
Tr�@$M@$My� �

1

2
Tr�@$M0@$M0y�

� V0�M;M0� � VSB; (13)

where V0�M;M0� stands for a general function made from
SU�3�L � SU�3�R [but not necessarily U�1�A] invariants
formed out of M and M0. Furthermore VSB is taken to be
a flavor symmetry breaking term which should mock up
the quark mass terms which perform this function in the
fundamental QCD Lagrangian. Other physical particles
(including glueballs) could be added for more realism,
but Eq. (13) is already quite complicated.

To get an initial indication of what is happening in this
kind of model the drastically simplified case where the
034001
quark mass effective term, VSB is absent and where V0 is
simply given by:

V0 � �c2 Tr�MMy� � c4 Tr�MMyMMy�

� d2 Tr�M0M0y� � eTr�MM0y �M0My�; (14)

was treated in Sec. V of Ref. [29]. Here c2, c4 and d2 are
positive real constants. The M matrix field is chosen to
have a wrong sign mass term so that there will be sponta-
neous breakdown of chiral symmetry. A pseudoscalar octet
is thus massless. The mixing between the M and M0 is
controlled by the parameter e. The first feature found for
this simplified model was that the analog hS0a

a i of the qq 	q 	q
condensate in QCD acquired a small nonzero value due to
the mixing between S and S0. The main question is the level
ordering. Since the light pseudoscalars (e.g. �� � (2

1) are
naturally identified, before mixing, with the q 	q field M,
one wonders whether the two quark rather than the four
quark scalars are not the lightest ones. It was found how-
ever that it is natural (but not unique) in the model to have
the energy level pattern in ascending order—pseudoscalar
Nambu-Goldstone boson with primarily q 	q structure, sca-
lar with primarily qq 	q 	q structure, pseudoscalar with pri-
marily qq 	q 	q structure and scalar with primarily q 	q
structure. These refer to degenerate octets which are each
mixtures of M and M0 states. This seems to be similar to the
expected experimental pattern and gives us some motiva-
tion to proceed further.

The next question is what terms to include in the
Lagrangian Eq. (13). A natural first attempt would be to
consider a renormalizable model in which V0 contains all
the SU�3� � SU�3� invariant terms up to four powers of the
fields. These are listed in Appendix A. It is seen that there
are 21 terms of this type. This is a rather large number and
while not impossible to handle suggests trying another
tack. We will just allow V0 to contain all possible terms
which are SU�3�L � SU�3�R symmetric and use the infor-
mation provided by this symmetry. This is more general
and also allows for nonrenormalizable terms. The price to
be paid is that we only get information which follows just
from the symmetry structure. In an earlier treatment [38] of
the single chiral nonet case, it was found that the results
obtained were essentially those which could be obtained
from the ‘‘current algebra’’ approach. Furthermore, we will
try to make use of the fact that M and M0 have different
U�1�A transformation properties. We thus demand that the
Lagrangian without VSB mock up the anomalous U�1�A
equation of QCD,

&L � G; (15)

where & denotes the axial U(1) variation and G is propor-
tional to the product of the QCD field strength tensor and
its dual. This can be achieved by making all of the terms in
V0, except for a limited number, U�1�A invariant. The
special terms will be constructed to satisfy Eq. (15). An
example of a term which is not U�1�A invariant is the
-3
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mixing term used in the simplified model above:
Tr�M0My� � H:c:. However a mixing term of the type

�abc�defMa
dM

b
eM0c

f � H:c: (16)

is U�1�A invariant and hence possibly the most important
one.

An SU�3�L � SU�3�R invariant but not U�1�A invariant
term which mocks up Eq. (15) can be seen [44] to be

L anom �
iG
12

ln
�
detM

detMy

�
: (17)

Here, G is being formally considered as an effective pseu-
doscalar glueball field in the effective Lagrangian. To get
an ��958� mass term in the effective Lagrangian frame-
work, one can [44] include a wrong sign mass term for G:
cG2=2 in the Lagrangian which of course does not change
the flavor symmetry structure. Then integrating out G
yields the effective ��958� mass term:

L � � �c3

�
ln
�
detM

detMy

��
2
; (18)

where c3 � �1=�288c�. The nature of this term becomes
more apparent when one goes to the nonlinear realization
where M ! )1 exp�i(=)1�. For the present paper we shall
consider this to be the only SU�3�L � SU�3�R invariant but
not U�1�A invariant term. However, it is not at all unique
when we consider a model with two chiral nonets. For
example, one can also include something like the
non-U�1�A invariant mixing term Tr�M0My� � H:c: by
writing a candidate Lagrangian piece:

iG
12

�
�1 ln

�
detM
det

�
� �2 ln

�
Tr�MM0y�

Tr�M0My�

�
; (19)

and proceeding as above. In order to properly mock up the
anomaly in this case it is necessary [45] that the real
numbers �1 and �2 satisfy

�1 � �2 � 1: (20)

The generalization to more than two such terms is evident.
It may be noted that the M �M0 mixing term resulting
from Eq. (19) mixes only the pseudoscalar fields and not
the scalar ones.

Finally, let us consider the flavor symmetry breaking
terms. To get more restrictions, we assume that such a term
should mock up both the SU�3�L � SU�3�R and U�1�A
transformation properties of the quark mass terms in the
fundamental QCD Lagrangian. It is convenient to intro-
duce a diagonal matrix,

A � diag�A1; A2; A3�; (21)

which is proportional to the diagonal matrix made from the
three light quark masses, diag�mu;md;ms� (see [40] for
further details). Then, from Eq. (1), we note an obvious
choice for a flavor symmetry breaking term,
034001
VSB � �Tr
A�M �My�� � �2Tr�AS�; (22)

which transforms like �3; 3�� � �3�; 3� under SU�3�L �
SU�3�R. Under the U�1�A transformation of Eq. (4), it
goes to �e2i� Tr�AM� � H:c:. Note that the similar simple
possibility, �2Tr�AS0� does not correctly mock up the
U�1�A transformation property of the QCD mass term.
However, Eq. (22) is not at all unique in correctly mocking
up the quark mass term. An interesting term which does
mock up the quark mass term also involves mixing and has
the form

�abc�
defAa

dM
b
eM

0c
f � H:c: (23)

This term mixes both scalars and pseudoscalars but with
opposite signs.

For what follows, it is convenient to record the behaviors
of the fields under infinitesimal transformations. Let us
write the infinitesimal vector (L� R) and axial vector
(L� R) transformations of ( and S as

&V( � 
EV;(�; &A( � �i
EA; S��;

&VS � 
EV; S�; &AS � i
EA;(��:
(24)

Here, unitarity demands that the infinitesimal matrices
obey

Ey
V � �EV; Ey

A � �EA: (25)

If we demand that the transformations be unimodular, so
that the U�1�A transformation is not included [the U�1�V
transformation is trivial for mesons], we should also im-
pose Tr�EA� � 0. However, we will not do this so the
effects of U�1�A will also be included. The transformation
properties of the qq 	q 	q -type fields are

&V(0 � 
EV;(0�; &A(0 � �i
EA; S0�� � 2iS0 Tr�EA�;

&VS
0 � 
EV; S

0�; &AS
0 � i
EA;(

0�� � 2i(0 Tr�EA�:

(26)

The extra terms for the axial transformations reflect the
different U�1�A transformation properties of M and M0.
III. GENERATING EQUATIONS

We shall consider, in this paper, tree level predictions for
the Lagrangian of Eq. (13) in which the only U�1�A violat-
ing term in V0 is that of Eq. (18). The only term in VSB will
be taken to be the simplest one given in Eq. (22). In this
minimal picture, there is no symmetry breaking associated
with the qq 	q 	q fields in M0. The symmetry breaking in the
physical states (which contain two quark as well as four
quark components) is due to the mixing terms which, as we
have already seen in Eq. (16), can be invariant under
SU�3� � SU�3� � U�1�A.

The method of treatment, as used earlier [38] to discuss
the model containing only the field M, is based on two
generating equations which reflect the invariance of V0
-4
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under vector and axial vector transformations.
Differentiating them once relates two point vertices
(masses) with one point vertices. Differentiating them
twice relates three point vertices (trilinear couplings)
034001
with masses and so on. These are essentially tree level
Ward identities.

Under the infinitesimal vector and axial vector trans-
formations we have
&VV0 �

�
Tr
�
@V0

@(
&V(�

@V0

@S
&VS

�
� �(; S� ! �(0; S0�

�
� 0;

&AV0 �

�
Tr
�
@V0

@(
&A(�

@V0

@S
&AS

�
� �(; S� ! �(0; S0�

�
� �L�;

(27)

wherein the nonzero value of the axial variation equation reflects the presence in V0 of the single U�1�A noninvariant term
of Eq. (18). Using Eqs. (24) and (26) as well as the arbitrariness of the variations EV and EA yields the matrix generating
equations,

��
(;

@V0

@(

�
�

�
S;

@V0

@S

�
� �(; S� ! �(0; S0�

�
� 0;

��
(;

@V0

@S

�
�
�

�
S;

@V0

@(

�
�
� �(; S� ! �(0; S0�g � 1

�
2Tr

�
(0 @V0

@S0
� S0 @V0

@(0

�
� 8c3i ln

�
detM

detMy

��
;

(28)
where, in addition, the form of Eq. (18) was used. To get
constraints on the particle masses, we will differentiate
these equations once with respect to each of the four matrix
fields: (;(0; S; S0 and evaluate the equations in the ground
state. Thus we also need the ‘‘minimum’’ condition,�

@V0

@S

�
�

�
@VSB

@S

�
� 0;

�
@V0

@S0

�
�

�
@VSB

@S0

�
� 0: (29)

Using our present choice of Eq. (22) as the only flavor
symmetry breaker and Eq. (12), this becomes�

@V0

@Sa
a

�
� 2Aa;

�
@V0

@S0a
a

�
� 0: (30)

Now let us differentiate successively the vector generating
equation with respect to Sb

a and to S0b
a. This gives, with the

help of Eq. (30), the following two relations:

�)a�)b�

�
@2V0

@Sa
b@S

b
a

�
��*a�*b�

�
@2V0

@S0a
b@S

b
a

�
�2�Aa�Ab�;

�)a�)b�

�
@2V0

@Sa
b@S

0b
a

�
��*a�*b�

�
@2V0

@S0a
b@S

0b
a

�
�0: (31)

The first of these equations relates the mass mixing tran-
sition with the unprimed scalar squared masses while the
second of these relates the mass mixing transition with the
primed scalar squared masses. It may be seen that infor-
mation is obtained only for particles with different upper
and lower SU(3) tensor indices. In the isospin invariant
limit (where )1 � )2 etc.), information will be obtained
only for the kappa-type particles (e.g. �� � S3

1 when
mixing is neglected). If isospin violation information is
inserted, information may be obtained also about the iso-
vector scalars like a�

0 �980� (which is represented by S2
1

when mixing is neglected). Next, let us differentiate suc-
cessively the axial vector generating equation with respect
to ( and to (0. It is neater to write the results first for the
case when fields with different upper and lower tensor
indices are involved:

�)a�)b�

�
@2V0

@(a
b@(

b
a

�
��*a�*b�

�
@2V0

@(0a
b@(

b
a

�

�2�Aa�Ab�;

�)a�)b�

�
@2V0

@(0a
b@(

b
a

�
��*a�*b�

�
@2V0

@(0a
b@(

0b
a

�

�0 (32)

Next, let us write the corresponding equations for the
case when the upper and lower tensor indices on each field
are the same.

)b

�
@2V0

@(a
a@(b

b

�
� *b

�
@2V0

@(a
a@(0b

b

�

�
X
g

*g

�
@2V0

@(a
a@(

0g
g

�
�

8c3
)a

;

)b

�
@2V0

@(0a
a@(b

b

�
� *b

�
@2V0

@(0a
a@(0b

b

�

�
X
g

*g

�
@2V0

@(0a
a@(

0g
g

�
:

(33)

Note that the axial generating equation provides informa-
tion on the masses of all the pseudoscalars. Further differ-
entiations will relate a large number of trilinear and
quadrilinear coupling constants to the meson masses and
to the quark mass coefficients, Aa.

To fully characterize the system we will also require
some knowledge of the axial vector and vector currents
[38] obtained by Noether’s method:
-5
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�Jaxial$ �ba � �)a � )b�@$(
b
a � �*a � *b�@$(

0b
a � � � � ;

�Jvector$ �ba � i�)a � )b�@$Sb
a � i�*a � *b�@$S0b

a � � � � ;

(34)

where the three dots stand for terms bilinear in the fields.
IV. PREDICTIONS FOR MASS SPECTRUM

Here we consider the predictions for the mass spectrum
of the model with the Lagrangian given in Eq. (13), whose
potential contains any SU�3�L � SU�3�R � U�1�A invariant
terms whatsoever, amended with the SU�3�L � SU�3�R but
not U�1�A invariant term of Eq. (18) as well as the term
Eq. (22) which transforms exactly like the QCD quark
mass term. A characteristic feature is mixing between
fields with the same quantum numbers. Specifically, there
is information about mixing between � and �0, between K
and K0, between � and �0 and among the four �-type
(isosinglet) states. We will take these up in turn. Note
that we will be working in the isotopic spin invariant limit
[46].

A. The � � �0 system

For compactness let us denote

x� �
2A1

)1
; y� �

�
@2V

@(01
2@(

02
1

�
; z� �

*1

)1
: (35)

Here we have introduced the total potential V � V0 � VSB.
However, since the second derivatives of VSB vanish with
our present choice of flavor symmetry breaker, we may just
use V0. Substituting a � 1; b � 2 into both of Eqs. (32)
enables us to write the (nondiagonal) matrix of squared �
and �0 masses as

�M2
�� �

x� � z2�y� �z�y�
�z�y� y�

� �
: (36)

It is clear that z� is a measure of the mixing between � and
�0 since the matrix becomes diagonal in the limit when z�
is set to zero. So we see that x� would be the squared pion
mass in the single M model and y� represents the squared
mass of the bare �0. Denoting the eigenvalues of this
matrix by m2

� and m2
�0 , we read off the product and sum

rules:

m2
�m

2
�0 � x�y�; m2

� �m2
�0 � x� � y��1� z2��:

(37)

Assuming that the values of m� and m�0 are known, the
first of these equations expresses y� in terms of x�. Then
the second of these equations also expresses z2� in terms of
x�. The value of x� is not known but its range is restricted
to be
034001
m2
� � x� � m2

�0 : (38)

This range may be derived by expressing z2� in terms of x�
as mentioned and requiring z2� � 0.

The transformation between the diagonal fields (say ��

and �0�) and the original pion fields is defined as

��

�0�

� �
�

cos1� � sin1�

sin1� cos1�

� �
(2

1

(02
1

" #
: (39)

The explicit diagonalization gives an expression for the
mixing angle 1�:

tan�21�� �
�2y�z�

y��1� z2�� � x�
; (40)

which evidently is also known, up to a sign choice for z�,
once x� is specified.

The mixing angle 1� can also be connected to the
experimentally known value of the pion decay constant
(i.e. the amplitude for the �� meson to decay to two
leptons). Substituting the expressions from Eq. (39) for
(2

1 and (02
1 in terms of the physical fields �� and �0� into

Eq. (34) yields

�Jaxial$ �21 � F�@$�
� � F�0@$�

0� � � � � ;

F� � �)1 � )2� cos1� � �*1 � *2� sin1�;

F�0 � �)1 � )2� sin1� � �*1 � *2� cos1�:

(41)

We can then obtain )1 (in the isospin invariant limit) as

)1 �
F�

2�cos1� � z� sin1��
: (42)

We then successively obtain A1 from the definition of x�,
Eq. (35), and *1 from the definition of z�, Eq. (35). To sum
up, specifying x� and the experimental quantities m�;m�0

and F� determines all the other parameters of the �� �0

system.

B. The K� K0 system

The treatment of this system is almost exactly analogous
to that of the �� �0 system above when one defines the
analogous variables,

xK �
2�A3 � A1�

)3 � )1
; yK �

�
@2V

@(01
3 @(

03
1

�
;

zK �
*3 � *1

)3 � )1
:

(43)

Substituting a � 1; b � 3 into both of Eqs. (32) enables us
to write the (nondiagonal) matrix of squared K and K0
-6
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masses as

�M2
K� �

xK � z2KyK �zKyK
�zKyK yK

� �
: (44)

This is observed to be identical to the expression for �M2
��

in Eq. (36) when one simply substitutes everywhere K for
� and K0 for �0. Similarly, the four Eqs. (37)–(40) con-
tinue to hold when one substitutes everywhere K for � and
K0 for �0. Similarly, the K� decay constant, FK is now
defined from

�Jaxial$ �31 � FK@$K
� � FK0@$K

0� � � � � ;

FK � �)1 � )3� cos1K � �*1 � *3� sin1K;

FK0 � �)1 � )3� sin1K � �*1 � *3� cos1K:

(45)

We can then obtain )3 � )1 (in the isospin invariant
limit) as

)3 � )1 �
FK

cos1K � zK sin1K
: (46)

We then successively obtain A3 � A1 from the definition of
xK and *3 � *1 from the definition of zK. To sum up,
specifying xK and the experimental quantities mK;mK0 and
FK determines all the other parameters of the K � K0

system.

C. The �� �0 system

Again, we can treat this system in an exactly analogous
way to the �� �0 and K � K0 cases if we define the
analogous quantities:

x� �
2�A3 � A1�

)3 � )1
; y� �

�
@2V

@S01
3@S

03
1

�
;

z� �
*3 � *1

)3 � )1
:

(47)

In this case, however, the vector generating equations in
Eqs. (31) with the choices a � 1 and b � 3 are used. The
transformation between the diagonal and original strange
scalar fields is given by

��

�0�

� �
�

cos1� � sin1�

sin1� cos1�

� �
S3
1

S03
1

" #
; (48)

where the mixing angle is determined by the diagonaliza-
tion:

tan�21�� �
�2y�z�

y��1� z2�� � x�
: (49)

We may define � ‘‘decay constants’’ as
034001
F� � �)3 � )1� cos1� � �*3 � *1� sin1�;

F�0 � �)3 � )1� sin1� � �*3 � *1� cos1�;
(50)

although there is no direct experimental information avail-
able about them.

Now let us consider the �� �0, K � K0 and �� �0

systems together. Using the first two, we can get all of
A1; A3; )1; )3; *1; *3 from the experimental masses of
�;�0; K; K0, the experimental decay constants F�; FK
and the assumed values of x� and xK, as seen above.
This means that x� and z� may be read off directly from
Eqs. (47) while y� can be found from the product rule
m2

�m
2
�0 � x�y� if m� and m�0 are furnished. Thus all the

parameters of the �� �0 system are known, given the input
masses and the values of x� and xK. However, we have not
yet made use of the sum rule analogous to the second of
Eqs. (37). This provides another way to calculate z� so we
get the consistency condition:

�
*3 � *1

)3 � )1

�
2
�

x��m2
� �m2

�0 � x��

m2
�m2

�0

� 1: (51)

Since the quantities in this equation depend on both x� and
xK, the solution can determine the value of xK for each
choice of x�. In other words, if x� is specified, the parame-
ters of the �� �0, the K � K0 and the �� �0 systems are
all determined in the present model.

D. The � system

This system is more complicated because, even in the
isotopic spin invariant limit, there are four different I � 0
pseudoscalars which can mix with each other. These may
be put together as a column vector according to

�0 �

(1
1�(2

2��
2

p

(3
3

(01
1�(02

2��
2

p

(03
3

2
666664

3
777775: (52)

The part of the Lagrangian describing the masses of the
I � 0 pseudoscalars is then L � ��1=2��T

0 �M
2
���0,

where �M2
�� is a symmetric 4� 4 matrix. Relations among

the matrix elements follow by using both of Eqs. (33).
These connect the transition masses both to the bare un-
primed particle masses and to the bare primed particle
masses. The use of isospin invariance relations like the
ones given in Appendix B may also be useful. Eventually,
the matrix elements of �M2

�� depend on four new quantities
in addition to the ones appearing in the above three sub-
systems. The resulting matrix elements are listed below:
-7
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�M2
��11 �

2A1

)1
�

16c3
)2
1

�
*2

1m
2
�m2

�0

2A1)1
� 2

�
*1

)1

�
2
�

@2V

�@(01
1�

2

�
� 4

�
*1*3

)2
1

��
@2V

@(01
1@(

03
3

�
� 2

�
*3

)1

�
2
�

@2V

@(03
3@(

03
3

�

�M2
��12 � �

8
���
2

p
c3

)1)3
�

*2
1m

2
�m2

�0���
2

p
A1)3

�

�
2

���
2

p
*2

1

)1)3

��
@2V

�@(01
1�

2

�
�

�
2

���
2

p
*1*3

)1)3

��
@2V

@(01
1@(

03
3

�

�M2
��13 � �

*1m
2
�m

2
�0

2A1
� 2

�
*1

)1

��
@2V

�@(01
1�

2

�
� 2

�
*3

)1

��
@2V

@(01
1@(

03
3

�

�M2
��14 �

� ���
2

p
*1

)1

��
@2V

@(01
1@(

03
3

�
�

� ���
2

p
*3

)1

��
@2V

@(03
3@(

03
3

�
�M2

��22 �
2A3

)3
�

8c3
)2
3

�
)1*2

1m
2
�m2

�0

A1)
2
3

� 4
�
*1

)3

�
2
�

@2V

�@(01
1�

2

�

�M2
��23 � �

)1*1m2
�m2

�0���
2

p
A1)3

�

�
2

���
2

p
*1

)3

��
@2V

�@(01
1�

2

�
�M2

��24 �

�
2*1

)3

��
@2V

@(01
1@(

03
3

�

�M2
��33 � �

)1m
2
�m

2
�0

2A1
� 2

�
@2V

�@(01
1�

2

�
�M2

��34 �
���
2

p �
@2V

@(01
1@(

03
3

�
�M2

��44 �

�
@2V

@(03
3@(

03
3

�
: (53)
The four new quantities are c3, discussed earlier, and the
bare primed squared masses:

�
@2V

�@(01
1�

2

�
;

�
@2V

@(01
1@(

03
3

�
;

�
@2V

@(03
3@(

03
3

�
: (54)

These four quantities may be found by inputting the masses
of four isosinglet pseudoscalars. The net result is that all
four systems discussed will be completely described if all
the experimental masses and the decay constants F�; FK
are specified together with an assumed value for x�.
V. COMPARISON WITH EXPERIMENT AND
DISCUSSION

In the preceding section we gave the tree level formulas
resulting from the M �M0 model with any SU�3�L �
SU�3�R � U�1�A invariant terms together with a single
‘‘instanton’’ type term which mocks up the U�1�A anomaly
and the simplest structure which mocks up the quark mass
terms. Isotopic spin invariance was also assumed.
Information is provided for only the pseudoscalar nonets
and the strange scalar particles. Information about the
scalar isotriplets can be obtained by including isospin
violation effects while information about the scalar iso-
singlets requires either assuming some specific form for the
invariant interaction terms or computing other physical
quantities. These will be discussed elsewhere. Now we
will input the experimental masses to try to learn what
the model has to say about the quark structure of the
various mesons being described. In particular we are inter-
ested in the mixing angles like 1�, governing admixtures of
q 	q and qq 	q 	q in the physical states and the four quark
‘‘condensate’’ strengths *a which are associated with this
mixing in the present model.

The well-known lowest pseudoscalar nonet masses and
decay constants will be taken, for definiteness (considering
the ambiguity as to which member of a nontrivial isospin
034001
multiplet to choose), to be

m� � 0:137 GeV; mK � 0:496 GeV;

m� � 0:548 GeV; m�0 � 0:958 GeV;

F� � 0:131 GeV; FK � 0:160 GeV:

(55)

Next, let us consider what are the suitable experimental
inputs for the masses of the excited mesons, �0; K0; �0, and
for the � meson itself. In the latest review of particle
properties [47] there are two dotted (i.e. considered estab-
lished) candidates for excited pions below 2 GeV: the
��1300� and the ��1800�. These particles could have
four quark components and/or radially excited two quark
components. In fact, judging from an investigation of
excited baryons [48], it is likely that both types are present.
Clearly, however, for our present investigation it seems
reasonable to assume that the four quark component is
the dominant one and to choose the lower mass object as
the more suitable one. Similarly there are two undotted
(nonestablished) excited kaon candidates: the K(1460) and
the K(1830). We will again choose the lower value. As
candidates for an excited strange scalar there is a dotted
K�

0�1430� and an undotted K�
0�1950� and we again choose

the lower value. In the case of the low mass strange scalar
there is an undotted K�

0�800� candidate, which we will
interpret, with the help of [15], to be closer to 900 MeV.
We summarize these choices:

m�0 � 1:30 GeV; mK0 � 1:46 GeV;

m� � 0:90 GeV; m�0 � 1:42 GeV:
(56)

For the excited �-type pseudoscalar particles the review
of particle properties lists, below 2 GeV, the possible
masses (all in GeV):

1:294; 1:410; 1:476; 1:760: (57)

The first three of these are dotted but the fourth is undotted.
Here it seems more difficult to a priori choose which are
-8
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most relevant so we shall study all possible pairings in a
systematic way.

First let us discuss the �� �0, K � K0 and �� �0

systems. After using the inputs of Eq. (55), all features of
these systems in our model will, as already discussed, be
determined by specifying x�. Table I shows the predicted
physical parameters for three values of x�. For orientation,
we note that in the chiral model with a single field M, one
has

)1 ! F�=2 � 0:0655 GeV;

)3 ! FK � )1 � 0:0945 GeV;

A1 !
)1

2
m2

� � 6:15� 10�4 GeV3;

A3 !
FK

2
m2

K � 0:018 66 GeV3;

*1 ! 0;

*2 ! 0:

(58)

The single M model corresponds to the choice x� � m2
�.

Increasing x� has the effect of increasing the admixture of
the ‘‘four quark’’ field component in the physical pion. The
‘‘quark mass ratio,’’ A3=A1 � 30:3 in the single M model
is not very different from the value of 31.2 obtained using
the values in the x� � 0:019 GeV2 column. The 	qq meson
condensates )1 and )3 are also very similar. Of course the
‘‘four quark’’ meson condensates *1 and *2 are zero
without M0. Despite the similarities, the 6:4� mixing angle
already corresponds to about an 11% ‘‘four quark’’ admix-
ture in the physical pion wave function. Considering that
the accuracy of current algebra predictions for low energy
pion physics is roughly 10%, it seems that this choice of x�
is the most plausible one. One sees from the second and
third columns that relatively small increases in x� lead to
large increases in four quark admixture for the pion and the
kaon. Interestingly, the behavior of the four quark admix-
ture in the strange scalar meson � is quite different. When
the pseudoscalars are closer to pure ‘‘two quark’’ states in
TABLE I. 1�, 1K and 1� are respectively the
states. A1; A3 represent the quark mass paramete
tively the two and four quark condensate strengths
bare pion squared mass, x�.

x� � 0:019 ( GeV2) x�

1� (deg.) �6:4
1k (deg.) �11:2
1� (deg.) 34:1
A1 �GeV

3� 6:19� 10�4

A3 �GeV
3� 1:94� 10�2

)1 (GeV) 6:51� 10�2

)3 (GeV) 9:24� 10�2

*1 (GeV) 7:18� 10�3

*3 (GeV) 2:03� 10�2

034001
the model, the scalar has a large four quark admixture
(34:1�, with the choice of x� in the first column). Thus
the result is consistent with having a fairly large four quark
component in the light scalars.

The analogs of the two quark condensates )1 � )2 and
)3 are approximately equal, in agreement with the usual
assumption that the vacuum is approximately SU(3) sym-
metric. The analogs of the four quark condensates in this
model are roughly an order of magnitude smaller than the
similarly normalized two quark condensates. They are
furthermore seen to deviate appreciably from SU(3) sym-
metry. It should be noted, as discussed in Ref. [16] for
example, that the tensor indices for the primed mesons
really correspond to ‘‘dual quark’’ or diquark indices in
accordance with

Qa � �abc 	q
b 	qc: (59)

Thus in terms of the usual quarks,

*1 � h 	dd	ssi; *2 � h 	uu	ssi; *1 � h 	dd 	uui: (60)

Now consider the mixing of the four �-type fields in the
model. The basis is given in Eq. (52) while the elements of
the 4� 4 mass squared matrix are given in Eq. (53). The
orthogonal transformation matrix K which relates the mass
eigenstate fields � to the original ones is defined by

�0 � K�: (61)

As discussed in the previous section, there are, after using
the symmetry information, four new unknown parameters
characterizing the � system. Thus taking the four mass
eigenvalues from experiment could in principle determine,
together with results from the �� �0, K � K0 and �� �0

systems, everything about the � system for a given value of
x�. However, there is no guarantee that there will be an
exact solution for all choices of experimental parameters.
This is the case, in fact, so we will search numerically for a
choice of ‘‘theoretical’’ masses which will best fit the
experimental inputs. The criterion for goodness of fit will
be taken to be the smallness of the quantity:
‘‘four quark’’ admixtures in the �, K and �
rs while )1; )3 and *1; *3 represent respec-
. These are plotted as functions of the assumed

� 0:021 ( GeV2) x� � 0:022 ( GeV2)

�19:1 �22:7
�22:9 �26:2

28.1 26:5
6:51� 10�4 6:66� 10�4

2:07� 10�2 2:12� 10�2

6:20� 10�2 6:06� 10�2

8:83� 10�2 8:69� 10�2

2:12� 10�2 2:50� 10�2

3:38� 10�2 3:74� 10�2
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5 �
X
i

jmexp :
i �mtheo:

i j=mexp :
i : (62)

As shown in Eq. (57), there are three established candi-
dates and one not yet established candidate below 2 GeV
for the two excited � states. This yields six possible
scenarios for choosing them. The quantity 5 for each
choice is shown in Table II for three values of the parame-
ter x�. It may be observed that the fits typically get worse
with increasing x�, so it is reasonable to consider the
choice 0:019 GeV2 for this quantity as we did previously.
The smallest values of 5 are found for scenarios 3 and 5.
However, these both involve the ��1760� state which is the
one not yet established. The smallest value of 5 using only
established states is scenario 2. This case corresponds to an
exact fit with eta-type masses in GeV (experimental values
in parentheses for comparison):

0:533�0:548�; 0:963�0:958�; 1:327�1:294�;

1:716�1:476�:
(63)

The detailed content of all the � mass eigenstates can be
read off from the matrix K�1. For scenario 2 we have

K�1 �

�0:570 0:750 �0:023 0:333
�0:329 �0:573 0:142 0:737
0:704 0:267 �0:309 0:581
0:267 0:192 0:940 0:088

2
6664

3
7775: (64)

Thus, in the present model there is an 89% probability
[�K�1�211 � �K�1�212] that the ��548� is a quark-antiquark
state and an 11% probability that it is a four quark state. As
expected, the ��548� is most likely to be in an 	ss state. In
the case of the ��958�, there is a 44% probability for it to
be in a quark-antiquark state. There is a 54% probability
for it to be in the four quark state (03

3 . This situation has
some plausibility since, in terms of ordinary quarks, the
latter state has the content 	uu 	dd and it should be most
energetically favorable to bind a four quark state made
without strange quarks.

The other scenarios which do not employ the uncon-
firmed ��1760� state (numbers 1 and 4) have contents very
similar to the one in Eq. (64). On the other hand, the three
scenarios employing the ��1760� have a rather different
TABLE II. A goodness of fit quantity, 5 �
P

ijm
mass eigenvalues of the �-type fields, is given for
x�. Each scenario corresponds to a choice of �-ty
as well as the two listed in the left-hand column.

Scenario x� � 0:019 ( GeV2)

1: f��1295�; ��1405�g 6:23� 10�2

2: f��1295�; ��1475�g 2:85� 10�2

3: f��1295�; ��1760�g 2:35� 10�2

4: f��1405�; ��1475�g 8:28� 10�2

5: f��1405�; ��1760�g 1:50� 10�2

6: f��1475�; ��1760�g 2:84� 10�2
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content, which seems unusual: scenarios 3, 5 and 6 make
the ��958� almost completely (03

3 .
In scenario 2, which seems the most reasonable choice,

we notice that the ��1295� has a 43% probability of being
in a four quark state while the ��1475� has an 89% proba-
bility of being in a four quark state. To sum up, the value
x� � 0:019 GeV2 leads to fairly small four quark content
in the light pseudoscalars �;K; � at the same time that the
light scalar � has an appreciable four quark component.
The ‘‘excited’’ �’s are predominantly four quark states.
The ��958� is mainly two quark in content but has a
nontrivial four quark piece.

The results obtained here provide supporting evidence
for the feature, illustrated in the first treatment of this
model [29], that the lightest scalars, unlike the lightest
pseudoscalars, have appreciable four quark components.
That model neglected quark masses and used the simplified
choice of terms shown in Eq. (14). The more recent treat-
ment of Ref. [42], includes two additional invariant terms
beyond those in Eq. (14) (although not all the renormaliz-
able terms shown in Appendix A) as well as four types of
quark mass splitting terms. Our results for the present
treatment, where quark masses are included and which
holds for any possible SU�3�L � SU�3�R � U�1�A conserv-
ing terms, are also in qualitative agreement for the �-type,
K-type, �-type and �-type states with that treatment.
Roughly, this may be expected since the present approach
includes any choice of invariant terms. However, we only
used here the single quark mass splitting term of Eq. (22).
Thus the results seem qualitatively robust with respect to
the treatment of the mass splittings.

An interesting feature of our model is the presence of
‘‘four quark’’ condensates as signaled by the nonzero
values of the *a. To make a rough estimate of what this
corresponds to in quark language we proceed as follows. In
Ref. [40] it was pointed out that the mass formulas of the
single M linear sigma model could be transformed to the
‘‘current algebra’’ ones [49] by the replacements:

Aa � ma$
2; )a � �

h 	qaqai

2$2 ; (65)

where the ma are the (‘‘current’’ type) quark masses and $
exp :
i �mtheo:

i j=mexp :
i , where the mi are the four

six possible scenarios and for three values of
pe fields including the ��548� and the ��958�

x� � 0:021 ( GeV2) x� � 0:022 ( GeV2)

3:99� 10�1 5:08� 10�1

3:39� 10�1 4:44� 10�1

1:37� 10�1 2:28� 10�1

3:63� 10�1 4:49� 10�1

1:62� 10�1 2:38� 10�1

1:78� 10�1 2:68� 10�1
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is the QCD scale factor. Taking A1 � 6:19� 10�4 GeV2

from the left column of Table I and m1 � 5 MeV we get
$ � 0:35 GeV (and h 	qaqai � �0:016 GeV3). In the case
of the four quark condensate, as one sees from the dis-
cussion in the introduction, there are several ways to
couple the four quarks together to make scalars. We are
assuming that one such way has been selected. For that
case, it is reasonable to expect, on dimensional grounds,
that

jh 	dd	ssij �$5*1 � 4� 10�5 GeV6: (66)

In comparing the scalar masses with experiment, there
are expected to be, as discussed in the first four sections of
Ref. [29], non-negligible corrections due to the use of
unitary models for the pseudoscalar-pseudoscalar scatter-
ing based on this Lagrangian. We plan to report on this
elsewhere. This should also enable us to study the isosing-
let scalar masses. For both isosinglet scalars and pseudo-
034001
scalars, the inclusion of possible glueball states is another
interesting topic we plan to pursue. The additional sym-
metry breaking terms like those in Eqs. (19) and (23) seem
also to be worth investigating.
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APPENDIX A: RENORMALIZABLE MODEL

The 21 SU�3� � SU�3� invariant renormalizable terms in
V0 of Eq. (13) which can be made out of M and M0 are
V0��c2Tr�MMy�� ~c3�detM�H:c:��ca4Tr�MMyMMy��cb4�Tr�MMy��2�d2Tr�M
0M0y�Tr�MM0y�

�d3�detM0 �H:c:��da
4 Tr�M

0M0yM0M0y��db
4�Tr�M

0M0y��2�e2�Tr�MM0y��H:c��ea3��abc�defMa
dM

b
eM0c

f �H:c:�

�eb3��abc�
defMa

dM
0b
e M0c

f �H:c:��ea4 Tr�MMyM0M0y��eb4 Tr�MM0yM0My��ec4
Tr�MM0yMM0y��H:c:�

�ed4
Tr�MMyMM0y��H:c:��ee4
Tr�M
0M0yM0My��H:c:��ef4Tr�MMy�Tr�M0M0y��eg4 Tr�MM0y�Tr�M0My�

�eh4
�Tr�M
0M0y��2�H:c:��ei4
Tr�MMy�Tr�MM0y��H:c:��ej4
Tr�M

0M0y�Tr�M0My��H:c:�: (A1)

Notice that, among these terms, those with the coefficients c2; c
a
4 ; c

b
4 ; d

a
4 ; d

b
4 ; e

a
3 ; e

a
4 ; e

b
4 ; e

f
4 ; e

g
4 and eh4 are U�1�A invariant. It

also may be of some interest to write down the 21 renormalizable terms, linear in the matrix A, which transform like the
QCD quark mass terms under SU�3� � SU�3�. Again, for this listing, the U�1�A transformation property of the mass terms
in the fundamental QCD Lagrangian is respected only for the terms with the coefficients k1; k3; k4; k9; k11; k12; k17; k21.

VSB��k1
Tr�AM��H:c:��k2
Tr�AM
0��H:c:��k3
Tr�AMMyM��H:c:��k4
Tr�AMM0yM0��H:c:�

�k5
Tr�AMMyM0��H:c:��k6
Tr�AMM0yM��H:c:��k7
Tr�AM0M0yM0��H:c:��k8
Tr�AM0MyM��H:c:�

�k9
Tr�AM
0M0yM��H:c:��k10
Tr�AM

0MyM0��H:c:��k11
Tr�AM��H:c:�Tr�MMy��k12
Tr�AM��H:c:�

� Tr�M0M0y��k13
Tr�AM�Tr�MM0y��H:c:��k14
Tr�AM�Tr�M0My��H:c:��k15
Tr�AM
0��H:c:�Tr�MMy�

�k16
Tr�AM0��H:c:�Tr�M0M0y��k17
Tr�AM0�Tr�MM0y��H:c:��k18
Tr�AM0�Tr�M0My��H:c:�

�k19Ab
a�bcd�aefMc

eM
d
f�H:c:�k20Ab

a�bcd�aefM0c
e M

0d
f �H:c:�k21Ab

a�bcd�aefMc
eM

0d
f �H:c: (A2)

APPENDIX B: SOME ISOSPIN RELATIONS

We give examples of relations which follow from isotopic spin invariance:

�
@2V

@(2
2@(

2
2

�
�

�
@2V

@(1
1@(

1
1

�
;

�
@2V

@(2
2@(

3
3

�
�

�
@2V

@(1
1@(

3
3

�
;

�
@2V

@(2
1@(

1
2

�
�

�
@2V

@(1
1@(

1
1

�
�

�
@2V

@(1
1@(

2
2

�
: (B1)

Similar relations hold when V is differentiated with respect to two primed fields and with respect to one primed and one
unprimed field.
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