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The semileptonic B ! �l��l decay is studied starting from a simple quark model which includes the
influence of the B� pole. To extend the predictions of a nonrelativistic constituent quark model from its
region of applicability near q2max � �mB � m��

2 to all q2 values accessible in the physical decay, we use a
novel multiply subtracted Omnès dispersion relation, which considerably diminishes the form-factor
dependence on the elastic �B ! �B scattering amplitudes at high energies. By comparison to the
experimental branching fraction we extract jVubj � 0:0034	 0:0003�exp� 	 0:0007�theory�. To further
test our framework, we also study D ! � and D ! K decays and find excellent results f�

� �0�=f�
K �0� �

0:80	 0:03, B�D0 ! ��e��e�=B�D0 ! K�e��e� � 0:079	 0:008. In particular for the D ! � case,
we reproduce, with high accuracy, the three-flavor lattice QCD results recently obtained by the Fermilab-
MILC-HPQCD Collaboration. While for the D ! K case, we successfully describe the data for
f��q2�=f��0� recently measured by the FOCUS Collaboration.
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I. INTRODUCTION

Exclusive semileptonic decays of B mesons are of great
interest, since they can be used to determine the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements jVubj and
jVcbj. In the latter case, heavy quark symmetry greatly
simplifies the theoretical understanding of the hadronic
transition matrix elements and thus the overall theoretical
uncertainty on the decay process is under control [1]. The
measurement of the exclusive semileptonic decay B !
�l��l by the CLEO Collaboration [2,3] can be used to
determine the CKM parameter jVubj. This exclusive
method provides an important alternative to the extraction
of jVubj from inclusive measurements of B ! Xul��l. For
semileptonic decays of charmed or bottom mesons into
light mesons there are no flavor symmetries to constrain
the hadronic matrix elements, and as a result, the errors on
jVubj are currently dominated1 by theoretical uncertainties
[1]. An accurate determination of jVubj with well-
understood uncertainties remains one of the fundamental
priorities for heavy flavor physics.

The transition amplitude for the exclusive semileptonic
b ! u decays factorizes into leptonic and hadronic parts.
The hadronic matrix elements contain the nonperturbative,
strong-interaction effects and have been extensively eval-
uated within different approaches. Thus, several lattice
QCD (first in the quenched approximation [4–9], and
more recently using dynamical configurations [10,11]),
light-cone sum rule (LCSR) [12–16] and constituent quark
model [17–25] calculations have been carried out in recent
years. Each of the above methods has only a limited range
t best value for jVcdj comes from neutrino pro-
arm off valence d quarks (with the cross section
ative QCD), rather than from semileptonic D
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of applicability, namely: LCSR are suitable for describing
the low squared momentum transfer (q2) region of the form
factors, while lattice QCD, because of the limitation on the
magnitude of spatial momentum components, provides
results only for the high q2 region. Constituent quark
models may give the form factors in the full q2 range,
but they are not closely related to the QCD Lagrangian2

and therefore have input parameters which are not directly
measurable and might not be of fundamental significance.
Thus, it is evident that a combination of various methods is
required.

Watson’s theorem for the B ! �l��l process allows one
to write a dispersion relation for each of the form factors
entering in the hadronic matrix element. This procedure
leads to the so-called Omnès representation [26], which
can be used to constrain the q2 dependence of the form
factors from the elastic �B ! �B scattering amplitudes
[27]. In Ref. [27], once-subtracted dispersion relations
were used, and though promising results were found,
they suffered from sizable uncertainties because of impre-
cise knowledge of the �B ! �B phase shifts far from
threshold. A recent reanalysis of the Omnès representation
in this context [28], has shown that the use of multiply
subtracted dispersion relations considerably diminishes the
form-factor dependence on the elastic �B ! �B scatter-
ing amplitudes at high energies, and more importantly
points out that the Omnès representation of the form fac-
tors can be used to combine predictions from various
methods in different q2 regions.

In this paper we study the semileptonic B ! �l��l
decay. We take advantage of the findings of Ref. [28] and
use the predictions of LCSR calculations at q2 � 0 to
2A rigorous derivation of this approach as an effective theory
of QCD in the nonperturbative regime has not been obtained.
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extend the predictions of a simple nonrelativistic constitu-
ent quark model (NRCQM) from its region of applicability
[near q2max � �mB � m��

2] to all q2 values accessible in
the physical decay. We also use the available lattice QCD
data to test our approach. We use a Monte Carlo procedure
to find theoretical error bands for the form factors and the
decay width. From our estimate of the decay width and the
branching ratio measurement of Ref. [3] we obtain

jVubjthis work � 0:0034	 0:0003�exp� 	 0:0007�theory�:

(1)

To further test this simple framework, we also study the
D ! � and D ! K decays, for which there exist precise
experimental data and for which the relevant CKM matrix
elements (jVcdj and jVcsj) are also well known. We find

f�
� �0� � 0:63	 0:02; f�

K �0� � 0:79	 0:01;

f�
� �0�

f�
K �0�

� 0:80	 0:03;

B�D0 ! ��e��e�

B�D0 ! K�e��e�

��������this work� 0:079	 0:008:

(2)

The plan of this paper is as follows. After this introduc-
tion, we study the semileptonic B ! � decay in Sec. II.
First we set up the form-factor decomposition (Sec. II A),
discuss the valence quark approximation (Sec. II B) and the
role played by the B� resonance (Sec. II C). The Omnès
dispersion relation and its application to this decay is
addressed in Sec. II D and in the appendix. Finally, in
Sec. II E we use our framework to determine jVubj, paying
special attention to estimating the uncertainties of the
determination. In Sec. III we study the D ! � and D !
K semileptonic decays and finally in Sec. IV we present
our conclusions.

II. SEMILEPTONIC B ! � DECAYS

A. Differential decay width and form-factor decompo-
sition

Using Lorentz, parity, and time-reversal invariance, the
matrix element for the semileptonic B0 ! ��l��l decay
can be parametrized in terms of two invariant and dimen-
3Note that the axial current does not contribute to transitions betw
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sionless form factors as3

h��p��jV�jB�pB�i �

�
pB � p� � q

m2
B � m2

�

q2

�
�
f��q2�

� q� m2
B � m2

�

q2
f0�q2� (3)

where q� � �pB � p��
� is the four-momentum transfer

and mB � 5279:4 MeV and m� � 139:57 MeV are the B0

and �� masses, respectively. The physical meaning of the
form factors is clear in the helicity basis, in which f� (f0)
corresponds to a transition amplitude with 1� (0�) spin-
parity quantum numbers in the center of mass of the lepton
pair. For massless leptons (l � e or �), the total decay rate
is given by

��B0 ! ��l��l� �
G2FjVubj

2

192�3m3
B

�
Z q2max

0
dq2
��q2��3=2jf��q2�j2 (4)

with q2max � �mB � m��
2, GF � 1:16637� 10�5 GeV�2

and ��q2� � �m2
B � m2

� � q2�2 � 4m2
Bm2

� � 4m2
Bj ~p�j

2,
with ~p� the pion three-momentum in the B rest frame.

Measurements of the B0 lifetime, �B0 � �1:536	
0:014� � 10�12 s and of the B0 ! ��l��l branching frac-
tion, Bexp�B

0 ! ��l��l� � �1:33	 0:22� � 10�4 [1]
lead to

�exp�B0 ! ��l��l� � �8:7	 1:5� � 107 s�1

� �5:7	 1:0� � 10�14 MeV;

l � e or �:

(5)
B. Nonrelativistic constituent quark model: Valence
quark contribution

Within the spectator approximation, considering only
the valence quark contribution and assuming that the B
and � mesons are S-wave quark-antiquark bound states, a
NRCQM (with constituent quark masses mb and ml �
mu � md) predicts [29]:
h��E�;� ~q�jV�jB�mB; ~0�ival����������������
4mBE�

p �
Z d3l
4�

������������������������
Eb�~l� � mb

2Eb�~l�

vuut
���������������������������������
Eu�~l � ~q� � mu

2Eu�~l � ~q�

vuut �B
rel�j

~lj���
rel

���������~l �
msp

mu � msp
~q
��������
�
V��~l; ~q�

V��~l; ~q� �
1�

~l2�~l� ~q
�Eb�~l��mb��Eu�~l� ~q��mu�

�
~l

Eb�~l��mb
�

~l� ~q
Eu�~l� ~q��mu�

0
BB@

1
CCA

(6)

with E� �
������������������
m2

� � ~q2
p

, Eb;u� ~k� �
��������������������
m2

b;u �
~k2

q
, msp the spectator quark mass (md in this case) and �B;�

rel �k� the Fourier
een pseudoscalar mesons.
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FIG. 1 (color online). NRCQM valence quark f� and f0 form
factors from the AL1 interquark interaction [31]. Lattice data
points are taken from Refs. [7] (UKQCD) and [8] (APE) and the
LCSR estimate at q2 � 0 is given in Ref. [13].
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transforms of the radial coordinate space B;� meson wave
functions, which describe the relative dynamics of the
quark-antiquark pair.4

To evaluate the coordinate space wave function we have
used several nonrelativistic quark-antiquark interactions.
Their general structure is as follows [30,31]:

Vq �q
ij �r� � �

#�1� e�r=rc�

r
� �rp � �

�
a0

#
mimj

e�r=r0

rr20

�
2�
3mimj

#0�1� e�r=rc�
e�r2=x20

�3=2x30

�
~&i ~&j (7)

with ~& the spin Pauli matrices, mi the constituent quark
masses and

x0�mi;mj� � A
�
2mimj

mi � mj

�
�B

: (8)

The potentials considered differ in the form factors used
for the hyperfine terms, the power of the confining term
(p � 1, as suggested by lattice QCD calculations [32], or
p � 2=3 which gives the correct asymptotic Regge trajec-
tories for mesons [33]), or the use of a form factor in the
one gluon exchange Coulomb potential. All interactions
have been adjusted to reproduce the light (�, (, K, K�,
etc.) and heavy-light (D, D�, B, B�, etc.) meson spectra and
lead to precise predictions for the charmed and bottom
baryon ( c;b, !c;b, !�

c;b, "c;b, "0
c;b, "�

c;b, #c;b and #�
c;b)

masses [31,34] and for the semileptonic  0b !  �
c l� ��l

and "0b ! "�
c l� ��l [35] decays.

Typical NRCQM valence quark predictions for the f�

and f0 form factors are depicted in Fig. 1. The AL1
potential from Ref. [31] has been used5 and for comparison
quenched lattice results are also plotted. Preliminary un-
quenched lattice calculations have been presented recently
[10,11], but no significant difference between quenched
and unquenched calculations is observed [36], within rela-
tively large statistical errors. In addition, LCSR provide
accurate and theoretically well founded results in the q2 �
0 region. Thus, we have a LCSR value [13]

LCSR : f��0� � 0:28	 0:05 (9)

which is also plotted in Fig. 1.
Figure 1 clearly shows the deficiencies of the NRCQM

valence quark description of the B ! �l��l semileptonic
decay. It fails over the full range of q2 values. Close
to q2max, where the nonrelativistic Schrödinger equation
should work best, the influence of the B� resonance
is clearly visible [19]. At the opposite end, close to
q2 � 0, where j ~qj � 2:5 GeV, predictions from a non-
4They are normalized to
R
�1
0 dkk2j�B;�

rel �k�j
2 � 1.

5The sensitivity of the results to the quark-antiquark non-
relativistic interaction will be discussed in detail later.
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relativistic scheme are clearly not trustworthy. As a
result, a value for the width �valNRCQM�B

0 ! ��l��l� �

2:4�jVubj=0:0032�2 � 10�14 MeV is obtained, which is
around a factor of 2 smaller than the CLEO measurement
quoted in Eq. (5).

C. Nonrelativistic constituent quark model: B�

resonance contribution

A NRCQM description of the decay process should be
feasible in the neighborhood of q2max. Indeed, this is the
case for the semileptonic B ! Dl ��l and B ! D�l ��l de-
cays, recently studied in Ref. [29] with the same NRCQM
as here. The difference here is that, as first pointed out in
Ref. [19], in the chiral limit and as mb ! 1, the decay
B0 ! ��l��l should be dominated near zero pion recoil
by the effects of the B� resonance, which is quite close to
q2max. In the picture of Ref. [19], the one we will adopt here,
the B� contribution plays a role only near q2max, since it is
strongly suppressed by a soft hadronic vertex. This is in
sharp contrast to phenomenological parametrizations of f�

which assume it dominates over the full range accessible in
the physical decay [4]. The B� effects of the type consid-
ered here are not dual to the valence quark model form
B l+

FIG. 2 (color online). B� resonance contribution to the f�

form factor for the semileptonic B ! � decay.
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factors and must be added as a distinct coherent contribu-
tion to heavy quark decay near q2max [19]. We will focus on
the f� form factor, which determines the decay width for
massless leptons, and we evaluate the contribution to it
from the diagram depicted in Fig. 2. It leads to a hadronic
amplitude (normalizations as in Ref. [29])

�iT� ��iĝB�B��q
2�p�

�

�
i
�g�

� �q�q�=m2
B�

q2�m2
B�

�
i

�����
q2

q
f̂B� �q2�

(10)

with mB� � 5325 MeV, and f̂B� and ĝB�B� the B� decay
constant and the strong B�B� dimensionless coupling
constant for a virtual B� meson, respectively. On the B�

mass shell, the hadron matrix elements f̂B� �q2 � m2
B� � �

fB� and ĝB�B��q
2 � m2

B� � � gB�B� reduce to the ordinary
B� decay constant and coupling of a pion to B and B�

mesons. The latter is related, in the heavy quark limit, to ĝ,
the coupling of the vector and pseudoscalar heavy-light
mesons to the pion [37,38]6

gB�B� �

�
2ĝ

���������������
mBmB�

p

f�

�
�1�O�1=mb��: (11)

From Eq. (10) we get

f�
pole�q

2� �
1

2
ĝB�B��q2�

�����
q2

p
f̂B� �q2�

m2
B� � q2

: (12)

There is no direct experimental determination of gB�B�,
because there is no phase space for the decay B� ! B�.
The available experimental results for D� ! D� [1] can be
related to gB�B�, through heavy quark symmetry. There is
no direct measurement of fB� either. In Ref. [29] we
computed, within the same NRCQM approach as the one
outlined here, both gB�B� and fB� , and we found a value of
9:1	 0:9 GeV for the product of both quantities, which
appears in f�

pole at q2 � m2
B� . Lattice QCD simulations

have measured fB� [39] and gB�B� [40] to be

fB� � 190	 30 MeV

gB�B� � 47	 5	 8

) 
gB�B�fB� �Latt�QCD � 8:9	 2:2 GeV

(13)

where we have added errors in quadrature. Thus the lattice
prediction for the product gB�B�fB� is in remarkable agree-
ment, within 3%, with our NRCQM estimate in [29]. In
what follows we will use the value and error for the product
estimated from the lattice data and use the NRCQM of
Ref. [29] to determine the q2 dependence of ĝB�B��q

2� and
f̂B� �q2�, as we will discuss below. There are other recent
estimates for gB�B� ([41,42]) and fB� ([43]), but given the
6We use the normalization f� � 131 MeV.
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existing uncertainties, all of them are compatible with the
lattice values quoted in Eq. (13).

As mentioned above, we use the NRCQM framework to
estimate the q2 dependence of the product of
f̂B� �q2�ĝB�B��q

2�. Since the NRCQM always uses on-shell
meson wave functions, all q2 dependence will arise from
the kinematical factors relating the quark model matrix
elements and the hadron form factors. For instance, from
Eq. (13) of Ref. [29] we find a rather mild q2 dependence

f̂ B� �q2�
�����
q24

q
� fB�

��������
mB�

p
: (14)

In the same manner, we use Eqs. (50) and (51) of Ref. [29]
to determine the q2 dependence of ĝB�B�, setting the
B-meson four-momentum P0� � �mB; ~P0 � 0� and the
B�-meson four-momentum P� � q� � �mB � E�; ~P �

� ~q�, and off-shell mass given by
�����
q2

p
, j ~qj �

��������������������
E2� � m2

�

p
,

and E� determined from q2 as usual (E� � �m2
B � m2

� �
q2�=2mB). Thus, finally we evaluate

f�
pole�q

2� �
1

2
GB� �q2�

�����
q24

p
��������
mB�

p
mB� 
gB�B�fB� �Latt�QCD

m2
B� � q2

(15)

where GB� �q2� � ĝB�B��q
2�=gB�B� is a dimensionless had-

ronic factor normalized to one at q2 � m2
B� , which ac-

counts for the q2 dependence of B ! B�� amplitude. In
Fig. 3, we show the influence of the B� resonance within
our NRCQM and compare our results to those obtained by
Isgur and Wise from the Gaussian constituent quark model
of Refs. [18,19]. Our model for the B� contribution com-
pares well to that of Ref. [19], though the latter decreases
faster owing to the use of a harmonic oscillator basis. The
inclusion of f�

pole clearly improves the simple valence
quark contribution and leads to a reasonable description
of the lattice data from q2max down to q2 values around
15 GeV2. The low q2 region is still poorly described within
the current model since relativistic corrections there should
be large.

The hadronic amplitude of Eq. (10) also leads to a small
contribution to the f0 form factor. Though it also improves
the description for the highest q2 values, it is not large
enough and it is necessary to consider the influence of the
lightest 0� B resonances [27] (for instance a resonance
around 5660 MeV [44]).

D. Omnès representation

Here we use the Omnès representation of the f� form
factor to combine the NRCQM predictions at high q2

values, say above 18 GeV2, with the LCSR result at q2 �
0. In this way we obtain the full q2 dependence of the form
factor and thus can determine the jVubj CKM matrix
element from the integrated semileptonic width. As shown
in the appendix, the �n � 1�-subtracted Omnès representa-
tion for f� reads:
-4



f +
val

10GB∗

f +
pole (IW’90)

f +
pole

Ε π [GeV]

q2 [GeV2]

1 0.8 0.6 0.4 0.2

262422201816

12

10

8

6

4

2

0

LCSR

f + (APE)

f + (UKQCD)

f +
val

f +
NRCQM

Ε π [GeV]

q2 [GeV2]

2.5 2 1.5 1 0.5

2520151050

3.5

3

2.5

2

1.5

1

0.5

0

FIG. 3 (color online). Left: The solid line denotes the AL1 NRCQM B� pole contribution to f� [Eq. (15)], while the dashed line
stands for the B� contribution to f� obtained within the Gaussian constituent quark model of Refs. [18,19]. We also plot the GB�

hadron factor introduced in Eq. (15) and the valence quark contribution to f� depicted in Fig. 1. Right: Valence quark and valence
quark plus B� � pole (denoted as NRCQM) contributions to f�. We also plot lattice QCD and LCSR f� data from the same references
as in Fig. 1.

7There, however, multiple derivatives evaluated at a single
point are used as input instead of subtractions for different q2

values.
8Higher resonance effects on phase shifts cannot be neglected

far from threshold. In particular the LCSR result at q2 � 0 hints
that at least an extra JP � 1� resonance, located around 6 GeV,
has to be included in the once-subtracted Omnès relation scheme
[27].
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f��q2� �

0
@Yn

j�0


f��q2j ��
-j�q2�

1
A

� exp
�
I.�q2;q20; q

2
1; � � � ; q

2
n�

�
Yn
k�0

�q2� q2k�
�
;

I.�q2;q20; � � � ; q
2
n� �

1

�

Z �1

sth

ds

�s� q20� � � � �s� q2n�

.�s�

s� q2
;

-j�q
2� �

Yn
j�k�0

q2� q2k
q2j � q2k

; (16)

with q2 < sth � �mB � m��
2 and q20; � � � ; q

2
n 2� �1; sth
.

This representation requires as an input the elastic �B !
�B phase shift .�s� in the JP � 1� and isospin I � 1=2
channel plus the form factor at �n � 1� q2 values
(q20; q

2
1; � � � ; q

2
n) below the �B threshold.

We would like to stress that from a theoretical point of
view the Omnès representation is derived from first prin-
ciples: the well-established Mandelstam hypothesis [45] of
maximum analyticity and Watson’s theorem [46]

f��s � i2�
f��s � i2�

�
T�s � i2�
T�s � i2�

� e2i.�s�; s > sth;

T�s� �
8�is

�1=2�s�
�e2i.�s� � 1�:

(17)
033002
Omnès ideas have been used successfully to account for
final state interactions in kaon decays [47]7 and in
Ref. [27], a once-subtracted Omnès representation (sub-
traction point q20 � 0) was applied to the study of semi-
leptonic B ! � decays. In the latter work phase shifts were
evaluated by solving the Bethe-Salpeter equation in the so-
called on-shell scheme [48], with a kernel determined by
the direct tree level amplitude from the lowest order heavy
meson chiral perturbation theory Lagrangian [38], together
with the tree diagrams for B� exchange which involve the
leading interaction with coupling ĝ. Such a model accom-
modates the B� as a �B bound state and should acceptably
describe phase shifts close to threshold. It led to promising
results for f� [27], but theoretical uncertainties on the
form factor were not negligible, since to compute the
Omnès factor I. [Eq. (16)] requires elastic phase shifts
far from threshold.8 To include the effects of higher reso-
nances on .�s� requires input of the masses and couplings
of such resonances. We therefore make many subtractions
in the Omnès dispersion relation to suppress the impact of
-5
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FIG. 4 (color online). Solid line: f� form factor from a 6-subtracted Omnès representation, Eq. (19). Triangles denote the input
subtraction points of the Omnès dispersion relation (five points obtained from our AL1 NRCQM plus the Ref. [13] LCSR result at
q2 � 0). Lattice data are from Refs. [7] (UKQCD) and [8] (APE), and the AL1 valence quark plus B�-pole contribution to f� is also
shown (denoted f�

NRCQM). Finally, 	& lines show the theoretical uncertainty bands on the Omnès form factor inherited from the errors
in Eq. (13) and from the quark-antiquark interaction model dependence (see Sec. II E for details).

9From Eq. (6), we see that the arguments of the meson wave
function are j~lj and j~l � ~q=2j. For q2 � 18 GeV2, half of the
transferred momentum, j ~qj=2, is about 0:4–0:5 GeV, which is of
the same order as h~l2i1=2�B;� . Since the nonrelativistic quark-
antiquark interactions, V�r�, have been adjusted to reproduce
the meson binding energies, they effectively incorporate some
relativistic corrections and hence one might expect this effective
nonrelativistic framework to provide reasonable meson wave
functions for momenta of order h~l2i1=2�B;� . This could explain
why the NRCQM describes the lattice data (right panel of
Fig. 3) from high values of q2 down to values of q2 even smaller
than 18 GeV2. Nevertheless, we find it surprising that the non-
relativistic constituent quark model works as well as
it does [20].
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.�s� at large s. This will leave a systematic effect in our
results, but this should be less than that coming from the
NRCQM plus B� pole used as our main input.

As the number of subtractions increases the integration
region relevant in Eq. (16) gets reduced and, if this number
is large enough, only the phase shifts at or near threshold
will be needed. Note that close to threshold the p-wave
phase shift behaves as

.�s� � nb� � p3a � � � � (18)

where nb is the number of bound states in the channel
(Levinson’s theorem [49]), p is the �B center of mass
momentum and a the corresponding scattering volume.
In our case nb � 1 if we consider the B� as a �B bound
state. Here, we will perform a large number of subtractions
so that approximating .�s� � � in Eq. (16) will be justi-
fied. The Omnès factor I. can then be evaluated analyti-
cally and we find for q2 < sth

f��q2��
1

sth�q2
Yn
j�0


f��q2j ��sth�q2j ��
-j�q2�; n�1:

(19)
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Next we use the above formula to combine the LCSR result
at q2 � 0 and those obtained from our NRCQM in the high
q2 region and presented in the previous section. Thus we
have used the f� NRCQM (valence � pole) predictions
for five q2 values ranging from q2max down9 to about
18 GeV2:
-6
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�q2=GeV2; f��q2�� �

8>>>>><
>>>>>:

�23:574; 4:1373�;
�21:804; 2:5821�;
�21:116; 2:1969�;
�20:173; 1:7916�;
�18:290; 1:2591�

(20)

together with the LCSR result of Eq. (9) at q2 � 0. When
one uses a large number of subtractions, as is the case here,
the -j exponents become large and there are huge cancel-
lations [note the normalization condition given in
Eq. (A7)]. This is the reason why above, and to ensure
numerical stability, we have quoted five significant digits
for the NRCQM input. We are aware that uncertainties are
larger than a precision of five digits, and we will carefully
take this fact into account below. Results are shown in
Fig. 4. As can be seen there, we obtain a simultaneous
description of both lattice data in the high q2 region and the
LCSR prediction at q2 � 0. In this way, starting from a
nonrelativistic valence quark picture of the semileptonic
process (Sec. II B) with all its obvious limitations, we have
ended up with a realistic description of the relevant form
factor for all q2 values accessible in the physical decay.

A final remark concerns the use of the simplified Omnès
representation of Eq. (19) instead of the exact one of
Eq. (16). For instance, if we use five subtractions (we
drop the NRCQM point at q2 � 21:1 GeV2) and the full
Omnès representation10 of Eq. (16), we find tiny differ-
ences from the results shown in Fig. 4. These differences
are negligible (below 1%) above 10 GeV2, and though
larger, still quite small (around 5%–7% at most in the
5 GeV2 region) below 10 GeV2.

E. Determination of jVubj: Error analysis

The CKM element jVubj can be determined by compar-
ing the experimental decay width [Eq. (5)] with the result
of performing the phase space integration of Eq. (4) using
the form factor f� determined in the previous subsection.
Here, we will pay special attention to estimating the theo-
retical uncertainties. We have two main sources of theo-
retical errors:
(1) U
10We
ncertainties in the constituent quark-antiquark
nonrelativistic interaction.—To estimate those, we
will evaluate the spread of integrated widths ob-
tained when five different potentials (AL1, AL2,
AP1, AP2 and BD, in the notation of Ref. [31])
are considered. The forms and main characteristics
of those potentials were discussed in Eqs. (7) and
(8). As mentioned in Sec. II B, all interactions have
been adjusted to reproduce the light and heavy-light
meson spectra and lead to precise predictions for the
charmed and bottom baryon masses [31] and for the
semileptonic  0b !  �

c l� ��l and "0b ! "�
c l� ��l

[35] decays.
use the model of Ref. [27] to obtain the phase shifts.
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(2) U
11We
already

-7
ncertainties on 
gB�B�fB� � and on the input to the
multiply subtracted Omnès representation.—Errors
on 
gB�B�fB� �, quoted in Eq. (13), affect the B� pole
contribution to f� [see Eq. (15)] and also induce
uncertainties in the NRCQM prediction for the five
points used as input to the Omnès representation in
Eq. (19). Quark-antiquark potential uncertainties,
discussed in the previous item, also induce uncer-
tainties in the Omnès input. The errors on the q2 � 0
data point (LCSR), quoted in Eq. (9), should also be
taken into account.
To take these uncertainties into account, we proceed in two
steps:
(1) W
e fix the quark-antiquark potential to the AL1
interaction as in all previous subsections. By means
of a Monte Carlo simulation, we generate a total of
1000 �
gB�B�fB� �Latt�QCD; f��0�LCSR� pairs11 from
an uncorrelated two-dimensional Gaussian distribu-
tion, with central values and standard deviations
taken from Eqs. (13) and (9), respectively. For
each of the 1000 pairs we build up the six points
that we use in our Omnès scheme [Eq. (19)] and thus
find 1000 different determinations of f� over the
whole q2 range accessible in the B ! � decay. For
each value of q2, we discard the highest and lowest
16% of the values obtained for the form factor, to
leave a 68% confidence level band which forms part
of the theoretical uncertainty shown in Fig. 4. Since
the output distributions are not Gaussian in general,
this accounts for possible skewness.
Performing the phase space integration for each of
the 1000 form-factor samples and again discarding
the highest and lowest 16% of the values, we find

��B0 ! ��l��l�

jVubj
2

� �0:50�0:14�0:10� � 10
�8 MeV:

(21)
(2) W
e fix the �
gB�B�fB� �Latt�QCD; f��0�LCSR� pair to
their central values and compute the decay width
with each of the five quark-antiquark interactions
discussed above. From the spread of output values,
we find

��B0 ! ��l��l�

jVubj
2

� �0:50	 0:15� � 10�8 MeV:

(22)
Adding both sources of error in quadrature, we get

��B0 ! ��l��l�

jVubj
2

� �0:50	 0:20� � 10�8 MeV (23)
have checked that the errors quoted in the following are
stable when 500 event simulations are performed.



TABLE I. Partially integrated branching ratios [see Eq. (26)].

B0 ! ��l��l

B�0 � q2 < 8 GeV2�=10�5 B�8 � q2 < 16 GeV2�=10�5 B�q2 � 16 GeV2�=10�5

CLEO [3] 4:3	 1:2 6:5	 1:3 2:5	 1:0
This work 4:3	 0:7
exp� 	 1:2
theory� 4:1	 0:7
exp� 	 0:4
theory� 4:9	 0:8
exp� 	 1:2
theory�
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and comparing to the measurement of the width in Eq. (5)
we find

jVubjthis work � 0:0034	 0:0003�exp� 	 0:0007�theory�:

(24)

The CLEO Collaboration [3] obtains from studies of the
B0 ! ��l��l branching fraction and q2 distributions, us-
ing LCSR for 0 � q2 < 16 GeV2 and lattice QCD for
16 GeV2 � q2 < q2max,

jVubjCLEO � 0:0032	 0:0003�exp��0:0006�0:0004�theory�: (25)

We see that both determinations of jVubj are in an excellent
agreement and that in both cases the error is dominated by
uncertainties in the theoretical treatment. We have also
calculated partially integrated branching ratios,

B �q21 � q2 < q22� �
Btotal
exp �B0 ! ��l��l�

�

Z q22

q21

dq2
d�

dq2
:

(26)

Theoretical uncertainties partially cancel in the ratioRq22
q21

dq2�d�=dq2�=�. Our results are compiled in Table I.

There it can be seen that they compare reasonably well
with those quoted in Ref. [3].

Finally, at each value of q2 we also compute the
spread of values obtained for the f� form factor when
the five different quark-antiquark interactions are used.
This procedure gives us a further theoretical error on
f��q2� at fixed q2 and by adding it in quadrature to that
obtained previously from uncertainties on the
�
gB�B�fB� �Latt�QCD; f��0�LCSR� pair, we determine the
theoretical error bands shown in Fig. 4.
III. SEMILEPTONIC D ! � AND D ! K DECAYS

As a further test of our predictions for the B ! � semi-
leptonic process, we present results for the D ! � and
D ! K decays for which there are precise experimental
data [1]:

Bexp�D
0 ! ��e��e� � �3:6	 0:6� � 10�3;

�exp�D
0 ! ��e��e� � �5:8	 1:0� � 10�12 MeV

(27)
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Bexp�D
0 ! K�e��e� � �3:58	 0:18� � 10�2;

�exp�D
0 ! K�e��e� � �57	 3� � 10�12 MeV;

(28)

with lifetime �D0 � �410:3	 1:5� � 10�15 s and jVcdj �
0:224	 0:003, jVcsj � 0:9737	 0:0007.

In the last two years there has been renewed interest
in these decays. The first three-flavor lattice QCD results
[50] have appeared, superseding the old quenched ones
[8,9,51], and the BES [52] and CLEO [53] Collaborations
have new measurements of the branching ratios

BES: B�D0 ! ��e��e� � �3:3	 1:3� � 10�3;

B�D0 ! K�e��e� � �3:8	 0:5� � 10�2
(29)

CLEO :
B�D0 ! ��e��e�

B�D0 ! K�e��e�
� 0:082	 0:006	 0:005:

(30)

Both collaborations have also determined the form factor
at q2 � 0

BES: f�
� �0� � 0:73	 0:14	 0:06;

f�
K �0� � 0:78	 0:04	 0:03;

f�
� �0�

f�
K �0�

� 0:93	 0:19	 0:07

(31)

CLEO :
f�

� �0�

f�
K �0�

� 0:86	 0:07�0:06�0:04 	 0:01: (32)

In the following we will apply the NRCQM developed
for the B ! � decay to the description of these D-meson
semileptonic transitions. All formulas of Sec. II can be
used here with the obvious replacements: B ! D; B� !
D� for the D0 ! ��l��l process, and B ! D, � ! K,
B� ! D�

s for the D0 ! K�l��l process. We will
use mD0 � 1864:6 MeV, mD� � 2010 MeV, mD�

s
�

2112:1 MeV and mK� � 493:68 MeV.
-8
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FIG. 5 (color online). Valence quark (dotted line) and valence quark plus D�-pole (solid line denoted f�
NRCQM) contributions to f�

for D ! � semileptonic decay. In both cases the AL1 quark-antiquark interaction has been used. Triangles ([8]) and circles ([51])
stand for the lattice QCD quenched results obtained by the APE and UKQCD Collaborations, respectively. We also plot the three-
flavor lattice QCD results [50] from the Fermilab-MILC-HPQCD Collaboration (FMH, diamonds), the best fit (dashed-dotted line) to
this latter set of data points [Eq. (5) of Ref. [50]], and the determination of f� at q2 � 0 (squares) by the BES Collaboration [52].
Finally, the 	& lines stand for the theoretical uncertainty bands, inherited from the errors in Eq. (34) and from the quark-antiquark
interaction model dependence.
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A. D ! �l �	l

Since there is phase space for the D� ! D� decay to
occur, the gD�D� hadronic constant has been experimen-
tally measured (CLEO [54])

gD�D� � 17:9	 0:3	 1:9: (33)

Taking fD� � �234	 20� MeV from Ref. [39], we find12


gD�D�fD� �Exp�Latt � 4:2	 0:6 GeV (34)

where we have added errors in quadrature. In Ref. [29] and
using the same set of NRCQM’s, we found a value of 4:9	
0:5 GeV for the above product, in reasonable agreement
with Eq. (34). The value quoted in Eq. (34) determines the
D�-pole contribution, above q2 � 0, to f� and adding it to
the valence quark contribution we obtain the results shown
in Fig. 5. We find excellent agreement between our de-
scription of the form factor and that provided by the un-
quenched lattice simulation of Ref. [50]. As can be seen in
12Note that the lattice QCD simulation of Ref. [55] measured
gD�D� � 18:8	 2:3	 2:0 in good agreement with Eq. (33).
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the figure, the D�-pole contribution is dominant above
q2 � 1:5 GeV2 and it remains sizable down to 0:5 GeV2.
We do not see the need to Omnès improve the NRCQM
description of the decay since it is quite good for the whole
q2 range. On the other hand, we see that the pion energy
ranges from m� up to about 1 GeV, which was also the
maximum value for E� in the five NRCQM data points
used in the subtracted Omnès representation for the semi-
leptonic B ! � decay depicted in Fig. 4. This reinforces
our belief in the reliability of our determination of jVubj
presented in Sec. II E. Considering our theoretical uncer-
tainties [errors on Eq. (34) and the spread of results ob-
tained when different quark-antiquark interactions are
considered] together with the experimental uncertainties
on jVcdj quoted above, we find

�this work�D
0 ! ��e��e�

� 
5:2	 0:1�exp :jVcdj� 	 0:5�theory��

� 10�12 MeV (35)

in good agreement with Eq. (27). We also obtain
-9
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FIG. 6 (color online). NRCQM predictions for the ratio f��q2�=f��0� for both D ! � (left) and D ! K (right) semileptonic
decays. For comparison we also plot experimental results from the FOCUS Collaboration [56]: pole fit for the D ! � decay (mpole �

1:91�0:31�0:17 GeV) and direct measurements of the form factor for different q2 values, in the D ! K case. In this latter case, the 	& lines
stand for our theoretical uncertainty bands, inherited from the errors in Eq. (34) and from the quark-antiquark interaction model
dependence.
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f�
� �0� � 0:63	 0:02 (36)

compatible within errors with both the BES (0:73	 0:15)
and the Fermilab-MILC-HPQCD (0:64	 0:07) results.

Finally in the left plot of Fig. 6, we compare the
NRCQM predictions for the ratio f��q2�=f��0� with a
pole form recently fitted to data by the FOCUS
Collaboration [56].

B. D ! Kl �	l

Since there is no phase space for the D�
s ! DK decay,

we will estimate the gD�
sDK coupling from the value quoted

for gD�D� in Eq. (33). The parameter ĝ defined in Eq. (11)
describes the strong coupling of charmed mesons as well as
of beauty mesons to the members of the octet of light
pseudoscalars. We will assume flavor SU(3) symmetry
for this basic quantity in the heavy quark chiral effective
theory, and thus we will use [57]

gD�
sDK �

2ĝ ����������������mDmD�
s

p

fK
� gD�D�

���������mD�
s

p

���������
mD�

p
f�

fK
� 15:3	 1:6

(37)

where we have taken fK=f� � 1:2 from Ref. [58], and
have kept some SU(3) flavor breaking terms in the masses
of the charmed vector mesons and in the kaon decay
constant. Taking fD�

s
� �254	 15� MeV from Ref. [39],

we find


gD�
sDKfD�

s
�SU�3��Latt � 3:9	 0:5 GeV: (38)
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Our results for this decay are shown in Fig. 7. Several
comments are in order:
(1) W
-10
e find reasonable agreement with the three-flavor
lattice QCD results [50] up to kaon energies of the
order of 1 GeV, which cover the whole q2 range
accessible in the physical decay. Discrepancies with
lattice data are now more sizable than in the D ! �
case and lattice unquenched data favor values for

gD�

sDKfD�
s
�SU�3��Latt smaller than the one used in our

calculation [see Eq. (37)]. Theoretical errors for f�

are, in this case, mostly due to the uncertainties on

gD�

sDKfD�
s
�SU�3��Latt. Nevertheless, we would like to

point out that uncertainties on the value of gD�
sDK

might be larger that those quoted in Eq. (37), since
flavor SU(3) corrections to the relation gD�

sDK �
2ĝ ����������������mDmD�

s

p =fK could be large (ms=mc �
md;u=mc).
(2) T
he contribution of the vector resonance is less
important than in the B ! � and D ! � decays,
since the D�

s is located relatively far from
����������
q2max

p
.

(3) O
ur predictions for f� at negative values of q2,
which do not enter into the phase space integral,
suffer from larger uncertainties, since in that region
the transferred momentum is larger than 1 GeV and,
as for the B ! � case, relativistic effects could
became important. One could Omnès improve the
NRCQM to achieve a better description of the form
factor in the negative q2 region.
In the right plot of Fig. 6, we compare the NRCQM
predictions for the ratio f��q2�=f��0� with recently mea-
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NRCQM) contributions to f�

for D ! K semileptonic decay. In both cases the AL1 quark-antiquark interaction has been used. Circles ([51]) and diamonds ([50])
stand for the lattice QCD quenched and unquenched results obtained by the UKQCD and the Fermilab-MILC-HPQCD Collaboration (
labeled FMH), respectively. We also plot the best fit (dashed-dotted line) to this latter set of data points [Eq. (5) of Ref. [50]], and the
determination of f� at q2 � 0 (squares) by the BES Collaboration [52]. Finally, the 	& lines stand for the theoretical uncertainty
bands, inherited from the errors in Eq. (34) and from the quark-antiquark interaction model dependence.

SEMILEPTONIC B ! � DECAYS FROM AN OMNÈS . . . PHYSICAL REVIEW D 72, 033002 (2005)
sured data from the FOCUS Collaboration [56] and find
satisfactory and reassuring agreement.

For the integrated width, we find

�this work�D
0!K�e��e��
66	3�theory���10�12 MeV

(39)

which is about 2 standard deviations higher than the value
quoted in Eq. (28).

Equations (27) and (28) lead to (adding errors in quad-
ratures)

B�D0 ! ��e��e�

B�D0 ! K�e��e�
� 0:101	 0:017 (40)

which turns out to be a bit higher, though compatible
within errors, than the recent CLEO determination quoted
in Eq. (30). For this ratio of branching fractions we find

B�D0 ! ��e��e�

B�D0 ! K�e��e�

��������this work� 0:079	 0:008 (41)

in excellent agreement with the CLEO measurement. We
also find
033002
f�
K �0� � 0:79	 0:01;

f�
� �0�

f�
K �0�

� 0:80	 0:03 (42)

which compare well to the recent experimental measure-
ments in Eqs. (31) and (32).
IV. CONCLUDING REMARKS

We have shown the limitations of a valence quark model
to describe the B ! �, D ! � and D ! K semileptonic
decays. As a first correction, we have included in each case
the heavy-light vector resonance pole contribution. For the
semileptonic B ! � decay, the inclusion of the B� degree
of freedom provides a realistic q2 dependence of the rele-
vant form factor, f�, from q2max down to around 18 GeV2.
We then use a multiply subtracted Omnès dispersion rela-
tion, which considerably diminishes the form-factor de-
pendence on the elastic �B ! �B scattering amplitudes at
high energies, to combine LCSR results at q2 � 0 with
NRCQM predictions in the high q2 region. As a result we
have been able to predict the f� form factor for all q2

values accessible in the physical decay. We have used a
Monte Carlo procedure and analyzed the predictions of five
-11
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different quark-antiquark interactions to determine theo-
retical error bands for form factors and the decay width.
This has allowed us to extract from the measured branch-
ing fraction the value jVubj � 0:0034	 0:0003�exp� 	
0:0007�theory� in excellent agreement with the CLEO
Collaboration determination of Ref. [3]. For the D ! �
semileptonic decay we have found excellent agreement
between our model calculation (valence quark plus
D�-pole contributions) of f� and the one obtained by the
unquenched lattice simulation of Ref. [50]. We found no
need to Omnès improve our calculation in this case. Our
results ��D0 ! ��e��e� � 
5:2	 0:1�exp :jVcdj� 	
0:5�theory�� � 10�12 MeV and f�

� �0� � 0:63	 0:02 are
in good agreement with experimental data. Finally for
the D ! K semileptonic decay we find good agreement,
in the physical region, between our model calculation
(valence quark plus D�

s-pole contributions) of f� and
lattice data, from UKQCD [51] and Fermilab-MILC-
HPQCD [50], and also with recent measurements from
the FOCUS Collaboration [56]. Again our results B�D0 !
��e��e�=B�D0 ! K�e��e� � 0:079	 0:008, f�

K �0� �
0:79	 0:01 and f�

� �0�=f�
K �0� � 0:80	 0:03 are in good

agreement with experimental determinations by the CLEO
[53] and BES [52] Collaborations.
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APPENDIX: MULTIPLY SUBTRACTED OMNÈS
DISPERSION RELATION

Let the form factor13 f��s� be analytic on the complex s
plane (Mandelstam’s hypothesis [45] of maximum analy-
ticity) except for a cut L � 
sth � �mB � m��

2;�1
 along
the real positive s axis, as demanded by Watson’s theorem
[46]. For real values s < sth the form factor is real which
implies that the values of the form factor above and below
13The discussion below can be trivially generalized to any
scattering amplitude or form factor with definite total angular
momentum and isospin quantum numbers.
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the cut are complex conjugates of each other: f��s �
i2� � f��s � i2��. For s � sth, the form factor has a dis-
continuity across the cut and develops an imaginary part
f��s � i2� � f��s � i2� � 2i Imf�s � i2�. Cauchy’s
theorem implies that f��s� can be written as a dispersive
integral along the cut and performing one subtraction at
s0 < sth one gets:

f��s� � f��s0� �
s � s0

�

Z �1

sth

dx
x � s0

Imf��x�
x � s

;

s =2 L; s0 < sth:

(A1)

Depending on the asymptotic behavior of f��s� at the
extremes of the cut L, more subtractions may be needed
to make the integral convergent. For the time being, let us
assume that one subtraction is sufficient. The well known
Omnès solution for the above dispersive representation is
[26]

O�s� � f��s0� exp
�
s � s0

�

Z �1

sth

dx
x � s0

.�x�
x � s

�
;

s =2 L; s0 < sth

(A2)

with .�s� the elastic �B ! �B phase shift14 in the JP �
1� and isospin 1=2 channel [see Eq. (17)]. O�s� gives the
physical form factor since,
(1) F
14Obv
of s.

-12
or s � sth, we have

O�s 	 i2� � f��s0� exp
�
s � s0

�

�
P
Z �1

sth

dx
x � s0

�
.�x�
x � s

	 i�
.�s�

s � s0

��

� e	i.�s�
�
f��s0� exp

�
s � s0

�

� P
Z �1

sth

dx
x � s0

.�x�
x � s

��
(A3)

where P stands for principal part of the integral.
Thus we have O�s � i2� � O�s � i2��, the function
O is real for s < sth and has neither poles nor cuts,
except for that required by Watson’s theorem: L �

sth;�1
. The discontinuity across this cut is given
by O�s � i2� � O�s � i2� � 2i ImO�s � i2� and
by construction O�s0� � f��s0�. Thus, both f��s�
and O�s� satisfy the same dispersion relation
[Eq. (A1)] and therefore both functions can differ
at most by a polynomial with real coefficients,
iously .�s� has to be defined as a continuous function
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which should vanish at s � s0. But, this polynomial
is zero since:
(2) T
he function O�s� satisfies Watson’s theorem:

O�s � i2�
O�s � i2�

� e2i.�s� �
f��s � i2�
f��s � i2�

; s > sth:

(A4)
Performing n � 1 subtractions, one can produce a rank
n � 2 polynomial in the denominator of the dispersive
integral of Eq. (A1). Indeed, for s =2 L

f��s� � Pn�s� �
�s � s0��s � s1� � � � �s � sn�

�

�
Z �1

sth

dx
�x � s0��x � s1� � � � �x � sn�

Imf��x�
x � s

;

s0; � � � ; sn < sth (A5)

with the rank n polynomial Pn�s� determined by the n � 1
equations Pn�si� � f��si�; i � 0; 1; � � � ; n,

Pn�s� �
Xn
j�0

-j�s�f��sj�; -j�s� �

2
4 Yn

j�k�0

s � sk

sj � sk

3
5:

(A6)

Note that -j�s� are rank n polynomials, which satisfy

Xn
j�0

-j�s� � 1: (A7)

On the other hand for s > sth, we have from Eq. (17)

logf��s � i2� � logf��s � i2� � log
f��s � i2�
f��s � i2�

� 2i.�s�

� 2i Im
logf��s � i2��:

(A8)

Thus in analogy to Eq. (A5), assuming that the form factor
does not vanish in C� fsthg,

15 or neglecting the contribu-
tion from the log cut if it has a finite branch point different
from sth, we can write

logf��s� � P̂n�s� �
�s � s0��s � s1� � � � �s � sn�

�

�
Z �1

sth

dx
�x � s0��x � s1� � � � �x � sn�

.�x�
x � s

;

s =2 L (A9)

with
e that, we have already treated s � sth as a branch point.

033002
P̂ n�s� �
Xn
j�0

-j�s� logf
��sj�: (A10)

From the above equation one readily finds the �n �
1�-subtracted Omnès representation given in Eq. (16).

Finally, we would like to draw the reader’s attention to a
subtle point. In Eq. (A1) we have assumed that f� has no
poles. However we know that if the scattering amplitude
has a pole at sR � M2

R � iMR�R on its second Riemann
sheet (resonance) or on the physical sheet (bound state with
�R � 0� and M2

R < sth.), it might show up as a pole in the
complex plane of f� [see Eq. (12)]. On the other hand, the
S matrix depends on exp�2i.�, and thus one has the free-
dom to add factors of m�, for m an integer, to the phase
shift without modifying the S matrix. However, the Omnès
representation of the form factor will definitely depend on
the specific value chosen for the integer m.

To fix this ambiguity, we will assume that at threshold
the phase shift should be .�sth� � nb�, where nb is the
number of bound states in the channel, while .�1� � k�,
where k is the number of zeros of the scattering amplitude
on the physical sheet (this is Levinson’s theorem [49]).
This choice for the phase shifts also takes into account the
existence of poles in the scattering matrix. We demonstrate
with a simple example in which a p-wave T matrix is
proportional to �s � sth�=�s � M2

R � iMR�R�. The phase
shift is given by

.�s� � � � Arctan
�
�MR�R

s � M2
R

�
; s > sth (A11)

with Arctan 2 
��; �
. This satisfies .�1� � � and, if
MR�R � js � M2

Rj, it also leads to .�sth� � � or 0 for a
bound state or resonance, respectively, in accordance with
Levinson’s theorem. For simplicity, let us also assume
�R � MR. In this circumstance we can approximate

.�s� � �
1� H�M2
R � s�� � �H�s � M2

R� (A12)

where H� � is the step function. Since

s � s0
�

Z �1

sth

dx
x � s0

.�x�
x � s

� �s � s0�
Z �1

Max�sth;M2
R�

dx
x � s0

�
1

x � s

� log
�
Max�sth; M2

R� � s0
Max�sth; M2

R� � s

�
;

(A13)

we find that the Omnès solution from a once-subtracted
dispersion relation, Eq. (A2), reads

O�s� � f��s0�
Max�sth; M2

R� � s0
Max�sth; M2

R� � s
: (A14)

It has a pole at s � M2
R for a resonance or at s � sth in the
-13
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case of a bound state. For the case of a resonance with a
finite width, the pole will move to s � M2

R � iMR�R. On
the other hand, for a bound state, going beyond the ap-
proximation .�s� � � [see Eq. (18)], the form factor will
be sensitive to the exact position of the pole (s � M2

R),
033002
since the effective range parameters (scattering volume,
. . .) will depend on MR.

These conclusions can easily be generalized when a
multiply subtracted Omnès dispersion relation is used.
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