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Plate with a hole obeys the averaged null energy condition
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The negative energy density of Casimir systems appears to violate general relativity energy conditions.
However, one cannot test the averaged null energy condition (ANEC) using standard calculations for
perfectly reflecting plates, because the null geodesic would have to pass through the plates, where the
calculation breaks down. To avoid this problem, we compute the contribution to ANEC for a geodesic that
passes through a hole in a single plate. We consider both Dirichlet and Neumann boundary conditions in
two and three space dimensions. We use a Babinet’s principle argument to reduce the problem to a
complementary finite disk correction to the perfect mirror result, which we then compute using scattering
theory in elliptical and spheroidal coordinates. In the Dirichlet case, we find that the positive correction
due to the hole overwhelms the negative contribution of the infinite plate. In the Neumann case, where the
infinite plate gives a positive contribution, the hole contribution is smaller in magnitude, so again ANEC is
obeyed. These results can be extended to the case of two plates in the limits of large and small hole radii.
This system thus provides another example of a situation where ANEC turns out to be obeyed when one

might expect it to be violated.
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L. INTRODUCTION

The standard Casimir calculation of the energy density
between a pair of parallel plates (see for example [1])
yields a negative energy density between the plates.
While this result poses no problem in the calculation of
the usual Casimir force, it presents a puzzle for general
relativity. One can construct a spacetime with an arbitrary
geometry R,, simply by constructing the energy-
momentum tensor to solve Einstein’s equations

1 1
T = g (Rrr ~ 380R). 1)
The only way to prevent the appearance of exotic phe-
nomena, such as closed timelike curves [2], traversable
wormholes [3], or superluminal travel [4], is to place
restrictions on the allowed energy-momentum tensors
T,,. While these conditions are all obeyed in classical
physics, the negative energy density of the quantum
Casimir system violates most such conditions, including
the weak energy condition and the null energy condition
(NEC), which require that T, VAV” = 0 for timelike and
null vectors, respectively. A still weaker condition, which
is still strong enough to rule out exotic phenomena (and to
prove singularity theorems [5—8]), is that the null energy
condition hold only when averaged over a complete geo-
desic (ANEC)." Geodesics parallel to the plates obey NEC,
so any candidate for ANEC violation would need to pass
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through the plates themselves. Therefore one cannot test
ANEC using the standard Casimir calculation in which one
imposes ideal boundary conditions, since this calculation is
not valid within each plate. One approach to resolve this
question is to model the plate using a domain wall back-
ground [9,10]; in this case the effect of the domain wall
modifies the calculation significantly, so that ANEC is
obeyed. In a number of other examples in which one might
expect to find that ANEC is violated, explicit calculation
shows that it is obeyed [11,12]. Other calculations also
show that energy condition violation is more difficult to
achieve in realistic situations than idealized models would
suggest [13,14]. ANEC is also known to be obeyed by free
scalar [15] and electromagnetic [16] fields in flat space-
time. Other works have found restrictions on energy con-
dition violation in flat space [17-19].

In this paper we consider an alternative modification to
the Casimir problem that one might expect would allow the
NEC violation between the plates to extend to ANEC
violation: we imagine a plate with a small hole, through
which the geodesic can pass without encountering the
material of the plate. Our primary calculation is for the
case of a single Dirichlet plate, which also leads to a
negative energy density for minimal coupling. We consider
both two and three spatial dimensions. We also give ex-
tensions of this result to Neumann boundaries and to the
case of two plates in extreme limits.

II. NULL ENERGY CONDITION OUTSIDE A
BOUNDARY

Since our geodesic never passes through the material
that actually imposes the boundary, we need only consider
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the quantum field ¢ in empty space. The effect of the
boundary will be to modify the normal mode expansion
for ¢. We will then integrate VAV*T,,, where T, is the
stress-energy tensor, over the null geodesic V* perpendicu-
lar to the plate, passing through the center of the hole. The
stress-energy tensor for a minimally coupled scalar field is

T/\V = a)‘d)avd) - %nAv[aA¢aA¢]- 2
For a null vector, 17,,VAV” = 0, so we have
T/\VVAVV = (Vaaa¢)2- (3)

For a static system, Tp; = 0 for i = 1, 2, 3. If we further
choose spatial coordinates in which 7;; is diagonal and
V =(1,v), then

TV = ¢ + D (v;0,0) (4)

Let the center of the hole lie at the origin and let the z axis
be the direction perpendicular to the plate, along which the
geodesic lies. For that path,

T\,WVAVY = ¢ + (0.¢)% (5)

II1. BABINET’S PRINCIPLE

It will greatly simplify the scattering theory techniques
we would like to use in our Casimir calculation [20-22] to
be able to consider a boundary condition in a local region.
Therefore we apply a Babinet’s principle argument to
reexpress the result for a plate with a hole in terms of the
results when the boundary condition is applied to an entire
plate and when a complementary boundary condition is
applied to a disk. The former is well-known, while the
latter can be computed using scattering theory in elliptical
or spheroidal coordinates.

We start in empty space, and write the field there in
terms of normal modes that are even or odd in the coor-
dinate across the boundary. Next we consider a perfectly
reflecting Dirichlet boundary with no holes. The free-space
odd modes obey the boundary conditions, but the even
modes do not. Instead, we have new even modes, which
are just the odd mode on the right and minus the odd mode
on the left, as shown in Fig. 1. If we let E denote a sum over
the free-space even modes and O the same sum over the
odd modes, then in free space we have E + O, whereas
with the barrier we have O + O. Therefore, the renormal-
ized energy, the difference between the energy with the
barrier and the energy in free space, is O — E. If we have
Neumann conditions instead, the situation is precisely
reversed and the energy is £ — O.

Now we consider the Dirichlet plate with holes of arbi-
trary shapes. Once again the odd modes are unaffected, and
we have new even modes that vanish on the barrier but are
continuous in the holes, as shown in Fig. 2. Since they are
even, they satisfy Neumann conditions in the hole. Let us
call the contribution of those modes A. The energy with the
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FIG. 1 (color online). In free space (left) we have even and odd
normal mode wave functions. In the presence of a Dirichlet plate
(right), the even functions are replaced by the odd functions with
a change of sign crossing the plate.

FIG. 2 (color online). If there is a hole in the Dirichlet plate
(left), the new even functions satisfy Neumann conditions in the
hole and Dirichlet conditions elsewhere. The odd functions for a

patch with the same shape as the hole (right) are the same except
for a change of sign between sides.

perforated barrier is thus A + O, so the renormalized en-
ergy is A — E.

Finally, suppose that there are Neumann patches where
the holes were. The even modes are unaffected, but there
are new odd modes. In order to be odd and continuous they
must satisfy Dirichlet conditions on the plane outside the
patches. Thus, except for a change of sign on one side,
these are the exact same modes of the previous paragraph,
as shown in Fig. 2. Therefore the total energy is A + E and
the renormalized energy is A — O. Thus we conclude that

[Dirichlet plate w/hole]
— [Complementary Neumann disk]
= [Entire Dirichlet plane] (6)
and similarly
[Neumann plate w/hole]
— [Complementary Dirichlet disk]

= [Entire Neumann plane]. @)

IV. LINE SEGMENT IN TWO SPATIAL
DIMENSIONS

In this section we consider a scalar field in 2 + 1 dimen-
sions with boundary conditions imposed on a line segment
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from —d to +d. In circular coordinates, we can decompose
a free, real, massless scalar field in modes as

1 [*® k
ZO ﬂ) dkwf%Jm(kr)

X (cosmtﬁ?bker + sianc’,fJf)ei“" +cc (8)

¢(r, 0) =

where the prime on the summation sign indicates that for
m = 0, there is no sin mode and instead of cos0 = 1 we
have 1/+/2.

Now we go to elliptical coordinates. For notational
consistency with the three-dimensional case, we consider
the x-z plane. The foci will be located at x = *=d, and the
geodesic will run along the z axis. Elliptical coordinates w,
0 are given by

x = dcoshu cosé 9
z = dsinhu sinf (10)
o)
22 =d cosh2,u,+cos20_>c_le# (11
2 2
as u — o,

We define our Mathieu functions following the conven-
tions of Abramowitz and Stegun [23] but extending their
notation to be more similar to that of Bessel functions. The
angular functions are ce,,(6, g) and se,, (6, g). They satisfy

y"' 4+ (a — 2g cos28)y = 0 (12)

where ¢ = (dk/2)?, and are normalized so that

27T 27
f dbce,,(0, q)* = f dbse,,(0, q)* = . (13)
0 0

This normalization holds even for ceg, but there is no such
function as sey. Thus the normalization is precisely the
same as the circular functions used above, including the
special case for m = 0.

The radial functions of the first kind are Je,,(u, ¢) and
Jo,(u,q) and are precisely the functions called
Mc'P(u, g) and MstP(u, g) respectively in [23]. They
satisfy

y"—(a — 2gcosh2u)y =0 (14)

and go asymptotically to J,,(,/ge*) = J,,(kr). Note that
the functions Je,, and Jo,, defined in [24] have an addi-
tional factor of y/77/2. Analogously, we denote the radial
functions of the second kind as Ye,,(u, g) and Yo,,(u«, q),
which are Mc?(u, g) and Ms? (u, g) in [23].

The normalization of radial functions depends only on
their asymptotics, so Je,, and Jo,, have the same normal-
ization as J,,. Thus the field becomes
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#0000 = 3 "k et )ces 0. 0!

+ Jo,,(u, q)se,,(0, q)cm*)e"‘”’ + c.c. (15)

where the prime on the summation sign indicates that the
second term is included only for m > 0.

Now we consider Neumann conditions along the line
segment, which is u = 0. The even wave functions obey
the conditions already, because dJe,,/du = 0 at u = 0,
but the odd functions need to be modified. Instead of
Yol = 0 we need dypo}! /d = 0. For the free case we had

Jo, (i, q) = YHol (1. q) + Ho (1. q)] (16)
where Ho) = Jo, + iYo,, is the function called Ms%) in

[23] and Ho'? = Jo,, —

$o,(1t, @) = Y HolY (, q) + HoP(w, 9] (17)

where

iYo,, is Ms¥. Now we need

H 05,%)/(0, q)

Q20 — _
HoY'(0, q)

(18)

and the derivative is with respect to .
We can then compute the renormalized vacuum expec-
tation value of the time-derivative term in Eq. (5),

(6% = 5 Z f dickes (190, (1, )

= Jo, (1, @)P)se,(u, q)? (19)

and we can write

[gom(ps, Q1> = Jo, (1, 9> = Y(€2® — DHoy (1, ¢)?
+ (7% = DHo (1, 9)°)
(20)

We want to extend the range of integration to include
negative k. The term se,,(u, g)? is unchanged by going to
negative k, while Jo and Ho behave just like the corre-
sponding Bessel functions. Thus the situation is exactly as
in the circular case [11,21]: extending the range of inte-
gration exchanges the two terms in Eq. (20), so we can
consider only the first term integrated over the entire real
axis. When we close the contour at infinity, we get the
contribution from the branch cut in w = k. With k = i,
the angular function becomes se,, (6, —¢), and the radial
functions have the same continuation as Bessel functions,

Jom(/-'(” _Q) = i’nlon‘l(M’ (/I) (21)

2
HoM(w, —q) = Zi"™VKo, (1, q) 22)
aa

where /0,, and Ko,, are exactly as in [23]. Thus
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o 10,0, )
2id,,(ik) _ 1= (=)"t1; m\*> 23
where ¢ = (dk/2)*> = —q.
Putting it all together we have
<¢2 ) Z foo dK(eZié _ 1)K2
X Ko, (1, @)*se, (0, —¢)?
_ L 10’ 10, @) 2
772 Ko (O )
X Kom(:u" §D) sem(a _¢)2- (24)

On the axis, terms with m even vanish, so we have
. 10,0, )
2 m 1>
dk
(@ mZ [
Kom(lu“) go)zsem(ﬂ/l _GD)Z (25)

where the prime on the summation sign indicates that we
sum over odd values of m.

The other vacuum expectation value that we need is
{(3.¢)?). On the z axis, 9.¢ is just the component of the
gradient in the w direction, which differs from 9, ¢ by the
inverse of the metric coefficient

2 — cos20
h = dyJcosh?p — cos?0 = d, /% (26)

The calculation is otherwise similar. Instead of two powers
of w from time differentiation we just have the radial
function differentiated with respect to u,

(0:87) = 5 (V)
i 0,,(0, )

- thz |, %o
X KOY”(M’ (P)zsem(ﬂ-/z: _¢)2 (27)

If instead we have Dirichlet conditions on the line segment,
the odd functions will be unmodified, but for the even
functions we need e’ = 0 at u = 0, so we have

e, (m q) = HePHel (n, q) + Held (1. @)]  (28)
with

2
o2 — HeP (0, q)

(29)
HelY(0, q)
SO
o . 1e,(0, @)
2i8,,(ik) _ 1= (=yntljp—m>7"/
¢ i e O

Thus on the axis we have
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i s Ie (0, @) 2
wh = Z ] “Ken0, )
X Kem(lu” ¢) Cem(’n-/z’ _gD)Z (31)
e (0, @)
(@.40%) 2h2 Z / Kem Ke, 0, )

X Keh,(w, ) ce,(m/2, —@)*  (32)

where the asterisk on the summation sign indicates that we
sum over even values of m.

V. DISK IN THREE SPATIAL DIMENSIONS

In this section we consider a scalar field with boundary
conditions imposed on a disk of radius d in the x-y plane,
centered at the origin. In spherical coordinates, we can
decompose a free, real, massless scalar field in modes as

o, 0, ) = dk
' Oml[
+ c.c. (33)

]z(k”)Yzm(9 P)e!

where j; is the spherical Bessel function.
Next we go to oblate spheroidal coordinates, given by

x = d\/(f2 + 1)(1 — n?)cos¢ = d coshu sinf cos¢
(34)

y = d\/(§2 + 1)(1 — n?)sing = d coshpu sinf sing
(35)

z = dmné = dsinhu cosf (36)

where ¢ is the azimuthal angle, 7 = cos# is the coordinate
akin to polar angle, and ¢ = sinhpu is the radial coordinate,
with r = d¢ for large ¢.

We define the prolate angular spheroidal function
Sn(c;m) = SZ"(I)(c; 1) with ¢ = kd, using the normaliza-
tion of Meixner and Schifke [25]. Prolate spheroidal func-
tions can be converted to the oblate ones appropriate to our
situation by k — ik and ¢ — —i&. Thus our angular func-
tions are $™(ic; n), obeying the orthonormality relation

2 (n+m)

2n+1(n—m! "
(37)

1
f Stic; m)Syi(ic; m)*dn =
-1

Using these functions we can define oblate spheroidal
harmonics by analogy with spherical harmonics,

2n+1(n m)!

T )‘S'”(lc n)e?  (38)

Yiilicsm, @) =
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obeying the analogous orthonormality relation
1 21T . N .
[ an [\ ao e n 61 Vil ticn ) = 8,0,
(39)

We also define the radial spheroidal functions
R (ic; —i€) and R (ic; —i&), normalized by

lim RyV(ic; —i&) = j,(cé) (40)
glimR::“”(ic; —i&) = y,(cé). (41)

The radial functions thus have the same normalization as
spherical Bessel functions. Thus the field becomes

b ) = [ dk—ymoc 6, ¢)

n= Om——n

X R'D(ic; —ig)el + c.c. (42)

If m + n is even, then $™(ic; i) is an even function of 75
and (d/d&)RMV(ic; —i&) = 0 at & = 0. Thus such wave
functions will be continuous across the disk 7 = 0.
Similarly, if m + nis odd, then $"(ic; 1) is an odd function
of 1 and R"V(ic;0) = 0, so the product is once again
continuous. The R® functions do not have these boundary
conditions, so they cannot be used in the vacuum wave
functions.

Now we consider Neumann conditions on the disk & =
0. If m + n is even, the functions obey the conditions
already. Otherwise we need to combine Rff(l) and R"™"®
to give the desired condition. With R"®) = gm) 4 jpm@

RZI(4) — RZI(U _ l'RZl(4)

and we can write the desired radial

function

gr(ic; —ig) = Ye2PWIRID (ic; —ig) + Ry Wic; —ié)]
43)

with the condition

m(4—)l(lc O)

e2i8(ic) - _
RZ'(3)'(ZC; 0)

(44)

where the derivative is with respect to the second
argument.

The vacuum expectation value of the time-derivative
term, subtracting the free vacuum, then becomes
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($? ] kK| Y ic: 0, $)P

n= Om—*n

X [Iwm(ic' —i&)]> — Ry W (ic; —i€)]
Ly [ areolyzGe 0. 02

n=0m=-—n
X [(e2069) — DR (ic; —ig)?
+ (e7200) — DRI ic; —ig)] 45)

where the prime on the summation sign means that only
odd values of m + n are included.

We want to extend the range of integration to include
negative k, which changes the sign of ¢. We can implement
this change by changing the sign of & in R and R"®,
since these real functions are not affected by complex
conjugation. The functions R”" and R"® have opposite
parity under this transformation, so R and RIM¥ change
places. Thus including negative k in the first term gives the
second term, and we have

¢2>—4 Z Z

n=0m=—n

Y AR o|Yn(ic; 0, ¢)2

X (2960 — DRy (ic; —ig)™ (46)

If we take k and thus c in the upper half plane we will get
spheroidal functions whose parameter goes to negative real
infinity. Therefore we can close the contour at infinity and
obtain an integral along the branch cut on the imaginary
axis associated with the square root in w,

i =2L f A1V (y: 0, $)?

n= Om——n

X (62’5(” — DRy (y; —ig)?
1 Z s [ R (:0)
A=0m="n R’"(”'( ;0)
X V(v 0, $)PRD (y: —ig)? (47)
where v = ic = ikd = —kd. On the axis, we have
0(1)7
(%) = Z [ ROE;,EY’g Vo /2 BIP
X R\ (y; —ig)? (48)

where we have specialized to m = 0 because the contribu-

tions from nonzero m vanish on the axis, leaving only a

sum over odd values of . Similarly, on the axis we have
R (y:0)

1 o0
<(az¢)2> = _Thé; [ RO(3)/( 0)
X |Yoy; 7/2, $)PRY (y; —ig)? (49)
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where the primes on the radial functions indicate deriva-
tives with respect to the second argument, and the metric
ox

coefficient is given by
2 + 2
x| _ &t
& £ +1

For Dirichlet conditions on the disk, we have the analo-
gous results

he = (50)

(1)
(@Y= -1 1YO(y: 6, ¢)I?
é Z f o )y ¥:0,
X ROV (y; —i¢)> (51)
0(1)
N (7;0)
(0.0 = —— f e
|yn(y, 7/2, §)PRY (y; —ig)>  (52)

where we have again specialized to the axis so that only
m = 0 contributes, the derivatives of the radial functions
are again with respect to the second argument, and the
asterisk on the summation sign indicates that now we sum
over even values of n.

VI. NUMERICAL CALCULATION

For a null geodesic V* perpendicular to the plate and
passing through the center of the hole, the contribution to
ANEC is given by Eq. (5). We can compute the results for
the complementary disk using the formulas derived in the
previous sections. We then add the complete plate results,

in two dimensions,
327Tz 3)

in three dimensions

(@) + (0. 4)) = { N

+ 1677224

with Dirichlet conditions giving the upper sign and
Neumann the lower.

In two dimensions, we compute the Mathieu functions
using the package of Alhargan [26,27], with some minor
modifications: we use 80-bit double precision throughout

VoV T
0.008

0.006
0.004

0.002

~—__ 2 —3% — 3

_—

z

-0.001
-0.002 7
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the calculation to accommodate the extreme dynamical
range needed for the wide range of Mathieu function
parameters we use, and we have adapted the code to use
our set of normalization conventions. These C++ routines
are then imported into MATHEMATICA, where we can use
efficient routines for numerical sums and integrals.

In three dimensions, we use the MATHEMATICA spheroi-
dal harmonic package of Falloon [28]. We have updated it
to fix incompatibilities with the latest version of
MATHEMATICA and to avoid memory leaks. We have also
made a number of efficiency optimizations appropriate to
the unusual demands we make on the code (for example,
we changed the caching structure so that it is appropriate to
the way we call the functions, with the same arguments but
different parameters rather than the other way around; we
also wrote specific code for the modified radial function of
the third kind to avoid cancellations of exponentially grow-
ing quantities).

Figure 3 shows the contributions to NEC for Dirichlet
plates with holes of unit radius in two and three spatial
dimensions, as functions of distance along the axis. Using
Babinet’s principle, we have computed the sum of contri-
butions from a Neumann disk and an infinite Dirichlet
mirror. At small distances, the contributions from both
the finite disk and the infinite mirror diverge like 1/7""!,
where z is the distance from the origin and » is the spatial
dimension. The true result, however, does not diverge (the
origin is just a point in empty space) and by symmetry must
have zero slope at the origin. This cancellation provides a
highly nontrivial check on our calculation. Going all the
way to the origin would require infinite precision; in two
dimensions we stop at a distance 0.15d, while in three
dimensions we stop at distance 0.25d. At these values,
our curves already show this cancellation clearly. We
also extrapolate our result (without putting in any restric-
tions on the extrapolation at the origin) and find that it goes
smoothly to a finite value with zero slope at z = 0. A less
stringent check is that our calculation approaches the per-
fect mirror at large distances; in our approach this result
simply tells us that the finite disk contribution is going to
zero fast enough.

V,Vy T
0.006
0.005
0.004
0.003
0.002
0.001

05 ~_1 __15—=2="75"
~

FIG. 3. Contributions to NEC in two dimensions (left) and three dimensions (right) for a Dirichlet plate with a hole of unit radius, as
functions of distance along the axis passing through the center of the hole. Extrapolation is used for points at a distance less than 0.15
in the left panel and 0.25 in the right panel. The dotted lines show the perfect mirror result.
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V,Vy T
0.01

0.005
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Vi Vy TH
0.003 \
0.0025 \
0.002 \
z 0.0015 \
0.001 \
0.0005 ~

FIG. 4. Contributions to NEC in two dimensions (left) and three dimensions (right) for a Neumann plate with a hole of unit radius, as
functions of distance along the axis passing through the center of the hole. Extrapolation is used for points at a distance less than 0.11
in the left panel and 0.25 in the right panel. The dotted lines show the perfect mirror results.

VII. DISCUSSION

The results in Fig. 3 are quite striking. In both cases, far
from the origin we see the negative contribution to ANEC
that we would expect from the standard calculation. Near
the plate, however, the hole leads to a large positive con-
tribution. Integrating the results shown in Fig. 3 gives a
total contribution (including both sides of the plate) of
1.63 X 1073 /d? in three dimensions and 4.53 X 1073 /d?
in two dimensions. The positive contribution overwhelms
the negative contribution, so that ANEC is obeyed.

We can look at these results from a different point of
view by considering conformal coupling. Since the NEC
contribution in this case differs from that in minimal
coupling by a total derivative, it leads to the same results
for ANEC. From this point of view, one might not expect
any ANEC violation in the case at hand, because the
quantum contributions to the perfect mirror vanish. (In
the perfect mirror case, changing from minimal to confor-
mal coupling effectively moves the negative contributions
from the region outside the boundary onto the boundary
itself [29].) However, from this point of view one might
just as well expect Neumann conditions to violate ANEC;
while the perfect Neumann mirror result is positive in
minimal coupling, it also vanishes for conformal coupling.
The results for Neumann conditions are shown in Fig. 4.
Once again integration gives positive results, 2.10 X
1073/d? in three dimensions and 1.77 X 1072/d? in two
dimensions, so ANEC is obeyed. Thus again from this
point of view, one finds ANEC obeyed more often than
would be naively expected.

A conformal field between two plates would have a
constant negative energy density. We can estimate how
our results would extend to the case of parallel plates
with holes, in two limits. If the separation between the
plates € is much smaller than the radius of the hole d, the
two plates are equivalent to a single plate and ANEC
continues to hold. In the other extreme, if the separation
between the plates is large compared to the radius of the
hole, then we can assume that the change A in ANEC
induced by adding a hole in one plate is unaffected by the
other plate. In three dimensions, we obtain a contribution
to ANEC of

77.2

72063

where the first term is the effect of each of the two holes
individually and the second term is the standard contribu-
tion from the two plates. For Dirichlet conditions, A =
1.63 X 1073 /d>. Thus Eq. (54) gives a positive result as
long as € > 1.6d, which surely includes its entire range of
applicability. Similar results hold for the other cases we
have considered.

] dxVMV'T,, ~ 2A — (54)
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