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The process of equilibration in ’4 theory is investigated for a homogeneous system in 3� 1 dimensions
and a variety of out-of-equilibrium initial conditions, both in the symmetric and broken phase, by means
of the 2PI effective action. Two �-derivable approximations including scattering effects are used: the two-
loop and the basketball, the latter corresponding to the truncation of the 2PI effective action at O��2�. The
approach to equilibrium, as well as the kinetic and chemical equilibration is investigated.
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I. INTRODUCTION

The approach to equilibrium is an important aspect of
nonequilibrium dynamics. In the context of particle phys-
ics, a large part of the interest derives from results of
heavy-ion collision experiments with the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven. The hydrody-
namic description of the experiments suggests that there is
early thermalization [1], but a short thermalization time
seems to contradict traditional perturbative estimates [2,3].
This puzzle has been analyzed in terms of prethermaliza-
tion [4], and led to further study of the microscopic dy-
namical processes responsible for the equilibration of the
quark-gluon plasma [5–8]. Understanding the dynamical
processes leading to equilibration in theories with simpler
interactions may also shed some light on this issue. We
focus in this paper on the case of scalar ’4 theory.

An adequate method to study out-of-equilibrium dy-
namics from first principles is the closed-time-path formal-
ism [9–12]. This scheme leads to causal equations of
motion for the various correlation functions that describe
their time evolution. The initial conditions are specified by
a density matrix, which can be far from equilibrium. Most
applications of this method have focused on the study of
the equations of motion for the 1- and 2-point functions,
known as the Kadanoff-Baym equations [13]. Close
enough to equilibrium, where kinetic theory is applicable,
the Kadanoff-Baym equations have been used extensively,
mostly in connection with the study of transport phe-
nomena and the derivation of effective Boltzmann equa-
tions (see, for instance [14–19], and references therein).

Far from equilibrium, kinetic theory is no longer valid,
and simple perturbation theory approaches fail to work due
to the appearance of secular terms (see for instance [20])
and/or pinch singularities [21]. These problems are usually
absent if one makes use of a self-consistent method, such
as the Hartree approximation. Unfortunately, real-time
Hartree descriptions do not include sufficient scattering
between the field modes, and thus fail to describe the
approach to equilibrium. They are also not ‘‘universal,’’
in the sense that the memory from the initial configuration
05=72(2)=025014(22)$23.00 025014
is not completely lost [22]. An infinite number of con-
served charges appear that prevent the system from reach-
ing a universal equilibrium state, independently of the
initial conditions. However, a Hartree ensemble approxi-
mation has been formulated to give an improved descrip-
tion of the early approach to equilibrium [23,24].

When the particle occupation numbers are large, another
useful method far from equilibrium is the classical ap-
proximation. Interesting situations where this occurs in-
clude preheating after cosmological inflation due to
parametric resonance [25–28] or spinodal decomposition,
[25,29–33] as well as the early stages of a heavy-ion
collision [34–37], where the gluon occupation numbers
are as large as �1=�s, up to a saturation scale [2,38]. The
classical approximation is not good for describing quantum
equilibration, since the system does not move towards the
quantum, but to the classical equilibrium state. Never-
theless, the classical theory has been used to shed some
light on the dynamics of equilibration and relaxation
[32,39–42], as well as a test ground for comparison with
various other approximation schemes [22,33,43,44].

A powerful scheme that takes into account both scatter-
ing and quantum effects is the two-particle irreducible
(2PI) effective action [16,45,46]. The 2PI effective action
furnishes a complete representation of the theory in terms
of the dressed 1- and 2- point functions. The exact equa-
tions of motion describing the time evolution of these
correlation functions are obtained by a variational principle
on the 2PI effective action functional. Various approxima-
tions to the equations of motion can be obtained if one
applies the variational method to a truncated version of the
action. By construction, these are self-consistent and thus
free of secular problems. The approximation can be im-
proved, in principle, by truncating the 2PI effective action
at higher order in some expansion parameter.

The main advantages of the 2PI effective action ap-
proach stem from the fact that the approximations are
performed on the level of a functional. For that reason
the approximations have also been called Functional-
derivable, or �-derivable. The 2PI effective action func-
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FIG. 1. Schwinger-Keldysh contour.
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tional (and any truncation thereof) is, by construction,
invariant under global transformations of the 1- and 2-point
functions. The variational procedure on any truncation
guarantees that the global symmetries are still preserved
by the equations of motion. Their associated Noether
currents are thus conserved. In particular, this implies
that the derived equations of motion conserve energy, as
well as global charges [47–49]. This is a very important
feature when studying out-of-equilibrium processes,
where most other quantities evolve in complicated ways.
The �-derivable approximations to the 2PI effective action
constitute thus a very convenient method for studying
equilibration.

In recent years, approximations based on the 2PI effec-
tive action have been applied successfully to the study of
nonequilibrium real-time dynamics. In the context of sca-
lar theories, studies of equilibration have been carried out
in the 3-loop �-derivable approximation for ’4 theory, in
the symmetric phase, both in 1� 1 [46,50] and 2� 1
dimensions [51]. In the broken phase, the case of 1� 1
dimensions has also been discussed in [52,53]. Similar
studies of thermalization have been performed in the
O�N� model in 1� 1 dimensions, both at next-to-leading
(NLO) order in a 1=N expansion [54,55], and in the bare
vertex approximation [52,53,56]. All these analyses, which
include scattering, show that the system indeed equili-
brates, with the equilibrium state independent of the initial
conditions. Comparing with the loop expansion, the 1=N
expansion has the advantage that it is applicable in situ-
ations where large particle numbers are generated. This has
allowed the study of interesting phenomena, such as para-
metric resonance [57] or spinodal decomposition during a
phase transition [33]. The studies in [33,57] were done for
the O�N� model at NLO, in 3� 1 dimensions. Methods
based on the 2PI effective action have also been applied to
theories with fermions, in 3� 1 dimensions [4,58]. The
extension of the 2PI effective action methods for gauge
theories, however, is not straightforward due to a residual
dependence on the choice of gauge condition [59–62].

In this paper, we use the loop expansion of the 2PI
effective action to study the approach to equilibrium for
the case of a real scalar ’4 theory in 3� 1 dimensions,
both in the symmetric and broken phase, complementing in
this manner the investigations in [46,51,53].
II. 2PI LOOP EXPANSION OF ’4 THEORY

For ’4 theory we write the action as

S�’� �
Z
C
d4x

�
1

2
@�’�x�@�’�x��

1

2
m2’�x�2 �

�
4!
’�x�4

�
:

(1)

The subscript C indicates that the integrations are per-
formed along the real-time Schwinger-Keldysh contour,
running from an initial time t0 to time t along C� and
025014
going back to t0 along C� (see Fig. 1). The formulation of
the theory along the real-time contour C is appropriate for
studying nonequilibrium problems [12,15,63].

The system can be in two distinct phases: the symmetric
phase (the vacuum field expectation value v is v � 0)
which occurs for m2 > 0, and the broken phase (v � 0)
for m2 < 0. At tree level, the vacuum expectation value in

the broken phase is given by vtree �
�����������������
6jm2j=�

p
.

The complete information about the theory can be writ-
ten in terms of the 2PI effective action, which depends
explicitly on the full connected 1- and 2-point functions
��x� 
 h’�x�i and G�x; y� 
 hTC’�x�’�y�i ���x���y�.
For scalar �’4 theory, the 2PI effective action functional
can be written as [45]

���;G� � S��� �
i
2
Tr lnG�

i
2
Tr��G�1

0 �G�1�  G�

����;G�; (2)

with

iG�1
0 �x; y� �

�2S���
���x����y�

�

�
�@2x �m2 �

�
2
��x�2

�
�C�x; y�: (3)

The contour delta function �C�x; y� is given by

�C�x; y� �

8><>:
1 if x � y and x; y 2 C�;
�1 if x � y and x; y 2 C�;
0 otherwise:

(4)

The functional � comprises the sum of the closed two-
particle-irreducible (2PI) skeleton diagrams. Up to three
loops it is given by

iΦ[φ, G] =
1
8

+
1

12
+

1
48

+
1
24

+
1
24

.

(5)

The Feynman rules for these diagrams are given by

= − iλ,
x y

= G(x , y),
x

= φ(x ). (6)

In this manner, the functional ���;G� is
-2



TABLE I. Truncations of the 2PI effective action.

Truncation Order i�tr��;G�

Hartree approximation O��� 1
8

Two-loop approximation 2 loops 1
8 + 1

12

Basketball approximation O��2� 1
8 + 1

12 + 1
48

1Our convention for the self-energy � is that it appears,
formally, as a positive contribution to the mass. In particular,
it is given in terms of the self-energy �B used in [54] by
� � i�B.
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���;G� � �
�
8

Z
C
d4xG�x; x�2 � i

�2

12

Z
C
d4x

�
Z
C
d4y��x�G�x; y�3��y� � i

�2

48

Z
C
d4x

�
Z
C
d4yG�x; y�4 � . . . (7)

The 2PI effective action ���;G� provides an exact repre-
sentation of the full theory. Considering only a finite
number of terms in the series of diagrams in � leads to a
truncated action, from which approximate ‘‘physical’’ 1-
and 2-point functions can be obtained by a variational
procedure. As a result of this, a resummation of effects
from higher orders in perturbation theory is performed.

In this paper we shall investigate the truncations of the
2PI effective action up to three loops, in particular, up to
O��2�. The various truncations considered and their cor-
responding truncated functionals �tr are displayed in
Table I. The organization of the truncations discussed is
based on the superficial counting of loops and/or vertices in
the diagrams of �, i.e. no assumption is taken on the
coupling constant dependence of � or G.

In our analysis using the three-loop ‘‘basketball approxi-
mation’’ we have neglected the other three-loop diagrams

These diagrams are, respectively, of superficial order
O��3�2� and O��4�4�. In the symmetric phase, where
�� 0, they can be safely neglected. In the broken phase,
however, �� vtree �O���1=2� and thus both diagrams
become O��2�. In this situation it is not clear whether these
contributions can be ignored. Because of the difficulty in
treating the above diagrams numerically, we decided to
neglect them in our analysis. Part of the first diagram in (8)
can be recovered at NLO in a 1=N expansion [55].

III. EQUATIONS OF MOTION

In the formulation on the real-time contour C, a
�-derivable approximation to the 2PI effective action �
025014
leads to equations of motion for the 1- and 2-point func-
tions. Indeed, solving the stationary point conditions

����;G�
��

� 0;
����;G�
�G

� 0; (9)

leads to the equation for the mean field

�S���
���x�

�
1

2
�G�x; x���x� � �

����;G�
���x�

; (10)

and for the 2-point function

�C�x; y� �
Z
C
d4zG�1

0 �x; z�G�z; y�

� i
Z
C
d4z��x; z�G�z; y�: (11)

The self-energy ��x; y� is given, in terms of the functional
�, by1

��x; y� � �2
����;G�
�G�y; x�

: (12)

To the order considered here, the self-energy � is deter-
mined from the truncated functional �tr��;G�. To O��2�
one finds

For the case of the Hartree approximation (see Table I),
only the first diagram in (13) (the ‘‘leaf’’ diagram) enters in
�. For the case of the two-loop and ‘‘basketball’’ approx-
imations, respectively, the second and third diagrams in
(13) (the ‘‘eye’’ and the ‘‘sunset’’) have to be taken into
account. For the study of nonequilibrium dynamics these
are important diagrams as they account for scattering and
hence can lead to equilibration.

The self-energy can be split up into a local and a non-
local part,
-3
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��x; y� � �l�x��C�x; y� ��nl�x; y�; (14)

with

�l�x� �
�
2
G�x; x�; (15)

�nl�x; y� � �i
�2

2
��x�G�x; y�2��y� � i

�2

6
G�x; y�3: (16)

The quantities entering in the equations of motion (10) and
(11) are defined in the real-time contour C. For the non-
local quantities, such as G�x; y� and �nl�x; y�, this implies
the appearance of several components, corresponding to
the various positions of the time indices along the contour.
For G�x; y�, the various contour components are written in
a compact manner by using the decomposition in terms of
the correlators G>�x; y� 
 h’�x�’�y�i and G<�x; y� 

h’�y�’�x�i, namely

G�x; y� � �C�x0 � y0�G>�x; y� ��C�y0 � x0�G<�x; y�:

(17)

The � functions used here are defined along the contour C.
A similar decomposition can be written for the self-energy
�nl�x; y�, i.e.

�nl�x; y� � �C�x0 � y0��>�x; y� ��C�y0 � x0��<�x; y�:

(18)

From (17) we see that the dynamics of the propagator is
entirely described by the two complex functions G> and
G<. For the real scalar theory under consideration, these
functions satisfy the property �G>�x; y��? � G<�x; y�,
which leaves only one independent complex function de-
scribing the propagator dynamics. This can be parame-
trized in terms of two real functions F and � according to

G>�x; y� � F�x; y� �
i
2
��x; y�; (19)

G<�x; y� � F�x; y� �
i
2
��x; y�: (20)

The functions F and � correspond to the correlators

F�x; y� �
1

2
�G>�x; y� �G<�x; y�� �

1

2
hf’�x�; ’�y�gi;

(21)

��x; y� � iG>�x; y� � iG<�x; y� � ih�’�x�; ’�y��i: (22)

The correlators F�x; y� and ��x; y� contain, respectively,
statistical and spectral information about the system. They
satisfy the symmetry properties

F�x; y� � F�y; x�; (23)

��x; y� � ���y; x�; (24)
025014
which make them very useful for numerical implementa-
tion [50].

For the self-energy we introduce, in a similar fashion,
the quantities

�F�x; y� �
i
2
��>�x; y� � �<�x; y��; (25)

���x; y� � �<�x; y� � �>�x; y�; (26)

which satisfy similar properties as their propagator coun-
terparts. For the case of the nonlocal part of the self-energy
given by (16), these become

�F�x; y� �
�2

2
��x���y�

�
F2�x; y� �

�2�x; y�
4

�
�
�2

6
F�x; y�

�
F2�x; y� �

3�2�x; y�
4

�
; (27)

���x; y� � �2��x���y��F�x; y���x; y�� �
�2

6
��x; y�

�

�
3F2�x; y� �

�2�x; y�
4

�
: (28)

In the study presented here, we shall focus on the
dynamics of the statistical and spectral correlators F and
�. Their equations of motion are determined from (11) by
using the decompositions (17) and (18), as well as the
definitions (21) and (22). For the case x0 > y0, one finds

�@2x �M
2�x��F�x; y� �

Z x0
0
dz0

Z
d3z���x; z�F�z; y�

�
Z y0
0
dz0

Z
d3z�F�x; z���y; z�;

(29)

�@2x �M2�x����x; y� �
Z x0
y0
dz0

Z
d3z���x; z���z; y�;

(30)

with

M2�x� � m2 �
�
2
��x�2 � �l�x�

� m2 �
�
2
��x�2 �

�
2
F�x; x�: (31)

With the same considerations as for the 2-point functions,
the equation of motion of the mean field��x� is found from
(10) to be �

@2x �M
2�x� �

�
3
��x�2

�
hi��x�

�
Z x0
0
dz0

Z
d3ze���x; z���z�; (32)

where e���x; z� is the � component of the sunset self-
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energy diagram, given by

e� ��x; z� � �
�2

6
��x; z�

�
3F�x; z�2 �

��x; z�2

4

�
: (33)

This contribution derives from including the second of the
2PI diagrams in � [see Eq. (5)]. Therefore it is present in
both the two-loop and basketball approximations. The tilde
in ~� is written to avoid any confusion with the self-energy
� entering in the equations of motion for the propagator. In
that case, the sunset diagram enters in the self-energy �
only in the basketball approximation.

With the self-energies �F, �� and e�� given, respec-
tively, by (27), (28), and (33), Eqs. (29)–(32) constitute a
set of closed coupled evolution equations for the correla-
tors F and � and the mean field �. These equations are
explicitly causal, i.e. the evolution of F, � and � is
determined by the values of the correlators and mean fields
at previous times. The driving terms in the right-hand side
(rhs) of those equations consist of nonlocal ‘‘memory’’
integrals that contain the information about the earlier
stages of the evolution. By specifying a complete set of
initial conditions for F, � and �, the equations of motion
025014
(29)–(32) constitute an initial value problem. We perform a
numerical analysis of the equations of motion in the next
section.

We finish this section with the calculation of the energy
density corresponding to the truncations of the 2PI effec-
tive action. The energy density is determined from the
energy-momentum tensor component T00. It takes the
form (see Appendix A)

T00�x; t� �
1

2
�@t@t0 � @x@x0 �m2��F�x; t;x0; t0�

���x; t���x; t0��
x�x0
t�t0

�
1

4!
���x; t�4

�
1

4
���x; t�2F�x; t;x; t� � i

��
�"�x�

"�1
:

(34)

Here "�x� is an auxiliary scale factor introduced in the
coupling constant as �! "�x��. For a given truncation,
the energy density is obtained from (34) by the substitution
� ! �tr. In the basketball approximation, for instance, the
energy density becomes
T00�x; t� �
1

2
�@t��x; t��2 �

1

2
�@x��x; t�  @x��x; t��2 �

1

2
@t@t0F�x; t;x; t0�jt�t0 �

1

2
@x  @yF�x; t;x; t�jx�y

�
1

2
m2��2�x; t� � F�x; t;x; t�� �

1

4!
���x; t�4 �

1

4
�F�x; t;x; t���x; t�2 �

1

8
�F�x; t;x; t�2

�
�2

6

Z t
0
dz0

Z
d3z��x; t�

�
��x; t; z; z0�3

4
� 3��x; t; z; z0�F�x; t; z; z0�2

�
��z; z0�

�
�2

6

Z t
0
dz0

Z
d3z

�
��x; t; z; z0�2

4
� F�x; t; z; z0�2

�
F�x; t; z; z0���x; t; z; z0�: (35)
It follows from translational invariance [47,48] (see also
Appendix A), that the energy density (35) is exactly con-
served in the evolution.

IV. NUMERICAL ANALYSIS AND
RENORMALIZATION

We study the nonequilibrium evolution of the correlators
F and � and the mean field � by solving numerically the
equations of motion (29)–(32), both in the symmetric and
the broken phase.

A. Numerical implementation

We shall consider the system to be discretized on a
space-time lattice with a finite spatial volume and spatially
periodic boundary conditions. The action of ’4 theory on a
space-time lattice is

Slat�’� � a
3at

X
x;t

�
1

2
�@t’�x; t��2 �

1

2

X
i

�@i’�x; t��2

�
1

2
m2

0’�x; t�
2 �

1

4!
�0’�x; t�4

�
: (36)
The lattice spacings a and at correspond to the spatial and
time directions, respectively. The derivatives stand for
forward finite differences, e.g. @t’�x; t� � �1=at��’�x; t�
at� � ’�x; t��. The spatial lattice volume is given in terms
of the number of lattice sites N as V � L3 � �Na�3. In the
following we shall use lattice units (a � 1) and write dt �
at=a for the dimensionless time step. The mass m0 and
coupling �0 are bare parameters to be determined below.
The lattice version of the squared spatial momentum is
given by

k2lat �
X3
i�1

�2� 2 coski�; with ki �
2'ni
N
;

ni � �
N
2
� 1; . . . ;

N
2

�for N even�:

(37)

Plotting data as a function of k2lat corrects for a large part of
the lattice artifacts.

The lattice provides a cutoff and regularizes the ultra-
violet divergent terms in the continuum limit, which are to
be dealt with by renormalization. The continuum renor-
malization of �-derivable approximations has been
-5
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studied in detail in [64–68]. For our purpose it is enough to
use an approximate renormalization that ensures that the
relevant length scales in our simulations are larger than
the lattice spacing a. This is achieved by simply choosing
the bare parameters m0 and �0 according to the one-loop
formulas that relate them to the renormalized parameters.
The bare mass m0 is given in terms of the renormalized
mass m by (see also [66,69,70])

m2
0 � m

2 � �m2; (38)

with the mass counterterm

�m2 �
�

2a2
I1�am� �

�2v2

2a2
I2�am�: (39)

The I1 and I2 in (39) are dimensionless integrals coming,
respectively, from the one-loop leaf and eye diagrams in
the self-energy � at zero temperature. On the lattice, for
continuous time and in the infinite volume limit (N ! 1),
they are given by

I1�am� � i
Z '=a
�'=a

d3k

�2'�3
Z dk0

2'
a2

k20 � a
�2k2lat �m

2 � i*

�
Z '
�'

d3k

�2'�3
1

4
������������������������
a2m2 � k2lat

q ; (40)
I2�am� � i
Z '=a
�'=a

d3k

�2'�3
Z dk0

2'

�

�
1

k20 � a
�2k2lat �m

2 � i*

�
2

�
Z '
�'

d3k

�2'�3
1

8
�����������������������������������
�b��a2m2 � k2lat�

3
q : (41)

The bare coupling �0 can be determined from the one-loop
expression (see [66,69,70])

1

�0
�

1

�
� I2�am�: (42)

The renormalization conditions that define the renormal-
ized mass and coupling via Eqs. (38) and (42) are such that
they correspond to the values of the two- and four-point
vertex functions at vanishing external momenta. For the
values of the couplings (� � 1; 6) and lattice spacing
(0:5< am< 1) that we use in our simulations, the differ-
ence between �0 and � is less than 10%. In practice, we
simply choose �0 as if it were the renormalized coupling.

For the renormalization of the mass we use (38), which
for the case of a spatial N3 lattice is then given by
025014
m2
0 � �m2 �

�0
4a2N3

X
k

1������������������������
a2m2 � k2lat

q
�
�20v

2

8a2N3

X
k

1�����������������������������
�a2m2 � k2lat�

3
q : (43)

In practice, we conveniently choose a value for the renor-
malized mass (such that am< 1), which determines via
Eq. (43) the bare mass that enters in the equations of
motion for the mean field and propagator. In our simula-
tions we used am � 0:7 and N � 16. Given the input
parameters m0 and �0, the output physics is of course not
known precisely, it is determined by the �-derived equa-
tions of motion.

B. Initial conditions

We specialize to a spatially homogeneous situation. In
this case, F�x; y� � F�t; t0;x� y�, ��x; y� � ��t; t0;x� y�
so we can perform a Fourier transformation and study the
propagator modes �k�t; t0� and Fk�t; t0�. In addition, the
mean field depends only on time. To specify the time
evolution, the equations of motion (29)–(32) must be
supplemented with initial conditions at t � t0 � 0. These
are given by the values and derivatives of �, F and � at
initial time. The initial conditions for � follow from it
being the expectation value of the commutator of two
fields, which implies

�k�t; t� � 0; @t�k�t; t0�jt�t0 � 1: (44)

Imposing the condition (44) at t � t0 � 0, it is preserved
by the equations of motion.

For the statistical correlator F, we choose initial con-
ditions of the form

hf’k�t�; ’�k�t0�gijt�t0�0 � Fk�t; t0�jt�t0�0

�
1

!k

�
nk �

1

2

�
; (45)

hf'k�t�; ’�k�t0�gijt�t0�0 � @tFk�t; t0�jt�t0�0 � 0; (46)

hf'k�t�'�k�t
0�gijt�t0�0 � @t@t0Fk�t; t

0�jt�t0�0

� !k

�
nk �

1

2

�
; (47)

where 'k�t� � @t’k�t� are the conjugate field momenta,

nk is some distribution function, and !k �
�������������������
m2

in � k2
q

,
with min to be specified shortly. An initial condition of this
form can be represented by a Gaussian density matrix. We
will use the following cases for the distribution function
nk:

(a) Thermal: The distribution function nk corresponds
to a Bose-Einstein, at some initial temperature Tin,
-6
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nk �
1

e�!k=Tin� � 1
: (48)

This also includes the ‘‘vacuum’’ initial condition of
Tin � 0 (which is of course only an approximation
to the vacuum state in the interacting theory). The
input mass for all Tin is the renormalizedmin � m in
the symmetric phase, and min �

���
2

p
m in the broken

phase. We expect these to be close to the zero-
temperature particle masses, respectively, in these
phases.

(b) Top hat: In this case, only modes with momenta
within a range k2

min < k2 < k2
max are occupied.

The distribution function can be parametrized as

nk � .��k2
max � k2���k2 � k2

min�; (49)

where . represents the occupancy of the excited
modes. The input mass is again given by min � m
(symmetric) and min �

���
2

p
m (broken).

The mean field is initialized at � � 0 (‘‘symmetric
phase’’) and � � vtree, (the zero-temperature ‘‘broken
phase’’). Below, we will also allow the mean field to be
slightly displaced from these two, in order to study relaxa-
tion in a thermal background.

C. Observables

As the system evolves in time, we expect the scattering
processes to lead to equilibration. The occupation numbers
of the momentum modes are expected to gradually ap-
proach a Bose-Einstein distribution, provided the coupling
is not too strong. The statistical information about the
evolving system can be extracted from the equal-time
correlation function Fk�t; t�. We can use Fk to define a
quasiparticle distribution function and frequencies as
[23,24,32,40,50]

nk�t� �
1

2
� ck

������������������������������������������������
@t@t0Fk�t; t0�jt�t0Fk�t; t�

q
; (50)

!p�t� �

����������������������������������
@t@t0Fk�t; t0�jt�t0

Fk�t; t�

s
: (51)

The correction ck diminishes errors associated with the
time discretization on the lattice. It is given by [24]

ck �

��������������������������
1�

1

4
dt2!2

k

s
: (52)

Both definitions (50) and (51) are valid for a free
field system in equilibrium, and have proven to be very
useful in interacting theories out of equilibrium as well
[23,32,71,72]. From the studies in 1� 1 and 2� 1 dimen-
sions [50,51], we expect the system to exhibit a quasipar-
ticle structure before reaching thermal equilibrium. The
definitions (50) and (51) can be used to monitor the evo-
025014
lution of the system towards such a quasiparticlelike state,
and eventually to equilibrium.

Once the system is close to equilibrium, we can read
from (51) the effective quasiparticle mass meff�t� by com-
paring it to the dispersion relation

!2
k�t� � c

2�t��m2
eff�t� � k2�; (53)

where the factor c�t� is a measure of an effective speed of
light or an inverse refractive index. A temperature Teff�t�
and chemical potential �eff�t� can be determined by fitting
the occupation number (50) to a Bose-Einstein distribution

np�t� �
1

e�!p�t���eff �t��=Teff �t� � 1
(54)

using

ln
�
1�

1

np

�
�

1

Teff
!p �

�eff

Teff
: (55)

We also keep track of the ‘‘memory kernels’’ in the
equations of motion (29)–(32), i.e. the self-energies
�F�t; t0�, ���t; t0� and ~���t; t0�, which can be compared
with perturbative estimates. Limits on computer resources
(memory and CPU time) requires us to cut the memory
kernels and thus keep only some finite range backwards in
time (i.e. ��t; t0� ! 0 for jt� t0j> tcut). The size of the
self-energies helps us determine whether the cut was late
enough for the discarded memory integrals to be negli-
gible. A way to judge whether the discarded memory was
indeed unimportant for the dynamics is to verify that the
total energy density (35) is conserved. Monitoring the
evolution of the energy density (35), one finds that at
very late times, the effect of the memory cut shows up as
a very slow drift in the energy. In all the runs presented
here, the energy is conserved to within 2%. For smaller
lattices we checked that later memory cuts make the drift
smaller. We found no such drift if the whole kernel was
kept.

D. Symmetric phase: equilibration

We first consider the evolution of the system in the
symmetric phase. The simulations are performed on a
lattice with N3 � 163 sites, lattice spacing am � 0:7,
time step dt � 0:1 and coupling2 � � 6. The memory
kernel is cut off at mtcut � 28 unless otherwise specified.
In the following, all quantities shall be expressed in renor-
malized mass units, i.e. units of m.

For the initial conditions of the propagators we shall take
(i) Thermal, with Tin=m � 1:36; 1:43; 1:93; 2:86.
(ii) Top hat 1 (T1), with k2

min=m
2 � 2:04, k2

max=m2 �
6:12 and . � 2.

(iii) Top hat 2 (T2), with k2
min=m

2 � 0, k2
max=m2 �

5:71 and . � 1:85.
-7
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(iv) Top hat 3 (T3), with k2
min=m

2 � 6:12, k2
max=m

2 �
8:16 and . � 1:6.

The three top-hat initial conditions have the same initial
energy.

In a quasiparticle picture, we can introduce the total
particle number density

ntot �
Ntot

V

�

8<:
R d3k

�2'�3
nk; for lattice volume in the continuum,

1
N3a3

P
k
nk; on the lattice.

(56)

The three top-hat initial conditions T1–T3 do not have the
same total number of particles, although T1 and T2 are
fairly close to each other. More about this below.

For the initial mean field we take ��0� � 0. In this case,
the Hartree and the two-loop approximations are identical.
In the following we consider the evolution in both the
Hartree and the basketball approximations.

In Fig. 2, we show the evolution of nk versus !k,
starting from the T1 initial condition. The Hartree approxi-
mation (black) is compared with the basketball approxi-
mation (green/gray). In the former case, there is no
equilibration. For the basketball case, we observe that the
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FIG. 2 (color online). Evolution in time of the occupation numbers
the basketball (black dots) and the Hartree approximation (green/gr
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energy in the excited modes is distributed via scattering. As
we shall see this leads eventually to a thermal distribution.

In Fig. 3 we follow the evolution of the dispersion
relation with the same initial condition, again comparing
Hartree to ‘‘basketball.’’ Notice the oscillating pattern
early on in both cases. In the basketball approximation
the modes eventually relax to a perfect straight line. It turns
out that at the couplings and energies used here, the coef-
ficient c2�t� is equal to 1 up to well within 1%. We will
therefore assume it to be 1 in the following. Although we
do not show it here, we found that larger coupling and large
energy density results in a faster evolution towards this
quasiparticle state.

Judging by eye, Figs. 2 and 3 suggest that already at
times mt � 56 to 84, the system behaves as approximately
thermal, for T1 initial conditions. Still, this is presumably
much later than a prethermalization time based on the
equation of state, as studied in [4]. However, it does not
mean that the memory of the initial conditions in the
particle distribution is already lost by times mt * 84.

It was remarked already in the studies in 1� 1 [46] and
2� 1 dimensions [51] that the final state depends only on
the energy density (at a given coupling). Indeed, it was
found that the limit distribution function nk corresponds to
a Bose-Einstein, characterized by just one parameter, the
temperature. Figure 4 shows the evolution of individual
modes when starting from the T1, T2 and T3 initial con-
3 4 0 1 2 3 4
0

1
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4

5

3 4 0 1 2 3 4
0
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3

4

5
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0
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5
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nk vs !k, for the T1 initial condition. We display the results of
ay dots).
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FIG. 4 (color online). Evolution of individual modes for a T1 ,
T2 and T3 initial condition with same energy density.
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ditions, which have the same energy density. For T1 and T2
we see that the modes approach a common final value. It
seems reasonable to call this stage kinetic equilibration, as
the kinetic energy is redistributed over the modes to reach a
Bose-Einstein distribution. However, as we will see below,
the total number of particles is not adjusting as fast and it
still remembers the initial state by the time kinetic equili-
bration is completed.

As mentioned before, the initial condition T3 has not
only a different initial spectrum, but also a different total
number of particles. It also reaches kinetic equilibration,
but with a different kinetically equilibrated state.

At intermediate times (mt � 1000) kinetic equilibration
has taken place, and we can compare the distribution
functions and dispersion relations, Fig. 5. T1 and T2 have
equilibrated to almost identical Bose-Einstein distribution
functions, parametrized by an effective mass, an effective
temperature and an effective chemical potential. T3 has
reached a different Bose-Einstein with a different tempera-
ture and chemical potential, and a slightly different effec-
tive mass. We have included a number of thermal initial
conditions for comparison. By construction, these have no
initial chemical potential and remain so to a very good
approximation.

Whereas kinetic equilibration can be the result of simple
2 $ 2 scattering, chemical equilibration, which changes
the total particle number, happens through 1 $ 3, 2 $ 4
025014
and higher-order processes. These are included due to the
resummations performed by the �-derivable approxima-
tion into the sunset self-energy diagram. Approaches that
only take into account on-shell scattering, such as the
Boltzmann equation with only binary collisions 2 $ 2,
cannot account for chemical equilibration. What we see
is that kinetic equilibration including memory loss happens
on a time scale of about 500–1000=m, whereas chemical
equilibration is a much slower process. Effectively, there is
-9
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a chemical potential in the initial stages, causing initial
conditions with different Ntot to relax to different inter-
mediate kinetically equilibrated states.

We illustrate this point in Fig. 6, left-hand plot, where
we show the evolutionNtot for the initial conditions T1–T3.
For comparison, we also include the Ntot of Bose-Einstein
distributions at various temperatures. In the right-hand plot
we follow the evolution of the effective mass, temperature
and chemical potential for the T1 case. The time evolution
can be well reproduced by exponential fits of the form ai �
bi exp��1it� (the dashed lines in the plot), suggesting an
asymptotic temperature of around T=m � 1:36. Also,
within a factor of 2, fits to the three quantities all suggest
an equilibration time of around 1�1

i ’ 104=m. Chemical
equilibration is a full order of magnitude slower than
kinetic equilibration in this system. Comparing with the
study in [51], it appears that chemical equilibration is much
slower in 3� 1 than in 2� 1 dimensions. The fit to the
chemical potential is not as good as to the effective tem-
perature or mass, and it also predicts a nonzero asymptotic
chemical potential (�=m � 0:7). This is consistent with
our above-mentioned interpretation that the system is in a
prethermalized stage [4] for which an exponential extrapo-
lation of the evolution of T and � does not necessarily
yield the actual asymptotic values.
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FIG. 6 (color online). Left: Total particle number density ntot versu
are ntot for Bose-Einstein distributions at different temperatures. Ri
chemical potential for late times starting from the T1 initial condition
mass, (31), and the solution of the gap Eq. (60), are also shown.
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As an aside we compare the observed mass with an
estimate that results from the Hartree approximation. At
a given time t, the finite gap equation for the Hartree
effective mass reads

M2
H�t� � m

2 � �l�t� � �m2

� m2 �
�
2

Z d3k

�2'�3
Fk�t; t� � �m

2: (57)

The mass counterterm �m2 is given by the vacuum part of
the leaf self-energy diagram, as described previously. For
the correlator F�t; t� in Eq. (57) we take the same form as a
free quasiparticle gas in equilibrium, i.e.

Fk�t; t� �
1

!k�t�

�
nk�t� �

1

2

�
: (58)

Here nk�t� is a Bose-Einstein distribution function with the
temperature and chemical potential obtained from the
simulations at time t, and !k�t� is here defined in terms

of the effective mass as!k�t� �
���������������������������
k2 �MH�t�

2
p

. The result
for the Hartree effective massMH is then determined by the
self-consistent gap equation
0 2000 4000 6000 8000
mt

0.8

1

1.2

1.4

µ

T/m 

ch
/m 

M
2
(T)/m

2

M
H

2
(T)/m

2

s time for the initial conditions T1, T2 and T3. The dotted lines
ght: Evolution of the effective mass (squared), temperature and
, with exponential fits (dashed lines). The Hartree estimate for the

-10



3This approximation for the damping rate is often used in the
literature. For the values of the coupling � � 1; 6 used in the
numerical analysis presented in this paper, however, the approxi-
mation (67)–(70) is not valid, even for high temperatures.
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M2
H�t;T;�� � m

2 �
�
2

Z d3k

�2'�3
nk�t;T;��
!k�t�

� m2 �
�T2

4'2

Z 1

MH=T
dx

������������������������������
x2 � �M2

H=T
2�

q
e�x���=T�� � 1

:

(59)

To compare with the numerical result we use the lattice
analog of the gap Eq. (59), i.e.

M2
H�t;T;�� � m

2 �
�
2

1

�Na�3
X
k

nk�t;T;��
!k�t�

: (60)

For the case of the evolution starting from the T1 initial
condition, the lattice Hartree mass is shown in Fig. 6. We
see that it is slightly higher than the effective mass obtained
in the simulation with the basketball approximation. At
least in this case, the contribution from the sunset diagram
to the mass appears to be small relative to the Hartree case.

E. Symmetric phase: Damping and the
spectral function

1. Mean field damping

We now consider a situation already in (or close to)
thermal equilibrium, where the mean field is slightly dis-
placed from its equilibrium value � � 0. This allows us to
study the response of the system to small perturbations. In
this case, the mean field evolution can be studied by
linearizing the equation of motion (32) around the equilib-
rium value. For homogeneous fields this leads to

$��t� �M2�T; t���t� �
Z t
0
dt0 ~��0 �t; t

0���t0� � 0 (61)

with ~��0 �t; t
0� the zero momentum mode of the sunset self-

energy and M�T; t� given by (31). Close enough to equi-
librium we may assume time translation invariance, such
that ~��0 �t; t

0� depends only on t� t0 andM�T; t� is constant.
Equation (61) can then be solved by a Laplace transform in
the time coordinate [73]. Taking as initial conditions for
the mean field��0� � �i and _��0� � 0, the solution to the
linearized equation of motion (61) can be written as [29,73]

��t� �
2�i
'

�
Z 1

0
d!

!Im~�R0 �!� cos�!t�

�!2 �M2 � Re~�R0 �!��2 � Im~�R0 �!�2
;

(62)

where Re~�R and Im~�R correspond, respectively, to the real
and imaginary part of the retarded self-energy, given by
~�R�x; y� � ��x0 � y0�~�

��x; y�. For weak coupling there is
a narrow resonance at ! � Meff , with M2

eff 
 M
2 �

Re~�R0 �!�. To a good approximation, one finds that for
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short times the evolution is given by [74]

��t� � �iZe
�1t cos�Mefft� ��; (63)

with

Z � �1�
@Re~�R0 �Meff�

@M2
eff

��1; (64)

� �
@Im~�R0 �Meff�

@M2
eff

; (65)

1 � Z
Im~�R0 �Meff�

Meff
: (66)

The parameter 1 corresponds to the on-shell damping rate.
For weak enough couplings one can approximate Z � 1
and Meff � M for the calculation of 1. From (66) we see
that the damping rate is determined by the imaginary part
of ~�R, which corresponds to the sunset self-energy dia-
gram. In the context of perturbation theory, Im~�R can be
calculated analytically and the damping rate is found to be
[75]

1�M� �
�2T2

128'3M
Li2�e

�M=T� (67)

where Li2�z� is the second polylogarithmic function, de-
fined by Spence’s integral

Li 2�z� � �
Z z
0
dw

ln�1� w�
w

: (68)

For temperatures T � m, the damping rate follows from
the expression of the high-temperature screening mass [76]

M2 � m2 �
�T2

24
�
�
8'
MT �O

�
�M ln

M2

T2

�
: (69)

In the limit of very weak coupling and high temperature
one obtains for the damping rate the compact result3

[75,77]

1
T�m;��1

�
�2T2

768'M
: (70)

In the numerical simulations the mean field is initially
displaced to the value �i=m � 0:142. For such a small
perturbation, the mean field is expected to perform a
damped oscillation of the type (63). We fit the evolution
of the mean field with Eq. (63), which allows us to extract
the effective massMeff and the damping rate 1. These will
depend on the strength of the coupling and the temperature.
The behavior of the mean field is studied in a thermal bath
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at temperatures Tin=m � 0; 1:43; 2:86 for both the two-
loop and basketball approximations. For the basketball
case, the mean field evolution is shown in Fig. 7. As
mentioned earlier, the damping of the mean field is present
in both the two-loop and basketball approximations. The
difference between the two cases lies in the fact that the
correlators F and � evolve quite differently. For the two-
loop case, the equations of motion for F and � contain
almost no damping, since the only potential contribution to
damping is in the eye diagram, which is proportional to�2,
and thus tiny for � � 0. For the basketball case, however,
the equations of motion for F and � contain damping
through the sunset diagram. The differences in the evolu-
tion of the correlators for the two-loop and the basketball
approximations enters as a higher-order effect in the evo-
lution of the mean field. In particular, this may lead to
different effective masses and mean field damping rates.
We show these differences for various temperatures in
Fig. 8, where the results for the two-loop (squares) and
basketball (large dots) are plotted.

For comparison we evaluated the perturbative result
(67), using the Hartree mass (59) for M. To see the
finite-volume and discretization effects we also did the
analytical computation on a spatial lattice. The Hartree
mass is in this case given by (60). In finite volume, the
discreteness of the momenta leads to complications in the
calculation of the damping rate, which we dealt with along
the lines presented in [78]4. The perturbative results for the
mass and damping rate are also presented in Fig. 8. As we
can see from the mass plot (left), the correction to the mass
coming from the basketball approximation is small relative
4For example, equations such as (B7) in Appendix_B do not
make sense anymore. We evaluated the frequency integral in the
solution for the linearized equation of motion (62) for��t�, using
a finite ‘‘i*’’ in the retarded sunset self-energy on the lattice.
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to the Hartree case. In the damping plot (right) we observe
that the damping rate obtained from the numerical analysis
of both approximations is substantially larger [about (20–
40)%] than the perturbative result (on the lattice). The
continuum and the lattice perturbative results begin to
differ around T=m * 1 due to cutoff effects.

2. Propagator damping and spectral function

Damping in the propagator can be elegantly phrased in
terms of the spectral function �k�t; t0�. In a situation close
to thermal equilibrium we expect it to be time translation
invariant and in a narrow-width approximation be given by

�k�t; t
0� �

1

!k
e�1kjt�t

0j sin�!k�t� t
0��: (71)

To study the approach to equilibrium of the spectral func-
tion, it is useful to perform a Wigner transformation in
terms of the mean time T � �t� t0�=2 and relative time
5 � t� t0. This can be written as

�k�!;T � � 2i
Z 2T

0
d5 sin�!5��k�T � 5=2;T � 5=2�:

(72)

Since we are solving the equations of motion in a finite
time and keep information only as far back as the memory
kernel, we have a cutoff in the integral of (72) as

�k�!;T � � �k�!;T ; tcut�

� 2i
Z tcut
0
d5 sin�!5��k�T � 5=2;T � 5=2�:

(73)

If the system is sufficiently close to equilibrium, time
translation invariance should be a good approximation,
�k�t; t

0� � �k�t� t
0�, and

�k�!;T ; tcut� � 2i
Z tcut
0
d5 sin�!5��k�T ;T � 5�: (74)

With this approximation the integrand in (74) runs from
�k�T ;T � to �k�T ;T � tcut�, which is convenient for
numerical purposes. In the following we shall make use
of this approximate Wigner transform.

The approximation (74) is valid provided T is large
enough so that the system is close to thermal equilibrium.
In that case �k�!k;T � should be well approximated by a
Breit-Wigner form

�k�!;T � �
4!�1k=2�

�!2 �!2
k�

2 �!2�1k=2�2
: (75)

The evolution of the spectral function �k�t; t0� starting
from a thermal background at T=m � 2:86 and � � 6 is
shown for two different kernel lengths, mtcut � 28 (green/
-12
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gray) and mtcut � 84 (black), in Fig. 9 (left). Overlaid,
although barely discernible, a fit of the form (71). As can
be seen, the fit is excellent and it is the same fit for the two
kernel lengths. In Fig. 9 (right) we show the result of the
approximate Wigner transforms for the spectral function of
the spatial zero mode at mT � 200 and with two different
kernel lengths. For the long kernel case, one can nicely fit a
Breit-Wigner form, which gives the same damping rates
and masses as in the fit of the left-hand plot. For the short
kernel case, the Breit-Wigner fit is not so accurate. In the
following analysis, we extract the damping rates and
masses from fits directly to the time-representation of the
spectral function �k�t; t0�, with kernel length mtcut � 28.

Figure 8 shows the dependence on temperature of the
effective mass (left) and damping rate (right) from fits of
the form (71) for the spectral-function zero mode �0�t; t0�,
together with the fits (63) for the mean field discussed
earlier. For �0�t; t0�, we show only the results for the case
of the basketball approximation, since, for the values of the
mean field considered here, it is practically zero in the two-
loop approximation. The spectral-function zero-mode
mass and damping rate (plotted with triangles) closely
follow the values for the mean field.
025014
F. Broken phase: equilibration

A similar analysis can be carried out in the broken phase,
where there is a nonzero mean field present. In this case we
can use both the two-loop and basketball approximations
to study the damping of the correlators. From the point of
view of perturbation theory, there is no damping in the two-
loop approximation, for which only the perturbative leaf
and the eye diagrams contribute to the self-energy, and
their imaginary parts vanish on-shell (see also Ap-
pendix B). Our task will be to study the damping in the
two-loop approximation from the �-derived equations of
motion. These formally take into account the contributions
from all orders in perturbation theory that result from any
iterated insertion of the leaf and eye diagrams into the self-
energy. These diagrams contain off-shell scattering effects
that can, in principle, lead to a total nonzero on-shell
imaginary part for the self-energy, thus providing damping.
For the case of the basketball approximation, the sunset
diagram enters in the self-energy (13), which contributes to
damping even in perturbation theory [75,77]. The solution
of the �-derived equations of motion leads to additional
contributions from higher orders compared to perturbation
-13
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theory, and thus one expects to find a larger damping and
faster equilibration.

Approximations based on truncations of the loop expan-
sion of the 2PI effective action suffer from instabilities
which make it impossible to treat very large couplings and
very large energy densities or particle numbers. In this
sense, the �-derived equations of motion can be thought
of as resummed perturbative, useful in the domain of weak
coupling and small fields. In the symmetric-phase simula-
tions described previously, � � 6 is in the upper end of
what stays stable in our experience, whereas we can use
temperatures (or energy densities corresponding to tem-
peratures) up to T=m � 6 or even higher. In the broken
phase, the instabilities turn out to be even more constrain-
ing. In particular, we will need to use a smaller coupling
(� � 1) and temperatures below T=m � 2. As we have
seen, the latter is not much of a restriction since it still
covers the region where cutoff effects are small. However,
it implies that equilibration and damping takes much lon-
ger (the damping times scale roughly as �2T2 for the sunset
diagram). In particular, we need to use a longer time kernel
(we use mtcut � 84) and we will not be able to track
the evolution far enough to see chemical equilibration.
We shall content ourselves with establishing kinetic
equilibration and studying the damping of the mean field
and the modes of the spectral function. We have no doubt
that chemical equilibration will take place as well. In
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particular, we will see that total particle number is not
conserved.

The mean field is taken initially to be at the tree-level
value��t � 0� � vtree. This is not the self-consistent finite
temperature solution of the truncated equations of motion,
but a bit displaced from it. Because of this initial displace-
ment, the mean field will oscillate and damp to its equilib-
rium value. For the propagators we will use thermal initial
conditions, as well as top hat 1 (T1). Notice that the input
mass is the broken phase zero-temperature mass

���
2

p
m

rather than the symmetric phase one. All results are still
in units of m.

The evolution of the occupation numbers and the dis-
persion relation for both the two-loop and basketball ap-
proximations are shown in Figs. 10 and 11. Both cases
show that (kinetic) equilibration is taking place. In the
basketball case, equilibration is slightly faster. In-
terestingly, the off-shell scattering effects taken into ac-
count by the 2PI effective action with only the eye diagram
lead to an equilibration almost as fast as in the basketball
case. Chemical equilibration happens on much longer time
scales, and although we found that the total particle num-
ber does change in time (Fig. 12, left), the reach of our
simulations was insufficient to estimate the asymptotic
temperature. At our latest time of mt � 1000, the distribu-
tion is consistent with a Bose-Einstein with T=m � 1:24
and �=m � 1:12 (Fig. 12, right).
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G. Broken phase: Mean field damping and the spectral
function

For weak coupling we expect the position of the equi-
librium mean field expectation value v to be close to the
initial value ��0� � vtree. In the case of thermal initial
conditions, the initial mean field displacement corresponds
to a small perturbation. As in the symmetric-phase case,
one can study the evolution of the mean field by linearizing
the equation of motion around the equilibrium value. We
write ��t� � v� 6�t�, where 6�t� is the deviation. The
linearized equation of motion for 6 is then
025014
$6�t� �M2�T; t�6�t� �
Z t
0
dt0 ~��0 �t; t

0�6�t0� � 0: (76)

The vacuum expectation value v is the solution of

M2�T; t�v�
�
3
v3 �

Z t
0
dt0 ~��0 �t; t

0�v � 0: (77)

For weak coupling

v �

����������������
3M2�T�
�

s
: (78)
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In Eqs. (76)–(78), M�T; t� corresponds to the finite tem-
perature Hartree effective mass in the broken phase, given
by

M2�T; t� � �m2 �
�
2
v2 �

�
2

Z d3k

�2'�3
Fk�t; t� � �m

2:

(79)

The analysis of the evolution of 6 proceeds as in the
case of the symmetric phase. For weak enough coupling
the mean field damping rate is approximately given by the
perturbative estimate (67). Figure 13 (left) shows the mean
field evolution at T=m � 2:14, in the two-loop and basket-
ball approximations, respectively. In both cases, the mean
field performs a damped oscillation, from which we can
extract an effective mass and mean field expectation value.
As we can see, the damping does not follow a simple
exponential form, and curiously, the two-loop data appear
to indicate faster damping than the basketball data. Still,
we shall use an exponential fit as a rough estimate of the
damping rate. The temperature dependence of these fre-
quencies and damping rates, in addition to the field expec-
tation values, is shown in Fig. 13 (right) for the two-loop
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The strong T dependence in the two-loop case suggests that the sy
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(open symbols) and basketball (filled symbols) approxima-
tions. The masses and field expectation values are indis-
tinguishable for the two truncations. They are slightly off
the respective Hartree estimates (77) and (79) (full lines),
indicating as in the previous section that the contribution of
the sunset diagram in the basketball approximation is small
relatively to the Hartree case. The damping rates in the two
approximations are consistent with each other.

Similarly, we observed damping in the evolution of the
spectral function �k�t; t0� in both approximations. This
damping is small and not well approximated by an expo-
nential form. We performed the Wigner transformation as
specified in Eq. (74), see Fig. 14 to the data of the late time
evolution starting from the T1 initial condition. The value
of the cutoff tcut � 84 m�1 produces some noise, but for
the basketball approximation (full lines) there is clearly a
well determined peak with a finite width at all times, which
can be fit with a Breit-Wigner form (dashed lines). In the
basketball approximation, the form of the Wigner trans-
form does not change much in time, which indicates that
the system is relatively close to equilibrium. However, the
results are different for the approximate Wigner transforms
in the two-loop approximation (dotted lines). In this case
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or the four lowest modes, starting from a T1 initial condition, at 2
tball (full lines) and two-loop (dotted lines) approximations. The
quilibrium. Indeed, Breit-Wigner fits work nicely (dashed lines).
stem is not yet sufficiently close to equilibrium.
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the transformed spectral function changes significantly in
time from thin peaks early on to less clear maxima at later
times, still localized around the peaks, see Fig. 14 (right).
We do not fully understand the reason for this discrepancy;
it could be that the cutoff time tcut � 84 m�1 in our im-
plementation of the Wigner transform is too short in case of
the two-loop approximation. On the other hand, the large
T dependence of the spectral function indicates that the
system may not be sufficiently close to equilibrium in
the two-loop approximation, in which case the use of the
approximate Wigner transform (74) is questionable. The
approximation itself appears to work reasonably well, as
shown in Figs. 12 and 13.
V. CONCLUSIONS

We have studied equilibration in ’4 theory in 3� 1
dimensions for a variety of initial conditions, both in the
symmetric and broken phase. Two different �-derivable
approximations including scattering effects have been
used: two-loop and ‘‘basketball,’’ the latter corresponding
to a truncation of the 2PI effective action at O��2�. In the
symmetric phase the two-loop and the basketball approx-
imations differ in that the first includes damping into the
evolution of the mean field only, whereas in the second it is
also present in the equation of motion for the 2-point
functions. In the broken phase both approximations include
scattering effects into the 2-point functions and thus can
lead to equilibration.

From the numerical study of the evolution of the occu-
pation numbers we were able to establish that in the
symmetric phase both kinetic and chemical equilibration
is taking place, the latter at a substantially slower rate.

By analyzing various initial conditions we found that,
after kinetic equilibration, the occupation numbers at in-
termediate times are given by a Bose-Einstein distribution
with an effective chemical potential. This is similar to what
was found in previous studies in 2� 1 dimensions [51].
Given the same total energy, we found the intermediate
effective chemical potential to be generally nonzero, with
its size related to the initial total particle numbers, as may
be expected. Eventually, one would expect the limit
distribution to depend only on the energy density of the
system, and close to a Bose-Einstein with zero chemical
potential [46,51]. Comparing to the studies in 2� 1 di-
mensions [51], our numerical analysis indicates that the
subsequent chemical equilibration is much slower in 3� 1
dimensions.

We were also able to extract effective masses and damp-
ing rates from the analysis of the evolution of the mean
field and the spectral function. The contributions to the
mass from the two-loop and the basketball approximations
seem to be small comparing to the Hartree case. In the
symmetric phase, the results for the damping rate are about
a �20–40�% higher than the perturbative estimates. This
indicates that the scattering effects associated with the
025014
resummations encoded in the �-derivable approximation
are substantial. Finally, we checked that the damping rate
obtained from the mean field coincides with the one from
the spectral-function zero mode.

In the broken phase we found that both the two-loop and
the basketball approximation lead to equilibration.
Surprisingly, the equilibration seems to be just a bit slower
in the two-loop case. This is particularly remarkable since,
in perturbation theory, the two-loop approximation does
not have on-shell damping. Indeed, in that case only the
perturbative leaf and eye self-energy diagrams contribute,
and their imaginary parts vanish on-shell (see Ap-
pendix B). The fact that the two-loop approximation in
’4 theory equilibrates so fast might be relevant to pure
gauge theories, where the lowest order �-derivable ap-
proximation [at O�g2�] considers the same diagrams.

On a practical note, we found that the loop expansion
suffers from restrictions reminiscent of perturbative ex-
pansions, in that large couplings and/or large field occupa-
tion numbers trigger instabilities when solving the
equations of motion. This has to our knowledge not been
reported for simulations in 1� 1 and 2� 1 dimensions,
although we have found them in those cases as well. In
addition to the instabilities, issues such as CPU time and
computer memory necessary for dealing with the memory
integrals are significant restrictions, especially when study-
ing late time thermalization. Expansions in 1=N with N the
number of fields have been shown to be more stable and
able to deal with nonperturbatively large occupation num-
bers at large coupling [33,54,56,57]. In such cases care
should be taken to ensure that the expansion is controlled
by using a sufficiently large value of N [43].
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APPENDIX A: ENERGY-MOMENTUM TENSOR IN

-DERIVABLE APPROXIMATIONS

The energy-momentum tensor for a given truncation of
the 2PI effective action can be determined through
Noether’s procedure, i.e. by identifying the current term
resulting from the space-time dependent translations x� !
x� � *��x�. A convenient way to find the Noether current
is to perform an infinitesimal translation that vanishes in
the boundary. The translation x� ! x� � *��x� can be
viewed as a transformation of the relevant variables, which
-17
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in the case of the 2PI effective action are the mean field
��x� and the connected 2-point function G�x; y�. This
transformation is

��x� ���! �0�x� 
 ��x� *�x�� � ��x� � *��x�@x���x�;

(A1)

G�x; y� ���! G0�x; y� 
 G�x� *�x�; y� *�y��

� G�x; y� � *��x�@x�G�x; y�

� *��y�@y�G�x; y�; (A2)

where the variables that the partial derivatives act on are
indicated with a superscript. Under these transformations
the variation of the 2PI effective action ���;G� can be
formally written as

����;G� � �
Z
x
T�8�x�@�*8�x�; (A3)

where
R
x 


R
d4x. The quantity T�8 defines a conserved

Noether current, which is identified as the energy-
momentum tensor. To see that it is indeed conserved,
notice that when the �-derived equations of motion are
satisfied, the action ���;G� is stationary under variations
of � and G. This applies, in particular, to the transforma-
tions (A1) and (A2), and hence ����;G� � 0. Taking (A3)
and making a partial integration one obtains

����;G� �
Z
x
*8�x�@�T�8�x� � 0: (A4)

Since *8�x� can be taken arbitrary, the energy-momentum
tensor is conserved, i.e. @�T�8�x� � 0.
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Below we give the explicit form of the energy-
momentum tensor T�8 for any �-derivable approximation
by applying the transformations (A1) and (A2) and using
the definition (A3). We study independently the various
contributions coming from the different terms in the action
(2):

(i) The term S��� in (2) leads to the usual form of the
energy-momentum tensor for the mean field �,
namely

T�81 �x� � @���x�@8��x� � g�8
�
1

2
@���x�@���x�

�
1

2
m2��x�2 �

�
4!
��x�4

�
: (A5)

(ii) The ‘‘Tr Ln’’ term appearing in (2) does not con-
tribute to the energy-momentum tensor. Indeed,
applying the variation (A2) leads to

��Tr lnG� � TrG�1�G

�
Z
x

Z
y
G�1�y; x��*��x�@vG�x; y�

� �x$ y��

� 2
Z
x
*��x�@x��

�4��x� x� � 0: (A6)

The contribution T�82 �x� of this term to the energy-
momentum tensor thus vanishes.

(iii) To obtain the contribution from the term
�i=2�Tr�G�1

0 �G�1�G one proceeds similarly to
what was done in (i). Under the transformation
(A2), this term becomes
�
�
i
2
Tr�G�1

0 �G�1�G
�
�
i
2

Z
x

Z
y

�
�@x�@

�
x �m2 �

�
2
��x�2

�
��4��x� y��*��x�@x�G�x; y� � �x$ y��

�
i�
2

Z
x

Z
y
��x�*��x�@x���x��

�4��x� y�G�x; y�: (A7)
After some straightforward manipulations and
making use of the identity

Z
y
@x���

�4��x� y�G�x; y�� �
Z
y
��4��x� y�

� �@�x G�x; y�

� @�y G�x; y��; (A8)

one can write the above as in Eq. (A3), which
allows to extract the contribution of this term to
the energy-momentum tensor. It is given by

T�83 �x� �
Z
y
��4��x� y�

�
@�x @8y �

1

2
g�8@�x@

y
�

�
1

2
g�8m2 �

1

4
g�8���x�2

�
iG�x; y�:

(A9)

(iv) The transformations (A1) and (A2) applied to the
functional ���;G� give
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����;G� �
Z
x

��
���x�

*��x�@
�
x ��x�

�
Z
x

Z
y

��
�G�x; y�

�*��x�@
�
x G�y; x�

� *��y�@
�
y G�y; x��: (A10)

What we want is to write this in a form similar to
(A3) such that its contribution to the energy-
momentum tensor can be extracted. To do this,
notice that the functional ���;G� is a scalar quan-
tity that does not contain derivative terms. This
means that, under the space-time translation x� !
x� � *��x�, the terms in � only change by the
appearance of the Jacobian of the transformation
at every loop integration. This Jacobian can be
accommodated by a simultaneous change in a scale
factor "�x� introduced at every integration vertex as
�! "�x�� [48,79]. Thus the simultaneous varia-
tion

��x� ! ��x� *�x��;

G�x; y� ! G�x� *�x�; y� *�y��;

"�x� � 1 ! "�x� � det���8 � @x8*
��x��

(A11)

leaves the functional � invariant. For infinitesimal
transformations, this invariance implies

Z
x

��
���x�

*��x�@
�
x ��x�

�
Z
x

Z
y

��
�G�x; y�

�*��x�@
�
x G�y; x�

� *��y�@
�
y G�y; x�� �

Z
x

��
�"�x�

@x�*��x� � 0:

(A12)

One can then use the identity (A12) to write the
variation ����;G� in a form similar to (A3) as

����;G� � �
Z
x

��
�"�x�

"�1
@x�*

��x�: (A13)

In this manner, the contribution of the functional �
to the energy-momentum tensor can be written as

T�84 �x� � g�8
��
�"�x�

"�1
: (A14)

The total energy-momentum tensor is obtained by add-
ing up all the contributions from (i)–(iv), i.e. T�8�x� �
025014
T�81 �x� � T�82 �x� � T�83 �x� � T�84 �x�. The result can be
compactly written as

T�8�x� �
�
@�x @8y �

1

2
g�8@x�@

�
y �

1

2
g�8m2

�
���x���y�

� iG�x; y��jx�y � g
�8 1

4!
���x�4

�
i
4
g�8��x�2G�x; x� � g�8

��
�"�x�

"�1
:

(A15)

.

APPENDIX B: PERTURBATIVE DAMPING FROM
THE EYE DIAGRAM

For completeness, we include here the calculation of the
imaginary part of the perturbative eye diagram in equilib-
rium in the real-time formalism, using the Schwinger-
Keldysh contour. More details can be found in e.g. [80].
We introduce the labels � or � to indicate whether the
time variables of any quantity live, respectively, on the C�

or C� branch of the contour. In terms of the various
contour components, the retarded self-energy is given by
�R�x; y� � ����x; y� � ����x; y�. For the case of the eye
diagram, in momentum space one has

�Reye�p� � ���
eye �p� � ���

eye �p�

�
i�2v�T�2

2

Z
k
�G���k�G���k� p�

�G���k�G���k� p��; (B1)

where v�T� is the mean field equilibrium expectation value
at temperature T. We shall use

R
k and

R
k to denote the 4-

and 3-dimensional momentum integrations
R
d4k=�2'�4

and
R
d3k=�2'�3 respectively.

It is convenient to use the Keldysh basis [12,15], where
the various components of G are given in terms of the
symmetric, retarded and advanced correlators F, GR and
GA respectively. Their perturbative expressions are

F�k� � 2'��k2 �m2�

�
n�k0� �

1

2

�
; (B2)

GR�k� �
1

�k0 � i*�2 � k2 �m2 ; (B3)

GA�k� �
1

�k0 � i*�2 � k2 �m2 ; (B4)

with * � 0� and n�k0� the Bose-Einstein distribution at
temperature T and energy k0.

In the Keldysh basis the retarded self-energy (B1) be-
comes
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5This is not true in general. It does not happen, for instance, in
the contribution of the sunset diagram to damping [75,81].
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�Reye�p� �
i�2v�T�2

2

Z
k

�
1

2
�GR�k�GR�k� p�

�GA�k�GA�k� p�� � iF�k�GR�k� p�

� iGA�k�F�k� p�
�
: (B5)

The first two terms in the rhs have poles at only one side of
the complex plane. In the integration over k0 one can
always choose to close the contour at the other side, thus
these two terms vanish. The last two contributions can be
seen to be equal to each other by the change of variable
k $ �p� k�. After performing the k0 integration with the
help of the � functions in F we obtain

�Reye�!;p� � �2v�T�2
Z
k

1

2!k

�
nk �

1

2

�
�

�
1

�!�!k�
2 �!2

p�k � i* sgn�!�!k�

�
1

�!�!k�
2 �!2

p�k � i* sgn�!�!k�

�
:

(B6)

The imaginary part of the self-energy is obtained by using
1=�x� i*� � P�1=x� � i'��x� and decomposing the re-
sulting delta functions. For !> 0, and after convenient
changes of variable, we obtain

Im�Reye�!;p� �
�2v�T�2

2

Z
k

'
4!k!p�k

f�2nk � 1�

� ��!�!k �!p�k�

� 2nk��!�!k �!p�k�g: (B7)

The first contribution to the integral corresponds to the
decay of an off-shell excitation into two on-shell excita-
tions. The second one corresponds to Landau damping via
scattering of the off-shell excitation with on-shell particles
from the heat bath (occurring only at T � 0).

One can make use of the delta functions present in (B7)
to solve the angular part of the integral over the internal
momentum k. Indeed, using the property

��f�x�� �
X
roots

��x� xroot�
jf0�xroot�j

; (B8)

one can solve the angular part of the integral if f�x� is taken
to be !�!k �!p�k with x � cos= and = the angle
between the vectors k and p (the � sign corresponds to
decay and the � sign to Landau damping). The sum
present in (B8) is over the roots of the function f�x�, which
for f�x� � !�!k �!p�k, are given by

x �
p2 �!2 � 2!!k

2jpjjkj
; (B9)

with jf0�x�j � jpjjkj=!p�k. In order to obtain a nonzero
025014
contribution, the roots of the function f�x� in the �’s must
be inside the interval ��1; 1�, i.e.

�1 �
p2 �!2 � 2!!k

2jpjjkj
� 1; (B10)

We analyze the two regions independently:
(1) Decay: In the case of decay the � function in (B7)

implies that ! � !k �!p�k. This is only possible

provided ! �
��������������������
p2 � 4m2

p
, so this contribution to

damping only occurs above the 2-particle threshold.
The lower and upper integration limits k� and k�,
which result from the restriction (B10), can be easily
expressed as

k� �

�jpj
2

�
!
2

���������������������������
1�

4m2

p2 �!2

s : (B11)

(2) Landau damping: In this case the contribution only
occurs below the light cone (p2 >!2). The integra-
tion limits resulting from the restriction (B10) turn
out to be the same as in the case of decay5. Notice
that both for decay and Landau damping the func-
tion inside the square root in the integration limits
(B11) is positive, so k� are real.

After the angular integration is performed, the contribu-
tions to the imaginary part of the retarded self-energy
coming from decay and Landau damping can thus be
written as

Im�Reye�!;p� �
�2v�T�2

4

Z k�
k�

dk
4'

k
jpj

1

2!k
f�2nk � 1�

� =�!2 � p2 � 4m2�

� 2nk=�p2 �!2�g: (B12)

The remaining integrations can be easily performed to
obtain

Im�Reye�!;p� �
�2v�T�2

16'jpj

��
T ln

�
1� e�>!�

1� e�>!�

�
�

1

2
�!� �!��

�
=�!2 � p2 � 4m2�

� T ln
�
1� e�>!�

1� e�>!�

�
=�p2 �!2�

�
; (B13)

with !� given by

!� �
1

2

!� jpj

���������������������������
1�

4m2

p2 �!2

s : (B14)

The same result was obtained using Laplace transform
methods [82]. We observe from (B13) that the perturbative
-20
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retarded self-energy coming from the eye diagram does not
contribute to on-shell damping. The corresponding on-
shell plasma excitations (plasmons) are stable and behave
as free quasiparticles.

The same conclusion can be obtained by performing the
analysis of the damping rate on the lattice. In this case, an
025014
explicit form for the damping rate such as (B13) cannot be
given due to, among other things, the lack of rotational
invariance. The lattice damping rate can be calculated by
studying the evolution of the mean field, as done in
Sec. IV E.
[1] U. W. Heinz and P. F. Kolb, Nucl. Phys. A702, 269 (2002).
[2] R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys.

Lett. B 502, 51 (2001).
[3] D. Molnar and M. Gyulassy, Nucl. Phys. A697, 495

(2002).
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[23] M. Sallé, J. Smit, and J. C. Vink, Phys. Rev. D 64, 025016

(2001).
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