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Lowest order QED radiative corrections to longitudinally polarized Møller scattering
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The total lowest-order electromagnetic radiative corrections to the observables in Møller scattering of
longitudinally polarized electrons have been calculated. The final expressions obtained by the covariant
method for the infrared divergency cancellation are free from any unphysical cut-off parameters. Since the
calculation is carried out within the ultrarelativistic approximation our result has a compact form that is
convenient for computing. Basing on these expressions the FORTRAN code MERA has been developed.
Using this code the detailed numerical analysis performed under SLAC (E-158) and JLab kinematic
conditions has shown that the radiative corrections are significant and rather sensitive to the value of the
missing mass (inelasticity) cuts.
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I. INTRODUCTION

The present intense interest of physicists in polarized
Møller scattering is stimulated by several reasons. Today
the measurement of the parity-violating asymmetry APV in
the recent experiment E158 [1,2] at SLAC gives the sin�W
with the best precision at low enegries. Further, experi-
mentally Møller scattering is actively used in polarimetry
to measure the polarization of the electron beams [3] as
well as monitoring of luminosity (for example, at DESY
[4]). Yet another reason stimulating an interest in Møller
scattering consists in possibility to test the standard model
and to reveal traces of new physics. In the intensively
discussed projects of the ILC, e�e� and ���� colliders
[5], high hopes for the discovery of Higgs bosons, mani-
festations of contact interactions, the compositeness of the
electron, new gauge bosons, etc., are pinned on the scat-
tering of identical polarized fermions (e;�).

A precise comparison of the experimental results with
the theoretical predictions requires to take into account the
radiative effects correctly on both QED and electroweak
levels.

Generally within the polarimetry measurements by the
Møller scattering, the value of the transferred momentum
is rather low, and therefore electroweak effects can usually
be neglected. But otherwise in the projects of ILC where
the energies are characterized by the TeV region, the value
of the weak and electromagnetic effects will have the same
order. Similarly, due to specific character of observables
(singly polarized parity-violating asymmetry), such ex-
periments as E-158 is sensitive to both electromagnetic
and electroweak radiative corrections (and new physics
phenomena at the TeV scales).
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The exact calculation of the lowest-order electromag-
netic radiative corrections to polarized Møller scattering
was performed by Shumeiko and Suarez [6]. The electro-
weak radiative corrections to polarized Møller scattering at
high energies were computed in [7] (without hard brems-
strahlung contribution), and at low energies corresponding
to conditions of E-158 were computed in papers [8] (with-
out hard bremsstrahlung) and [9,10] (including hard
bremsstrahlung). The detailed calculation presented there
demonstrates the significant value of the radiative effects
that have to be explicitly included both in QED and the
Electroweak theory predictions.

In the given paper we considered the lowest-order elec-
tromagnetic radiative corrections both to the longitudinally
polarized cross sections and the doubly-polarized parity
conserving asymmetry

ALR �
�LR � �LL

�LR � �LL
; (1)

where the first (second) cross section subscripts L and R
correspond left and right degree of beam (target) polariza-
tion respectivelly. Similarly to [6], we perform our calcu-
lations within the covariant Bardin–Shumeiko approach
[11,12], that allows to cancel out the infrared divergences
in such a way that the final result does not depend on any
unphysical parameters (such as a frame-dependent cut off
�E that separates the soft photon contribution region from
the hard one). Using the ultrarelativistic approximation
allows us to obtain the compact form for radiative correc-
tion expression that is convenient (and sometimes neces-
sary) for fast and more precise computer treatment.
Moreover during the numerical estimations it was found
that the numerical result strictly depends on missing mass
cuts. At the same time it should be stress that the first
correct application of the some kinematical cuts within the
covariant Bardin-Shumeiko approach was presented in
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[13,14]. Unfortunately Ref. [6] did not investigate the
effects of experimentally-motivated kinematical cuts.

The paper is organized as follows. In the Sec. II the
kinematics of Møller scattering as well as the cross section
and asymmetry at the lowest order are introduced. In the
Sec. III the structure of the lowest-order radiative correc-
tions (virtual and real photon contributions) is explained.
The Sec. IV presents numerical results applied to the
kinematics of E-158 (SLAC) and JLab experiments. The
Sec. V contains some conclusions. The explicit expressions
for finite part of the real photon emission could be find in
the Appendix.

II. THE LOWEST-ORDER CONTRIBUTION

The lowest-order Feynman graphs giving the contribu-
tion to Møller scattering

e�k1; �L� � e�p1; �L� ! e�k2� � e�p2� (2)

are presented in Fig. 1. Here k1, p1 (k2, p2) are the 4-
momenta of the incoming (outgoing) electrons (k21 � k22 �
p21 � p22 � m) while the beam (�L) and target (�L) polar-
ization vectors read:

�L �
1�����������������������

s�s� 4m2�
p

�
s� 2m2

m
k1 � 2mp1

�
;

�L �
1�����������������������

s�s� 4m2�
p

�
2mk1 �

s� 2m2

m
p1

�
:

(3)
FIG. 1. The lowest-order graphs giving contribution to the
Møller scattering: (a) t-channel; (b) u-channel.

033018
Then s and other Mandelstam variables can be introduce in
the standard way:

s � �k1 � p1�2; t � �k1 � k2�2;

u � �k2 � p1�2; s� t� u � 4m2: (4)

Notice that for the Born kinematics (strictly speaking for
the nonradiative process)

u � u0 � 4m2 � s� t: (5)

Neglecting the electron mass, the Born cross section for
the Møller scattering of longitudinal electrons can be writ-
ten as follows

�0 �
2��2

t2

�
�1� P�

u2

s
� �1� P�

s2

u

�
� �t $ u�: (6)

Here and later each � denotes the differential cross section
over the kinematic variable y (� � d�=dy) that is defined
as

y � �
t
s
; (7)

P � PBPT , where PB; PT are the polarizations of the beam
and target electrons.

The form of the Born cross section (6) with factorized
combinations 1	 PBPT is very convenient for construc-
tion of the polarization asymmetry (1) that does not depend
on any energies:

A0LR �
y�1� y��y2 � y� 2�

�1� y�y� 1��2
�
sin2��7� cos2��

�3� cos2��2
; (8)

where � is a scattering angle of the detected electron with
4-momentum k2 in the center mass system of the initial
particles ~k1 � ~p1 � 0. The cosine of this angle can be
express via invariants in the standard way:

cos�0 � 1� 2t=s � 1� 2y; (9)

while the energy of the scattering lepton in Lab. system
reads:

E0k2 �
s� t� 2m2

2m
: (10)
III. ELECTROMAGNETIC RADIATIVE
CORRECTIONS

The lowest-order radiative corrections to Møller scatter-
ing appears from the graphs with the additional virtual
particle (V-contribution, see Fig. 2 for the t-channel) and
from the real photon bremsstrahlung (R-contribution, see
Fig. 3 for the t-channel). It should be noted that both these
parts include the infrared divergency but their sum must be
infrared free. In this section the explicit expression for V-
and R- contributions as well as their infrared free sum are
presented.
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FIG. 2. The virtual one-loop graphs giving contribution to the corrected Møller scattering within t-channel.
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A. Virtual contribution

For the calculation of one-loop electromagnetic radia-
tive corrections we apply the on-shell renormalization
scheme of electroweak standard model. The building
blocks needed for explicit calculations according this
scheme have been worked out in paper of Böhm et al.
[15], where we take the results for gauge boson self-
energies and vertex functions.

The virtual contributions to Møller scattering can be
separated into three parts:

�V � �S � �Ver � �Box; (11)

where

(1) �
S is a virtual photon self-energy contribution

[Fig. 2(a)];
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(2) �
-3
Ver is a vertex function contribution [Fig. 2(b) and
2(c)];
(3) �
Box is a box contribution [Fig. 2(d) and 2(e)].
Now we consider each of them.

(1) T
he contribution of the virtual photon self energies

(including the photon vacuum polarization by had-
rons) to the cross section looks like

�S �
4��2

t2
Re

�
�
1

t
�̂�
T�t� ��h��t�

�




�
�1� P�

u2

s
� �1� P�

s2

u

�
� �t $ u�: (12)

Here �̂�
T��t� is the renormalized transverse part of

the �-self-energy [15] (this part includes vacuum



A. ILYICHEV AND V. ZYKUNOV PHYSICAL REVIEW D 72, 033018 (2005)
polarization by e, � and ! charged leptons: in
corresponding formula of [15] we should take a
summing index f � e;�; !). Hadronic part of the
photonic vacuum polarization associated with light
quarks can be directly obtained from the data on
process e�e� ! hadrons via dispersion relations.
Here we use parameterization of [16]

Re�h��t� � A� B log�1� Cjtj�; (13)

with updated parameters A,B,C in different energy
regions.
(2) F
or the contribution of electron vertices we used the
results of the paper [15] (see also references
therein). We can obtain the vertex part as

�Ver �
2�3

t2

�
�1� P�

u2

s
� �1� P�

s2

u

�
�1�t;m2�

� �t $ u�; (14)

where

�1�t; m2� � �2 log
jtj

$2

�
log

jtj

m2 � 1
�
� log

jtj

m2

� log2
jtj

m2 � 4
�
�2

12
� 1

�
: (15)
(3) O
ur calculation for the box cross section gives com-
pact formula:

�Box �
2�3

t

�
1� P
s

�
2u2

t
log

s
juj

log
jsuj

$2m2 � %1
����

�

�
1� P
u

�
2s2

t
log

s
juj

log
jsuj

$2m2 � %2
����

��

� �t $ u�; (16)

The expressions %1;2
���� have the form:

%1
���� � l2s

s2 � u2

2t
� lsu� �l2x � �2�

u2

t
;

%2���� � l2s
s2

t
� lxs� �l2x � �2�

s2 � u2

2t
;

(17)

and logarithms look like

ls � log
s
jtj
; lx � log

u
t
: (18)

It should be noted that vertex and box parts contain
the infrared divergence through the appearance of
the fictitious photon mass $. The infrared part from
virtual cross section can be extracted in a simple
way:

�V
IR � �V � �V�$2 ! s�

� �
2�
�

log
s

$2

�
log

tu

m2s
� 1

�
�0: (19)
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B. Real bremsstrahlung contribution

The full set of Feynman graphs contributed to the real
photon bremsstrahlung are presented in Fig. 3. For extrac-
tion of the infrared divergency we use the prescription of
Bardin and Shumeiko [11]:

�R � �R � �R
IR � �R

IR � �R
F � �R

IR; (20)

where the infrared free part can be presented in the follow-
ing way

�R
F � �

�3

�s

Z vmax

0
dv

X10
i�1

Si: (21)

The explicit expressions for Si are presented in the
Appendix. The integration in (21) is performed over vari-
able v that is a so-called inelasticity. The reason of this
term can be explain by the fact that for the radiative process
the last relation in (4) transforms into

s� t� u � v� 4m2: (22)

The explicit expression for v can be defined as v � �2 �
m2, where� � k1 � k2 � p1 and�2 is a so-called missing
mass squared.

It should be noted that due to kinematical restrictions the
upper limit of the integration in (21) is defined as

vmax �
st�

���������������������������������������������
s�s� 4m2�t�t� 4m2�

p
2m2  s� t: (23)

On the other hand, the energy of the scattering lepton in
Lab. system (10) for the radiative process transforms into

ER
k2
�

s� t� v� 2m2

2m
; (24)

and reaches its minimum value for v � vmax

ER
k2
jv�vmax �

s� t� vmax � 2m2

2m
�m

s2 � t2

2st
: (25)

Obviously the electron with the energy (25) cannot be
detected. Moreover, as it was point out first in [13], the
variable v can be directly reconstructed from the measured
momenta. However not all events with nonzero v < vcut
can be rejected from the experimental data due to finite
resolution of the experimental equipment. Therefore dur-
ing the radiative corrections calculation for the given ex-
perimental setup it is necessary to take into account this
fact.

Notice that for the radiative events the cosine of the
scattering angle in the center mass system of the initial
particles also depends on integration variable v:

cos�R � 1� 2t=�s� v�: (26)

The infrared-divergent part of bremsstrahlung cross sec-
tion integrated over the real photon phase space is given in
terms of a finite (and infinitesimal) photon mass $ in
-4



FIG. 3. The real one photon emission graphs giving contribution to the corrected Møller scattering within t-channel.
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�R
IR �

�
�

�
4 log

vmax
m$

�
log

tu

m2s
� 1

�
� %S1 � %H1

�
�0; (27)

where (see [11] for details)

%S1 � �
1

2
l2m � �3� 2lr�lm � �lm � 1� log

s�s� t�

t2
�
1

2
lr �

�2

3
� 1 (28)

and

%H1 � �
5

2
l2m �

�
log

t2�s� t�2�s� vmax�

s�s� t� vmax�
2vmax�vmax � t�

� 1
�
lm �

1

2
log2

vmax
jtj

� log2
�
1�

vmax
t

�

� log
s� t

s� t� vmax
log

�s� t��s� t� vmax�

t2
� log

s� vmax
jtj

log
s� vmax

s
� log

vmax
jtj

� 2
�
Li2

�
vmax
s

�
� Li2

�
vmax
t

�
� Li2

�
vmax
s� t

��
� Li2

�
s� vmax

s

�
� Li2

�
t� vmax

t

�
�
�2

6
: (29)

Here Li2�x� is the Spence function and

lm � log
�t

m2 ; lr � log
s� t
s

: (30)
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Summing up (11) and (27)

�RV � �R
IR � �V

�
�
�

�
4 log

vmax
m

���
s

p

�
log

tu

m2s
� 1

�
� %S1 � %H1

�
�0

� �V�$2 ! s�; (31)

we obtain a cancellation of infrared divergencies from R-
and V- contribution.

Finally, the total infrared free radiative corrected cross
section reads:

�obs � �0 � �RV � �R
F: (32)
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FIG. 4. The relative corrections to the unpolarized (%u) and
polarized (%p) parts of the cross section as a functions of the
scattering angle (defined according to Eq. (33)) for JLab
(Ebeam � 1 GeV, solid lines) and SLAC (Ebeam � 45 GeV,
dashed lines) kinematic conditions with different inelasticity
cuts: 1) vcut � 0:5vmax; 2) 0:9vmax; 3) 0:99vmax.
IV. NUMERICAL ESTIMATIONS

Basing on the equations presented above the FORTRAN
code MERA1 (Møller scattering: Electromagnetic
RAdiative corrections) has been developed. In this section
using MERA the numerical estimation of radiative effects
to the Møller scattering of longitudinally polarized elec-
trons is presented.

There are two basic differences between the numerical
analysis that are performed in this and previous [6,10]
papers: we show the dependence of radiative corrections
on the scattering angle in the center mass system of the
initial electrons, we investigate the dependence of radiative
corrections on the value of the missing mass cut.

As it was mentioned above for the radiative events the
cosine of the scattering angle has to be expressed not only
via t and s as for nonradiative events (9) but and via
inelasticity v too (see (26)). Taking into account that we
calculate the cross section as a function of y or t � �ys
(because s is fixed) and inelasticity is the inegration vari-
able we has some uncertanties in the definition of the
scattering angle for the observable cross section (32). In
order to escape it we use the standard nonradiative ap-
proximation (9), i.e. we assume that

cos�R  cos�0 � 1� 2t=s: (33)

The cross section for polarized Møller scattering can be
presented as a difference of the unpolarized and polarized
parts

�0;obs � �0;obs
u � P�0;obs

p : (34)

In the Fig. 4 the �-dependence of the relative radiative
correction for the unpolarized and polarized parts of the
cross section

%u;p � �obs
u;p=�

0
u;p (35)

for three different inelasticity cuts vcut (and, therefore �2

cuts): vcut � 0:5vmax, 0:9vmax and 0:99vmax is presented.
1FORTRAN code MERA is available from http:/www.hep.by/
RC
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One can see the following features of their behavior: the
presence of maximum values at � � 900; sizable increas-
ing when vcut tending to its maximum value. For the vcut �
0:5vmax the corrections %u (%p) for � � 900 equal to 1.075
(1.064) for SLAC and 1.054 (1.045) for JLab.

The �-dependence of the Born and observable asymme-
tries with the same inelasticity cuts is presented in Fig. 5. In
this figure it can be seen that in the most region of � the
corrected asymmetries are less then the Born ones and
essentially decrease with the increasing vcut. The Fig. 6,
where �-dependence of the relative corrections to the
asymmetries

%A �
AobsLR � A0LR

A0LR
(36)

is presented, reflects this fact clear. Particularly, it could
be seen that for the realistic vcut � 0:5vmax we have
-6
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FIG. 6. The relative corrections to the asymmetry (36) as a
functions of the scattering angle (defined according to Eq. (33))
for JLab (Ebeam � 1 GeV, solid lines) and SLAC
(Ebeam � 45 GeV, dashed lines) kinematic conditions with
different inelasticity cuts: 1) vcut � 0:5vmax; 2) 0:9vmax; 3)
0:99vmax.
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dashed lines) kinematic conditions.
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FIG. 5. �-dependence (� is defined according to Eq. (33)) of
the Born (solid line) and observable (dashed lines) asymmetries
for JLab (Ebeam � 1 GeV) and SLAC (Ebeam � 45 GeV) kine-
matic conditions with different inelasticity cuts: 1) vcut �
0:5vmax; 2) 0:9vmax; 3) 0:99vmax.

LOWEST ORDER QED RADIATIVE CORRECTIONS TO . . . PHYSICAL REVIEW D 72, 033018 (2005)

033018
%A � �0:008��0:01� for JLab (SLAC) at � � 900 while
for vcut � 0:99vmax the relative corrections to the asym-
metries reach %A � �0:4��0:55� for JLab (SLAC) at the
same angle.

Let us consider the situation with more realistic small
vcut. As it could be seen from (29) and (31) the radiative
corrected cross section (32) diverge when vcut tends to
zero. Such cross section behavior can be explain in a
simple way. Naturally that there is no any real photon
emission in the limit vcut ! 0. Therefore we need to say
about the infrared divergency that appear from V-
contribution and can not be canceled due to any real photon
emission absent.

The other very interesting feature consists in the devia-
tion of the observable asymmetry from the Born one at the
small vcut where asymmetry reach its maximum value.
Because of rather small effects once again in Fig. 7 the
quantity (36) as a function of the ratio vcut=vmax is pre-
sented for JLab and SLAC kinematic conditions. From this
picture it can be seen that for 0:001vmax < vcut < 0:1vmax
the relative correction to the asymmetry is flat and consists
some dozen of percent while starting with vcut > 0:1vmax it
rapidly falls.

V. CONCLUSIONS

The explicit expressions for the lowest-order electro-
magnetic radiative corrections to Møller scattering of
longitudinally polarized electrons in ultrarelativistic ap-
proximation have been obtained. Basing on these expres-
sions the FORTRAN code MERA has been developed.

The numerical analysis performed for different values of
missing mass (inelasticity) cut has shown that the radiative
corrections are strongly depended on this parameter. So
when this cut tends to its maximum value two tendencies
-7
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should be observed: the radiatively corrected cross sections
increase while the radiatively corrected asymmetries de-
crease. At the same time �-dependence has shown some
common features: the relative corrections to the cross
sections (asymmetries) has a maximum (minimum) at � �
900. For more realistic small cuts the relative corrections to
the asymmetry are rather flat and amounts some dozen
percent.

Taking into consideration a large scale of obtained ra-
diative effects we proof the necessity of radiative correc-
tion procedure for JLab and SLAC experiments.
Particularly to perform data processing correctly it is nec-
essary to construct Monte Carlo generator for simulation of
radiative events within Møller scattering.
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APPENDIX

S1 is the t-channel contribution of the emission from the
upper electron leg:
S1 � Su1 � PSp1 � Sa1 ;

Su1 � �LA � L̂A � Ls�2s2t�2 � 2t�1u� 2t�2u2 � 1� � Lx��2s2t�2 � 2st�1 � 2t�2u2 � 1� � 2Lt � 4Lm

� 2t�2�v�s2 � u2�s�1u�1 � 2t�;

Sp1 � �LA � L̂A � Ls��2t
�1u� 1� � Lx��2st

�1 � 1� � 4Lmt
�1�s� u� � 4t�2�s� t� u�

� 2�4s2 � 2st� t2�s�1t�1�s� t��1 � 2�3s� 2t�t�1u�1 � 2us�1t�1;

Sa1 � 4�1� P�t�2�u� u0��1� tLm�; (A1)

S2 is the t-channel contribution of the interference from the upper and lower electron legs:

S2 � �Su2 � PSp2 �=t� Sa2 ;
Su2 � Ls�8s3t�1 � 8s2t�1v� 8s2 � 4st� 4st�1v2 � 6sv� t2 � 2tv� v2�=�t� v� � Lx��8s3t�1 � 16s2t�1v� 16s2

� 12st� 12st�1v2 � 22sv� 5t2 � 12tv� 4t�1v3 � 11v2�=�t� v� � 2Lu�2s� t� v� � L1�4s
3t�1 � 4s2t�1v

� 2s2 � st� 2st�1v2 � sv� tv� v2� � L2��4s
3t�1 � 8s2t�1v� 10s2 � 9st� 6st�1v2 � 13sv� 3t2 � 7tv

� 2t�1v3 � 6v2� � 2L3t��2s� t� v� � 2t��v� s��1 � �s� t��1 � 2�2s� t� v�=�t� v�2�;
Sp2 � Ls�12s2t� 8s2t�1v2 � 20s2v� 4st2 � 12stv� 4st�1v3 � 12sv2 � t3 � 3t2v� 3tv2 � v3�=�t� v�2

� Lx��12s2t� 8s2t�1v2 � 20s2v� 20st2 � 52stv� 12st�1v3 � 44sv2 � 7t3 � 25t2v� 33tv2

� 4t�1v4 � 19v3�=�t� v�2 � 2Lut� L1�2s2t2 � 8s2tv� 4s2t�1v3 � 10s2v2 � st3 � 3st2v� 5stv2 � 2st�1v4

� 5sv3 � t3v� 3t2v2 � 3tv3 � v4�=�t� v�2 � L2��2s2t2 � 8s2tv� 4s2t�1v3 � 10s2v2 � 3st3 � 17st2v

� 31stv2 � 6st�1v4 � 23sv3 � t4 � 7t3v� 17t2v2 � 19tv3 � 2t�1v5 � 10v4�=�t� v�2 � 2L3tv

� 2t�t� v��s� t��1�s� v��1;
Sa2 � 2t�2f�Lx � L̂A��s
2�1� P� � �u2 � uu0 � u20��1� P�� � s�LA � Ls��1� P��u� u0�g; (A2)

S3 is the t-channel contribution of the emission from the lower electron leg:
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S3 � �Su3 � PSp3 �=t
2 � Sa3 ;

Su3 � �Lut�s2 � u2��v� 2t��t� v��2 � �3s2t3!�1 � 12s2t2 � 13s2tv� 4s2v2 � 3st4!�1 � 9st3

� 25st2v� 17stv2 � 4sv3 �
3

2
t5!�1 � t4 � 13t3v� 19t2v2 �

21

2
tv3 � 2v4�=�t� v�3;

Sp3 � Lut�s� u��2t� v��t� v��1 �
�s� u�
2!

�st3 � 8t2v� 7tv2 � 4v3��t� v��2;

Sa3 � 2�1� P�t�2�u� u0��1� tLu�; (A3)

S4;5;6;7 are the contributions of the interference between the t- and u-channel graphs:

S4 � ��1� P�Sc4 � PSp4 �=u� Sa4 ;

Sc4 � �2L1s
3t�1 � L2�2s

3t�1 � 4s2 � 3st� t2� � 2L̂A��3s
3 � 7s2t� 2s2v� 5st2 � 3stv� t3 � t2v��s� t��2

� 2Lm�2s� v� � Lsst
�1�2s� v� � Lx��4s

2t�1 � 3st�1v� 6s� 3t� t�1v2 � 3v� � Lt��2s� 3t� 2v�

� L3t�2s� t� � 2��2s3t�1v� s3 � 2s2t� 3st2 � 3stv� sv2 � t2v� tv2��s� t��2�t� v��1;

Sp4 � 4s2t�1v�s� t��2; Sa4 � 2s2�1� P��2� u0L̂A � 2tLm � sLA�=�tuu0�; (A4)

S5 � �1� P�Sc5 � Sa5 ;

Sc5 � L5v� 2L6��s3 � s2u� s2v� sv2 � uv2 � v3��s� u��1�v� u��1t�1 � L̂A

� 2Lm��2s4u�1 � 5s3u�1v� 4s3 � 3s2u� 6s2u�1v2 � 10s2v� 2su2 � 9suv� 4su�1v3 � 11sv2 � u3

� 4u2v� 6uv2 � u�1v4 � 4v3��s� u��1�v� u��1t�1 � Lr��2s3 � 2s2u� s2v� u2v��s� u��1�v� u��1t�1

� Ls�4s4u�1 � 4s3u�1v� 4s3 � 4s2u� 3s2u�1v2 � 8s2v� 4suv� su�1v3 � 6sv2 � 2uv2 � 2v3�


 �s� u��1�v� u��1t�1 � Lt � Lu � Lx�4s3u� 2s3u�1v2 � 6s3v� s2u2 � 2s2uv� s2v2 � 2su3 � 7su2v

� 8suv2 � 3sv3 � u4 � 3u3v� 4u2v2 � 3uv3 � v4��s� u��1�u� v��2t�1 � 4�2s� v�u�1t�1;

Sa5 � 2s2�1� P��2� sLs � 2tLm � u0Lx�t
�1u�1u�10 ; (A5)

S6 � �1� P�Sc6=�tu� � Sa6 ;

Sc6 � 2Lus
2 � 3!�1s2t3�t� v��3 � t�5s4t� 2s4v� 10s3t2 � 4s3tv� s2t3 � 10s2t2v� 12s2tv2 � 4s2v3 � 4st4

� 14st3v� 18st2v2 � 10stv3 � 2sv4 � t4v� 3t3v2 � 3t2v3 � tv4��s� t��2�t� v��3

Sa6 � 2s2�1� P��sLs � u0L̂A � tLu�t�1u�1u�10 ; (A6)

S7 � ��1� P�Sc7 � PSp7 �=�tu� � Sa7 ;

Sc7 � �2L1s
3 � L4t�s

2 � t2� � L5�s� t��s� t� v�u� Lss�2s� v� � Lx��4s
2 � 2st� 3sv� tv� v2�

� Lu��3s
2t2 � 4s2tv� s2v2 � 2st3 � 6st2v� 6stv2 � 2sv3 � t4 � 3t3v� 4t2v2 � 3tv3 � v4��t� v��2

� 2��4s3t� 2s3v� 7s2t2 � 5s2tv� 3st3 � 3st2v� t3v� 2t2v2 � tv3��s� t��1�t� v��2;

Sp7 � 4s�1v�s3 � 2t2v� 4tv2 � 2v3��t� v��2; Sa7 � 2s2�1� P��2� u0Lx � tLu � sLA�t
�1u�1u�10 ; (A7)

S8;9;10 are the pure u-channel contributions:

S8 � �Su3 � PSp3 �jt$u=u
2 � Sa8 ; Sa8 � �2�s2 � t2 � �s2 � t2�P���u� u0�u

�2u�20 � L̂Au
�1u�10 �; (A8)

S9 � �Su2 � PSp2 �jt$u=u� Sa9 ; Sa9 � �2�s2 � t2 � �s2 � t2�P��2tLm � sLA � sLs � tLu��u� u0�u�2u�20 ; (A9)

S10 � �Su1 � PSp1 �jt$u � Sa10; Sa10 � �2�s2 � t2 � �s2 � t2�P��2�u� u0�u
�2u�20 � Lxu

�1u�10 �; (A10)
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Evidently, the contributions S1; S2; S3 are in agreement with the corresponding terms of calculations [17] (unpolarized
fermion scattering) and [18] (longitudinally polarized fermion scattering), if we suppose that masses of the initial fermions
being equal.

Here we present the logarithms (and their combinations) which were used in hard bremsstrahlung calculation (notice
that all of them do not lead to infrared singularity):
Lm � �
1

t
log

jtj

m2 ; LA � �
1

v� s
log

�v� s�2

m2!
;

L̂A � �
1

v� u
log

�v� u�2

m2!
; Lt �

1

v� t
log

!�v� t�2

m2t2
;

Ls �
1

s
log

s2

m4 ; Lx � �
1

u
log

u2

m4 ;

Lu �
1

v� t
log

�v� t�2

m2!
; L1 �

1

v
�Ls � LA�;

L2 �
1

v
�Lx � L̂A�; L3 �

1

v
Lt;

L4 �
1

v
�Lu � 2Lm�; L5 �

1

v�s� t�
log

u2m2

�v� u�2!
;

L6 �
1

s
log

s!2

m2ut
; Lr �

1

u
log

t2

u2
; ! � v�m2: (A11)
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