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N. Leonardo,31 S. Leone,44 S. Levy,12 J. D. Lewis,15 K. Li,59 C. Lin,59 C. S. Lin,15 M. Lindgren,15 E. Lipeles,8 T. M. Liss,23

A. Lister,18 D. O. Litvintsev,15 T. Liu,15 Y. Liu,18 N. S. Lockyer,43 A. Loginov,35 M. Loreti,42 P. Loverre,49 R.-S. Lu,1

D. Lucchesi,42 P. Lujan,28 P. Lukens,15 G. Lungu,16 L. Lyons,41 J. Lys,28 R. Lysak,1 E. Lytken,46 D. MacQueen,32

R. Madrak,15 K. Maeshima,15 P. Maksimovic,24 G. Manca,29 Margaroli,4 R. Marginean,15 C. Marino,23 A. Martin,59

M. Martin,24 V. Martin,37 M. Martı́nez,3 T. Maruyama,54 H. Matsunaga,54 M. Mattson,57 P. Mazzanti,4 K. S. McFarland,47

D. McGivern,30 P. M. McIntyre,51 P. McNamara,50 McNulty,29 A. Mehta,29 S. Menzemer,31 A. Menzione,44 P. Merkel,46

C. Mesropian,48 A. Messina,49 T. Miao,15 N. Miladinovic,5 J. Miles,31 L. Miller,20 R. Miller,34 J. S. Miller,33 C. Mills,9

R. Miquel,28 S. Miscetti,17 G. Mitselmakher,16 A. Miyamoto,26 N. Moggi,4 B. Mohr,7 R. Moore,15 M. Morello,44

P. A. Movilla Fernandez,28 J. Muelmenstaedt,28 A. Mukherjee,15 M. Mulhearn,31 T. Muller,25 R. Mumford,24 A. Munar,43

P. Murat,15 J. Nachtman,15 S. Nahn,59 I. Nakano,39 A. Napier,55 R. Napora,24 D. Naumov,36 V. Necula,16 T. Nelson,15

C. Neu,43 M. S. Neubauer,8 J. Nielsen,28 T. Nigmanov,45 L. Nodulman,2 O. Norniella,3 T. Ogawa,56 S. H. Oh,14 Y. D. Oh,27
1550-7998=2005=72(3)=032002(20)$23.00 032002-1  2005 The American Physical Society



D. ACOSTA et al. PHYSICAL REVIEW D 72, 032002 (2005)
T. Ohsugi,22 T. Okusawa,40 R. Oldeman,29 R. Orava,21 W. Orejudos,28 K. Osterberg,21 C. Pagliarone,44 E. Palencia,10

R. Paoletti,44 V. Papadimitriou,15 A. A. Paramonov,12 S. Pashapour,32 J. Patrick,15 G. Pauletta,53 M. Paulini,11 C. Paus,31

D. Pellett,6 A. Penzo,53 T. J. Phillips,14 G. Piacentino,44 J. Piedra,10 K. T. Pitts,23 C. Plager,7 L. Pondrom,58 G. Pope,45

X. Portell,3 O. Poukhov,13 N. Pounder,41 F. Prakoshyn,13 A. Pronko,16 J. Proudfoot,2 F. Ptohos,17 G. Punzi,44

J. Rademacker,41 M. A. Rahaman,45 A. Rakitine,31 S. Rappoccio,20 F. Ratnikov,50 H. Ray,33 B. Reisert,15 V. Rekovic,36

P. Renton,41 M. Rescigno,49 F. Rimondi,4 K. Rinnert,25 L. Ristori,44 W. J. Robertson,14 A. Robson,19 T. Rodrigo,10

S. Rolli,55 R. Roser,15 R. Rossin,16 C. Rott,46 J. Russ,11 V. Rusu,12 A. Ruiz,10 D. Ryan,55 H. Saarikko,21 S. Sabik,32

A. Safonov,6 R. St. Denis,19 W. K. Sakumoto,47 G. Salamanna,49 D. Saltzberg,7 C. Sanchez,3 L. Santi,53 S. Sarkar,49

K. Sato,54 P. Savard,32 A. Savoy-Navarro,15 P. Schlabach,15 E. E. Schmidt,15 M. P. Schmidt,59 M. Schmitt,37 T. Schwarz,33

L. Scodellaro,10 A. L. Scott,9 A. Scribano,44 F. Scuri,44 A. Sedov,46 S. Seidel,36 Y. Seiya,40 A. Semenov,13 F. Semeria,4

L. Sexton-Kennedy,15 I. Sfiligoi,17 M. D. Shapiro,28 T. Shears,29 P. F. Shepard,45 D. Sherman,20 M. Shimojima,54

M. Shochet,12 Y. Shon,58 I. Shreyber,35 A. Sidoti,44 A. Sill,52 P. Sinervo,32 A. Sisakyan,13 J. Sjolin,41 A. Skiba,25

A. J. Slaughter,15 K. Sliwa,55 D. Smirnov,36 J. R. Smith,6 F. D. Snider,15 R. Snihur,32 M. Soderberg,33 A. Soha,6

S. V. Somalwar,50 J. Spalding,15 M. Spezziga,52 F. Spinella,44 P. Squillacioti,44 H. Stadie,25 M. Stanitzki,59 B. Stelzer,32

O. Stelzer-Chilton,32 D. Stentz,37 J. Strologas,36 D. Stuart,9 J. S. Suh,27 A. Sukhanov,16 K. Sumorok,31 H. Sun,55

T. Suzuki,54 A. Taffard,23 R. Tafirout,32 H. Takano,54 R. Takashima,39 Y. Takeuchi,54 K. Takikawa,54 M. Tanaka,2

R. Tanaka,39 N. Tanimoto,39 M. Tecchio,33 P. K. Teng,1 K. Terashi,48 R. J. Tesarek,15 S. Tether,31 J. Thom,15

A. S. Thompson,19 E. Thomson,43 P. Tipton,47 V. Tiwari,11 S. Tkaczyk,15 D. Toback,51 K. Tollefson,34 T. Tomura,54

D. Tonelli,44 M. Tönnesmann,34 S. Torre,44 D. Torretta,15 S. Tourneur,15 W. Trischuk,32 R. Tsuchiya,56 S. Tsuno,39

D. Tsybychev,16 N. Turini,44 F. Ukegawa,54 T. Unverhau,19 S. Uozumi,54 D. Usynin,43 L. Vacavant,28 A. Vaiciulis,47

A. Varganov,33 S. Vejcik III,15 G. Velev,15 V. Veszpremi,46 G. Veramendi,23 T. Vickey,23 R. Vidal,15 I. Vila,10 R. Vilar,10

I. Vollrath,32 I. Volobouev,28 M. von der Mey,7 P. Wagner,51 R. G. Wagner,2 R. L. Wagner,15 W. Wagner,25 R. Wallny,7

T. Walter,25 Z. Wan,50 M. J. Wang,1 S. M. Wang,16 A. Warburton,32 B. Ward,19 S. Waschke,19 D. Waters,30 T. Watts,50

M. Weber,28 W. C. Wester III,15 B. Whitehouse,55 D. Whiteson,43 A. B. Wicklund,2 E. Wicklund,15 H. H. Williams,43

P. Wilson,15 B. L. Winer,38 P. Wittich,43 S. Wolbers,15 C. Wolfe,12 M. Wolter,55 M. Worcester,7 S. Worm,50 T. Wright,33

X. Wu,18 F. Würthwein,8 A. Wyatt,30 A. Yagil,15 T. Yamashita,39 K. Yamamoto,40 J. Yamaoka,50 C. Yang,59 U. K. Yang,12

W. Yao,28 G. P. Yeh,15 J. Yoh,15 K. Yorita,56 T. Yoshida,40 I. Yu,27 S. Yu,43 J. C. Yun,15 L. Zanello,49 A. Zanetti,53 I. Zaw,20

F. Zetti,44 J. Zhou,50 and S. Zucchelli4

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA

3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
4Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

5Brandeis University, Waltham, Massachusetts 02254, USA
6University of California at Davis, Davis, California 95616, USA

7University of California at Los Angeles, Los Angeles, California 90024, USA
8University of California at San Diego, La Jolla, California 92093, USA

9University of California at Santa Barbara, Santa Barbara, California 93106, USA
10Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

11Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
12Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14Duke University, Durham, North Carolina 27708

15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16University of Florida, Gainesville, Florida 32611, USA

17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18University of Geneva, CH-1211 Geneva 4, Switzerland

19Glasgow University, Glasgow G12 8QQ, United Kingdom
20Harvard University, Cambridge, Massachusetts 02138, USA

21Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00044,
Helsinki, Finland
032002-2



MEASUREMENT OF THE t�t PRODUCTION CROSS . . . PHYSICAL REVIEW D 72, 032002 (2005)

22Hiroshima University, Higashi-Hiroshima 724, Japan

23University of Illinois, Urbana, Illinois 61801, USA
24The Johns Hopkins University, Baltimore, Maryland 21218, USA

25Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
26High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan

27Center for High Energy Physics, Kyungpook National University, Taegu 702-701 Korea;
Seoul National University, Seoul 151-742 Korea;

and SungKyunKwan University, Suwon 440-746 Korea
28Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

29University of Liverpool, Liverpool L69 7ZE, United Kingdom
30University College London, London WC1E 6BT, United Kingdom

31Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
32Institute of Particle Physics: McGill University, Montréal, Canada H3A 2T8;
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We present a measurement of the t�t production cross section using 194 pb�1 of CDF II data using
events with a high transverse momentum electron or muon, three or more jets, and missing transverse
energy. The measurement assumes 100% t! Wb branching fraction. Events consistent with t�t decay are
found by identifying jets containing heavy-flavor semileptonic decays to muons. The dominant back-
grounds are evaluated directly from the data. Based on 20 candidate events and an expected background of
9:5� 1:1 events, we measure a production cross section of 5:3� 3:3�1:3

�1:0 pb, in agreement with the
standard model.

DOI: 10.1103/PhysRevD.72.032002 PACS numbers: 13.85.Ni, 13.85.Qk, 14.65.Ha
I. INTRODUCTION

Top quark pair production in the standard model pro-
ceeds via either quark-antiquark annihilation or gluon-
gluon fusion. At the Fermilab Tevatron collider, with a
center-of-mass energy of 1.96 TeV , quark-antiquark anni-
hilation is expected to dominate. For a top mass of
032002
175 GeV=c2, the calculated cross section is 6:7�0:7
�0:9 pb

[1], and is approximately 0.2 pb smaller for each
1 GeV=c2 increase in the value of the top mass over the
range 170 GeV=c2 <Mtop < 190 GeV=c2.

Measurements of the cross section for top quark pair
production provide a test of QCD, as well as the standard
-3
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model decay t! Wb. Nonstandard model production
mechanisms, such as the production and decay of a heavy
resonance into t�t pairs [2], could enhance the measured
cross section. Nonstandard model top quark decays, such
as the decay into supersymmetric particles [3], could sup-
press the measured value, for which a t! Wb branching
fraction of nearly 100% is assumed.

In this paper we report a measurement of the t�t produc-
tion cross section in p �p collisions at

���
s

p
� 1:96 TeV with

the CDF II detector at the Fermilab Tevatron. The standard
model decay t! Wb of the top quark results in a final state
from t�t production of two W bosons and two bottom
quarks. We select events consistent with a decay of one
of the W bosons to an electron or muon plus a neutrino,
both of which have large momentum transverse to the
beam direction (PT). We refer to these high PT electrons
or muons as the ‘‘primary lepton.’’ The neutrino is unde-
tected and results in an imbalance in transverse momen-
tum. The imbalance is labeled ‘‘missing ET’’ (E6 T) since it
is reconstructed based on the flow of energy in the calo-
rimeter [4]. The otherW boson in the event decays to a pair
of quarks. The two quarks from the W boson and the two b
quarks from the top decays hadronize and are observed as
jets of charged and neutral particles. This mode is referred
as W plus jets. We take advantage of the semileptonic
decay of b hadrons to muons to identify final-state jets
that result from hadronization of the bottom quarks. Such a
technique, called ‘‘soft-lepton tagging’’ (SLT), is effective
in reducing the background to the t�t signal from W boson
produced in association with several hadronic jets with
large transverse momentum. The production cross section
is measured in events with three or more jets and at least
one SLT tagged jet.

This measurement is complementary to other measure-
ments from CDF II, which use secondary vertex tagging,
kinematic fitting, or a combination of the two [5–7]. A
forthcoming paper [8] will present a combined cross sec-
tion measurement based on the result of these four
analyses.

Previous measurements [9] from run I at the Tevatron
have measured production cross sections statistically con-
sistent with the standard model prediction. This and other
run II measurements are made at a slightly higher center-
of-mass energy (1.96 TeV vs 1.8 TeV) and with nearly
twice as much integrated luminosity.

The organization of this paper is as follows: Section II
reviews the detector systems relevant to this analysis. The
trigger and event selection, the data and the Monte Carlo
samples and the SLT tagging algorithm are described in
Sec. III. The estimate of the background is presented in
Sec. IV. The acceptance and the t�t event tagging efficiency
are described in Sec. V. The evaluation of the systematic
uncertainties on the measurement is presented in Sec. VI.
The t�t production cross section measurement and the con-
clusions are presented in Secs. VII and VIII.
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II. THE CDF II DETECTOR

The CDF II detector is described in detail in [10], only
the components relevant to this measurement are summa-
rized here. The CDF II detector is a nearly azimuthally and
forward-backward symmetric detector designed to study
p �p interactions at the Fermilab Tevatron. It consists of a
magnetic spectrometer surrounded by calorimeters and
muon chambers. An elevation view of the CDF II detector
is shown in Fig. 1.

Charged particles are tracked inside a 1.4 T solenoidal
magnetic field by an 8-layer silicon strip detector covering
radii from 1.5 to 28 cm, followed by the central outer
tracker (COT), an open-cell drift chamber that provides
up to 96 measurements of charged-particle position over
the radial region from 40 to 137 cm. The 96 COT mea-
surements are arranged in 8 ‘‘superlayers’’ of 12 sense
wires each alternating between axial and 2� stereo. The
COT and the silicon detectors track charged particles for
j�j< 1 and j�j< 2, respectively.

Surrounding the tracking system are electromagnetic
and hadronic calorimeters, used to measure charged and
neutral particle energies. The electromagnetic calorimeter
is a lead-scintillator sandwich and the hadronic calorimeter
is an iron-scintillator sandwich. Both calorimeters are seg-
mented in azimuth and polar angle to provide directional
information for the energy deposition. The segmentation
varies with position on the detector and is 15� in azimuth
by 0.1 units of � in the central region (j�j< 1:1).
Segmentation in the plug region (1:1< j�j< 3:6) is 7:5�

up to j�j< 2:1, and 15� for j�j> 2:1 in azimuth, while
ranging from 0.1 to 0.64 units of � in pseudorapidity (a
nearly constant 2:7� change in polar angle). The electro-
magnetic calorimeters are instrumented with proportional
and scintillating strip detectors that measure the transverse
profile of electromagnetic showers at a depth correspond-
ing to the shower maximum.

Outside the central calorimeter are four layers of muon
drift chambers covering j�j< 0:6 (CMU). The calorimeter
provides approximately 1 m of steel shielding. Behind an
additional 60 cm of steel in the central region sit an addi-
tional four layers of muon drift chambers (CMP) arranged
in a box-shaped layout around the central detector. Central
muon extension (CMX) chambers, which are arrayed in a
conical geometry, provide muon detection for the region
0:6< j�j< 1 with four to eight layers of drift chambers,
depending on polar angle. All the muon chambers measure
the coordinates of hits in the drift direction, x, via a
drift time measurement and a calibrated drift velocity.
The CMU and the CMX also measure the longitudinal
coordinate, z. The longitudinal coordinate is measured in
the CMU by comparing the height of pulses, encoded
in time-over-threshold, at opposite ends of the sense
wire. In the CMX, the conical geometry provides a
small stereo angle from which the z coordinate of track
segments can be determined. Reconstructed track
-4



FIG. 1. Elevation view of the CDF II detector.
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segments have a minimum of three hits, and a maximum
of four hits in the CMU and the CMP, and 8 hits in the
CMX.
III. DATA SAMPLE AND EVENT SELECTION

In this section we describe the collision data and the
Monte Carlo samples used in this analysis. Section III A
outlines the trigger system used for the initial selection of
events from the p �p collisions. Section III B describes the
Monte Carlo samples used for acceptance and background
studies. The selection of the W � jets data sets from the
triggered data samples is presented in Sec. III C. The t�t
signal is extracted from the W � jets events through the
identification of candidate b hadron semileptonic decays to
muons. The algorithm for identifying these decays is sum-
marized in Sec. III D, and its application to the W � jets
data set is described in Sec. III E.

This analysis is based on an integrated luminosity of
194� 11 pb�1 [11] collected with the CDF II detector
between March 2002 and August 2003 (175 pb�1 with
the CMX detector operational).
032002
A. p �p collision data

CDF II employs a three-level trigger system, the first
two consisting of special purpose hardware and the third
consisting of a farm of commodity computers. Triggers for
this analysis are based on selecting high transverse mo-
mentum electrons and muons. The electron sample is
triggered as follows: At the first trigger level events are
selected by requiring a track with PT > 8 GeV=c matched
to an electromagnetic calorimeter tower with ET > 8 GeV
and little energy in the hadronic calorimeter behind it. At
the second trigger level, calorimeter energy clusters are
assembled and the track found at the first level is matched
to an electromagnetic cluster with ET > 16 GeV. At the
third level, offline reconstruction is performed and an
electron candidate with ET > 18 GeV is required. The
efficiency of the electron trigger is measured from Z!
ee data and found to be 
96:2� 0:6�% [12]. The selection
of the muon sample begins at the first trigger level with a
track with PT > 4 GeV=c matched to hits in the CMU and
the CMP chambers or a track with PT > 8 GeV=cmatched
to hits in the CMX chambers. At the second level, a track
with PT > 8 GeV=c is required in the event for about 70%
of the integrated luminosity, while for the remainder, trig-
-5



 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

stin
U yrartibr

A

tt
W+jets

ni
B 

wolfrev
O

FIG. 2 (color online). HT distributions, normalized to unity,
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events with three or more jets after the event selection described
in the text.
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gers at the first level are fed directly to the third level. At
the third trigger level, a reconstructed track with PT >
18 GeV=c is required to be matched to the muon chamber
hits. The efficiency of the muon trigger, measured from
Z! �� data, is 
88:7� 0:7�% for CMU/CMP muons and

95:4� 0:4�% for CMX muons [12].

B. Monte Carlo data sets

The detector acceptance of t�t events is modeled using
PYTHIA v6.2 [13] and HERWIG v6.4 [14]. These are leading-
order event generators with parton showering to simulate
radiation and fragmentation effects. The generators are
used with the CTEQ5L parton distribution functions [15].
Decays of b and c hadrons are modeled using QQ v9.1 [16].
Estimates of backgrounds from diboson production (WW,
WZ, ZZ) are derived using the ALPGEN generator [17] with
parton showering provided by HERWIG. The background
from single top production (e.g. W� ! tb) is simulated
using PYTHIA. Samples of the remaining backgrounds are
derived directly from the data as described in Sec. IV.

The detector simulation reproduces the response of the
detector to particles produced in p �p collisions. The same
detector geometry database is used in both the simulation
and the reconstruction, and tracking of particles through
matter is performed with GEANT3 [18]. The drift model for
the COT uses a parametrization of a GARFIELD simulation
[19] with parameters tuned to match COT collider data.
The calorimeter simulation uses the GFLASH [20] parame-
trization package interfaced with GEANT3. The GFLASH

parameters are tuned to test beam data for electrons and
high-PT pions and checked by comparing the calorimeter
energy of isolated tracks in the collision data to their
momenta as measured in the COT. Further details of the
CDF II simulation can be found in [21].

C. W � jets data set

From the inclusive lepton data set produced by the
electron and muon triggers described in Sec. III A, we
select events with an isolated electron ET (muon PT)
greater than 20 GeV and E6 T > 20 GeV. The isolation I
of the electron or muon is defined as the calorimeter

transverse energy in a cone of �R 
��������������������������
��2 � ��2

p
<

0:4 around the lepton (not including the lepton energy
itself ) divided by the ET (PT) of the lepton. We require I <
0:1. The W � jets data set is categorized according to the
number of jets with ET > 15 GeV and j�j< 2:0. The
decay of t�t pairs gives rise to events with typically at least
three such jets, while the W plus one or two jet samples
provide a control data set with little signal contamination.
Jets are identified using a fixed-cone algorithm with a cone
size of 0.4 and are constrained to originate from the p �p
collision vertex. Their energies are corrected to account
for detector response variations in �, calorimeter gain
instability, and multiple interactions in an event. A
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complete description of W � jets event selection is given
in [6].

The W � jets data set consists mainly of events of direct
production of W bosons with multiple jets. This amounts
also to the largest background to t�t signal. As a first stage of
background reduction, we define a total event energy, HT,
as the scalar sum of the electron ET or muon PT, the event
E6 T and jet ET for jets with ET > 8 GeV and j�j< 2:4.
Because of the large mass of the top quark, a t�t event is
expected to have a large HT compared to a W plus three or
more jets event, as illustrated in Fig. 2. We studied the
expected amount of signal (S) and background (B) as a
function of HT using the PYTHIA Monte Carlo program to
model the signal HT distribution. Data is used to model the
background HT distribution. We optimized the selection of
events by imposing a minimum HT requirement which
maximizes S=

�������������
S� B

p
. We select events with HT >

200 GeV, rejecting approximately 40% of the background
while retaining more than 95% of the t�t signal.

There are 337W plus three or more jet events withHT >
200 GeV in 194 pb�1 of data, 115 from W ! �� candi-
dates and 222 from W ! e� candidates.

Even after the HT cut, the expected S:B in W plus three
or more jet events is only of order 1:3. To further improve
the signal to background ratio, we identify events with one
or more b-jets by searching inside jets for semileptonic
decays of b hadrons into muons.

D. Soft lepton tagging algorithm

Muon identification at CDF proceeds by extrapolating
tracks found in the central tracker, through the calorimeter
to the muon chambers, and matching them to track seg-
ments reconstructed in the muon chambers. Matching is
done in the following observables: extrapolated position
-6
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along the muon chamber drift direction (x), the longitudi-
nal coordinate along the chamber wires (z) when such
information is available, and the extrapolated slope com-
pared to the slope of the reconstructed muon chamber track
segment (�L). Tracks are paired with muon chamber track
segments based on the best match in x for those track
segments that are within 50 cm of an extrapolated COT
track. In what follows we refer to the difference between
the extrapolated and measured positions in x and z as dx
and dz, respectively, and the extrapolated and measured
slope as d�L. The distributions of these variables over an
ensemble of events are referred to as the matching distri-
butions. In addition to selection based on dx and dz, the
standard muon identification also requires consistency with
minimum ionizing energy deposition in the calorimeters.
However, in order to retain sensitivity for muons embedded
in jets, the muon SLT algorithm makes full usage of the
muon matching information without any requirement on
the calorimeter information. The algorithm starts with
high-quality reconstructed tracks in the COT, selected by
requiring at least 24 axial and 24 stereo hits on the track.
Some rejection for pion and kaon decays in flight is
achieved by requiring that the impact parameter of the
reconstructed track be less than 3 mm with respect to the
beam line. The track is also required to originate within
60 cm in z of the center of the detector. Only tracks passing
these cuts and extrapolating within 3�
PT� in x outside of
the muon chambers, where �
PT� is the multiple scattering
width, are considered as muon candidates. Also, when a
track extrapolates to greater than 3�
PT� in x inside the
muon chambers, but no muon chamber track segment is
found, the track is rejected and not allowed to be paired to
other muon chamber track segments.

Candidate muons are selected with the SLT algorithm by
constructing a quantity L, based on a comparison of the
measured matching variables with their expectations. To
construct L we first form a sum, Q, of individual �2

variables

Q �
Xn
i�1


Xi ��i�
2

�2
i

; (1)

where �i and �i are the expected mean and width of the
distribution of matching variable Xi. The sum is taken over
n selected variables, as described below. L is then con-
structed by normalizing Q according to

L �

Q� n���������������
var
Q�

p ; (2)

where the variance var
Q� is calculated using the full
covariance matrix for the selected variables. The normal-
ization is chosen to make L independent of the number of
variables n; note that the distribution of L tends to a
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Gaussian centered at zero and with unitary width, for n
sufficiently large. The correlation coefficients between
each pair of variables are measured from J= ! ��
data. The calculation proceeds by comparing the variance
of the sum with the sum of the variances of each pair of �2

variables in Eq. (1). Since the values of the matching
variables are either positive or negative, according to the
local coordinate system, separate correlation coefficients
are used for pairs that have same-sign and opposite-sign
values.

The selected variables are the full set of matching var-
iables, x; z; �L in the CMU, CMP and CMX with the
following two exceptions: The CMP chambers do not
provide a measurement of the longitudinal coordinate z,
and matching in �L is not included for track segments in
the muon chambers that have only three hits. Because of
their significantly poorer resolution, track segments recon-
structed in the CMU chambers with three hits are not used.
Note that a muon that traverses both the CMU and the CMP
chambers yields two sets of matching measurements in x
and �L and one z matching measurement, and are referred
as CMUP muons. All available matching variables are used
in the calculation of L for a given muon candidate. By
placing an appropriate cut on L, background is preferen-
tially rejected because hadrons have broader matching
distributions than muons since the track segments in the
muon chambers from hadrons are generally a result of
leakage of the hadronic shower.

The widths of the matching distributions that enter into
L are a combination of intrinsic resolution of the muon
chambers and multiple scattering. The multiple scattering
term varies inversely with PT and is dominant at low PT.
The expected widths of the matching distributions are
based on measurements of muons from J= decays at
low PT (see Fig. 3) and W and Z boson decays at high PT.

The mean values [�i in Eq. (1)] are typically zero,
except for a small offset in the CMU dz. We parametrize
the widths as a function of up to three variables: PT, � and
�. These variables describe to first order the effects of
multiple scattering in the detector. For the CMU detector,
PT is sufficient since the material traversed by a muon
candidate is approximately homogenous in � and �. The
widths are parametrized with a second-order polynomial in
1=PT with an exponential term that describes the PT range
below 3 GeV=c. For the CMP detector we parametrize the
widths as functions of PT and � to take into account the
rectangular shape of the absorber outside the central calo-
rimeter. For the CMX detector we use PT, � and � to
account for a number of irregularities in the amount of
absorber between � � 0:6 and � � 1:0. The measurement
of the widths of the matching distributions as functions of
PT, overlayed with their fits, are shown in Fig. 4.

Figure 5 (left) shows an example of the distribution of L
from J= decays. The number of variables used varies
from two to five. Figure 5 (right) shows the efficiency of
-7
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the SLT algorithm as a function of L from J= data. The
efficiency plateaus at about 85% for jLj � 3:5.

E. Event tagging

In this analysis we seek to identify semileptonic decays
of b hadrons inside jets in t�t events. The transverse mo-
mentum spectrum of these muons, covering a broad range
from a few GeV=c to over 40 GeV=c, is shown in Fig. 6
from the PYTHIA Monte Carlo sample. Within the W � jets
data set defined in Sec. III C, we isolate a subset of events
with at least one ‘‘taggable’’ track. A taggable track is
defined as any track, distinct from the primary lepton,
passing the track quality requirements described in
Section III D, with PT > 3 GeV=c, within �R< 0:6 of a
jet axis and pointing to the muon chambers to within a 3�
multiple scattering window (the � of the multiple scatter-
ing window is defined as the �dx shown in Fig. 3). The
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FIG. 6 (color online). PT distribution of muons from b hadron
decays in PYTHIA Monte Carlo top events. The circles are all
muons from b hadron decays. The triangles are direct B! ��X
decays and the squares are sequential B! D! ��X (where
‘‘B’’ indicates a b hadron).
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z-coordinate of the track at the origin must be within 5 cm
of the reconstructed event vertex (the vertex reconstruction
is described in detail in [5]). Jets are considered ‘‘SLT
tagged’’ if they contain a taggable track, which is also
attached to a track segment in the muon chambers and
the resulting muon candidate has jLj< 3:5.

A potentially large background arises from J= decay
and sequential, double semileptonic b! c! s decay,
resulting in one lepton from the b decay and an oppositely
charged lepton from the c decay. Therefore, events are
rejected if the primary lepton is of opposite charge to a
SLT muon tag and the invariant mass of the pair is less than
5 GeV=c2. Similarly, events are also rejected if the primary
lepton is a muon that together with an oppositely charged
SLT muon tag forms an invariant mass between 8 and
11 GeV=c2 or 70 and 110 GeV=c2, consistent with an �
or a Z particle, respectively. The sequential decay cut
and the � and Z removal reduce the t�t acceptance by less
than 1%.

Events passing all event selection cuts that have at least
one taggable track are referred to as the ‘‘pretag’’ sample.
There are 319 pretag events with three or more jets, 211 in
which the primary lepton is an electron and 108 in which it
is a muon. Out of these events we find 20 events with a SLT
tag, 15 in which the primary lepton is an electron and 5 in
which it is a muon. This set of events is the t�t candidate
sample from which we measure the t�t production cross
section in Sec. VII.
IV. BACKGROUNDS

In this section we describe the evaluation of background
events in the t�t candidates sample. The background con-
tributions are mostly evaluated directly from the data. The
dominant background in this analysis is from W plus jets
events where one jet produces an SLT tag. The estimate of
this background relies on our ability to predict the number
of such SLT tags starting from the pretag sample. The
-9
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prediction is based on the probability for a given track in a
jet to yield an SLT tag, and is measured in (� jets events.
We then evaluate the systematic uncertainty on the W �
jets background estimate by testing the predictive power of
the measured probabilities in a variety of data samples. The
W � jets background evaluation and its systematic uncer-
tainty is described in Sec. IVA. AfterW � jets production,
the next largest background is due to QCD multijet events.
The evaluation of the QCD multijet contribution also relies
on tagging probabilities measured in (� jets events.
However, we must account for the possible difference
between the tagging probabilities for the QCD events
that populate the t�t candidate sample because the E6 T often
comes from a mismeasured jet and not from a neutrino.
The evaluation of the QCD background is described in
Sec. IV B. An additional small source of background is
due to Drell-Yan events and is estimated from the data and
described in Sec. IV C. The remaining background contri-
butions are relatively small and are evaluated using Monte
Carlo samples, as described in Sec. IV D.

A. Backgrounds from W � jets

W plus jets events enter the signal sample either when
one of the jets is a b-jet or a c-jet with a semileptonic decay
to a muon, or a light quark jet is misidentified as containing
a semileptonic decay (‘‘mistagged’’). We refer to these
background events as W � heavy flavor and W �
“fakes”, respectively. W � heavy flavor events include
Wb �b, Wc �c and Wc production. One way of estimating
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these backgrounds would be to use a Monte Carlo program,
such as ALPGEN to predict the W � heavy flavor compo-
nent, and the data to predict the W � fakes (because the
data provides a more reliable measure of mistags than the
simulation). However, to avoid double-counting, this
would require an estimate of mistags that is uncontami-
nated by tags from heavy flavor. Instead we have chosen to
estimate both background components directly from the
data, and we test the accuracy of the prediction as de-
scribed below. We measure the combined W � heavy fla-
vor and W � fakes background by constructing a ‘‘tag
matrix’’ that parametrizes the probability that a taggable
track with a given PT, � and�, in a jet with ET > 15 GeV,
will satisfy the SLT tagging requirement described in
Sec. III E. The variables � and � are measured at the outer
radius of the COT with respect to the origin of the CDF II
coordinate system. The tag matrix is constructed using jets
in (� jets events with one or more jets. The tag probabil-
ity is approximately 0.7% per taggable track, and includes
tags from both fakes and heavy flavor. The tag rate as a
function of each of the matrix parameters (integrated over
the remaining two) is shown in Fig. 7. The features in the
tag rate vs � and � plots are a result of calorimeter gaps
and changes in the thickness of the absorber before the
muon chambers. The matrix is binned to take account of
these variations. The bottom right plot shows the tag rate as
the function of the jLj cut for each muon category. The tag
rate is higher for the CMP-only muons due to the smaller
amount of absorber material that results from cracks in the
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TABLE I. Number of tagged events and the background summary. The HT > 200 GeV requirement is made only for events with at
least 3 jets.

Background W � 1 jet W � 2 jets W � 3 jets W� � 4 jets W� � 3 jets

Pretag events 9117 2170 211 108 319
Fake, Wb �b, Wc �c, Wc 116:3� 11:6 40:5� 4:1 7:0� 0:7 4:3� 0:4 11:3� 1:1
WW, WZ, ZZ, Z! ,�,� 1:10� 0:17 1:33� 0:06 0:16� 0:02 0:04� 0:01 0:19� 0:02
QCD 19:6� 24:2 12:4� 3:5 0:9� 0:2 0:8� 0:2 1:6� 0:3
Drell-Yan 0:8� 0:4 0:36� 0:20 0:08� 0:09 0:00� 0:09 0:08� 0:09
Single top 0:50� 0:03 0:94� 0:06 0:15� 0:01 0:035� 0:003 0:19� 0:01

Total background 138:2� 26:8 55:5� 5:4 8:2� 0:8 5:2� 0:5 13:4� 1:3
Corrected background 9:5� 1:1 9:5� 1:1
t�t Expectation (6.7 pb) 0:4� 0:1 2:9� 0:5 5:4� 0:9 7:9� 1:7 13:3� 2:6

Total background plus t�t 138:6� 26:8 58:4� 5:4 22:8� 2:8 22:8� 2:8

Tagged events 139 48 13 7 20
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FIG. 8. The percent difference between the number of pre-
dicted and measured tags in a variety of samples for different jet
multiplicities, as marked. Jet multiplicities do not include the
trigger object (photon or jet). The three photon points contain the
events that make up the tag matrix. Their average is zero by
definition and is shown by the line centered at zero. The dashed
lines at �10% indicate the systematic uncertainty as determined
from these data.
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calorimeter where there is no coverage by the CMU
chambers.

We apply the tag matrix to all pretag events in the signal
region according to

Ntag
predicted �

X
events

"
1�

YNtrk

i�1


1� P i�

#
; (3)

where the sum runs over each event in the pretag sample,
and the product is over each taggable track in the event. P i
is the probability from the tag matrix for tagging the i-track
with parameters PTi , �i and �i. Note that the sum over the
events in Eq. (3) includes any t�t events that are in the pretag
sample. We correct for the resulting overestimate of the
background at the final stage of the cross section calcula-
tion, since the correction depends on the measured tagging
efficiency (see Sec. VII).

A fraction, FQCD, of the events in the signal region are
QCD events (such as b �b or events in which a jet fakes an
isolated lepton, see Sec. IV B) for which the background is
estimated separately. Therefore, we explicitly exclude their
contribution toNtag

predicted and obtain the predicted number of
tagged W � jets background events

NWj-tag
predicted � 
1� FQCD� � N

tag
predicted: (4)

The estimated W � fakes and W � heavy flavor back-
ground is given in the third line of Table I.

The above technique relies on the assumption that the
tagging rate in jets of the (� jets sample is a good model
for the tagging rate of the jets in W � jets events. The
assumption is plausible because the SLT tagging rate in
generic jet events is largely due to fakes. We have studied
the heavy-flavor content of the tags in the (� jets sample
using the overlap sample between SLT tags and displaced
vertex tags identified with the silicon tracker [5]. We find
that 
21:0� 1:4�% of the tags in the (� jets sample are
from heavy flavor. We have used MADEVENT [22] to do
032002
generator-level comparisons of the heavy-flavor fractions
of W � jets events with those from the ( plus jets events
that make up the tag matrix. We find that the (� jets
sample used to make the tag matrix has approximately
30% more heavy flavor than the W� � 3 jet events.
Since SLT tags in (� jets events are dominantly fakes,
this difference affects the background prediction in W �
jets events at only the few-percent level.
-11



FIG. 9 (color online). Distribution of events with � 1 jet in E6 T
vs I. Regions A,B,C are defined in the text and are used to
calculate the fraction of QCD events in region D (the signal
region) according to Eq. (5).
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Given the limitations of a generator-level, matrix ele-
ment Monte Carlo study of the heavy flavor content of the
(� jets and W � jets samples, we do not use the
MADEVENT study to evaluate the systematic uncertainty
on the background due to tagged W � jets events.
Instead we test the accuracy of the tag matrix for predicting
SLT muon tags by using it to predict the number of tags in a
variety of samples with different heavy-flavor content. We
check Z plus jets events, events triggered on a jet with ET

thresholds of 20, 50, 70 and 100 GeV (called Jet 20, Jet 50,
Jet 70 and Jet 100), or triggered on four jets and the scalar
sum of transverse energy in the detector (called SumET).
We find that the matrix predicts the observed number of
tags in each of these samples to within 10%, as shown in
Fig. 8, and we use this as the systematic uncertainty on the
prediction from the tag matrix.

B. QCD background

We refer to events with two or more jets in which the
decay of a heavy-flavor hadron produces a high-PT isolated
lepton, or in which a jet fakes such a lepton, as QCD
events. These events enter the sample when, in addition
to the high-PT isolated lepton, a muon from a heavy-flavor
decay gives an SLT tag, or there is a fake tag. We measure
this background directly from the data.

To estimate the QCD component we first use the distri-
bution of pretag events in the plane of E6 T vs isolation, I, of
the primary lepton. We populate this plane with lepton plus
jets events according to the event E6 T and I. We consider
four regions in the plane:

A: E6 T < 15 I > 0:2 B: E6 T < 15 I < 0:1

C: E6 T > 20 I > 0:2 D: E6 T > 20 I < 0:1

where region D is the t�t signal region. The distribution of
events, with one or more jets, in the E6 T vs I regions is
shown in Fig. 9.

In order to populate regions A, B and C with only QCD
events, we correct the number of events for the expected
contamination of W � jets and t�t events in those regions
using expectations from PYTHIA t�t and W Monte Carlo
simulations. The corrections range from less than 1% in
electron plus one-jet events in region A, to 
57� 15�% in
region B in muon plus three or more jet events.

Assuming that the variables E6 T and I are uncorrelated
for the QCD background, the ratio of the number of QCD
events in region A to those in region B should be the same
as the ratio of the number of QCD events in region C to
those in region D. Therefore we calculate the fraction of
QCD events in region D, FQCD, as

FQCD �
NQCD
D

ND

��������pretagged
�
NB � NC
NA � ND

��������pretagged
; (5)

where NQCD
D is the total number of pretag QCD events in
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the signal region, and Ni represent the number of events in
region i. The measured fractions are shown in Table II.

To estimate the number of tagged QCD events in the
signal region, we multiply FQCD by the tagging probability
for QCD events. However, this tagging probability is not
necessarily given by the tag matrix probabilities which are
designed for jets in W � jets events. Mismeasurement in
the jet energies and differences in kinematics between
W � jets and QCD events can affect the tagging probabil-
ities. W � jets events have E6 T from the undetected neu-
trino, whereas QCD events have E6 T primarily from jet
mismeasurement. Jet mismeasurement is correlated with
fake tags due to energy leakage from the calorimeter
through calorimeter gaps or incomplete absorption of the
hadronic shower, both of which can result in track seg-
ments in the muon chambers. W � jets events have a
primary lepton from the W decay, whereas QCD events
have a primary lepton that is either a fake or a result of a
semileptonic decay of heavy flavor. The presence of a
lepton from heavy-flavor decay typically enhances the
tag rate. Figure 10 shows the ratio of the number of
measured tags in the Jet 20 sample to the number of tags
predicted by the tag matrix as a function of E6 T . As ex-
pected, in QCD events with large E6 T we find a tag rate
significantly larger than that described by the tag matrix.

We find that the prediction of the tag matrix can be
renormalized to properly account for the tag rates in
QCD events with a single multiplicative factor, which we
call k. We measure k using events in region C by compar-
ing the number of SLT tags found to the number predicted
by the tag matrix. Since the signal region contains only
isolated (I < 0:1) primary leptons, we reject events in the
measurement of k in which the SLT tag is within �R< 0:5
of the primary lepton. After this requirement we do not find
-12



TABLE II. QCD fraction, given by Eq. (5), and the HT-averaged product of k and the QCD fraction.

Jet multiplicity 1 jet 2 jet 3 jets � 4 jets � 3 jets

Muons

FQCD 0:03� 0:002 0:039� 0:004 0:023� 0:011 0:146� 0:088 0:044� 0:016
hk� � FQCDi 0:02� 0:07 0:05� 0:51 0:01� 0:01 0:09� 0:07 0:03� 0:02

Electrons

FQCD 0:145� 0:007 0:177� 0:010 0:135� 0:032 0:163� 0:051 0:145� 0:028
hke � FQCDi 0:24� 0:31 0:41� 0:12 0:16� 0:046 0:20� 0:07 0:17� 0:04
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any dependence of k on the isolation of the primary lepton.
Figure 11 shows the ratio of measured to predicted tags in
events in region C as a function of HT. The tag rate above
HT � 200 GeV is approximately flat and is not much
different from the prediction of the tag matrix (dashed
line in Fig. 11). However, QCD events at lower HT have
a significantly different tag rate than that predicted by the
tag matrix. As shown in Fig. 12, FQCD also has an HT

dependence for events with 1 or 2 jets, but is flat within the
statistical uncertainty for three or more jets.

The number of QCD background events is calculated as

NQCD � hFQCD � ki � Ntag
predicted; (6)

where Ntag
predicted is given in Eq. (3) and the brackets repre-

sent the product of FQCD and k convoluted with the HT

distribution of QCD events from region C. In the control
region (1 and 2 jets), the fits of FQCD vs HT, shown in
Fig. 12, are convoluted with k vsHT, shown in Fig. 11. For
events with three or more jets, since there is no visible HT

dependence for either FQCD or k, we simply multiply their
average values for HT > 200 GeV. Measured values of k
times FQCD are given in Table II. The procedure by which
FQCD is determined as a function of HT is important
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FIG. 10. The ratio of the number of observed tags to tags
predicted using the tag matrix, as a function of E6 T , in events
with at least one jet with measured energy above 20 GeV.
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because the ratios between the four different regions of
the E6 T and I kinematic plane, calculated in separate ranges
of HT and then averaged, does not necessarily correspond
to the same ratios taken while integrating over the full HT

range. The uncertainties on the 1 and 2 jet events are
conservatively taken as the difference between the central
value and the result of the straight product of FQCD and k.
The straight product corresponds to ignoring the HT de-
pendence as well as any other variable’s dependence of
FQCD and k.

C. Drell-Yan background

Drell-Yan events can enter the sample when they are
produced with jets and one muon is identified as the
primary muon while the second muon is close enough to
a jet to be tagged. Residual Drell-Yan background that is
not removed by the dimuon and sequential decay rejection
described in Sec. III E, is estimated from the data. We use
events inside the Z-mass window (76–106 GeV=c2), which
are otherwise removed from the analysis by the Z-mass cut,
to measure the number of events that would pass all our
selection requirements including the SLT tag, Ntags

inside.
Because of the limited sample size of Z� jets events, we
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FIG. 11. The ratio of the observed rate of tags to that pre-
dicted, as a function of HT in region C for events with one or
more jets. The arrow at 200 GeV shows where the selection cut
for the t�t signal sample is placed.
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use Z� 0 jet events without the E6 T andHT requirements to
find the ratio of events outside the Z-mass window to those
inside the window, Rout=in

Z=(� , and a first-order estimate of the
number of expected Drell-Yan events outside of the Z-mass
window is calculated as

NDY � Ntags
inside � R

out=in
Z=(� : (7)

This estimate assumes that Rout=in
Z=(� does not depend on the

number of jets in the event. We assign a systematic uncer-
tainty of 33% for this assumption based on the largest
deviation between Rout=in

Z=(� for ALPGEN Z=(� plus zero jet
events compared with 1, 2 or � 3 jets events.

The first-order estimate is then corrected by the relative
efficiency inside and outside the Z-mass window of the E6 T ,
HT, and SLT-jet requirements, which we measure using
Z=(� � jets Monte Carlo events. The Drell-Yan back-
ground estimates are listed in the sixth line of Table I.

D. Other backgrounds

Remaining background sources are due to WW, WZ,
ZZ, Z! ,, and single top production. Diboson events can
enter the sample when there are two leptons from a Z and/
or aW decay and jets. One lepton passes the primary lepton
requirements while the second is available to pass the SLT
requirement if it is close to a jet. The E6 T in these events can
either come from a W-boson decay or from an undetected
lepton in a Z-boson decay. Z! ,, events can enter the
032002
sample when the Z is produced in association with jets and
one , decays to a high-PT isolated electron or muon, while
the second , produces an SLT muon in its decay.
Electroweak single top production gives rise to an event
signature nearly identical to t�t when there are additional
jets from gluon radiation.

None of the above background sources are completely
accounted for by the application of the tag matrix to the
pretag event sample because these backgrounds have a
significant source of muons from, for instance, W and Z
decay. Therefore, we independently estimate their contri-
butions to the background using Monte Carlo samples
normalized to the cross sections referenced in Table III.
In modeling the SLT tagging of such events in the Monte
Carlo samples, we explicitly exclude the mistag contribu-
tion which is taken into account in the application of the
tag matrix to the pretag sample. The background for each
source is estimated as

Ni � �i � Ai � 1tag;i �
Z

Ldt; (8)
where �i is the theoretical cross section for the particular
background source, Ai is the acceptance for passing the
pretag event selection, 1tag;i is the SLT tagging efficiency
and

R
Ldt is the integrated luminosity of the overall data

sample. The expected background contributions are
shown, as a function of jet multiplicity, in Table III.
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TABLE III. Summary of the expected number of background events for those sources derived from Monte Carlo simulations, and the
cross sections used in Eq. (8). The quoted uncertainties come from the respective Monte Carlo sample sizes and the uncertainty on the
theoretical cross sections.

1 jet 2 jets 3 jets � 4 jets � 3 jets

WW [23] 0:64� 0:15 0:99� 0:18 0:12� 0:07 0:029� 0:033 0:15� 0:08
WZ [23] 0:11� 0:07 0:22� 0:09 0:03� 0:04 0:003� 0:006 0:03� 0:04
ZZ [23] 0:013� 0:010 0:025� 0:015 0:007� 0:007 0:004� 0:004 0:010� 0:010
Z! ,�,� [24] 0:34� 0:16 0:10� 0:05 0:006� 0:003 0:002� 0:001 0:008� 0:004
Single top [25] 0:50� 0:03 0:94� 0:06 0:15� 0:01 0:035� 0:003 0:19� 0:01

TABLE IV. Acceptance for t�t events as a function of jet multiplicity from PYTHIA Monte Carlo sample, corrected for the data=MC
ratio for tight lepton ID efficiencies and the primary lepton trigger efficiency. The uncertainties listed are statistical only.

W � 1 jet W � 2 jets W � 3 jets W� � 4 jets W� � 3 jets

W ! e� (%) 0:204� 0:005 1:05� 0:01 1:79� 0:02 2:27� 0:02 4:06� 0:02
W ! �� (CMUP) (%) 0:095� 0:003 0:501� 0:007 0:861� 0:007 1:12� 0:01 1:98� 0:01
W ! �� (CMX) (%) 0:045� 0:002 0:235� 0:006 0:388� 0:007 0:507� 0:008 0:90� 0:01
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V. TOTAL t �t ACCEPTANCE

We factorize the efficiency for identifying t�t events into
the geometric times kinematic acceptance and the SLT
tagging efficiency. The acceptance includes all the cuts
described in Secs. III C as well as the invariant mass cut
described in Sec. III E, and is evaluated assuming a top
mass of 175 GeV=c2. The tagging efficiency is the effi-
ciency for SLT tagging at least one jet in events that pass
the geometric and kinematic selection. We describe each
piece below.

A. Geometric and kinematic acceptance

The acceptance is measured in a combination of data
and Monte Carlo simulations. Simulations are done using
the PYTHIA Monte Carlo program [13]. The primary lepton
identification efficiency is measured in Z-boson decays
acquired with a trigger that requires a single high-PT

electron or muon. The efficiency is measured using the
lepton from the Z-boson decay that is unbiased by the
trigger, and the identification efficiency in the Monte
Carlo sample is scaled to that measured in the data [6].
The acceptance, as a function of the number of identified
jets above 15 GeV, is shown in Table IV. These numbers
include the measured efficiencies of the high-PT lepton
triggers.

B. SLT efficiency

The efficiency for the reconstruction of the COT track is
taken directly from Monte Carlo simulation. The recon-
struction efficiencies of muon chamber track segments are
also taken from the simulation and scaled to the values
measured in the data using the lepton in Z-boson decays
unbiased by the trigger. The muon identification efficiency
of the SLT algorithm is measured in data using J= and Z
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decays. We use events acquired with triggers that demand a
single muon, and use only the muon not biased by the
trigger. The efficiency is defined as the ratio of muons that
satisfy the SLT tagging requirement over the number of
taggable tracks attached to track segments in the muon
chambers. In the calculation of the efficiency a background
linear in invariant mass is subtracted from the J= and Z
peaks. The measured efficiency vs PT is shown in Fig. 13
for muons with j�j< 0:6 (CMU and/or CMP) and for
muons with 0:6 � j�j � 1:0 (CMX). The decrease in ef-
ficiency with increasing PT is a result of non-Gaussian tails
in the components of L.

Since the efficiency measurement is dominated by iso-
lated muons, whereas the muons in b-jets tend to be
surrounded by other tracks, we have studied the depen-
dence of the efficiency on the number of tracks, Ntrk, above
1 GeV=c in a cone of �R � 0:4 around the muon track.
We find no significant efficiency loss, although the preci-
sion of the measurement is poor near Ntrk � 6, the mean
expected in t�t events. We include a systematic uncertainty
to account for this by fitting the efficiency vsNtrk to a linear
function and evaluating this function at the mean Ntrk

expected in t�t events. The systematic uncertainty on the
efficiency for at least one SLT tag in a t�t event from this
effect is �0%, �8%.

The detector simulation does not properly reproduce the
non-Gaussian tails of the muon matching distributions.
Therefore the measured efficiencies, shown in Fig. 13,
are applied directly to a generated muon in the Monte
Carlo sample when evaluating the efficiency for tagging
a t�t event. This accounts for tagging of semileptonic heavy-
flavor decays in t�t events (including charm decays from
W ! c�s). Events from t�t can also be mistagged when a tag
results from a fake muon or a decay-in-flight. We account
for this effect in the tagging efficiency evaluation by al-
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lowing events that are not tagged by muons from heavy-
flavor decays to be tagged by other charged tracks using the
tagging probabilities from the tag matrix, as described in
Sec. IV. Since the heavy-flavor component of the tagging
efficiency has already been accounted for, the generic-
track tagging probabilities are corrected downwards for
the measured 21% heavy-flavor component of the tag
matrix (Sec. IVA). The overall efficiency for finding one
or more SLT tags in a t�t event (‘‘tagging efficiency’’) is
shown in Table V. Mistags account for approximately 25%
of the t�t tagging efficiency. Because a small portion of the
integrated luminosity was accumulated before the CMX
was fully functional, we break the efficiency into pieces
with and without the CMX. This is taken into account in
the final cross section denominator. The total t�t detection
efficiency is the product of the acceptance and the tagging
efficiency.

As noted above, the SLT efficiency has been parame-
trized using muons that tend to be isolated from other
activity. To further check that this efficiency measurement
is representative of muons in or near jets, we use a high-
purity b �b sample, derived from events triggered on 8 GeV
electrons or muons. These events are enriched in semi-
leptonic b-hadron decays. To select this sample, we require
that the events have two jets above 15 GeV. One jet must be
TABLE V. t�t event tagging efficiency for SLT muons as a fu
Uncertainties are statistical only.

W � 1 jet W � 2 jets

W ! e� w/CMX (%) 9:5� 0:8 13:1� 0:4
W ! e� w/o CMX (%) 6:7� 0:7 10:3� 0:4

W ! �� w/CMX (%) 7:2� 0:8 12:3� 0:5
W ! �� w/o CMX (%) 5:0� 0:8 9:6� 0:5
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within �R � 0:4 of the primary electron or muon (the
‘‘lepton jet’’). For jets associated with muons, the energy
is corrected to account for the muon PT. The second jet (the
‘‘away jet’’) in the event is chosen as the jet above 15 GeV
with maximum separation in azimuth ( � 2 rad) from the
lepton jet. Both jets are required to have a secondary vertex
reconstructed and tagged by the SecVtx algorithm [5]
(‘‘SecVtx-tagged’’). This results in a b �b sample with a
purity of approximately 95% [26]. We measure the SLT
acceptance times efficiency for semileptonic decays to
muons in the away jet in a HERWIG dijet Monte Carlo
sample. Monte Carlo events are subject to the same event
selection, as described above, used for the b �b data sample.
The efficiency parametrization measured from the data is
applied in the same way as in the t�t Monte Carlo sample.
The derived efficiency times acceptance per b-jet is applied
to the data to predict the number of SLT tags in the away
jet. There are 7726 SecVtx-tagged away jets in which the
lepton jet is from a muon and 2233 in which it is from an
electron. In these events we predict 388� 54 tags in the
away jet opposite a muon jet and 116� 17 tags in the away
jet opposite an electron jet. We find 353 and 106, respec-
tively. We conclude that the efficiency for SLT tagging
muons from semileptonic decays of heavy flavor in jets is
well modeled by our simulation.
nction of jet multiplicity from PYTHIA Monte Carlo sample.

W � 3 jets W� � 4 jets W� � 3 jets

14:7� 0:3 15:9� 0:3 15:4� 0:2
11:5� 0:3 12:4� 0:3 12:0� 0:2

13:3� 0:3 16:1� 0:3 14:9� 0:2
10:3� 0:4 12:8� 0:3 11:7� 0:3
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VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties in this analysis come from un-
certainties in the Monte Carlo modeling of the acceptance,
knowledge of the SLT tagging efficiency, the effect on the
acceptance of the uncertainty on the jet energy calibration,
uncertainties on the background predictions, and the un-
certainty on the luminosity.

Uncertainties in the Monte Carlo modeling of accep-
tance include effects of parton distribution functions
(PDFs), initial-state radiation (ISR), final-state radiation
(FSR), and the calibration of the measured jet energy.
These are estimated by comparing different choices for
PDFs, varying ISR, FSR and the jet energy in the Monte
Carlo programs and comparing the results from the PYTHIA

generator with those from HERWIG. A complete description
of the evaluation of these uncertainties appears in [6]. The
total systematic uncertainty on the acceptance due to these
factors is �6:1%. Possible variations of the lepton ID
efficiency in events with multiple jets are an additional
source of systematic uncertainty on the acceptance. We use
a data to Monte Carlo scale factor for the lepton ID
efficiency that is taken from Z! ee and Z! �� data
and Monte Carlo samples. These samples contain predomi-
nantly events with no jets. A 5% systematic uncertainty on
the scale factor is estimated by convoluting the scale factor
itself, measured as a function of �R between the lepton and
the nearest jet, with the �R distribution of leptons in � 3
jet t�t events [6]. Adding the uncertainties in quadrature
gives a total Monte Carlo modeling systematic uncertainty
on the acceptance of �8:0%.

There are several factors that contribute to the system-
atic uncertainty on the SLT tagging efficiency. The uncer-
tainty due to our knowledge of the PT dependence is
determined by varying the efficiency curves used in the t�t
Monte Carlo sample according to the upper and lower
bands in Fig. 13. We find that the tagging efficiency for
t�t changes by �1% from its central value. An additional
source of systematic uncertainty for the tagging efficiency
comes from the fact that we implicitly use the Monte Carlo
tracking efficiency for taggable tracks. As these tracks can
TABLE VI. Summary of systematic uncertain
section value assumes the cross section calculated

Source Fracti

Acceptance modeling

SLT tagging efficiency
Tag matrix prediction
QCD prediction
Drell-Yan and other MC backgrounds
Luminosity

Total systematic uncertainty
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be in dense environments in or near jets, we expect the
efficiency to be somewhat less than for isolated tracks.
Studies done by embedding Monte Carlo tracks in jets in
both data and Monte Carlo events indicate that the Monte
Carlo tracking efficiency in dense environments is a few
percent higher than in data. We assign a �5% systematic
uncertainty to the tagging efficiency for this effect. As
described in Sec. V B the systematic uncertainty due to
the modeling of the isolation dependence of the tagging
efficiency is �0%, �8%. Finally, the statistical uncertainty
on the measurement of the SLT tagging efficiency in t�t
events, differences between PYTHIA and HERWIG, the un-
certainty on the semileptonic branching fraction for B
mesons and the estimation of the heavy-flavor content of
the mistag matrix also contribute to the systematic uncer-
tainties. Adding these contributions in quadrature gives an
overall systematic uncertainty for the tagging efficiency of
�8%, �11%. Note that the uncertainty on the tagging
efficiency affects also the backgrounds determination.
The reason is that t�t events need to be subtracted from
the pretag sample which is used in Eq. (3) to determine the
W � jets background. We take this effect into account
when calculating the uncertainty on the cross section.

Uncertainties on the tag matrix are determined by the
level of agreement between observed tags and predictions
in a variety of samples, as described in Sec. IV. The
uncertainty on the W � fakes and Wb �b�Wc �c�Wc pre-
diction is �10%.

To determine the uncertainties on the QCD background
prediction in events with three or more jets, we define a
control sample from the E6 T vs lepton isolation plane,
where the primary lepton isolation parameter I is between
0.1 and 0.2 and the event has E6 T > 20 GeV. After subtract-
ing expected contributions from W and t�t events, all events
in this region are expected to be QCD. We determine the
systematic uncertainty on the QCD background using the
ratio of the observed over predicted number of events in
this control region, which should be 1.0. In the sample
where the primary lepton is a muon, we measure 0:5� 0:4.
In the sample where the primary lepton is an electron, we
measure 0:8� 0:2. A 50% systematic uncertainty is as-
ties. The shift ��t�t of the measured cross
in Sec. VII.

onal system uncertainty (%) ��t�t (pb)
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signed to the FQCD measurement for muons and 20% for
electrons. We combine this with the statistical uncertainty
on FQCD, the uncertainty on the correction factor k, both
given in Table II and the 10% systematic uncertainty due to
the application of the tag matrix. The total QCD back-
ground uncertainty is �67% and �19% for muons and
electrons, respectively. These values are determined taking
into account the correlation between the estimate of the
QCD background and the estimate of the W � fakes and
W � heavy flavor backgrounds [Eqs. (4) and (6)]. We add
in quadrature the separate effects on the cross section of the
QCD uncertainties for electrons and muons.

The systematic uncertainty on the small Drell-Yan back-
ground is dominated by its statistical uncertainty. We also
include a 33% relative uncertainty to account for changes
in the shape of the Drell-Yan spectrum with the number of
jets in the event, as described in Sec. IV C. Uncertainties on
the Monte Carlo background predictions come from un-
certainties in the cross sections for the various processes
and from the event sizes of the Monte Carlo samples.

The systematic uncertainties and the corresponding shift
of the measured cross section value are summarized in
Table VI.
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FIG. 15. Comparison of the jet ET distributions for tagged
events and for expectations from fakes, QCD and t�t events.
The upper plot is for W � 1 and 2 jet events and the lower
plot for W� � 3 jet events.
VII. RESULTS

Table I shows a summary of the background estimates
and the number of SLT tagged events as a function of the
number of jets. A ‘‘tagged event’’ is an event with at least
one tagged jet. The total background and the t�t expectation
are also listed. The line labeled ‘‘Corrected background’’
corresponds to the background after correcting for the t�t
content of the pretag sample, as described in Sec. IVA.

We calculate the cross section as

�t�t �
Nobs � Nbgnd

At�t �
R
Ldt

; (9)

where Nobs is the number of events with � 3 jets that are
tagged with at least 1 SLT, Nbgnd is the corrected back-
ground and At�t is the total acceptance (geometrical accep-
tance times kinematic acceptance times tagging
efficiency), taken from Tables IV and V. For events with
three or more jets, the total denominator is 1:98�
0:28 pb�1.

From the number of candidate events with three or more
jets, we find a total t�t production cross section of

�
p �p! t�t� � 5:3� 3:3�1:3
�1:0 pb;

where the first uncertainty is statistical and the second is
systematic. This cross section value uses acceptances and
tagging efficiencies appropriate for a top mass of
175 GeV=c2. The acceptances and efficiencies, and there-
fore the calculated cross section, change slightly for other
032002
assumed top masses. The calculated cross section is 1%
higher assuming a top mass of 170 GeV=c2, and 5% lower
assuming a top mass of 180 GeV=c2.
-18
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FIG. 17. The impact parameter (d0) significance for tagged
events, compared with expectations from backgrounds plus t�t.
The upper plot is for W � 1 and 2 jet events and the lower plot
for W� � 3 jet events.

 [GeV/c] TTagged SLT  P
0 5 10 15 20 25 30 35 40

N
um

be
r 

of
 ta

gg
ed

 S
LT

 / 
2 

G
eV

/c

0

10

20

30

40

50

60

70

 [GeV/c] TTagged SLT  P
0 5 10 15 20 25 30 35 40

N
um

be
r 

of
 ta

gg
ed

 S
LT

 / 
2 

G
eV

/c

0

10

20

30

40

50

60

70
,Wcc,WcbFake,Wb

QCD
Other backgrounds

 = 5.3 pb
tt

σ scaled to tt

 uncertaintiestBackground+t
-1

 11 pb±Data L = 194 

W + 1,2 jets

O
ve

rf
lo

w
 B

in

 [GeV/c] TTagged SLT P
0 5 10 15 20 25 30 35 40

N
um

be
r 

of
 ta

gg
ed

 S
LT

 / 
2 

G
eV

/c

0

1

2

3

4

5

6

7

8

 [GeV/c] TTagged SLT P
0 5 10 15 20 25 30 35 40

N
um

be
r 

of
 ta

gg
ed

 S
LT

 / 
2 

G
eV

/c

0

1

2

3

4

5

6

7

8  = 5.3 pb
tt

σ scaled to tt

,Wcc,WcbFake,Wb
QCD
Other backgrounds

 uncertaintiestBackground+t
-1

 11 pb±Data L = 194 

 3 jets≥W + 

O
ve

rf
lo

w
 B

in

FIG. 16. PT of the SLT tags. The upper plot is for W � 1 and 2
jet events and the lower plot for W� � 3 jet events.
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Figure 14 shows the number of tags in W � 1; 2; 3;� 4
jet events together with the histograms representing the
total corrected background with and without the t�t signal
expectation, based on the theoretical cross section of 6.7 pb
for Mtop � 175 GeV=c2.

We examine a number of kinematic distributions of the
tagged events and compare with expectations based on the
measured signal plus background. Figure 15 shows the ET

distribution of the tagged jets in W � 1 and 2 jets (com-
bined), and in the signal region of W plus three or more
jets. The W � 1 and 2 jet data-Monte Carlo comparison
has a Kolmogorov-Smirnov test (KS) probability of 41%,
and the three or more jet comparison has a KS probability
of 82%.

Figure 16 compares the PT distribution of muons iden-
tified as SLT tags with expectations from t�t plus back-
grounds. The KS probabilities are 6% for W � 1 and 2 jet
comparison and 5% for the three or more jet comparison.

Finally, Fig. 17 shows the impact parameter signifi-
cance, defined as the impact parameter divided by its
uncertainty, for the SLT tracks and the expectation from
signal plus background. The sign of the impact parameter
032002
is defined according to whether the track trajectory crosses
the jet axis in front of or behind the event primary vertex.
The long-lived component from semileptonic b-hadron
decays is readily apparent in the shape of the positive
impact parameter distribution. The KS probabilities are
12% forW � 1 and 2 jet comparison and 23% for the three
or more jet comparison. (Note that Figs. 15–17 contain 21
entries since one of the events has two jets tagged with
SLT.)

VIII. CONCLUSIONS

We have measured the total cross section for t�t produc-
tion through the decay of top pairs into an electron or muon
plus multiple jets. We separate signal from background by
identifying semileptonic decays of b hadrons into muons.
The measured t�t production cross section is 5:3�
3:3�1:3

�1:0 pb, consistent with the expectation of 6.7 pb for
standard model production and decay of top quark pairs
with a mass of 175 GeV=c2. Distributions of Jet ET and
impact parameter significance for the tagged events, and
-19
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the distributions of the PT of the tags, are also consistent
with standard model expectations.

The sensitivity of this analysis to test nonstandard model
t�t production or decay mechanisms is limited by the sta-
tistical uncertainty. The combination of this measurement
with other CDF II measurements [8] will yield a signifi-
cantly more precise value. Future measurements with the
full run II data set of 4–8 fb�1 will provide further factors
of approximately four to six in statistical precision. At the
same time, significantly larger data sets will provide ave-
nues for reduction of the systematic uncertainties through
such things as better understanding of the tag rate in W �
jets events and direct measurement of the tagging effi-
ciency for semileptonic b-hadron decays.
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