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Instantons in the Higgs phase
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When instantons are put into the Higgs phase, vortices are attached to instantons. We construct such
composite solitons as 1=4 BPS states in five-dimensional supersymmetric U�NC� gauge theory with NF��
NC� fundamental hypermultiplets. We solve the hypermultiplet BPS equation and show that all 1=4 BPS
solutions are generated by an NC � NF matrix which is holomorphic in two complex variables, assuming
the vector multiplet BPS equation does not give additional moduli. We determine the total moduli space
formed by topological sectors patched together and work out the multi-instanton solution inside a single
vortex with complete moduli. Small instanton singularities are interpreted as small sigma-model lump
singularities inside the vortex. The relation between monopoles and instantons in the Higgs phase is also
clarified as limits of calorons in the Higgs phase. Another type of instantons stuck at an intersection of two
vortices and dyonic instantons in the Higgs phase are also discussed.

DOI: 10.1103/PhysRevD.72.025011 PACS numbers: 11.27.+d, 11.30.Pb, 11.25.2w, 12.10.2g
I. INTRODUCTION

Instantons have attracted much attention and have been
applied to a wide variety of subjects in physics and mathe-
matics since their discovery [1]. The method to construct
multiple instanton solutions was established by Atiyah,
Hitchin, Drinfeld, and Manin (ADHM) [2] and it was
shown that the moduli space of instantons is a hyper-
Kähler manifold. In supersymmetric (SUSY) gauge theo-
ries, instantons play crucial roles as a tool to study non-
perturbative effects. Instanton calculus determines the
exact superpotential in the low-energy effective action of
N � 1 SUSY QCD [3]. Seiberg and Witten presented the
exact effective action of N � 2 SUSY QCD whose pre-
potential contains nonperturbative terms as instanton cor-
rections to all orders [4].

The instanton solutions that are used in these studies of
nonperturbative effects are called constrained instantons,
which become solutions of the field equation only with
scale-fixing source terms [5]. This method is motivated by
the necessity to fix the scale for instantons in the presence
of vacuum expectation values of the Higgs field. This
complication arises as a result of a generalized version of
the well-known theorem by Derrick [6], which states that
gauge theories coupled to nontrivial scalar fields do not
allow any finite energy solution with four codimensions
[7]. Therefore instantons have to possess an infinite amount
of energy as solutions of the source-free field equation, if
the gauge fields are in the Higgs phase. This situation is
quite similar to monopoles in the Higgs phase which have
to accompany vortices because of the Meissner effect [8–
12]. In the presence of the Fayet-Iliopoulos term for the
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U�1� factor gauge group, vortices are allowed to exist.
Then it is expected to be energetically favorable for in-
stantons in the Higgs phase to accompany vortices.
Recently it has been suggested by Hanany and Tong [13]
that there should be a solution as a composite state of an
instanton and vortices, quite similar to the monopole in the
Higgs phase. Such a composite state is expected to be
realized as a lump [14,15] (or a sigma-model instanton
[16,17]) in the effective field theory on the vortex world
volume [13].

Instantons (without vortices accompanied) in SUSY
gauge theories become 1=2 Bogomol’nyi-Prasad-
Sommerfield (BPS) states, preserving a half of SUSY, if
it is embedded in the Euclidean four space of the d � 4�
1 space-time. In string theory these BPS instantons can be
realized as Dp-branes on D�p� 4�-branes in type IIA/IIB
string [18], and this brane configuration gives a clear
physical interpretation of the ADHM constraints as the
F- and D-flatness conditions in the SUSY gauge theory
on Dp-brane world volume. Compactification of the small
instanton singularity in the ADHM moduli space [19] was
understood by Nekrasov and Schwartz [20] as noncommu-
tative instantons. In the brane picture this phenomenon
corresponds to the presence of a self-dual NS-NS B-field
background on the D�p� 4�-brane world volume.
Moreover, a direct calculation of N � 2 Seiberg-Witten
prepotential was given by Nekrasov using the instanton
counting [21].

The purpose of this paper is to discuss instantons at-
tached to vortices, when instantons are placed in the Higgs
phase of the five-dimensional SUSY U�NC� gauge theory
with NF�� NC� flavors of hypermultiplets in the funda-
mental representation. We show that composite states of
instantons and vortices1 are 1=4 BPS states. We solve the
1Since vortices (instantons) are defined as solitons with codi-
mension two (four), they are membranes (particles) with 2� 1
(0� 1) dimensional world volume in d � 4� 1 space-time.
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hypermultiplet BPS equations for these states. Assuming
the vector multiplet BPS equation has a unique solution
without additional moduli, we find that solutions are com-
pletely generated by a holomorphic NC � NF matrix func-
tion of two complex variables made of four codimensions
of solitons. We call this matrix the moduli matrix. We find
the total moduli space containing all topological sectors
with all possible boundary conditions. We also find that
other 1=4 BPS configurations containing walls, vortices
and monopoles [22] are completely included in the 1=4
BPS states of instantons and vortices. The moduli matrix
for multiple instantons inside a single vortex is specified by
using the effective theory on the vortex. We also obtain
calorons (periodic instantons) in the Higgs phase and
clarify their relation to instantons and monopoles in the
Higgs phase. We also find another type of instantons which
are stuck at an intersection of two vortices. Dyonic instan-
tons in the Higgs phase and other related issues are also
discussed.

A key point of our discussion is to consider a 1=2 BPS
vortex as a host soliton for certain class of composite 1=4
BPS states. The effective theory on the world volume of a
single vortex is the SUSY CPN model [23–25]. An in-
stanton in the Higgs phase is realized as a 1=2 BPS lump in
this effective theory on the vortex [13] as stated above. This
is similar to a recent discovery of a monopole in the Higgs
FIG. 1. BPS states and their relations. Relations discussed in this
discussed by a dashed line with an arrow. The upper triangle (4
hypermultiplets, and the lower one (4 A0B0C0) the d � 3� 1 gauge
eight supercharges, 1=2 BPS vortices and their effective theories B a
C0 two supercharges. The lower theory A0 is obtained from the upper
preserving SUSY. The effective theory on a single vortex in d � 4�
with a potential, respectively. Here the latter B0 coincides with the one
reduction (B! B0) preserving SUSY. Instantons in C and monopole
1=2 BPS lumps (B! C) and kinks (B0 ! C0) in the effective theo
d � 4� 1 calorons interpolates between instantons within a vortex a
string in C in d � 4� 1 can be dimensionally reduced to a monopo
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phase (a confined monopole) [8–13] as a 1=4 BPS state,
which turns out to be a composite state of a monopole
attached to vortices and is realized as a 1=2 BPS kink [26]
in the vortex effective action [8]. In [22] we have shown all
the solutions are generated by the moduli matrix which is
holomorphic with respect to a single holomorphic coordi-
nate on the wall world volume. The moduli matrix contains
all moduli parameters in all the different topological sec-
tors of the solitons.

The moduli matrix for instantons also contains all mod-
uli parameters in all the different topological sectors. Since
the moduli matrix as a function of two holomorphic vari-
ables contains infinitely many moduli parameters, it is now
difficult to specify all of them corresponding to all the
solutions. Instead, we specify a moduli matrix for multiple
instantons on a single vortex by interpreting them as 1=2
BPS multiple lumps in the effective theory on the world
volume of the single 1=2 BPS vortex, similarly to the case
of monopoles in the Higgs phase. Monopoles in the Higgs
phase can be obtained in N � 2 (eight SUSY) massive
SUSY QCD (SQCD) in d � 3� 1 dimensions. They can
be promoted to monopole strings in d � 4� 1. The N �
2 (eight SUSY) massive SQCD in d � 3� 1 dimensions
can be obtained from our eight SUSY massless SQCD in
d � 4� 1 dimensions by a Scherk-Schwarz dimensional
reduction [27] preserving SUSY. It has been found that in
paper are denoted by solid lines with arrows and the one not
ABC) describes the d � 4� 1 gauge theory with massless

theory with massive hypermultiplets. Theories A and A0 contain
nd B0 four supercharges and the 1=4 BPS composite states C and
theory A by the Scherk-Schwarz dimensional reduction (A! A0)

1 (B) or d � 3� 1 (B0) is the SUSY CPN�1 model without or
obtained from the former B by the Scherk-Schwarz dimensional

s C0 attached by vortices as 1=4 BPS states can be interpreted as
ries on the vortex in d � 4� 1 and d � 3� 1, respectively. In
nd a monopole string in the Higgs phase (see C). The monopole
le C0 in the Higgs phase in d � 3� 1.
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2Since we consider massless hypermultiplet, our consideration
applies equally well for theories in d � 5� 1 dimensions. Our
convention for the metric is !MN � diag:��1;�1; . . . ;�1�.

INSTANTONS IN THE HIGGS PHASE PHYSICAL REVIEW D 72, 025011 (2005)
the Coulomb phase there is a soliton called caloron that
interpolates between an instanton and a monopole [28,29].
We clarify relations between a monopole string and in-
stantons in the Higgs phase and show that they can be
obtained as particular limits in a wider class of solutions,
namely, calorons in the Higgs phase. Various BPS states
and their relations considered in this paper are illustrated in
Fig. 1. We hope that the present work opens a new direction
in the research of instantons and monopoles.

This paper is organized as follows. In Sec. II we derive
the 1=4 BPS equations both by requiring the preservation
of SUSY in the SUSY transformation laws on the fermions
and by performing a Bogomol’nyi completion of the en-
ergy density. We solve them and show that all solutions are
generated by the moduli matrix. The moduli space with all
possible boundary conditions is also clarified. In Sec. III
we first identify the moduli matrix for a single vortex
where we determine the coefficient (the Kähler class) of
the Kähler potential in the effective theory on a single
vortex (A! B). Promoting moduli parameters in that
matrix to functions of the world-volume coordinates we
obtain the moduli matrix for a certain class of 1=4 BPS
states, given as multiple instantons inside a single vortex
(A! C). We also determine the topology of the moduli
space for that topological sector. In Sec. IV we discuss the
relation between theories and solitons in d � 4� 1 (the
triangle ABC) and d � 3� 1 (the triangle A0B0C0). It is
shown that the 1=4 BPS equations and the projection
operators for instantons and vortices in d � 4� 1 reduce
to those for monopoles, vortices and walls in d � 3� 1.
The instanton charge reduces to the monopole charge. We
find that a particular form of the moduli matrix (in d �
4� 1) reproduces composite states made of walls, vortices
and monopoles, uniformly distributed to one direction.
Therefore the total moduli space of these composite states
found in [22] has one-to-one correspondence with a subset
of the total moduli space for composite states of vortices
and instantons. We also clarify the relations between these
total moduli spaces for 1=4 BPS states and those for 1=2
BPS walls found in [30,31] and for 1=2 BPS vortices. Then
we specify the moduli matrix for a monopole in the Higgs
phase in d � 3� 1. As a by-product we give a new way to
obtain the potential in the effective theory on a single
vortex in the massive theory. (That potential was originally
discussed by Tong [32].) We then discuss the calorons in
the Higgs phase using the vortex effective theory.
Section V is devoted to conclusion and discussion. We
discuss classification of all solutions of our 1=4 BPS
equations. There we construct another interesting solution,
intersecting vortices whose intersecting point carries in-
stanton charges. We thus conclude that there exist two
kinds of instantons in the Higgs phase; the one is an
instanton inside a vortex and the other is an instanton stuck
at the intersection of vortices. 1=4 BPS dyonic instantons
are also discussed.
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II. 1=4 BPS EQUATIONS AND SOLUTIONS

A. 1=4 BPS equations for vortices and instantons

We work with a U�NC� gauge theory with NF massless
hypermultiplets in the fundamental representation in d �
4� 1 dimensions2 as the minimum dimension with four
spacial dimensions allowing instantons (A in Fig. 1). We
consider the minimum number of supersymmetry (SUSY)
which is eight in our case. Since we consider massless
hypermultiplet, we have an SU�NF� flavor symmetry. We
consider the case of NF � NC. The physical fields con-
tained in the vector multiplet are a U�NC� gauge field WM
�M � 0; 1; . . . ; 4�, symplectic Majorana spinors �i with
SU�2�R indices i � 1; 2 and a real adjoint scalar field �.
The physical fields contained in the hypermultiplets are
complex scalars HirA �r � 1; 2; . . . ; NC; A � 1; 2; . . . ; NF�
and Dirac spinors  rA. We express NC � NF matrix of
hypermultiplets by Hi. The bosonic Lagrangian takes the
form of

L � Tr
�
�

1

2g2 FMNF
MN �

1

g2 DM�DM�

�DMHi�DMHi�y �
1

g2 �Y
a�2 �Hi�Hi�y�2

�
;

(2.1)

where the trace is taken over the color indices, g is the
gauge coupling constant taken common for U�1� and
SU�NC� parts of the U�NC� gauge group, in order to allow
simple solutions later. The covariant derivatives and the
field strength are defined by DM� � @M�� i�WM;��,
DMHi � @MHi � iWMHi and FMN � �i�DM;DN� �
@MWN � @NWM � i�WM;WN�, respectively. Here Ya are
auxiliary fields of the vector multiplet which are deter-
mined by their equations of motion as

Ya �
g2

2
�ca1NC

� ��a�jiH
iHjy�; �a � 1; 2; 3� (2.2)

with the Pauli matrices �a for SU�2�R and real parameters
ca called the Fayet-Iliopoulos (FI) parameters.

The SUSY transformation of the fermionic fields are
given by

�"�i �
�
1

2
�MNFMN � �MDM�

�
"i � iYa��a�ij"

j;

(2.3)

�" �
���
2
p
��i�MDMH

i � �Hi��ij"
j: (2.4)

Here the antisymmetric tensor is defined by �12 � �12 � 1.
The SU�2�R rotation allows us to choose the FI parameters
as ca � �0; 0; c > 0� without loss of generality. Then con-
-3
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ditions for supersymmetric vacua are obtained as

H1�H1�y �H2�H2�y � c1NC
;

H1�H2�y � 0;

�Hi � 0:

(2.5)

Since the nonvanishing FI parameter in the first equation
does not allow Hi � 0 for both i, the third equation re-
quires � to vanish. Hence the vacua are in the Higgs branch
with completely broken U�NC� gauge symmetry. For NF >
NC the moduli space of vacua is the cotangent bundle over
the complex Grassmann manifold, T�GNF;NC

�

T��SU�NF�=�SU�NF � NC� � SU�NC� �U�1��� [33].
Recently it has been suggested that this model admits

BPS states containing both non-Abelian vortices and in-
stantons [13]. The Bogomol’nyi completion for energy
density in static configurations can be performed as [13]

E � Tr
�

1

2g2 FmnFmn �DmH�DmH�
y �

1

g2 �Y
3�2
�

� Tr
�

1

g2 f�F13 � F24 � Y3�2 � �F12 � F34�
2

� �F14 � F23�
2g � 4 �DzH� �DzH�y � 4 �DwH� �DwH�y

� c�F13 � F24� �
1

2g2 Fmn
~Fmn � @mJm

�

� Tr
�
�c�F13 � F24� �

1

2g2 Fmn
~Fmn � @mJm

�
; (2.6)

where we define ~Fmn � �1=2�"mnklFkl with m; n��
1; 2; 3; 4� which denote spatial indices for the four codi-
mensional coordinates of solitons. We also define two
complex coordinates and the covariant derivatives as

z � x1 � ix3; w � x2 � ix4;

�Dz �
D1 � iD3

2
; �Dw �

D2 � iD4

2
;

(2.7)

respectively. In Eq. (2.6) we have assumed H2 � 0 for
simplicity,3 and we have simply denoted H � H1. Here
we have also ignored � because it vanishes for our 1=4
BPS states except in Sec. V where we restore � in order to
discuss more general solution including dyonic instantons.
The last line of Eq. (2.6) gives the BPS bound for the
energy density. Its first term counts topological charges
for vortices in the 1-3 plane and the 2-4 plane extending to
the 2-4 plane and the 1-3 plane, respectively, and the
second term for the instantons. The current Jm is defined
by J1 � Re��iD3HH

y�, J3 � Re�iD1HH
y�, and simi-

larly for 2; 4 directions. It gives a surface term which
does not contribute to the energy of solitons integrated
3If there are vortices and H2 � 0, we can show that fields
increase indefinitely away from the vortex and energy density
diverges, at least for simple cases of U�1� gauge theory.
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over the entire space. By using the BPS equations given
below, it can be rewritten as Jm � �1=2�Dm�HH

y�.
The BPS equations minimizing the energy density can

be obtained from (2.6) as [13]:

F12 � F34; F23 � F14;

�DzH � 0; �DwH � 0;
(2.8)

F13 � F24 � �
g2

2
�c1NC

�HHy�: (2.9)

The first two equations in Eq. (2.8) give an integrability
condition for differential operators �Dz and �Dw

� �Dz; �Dw� �
i
4
��F12 � F34� � i�F14 � F23�� � 0: (2.10)

If we turn off the FI parameter c and set H � 0, these
equations reduce to the self-dual equation for instantons.
On the other hand, if we ignore the x2; x4 �x1; x3� depen-
dence and W2; W4 �W1; W3�, these equations reduce to the
BPS equations for vortices in the 1-3 (2-4) plane.

We now show that all configurations satisfying the BPS
equations (2.8) and (2.9) preserve 1=4 (but not 1=8) SUSY.4

To this end we introduce projections on the fermionic
supertransformation parameters ": it is specified by the
subspace with positive eigenvalues of gamma matrices �
(�2 � 1) in the form of �" � ". The gamma matrices �v

for the projection allowing vortices in the 1-3 plane, �v0 for
vortices in the 2-4 plane and �i for instantons are given by

�v � ��13 � i�3; �v0 � ��24 � i�3;

�i � �0 � 12;
(2.11)

respectively. Each projection operator projects out differ-
ent sets of four supercharges among eight supercharges,
and therefore it is a projection for 1=2 BPS states. By
requiring 1=2 SUSY specified by �v ��v0 � in the super-
transformations (2.3) and (2.4) to be conserved, we obtain
the BPS equations allowing vortices in the 1-3 (2-4) plane.
Similarly �i leads to another 1=2 BPS (self-dual) equations
admitting instantons. Since a projection is defined by the
subspace with positive eigenvalues of a gamma matrix �,
two projections are compatible if and only if two gamma
matrices commute with each other. In our case of vortices
in the 1-3 and the 2-4 planes and instantons, any two of all
three gamma matrices �v, �v0 and �i commute with each
other. Therefore we can impose all three projections simul-
taneously to preserve 1=4 SUSY. By requiring the super-
transformation (2.3) and (2.4) to be conserved for the 1=4
SUSY, we obtain the BPS equations (2.8) and (2.9) again.
Note that any of the three projections can be derived from
the product of the other two, for example �v0 � �v�i.
4The authors in Ref. [13] suspected that solutions of Eqs. (2.8)
and (2.9) preserve 1=8 SUSY, but it is not the case.
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6One should recall that the total moduli space (in our lan-
guage) of the sigma-model instanton is the whole space of the
holomorphic map from C to the target space M [16,17].
Requiring that infinity should be mapped into a single point in
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Therefore we conclude that all solutions of the BPS equa-
tions (2.8) and (2.9) preserve 1=4 SUSY.

B. Solutions and their moduli space

Let us solve the BPS equations (2.8) and (2.9) by gen-
eralizing the method introduced in [30] (A! C in Fig. 1).
The four equations in Eq. (2.8) can be formally solved as

�W z � �iS
�1 �@zS; �Ww � �iS

�1 �@wS;

H � S�1H0�z; w�;
(2.12)

with Wz and Ww defined by

�W z �
W1 � iW3

2
; �Ww �

W2 � iW4

2
(2.13)

and an NC � NC nonsingular matrix function S�xm� is
defined as a solution of the first two equations in (2.12).
Then the last two equations in Eq. (2.8) is solved by
Eq. (2.12) with an NC � NF matrix H0�z; w� whose com-
ponents are arbitrary holomorphic functions with respect to
z and w. The matrix H0�z; w� should have rank NC in
generic points �z; w�. We callH0 the moduli matrix because
all moduli parameters of solutions are expected to be
contained in this matrix.5 There is an important symmetry,
which we call the world-volume symmetry [30], defined by

H0 ! H00 � VH0; S! S0 � VS (2.14)

with V�z; w� an element of GL�NC;C� whose components
are holomorphic with respect to z and w. The world-
volume symmetry (2.14) relates sets of �H0; S� and
�H00; S

0� which give the same physical quantities and de-
fines an equivalence relation [22,30,31]. Then the total
moduli space Mvv0i including all topological sectors with
different boundary conditions can be identified as a quo-
tient of the holomorphic maps defined by

M vv0i �H nG; (2.15)

G � fH0jC2 ���! M�NC � NF;C�; �@zH0 � �@wH0 � 0g;

H � fVjC2 ���! GL�NC;C�; �@zV � �@wV � 0g;

whereM�NC � NF;C� is anNC � NF complex matrix. The
5In the next section, we explicitly show that the moduli matrix
contains all the moduli parameters in the case of the single non-
Abelian vortex. In the presence of at least one vortex, the
equation H2 � 0 holds as explained in footnote 3 and therefore
no moduli parameters appear in H2. There exists the possibility
such that � defined in Eq. (2.16) below contains additional
moduli parameters. We have to prove the index theorem for
our 1=4 BPS states to clarify this point.
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dimension of this moduli space is of course infinite because
it contains topological sectors with arbitrary numbers of
topological charges. By enforcing a boundary condition
properly we can obtain a topological sector with finite
dimension, as shown in the next section.6 All topological
sectors are patched together to form the total moduli
space.7 We would like to emphasize that the same thing
occurs in the case of the composite states made of mono-
poles, vortices and walls [22] [see Eqs. (4.13) and (4.14)
below]. If we put the same requirement with footnote 6, all
vortices end on walls with a perpendicular angle. However
once ignoring such a requirement, we were able to obtain
tilted walls where vortices end with an angle. Changing
boundary conditions produces new solutions. It is very
important to consider the total moduli space, in order to
exhaust all the solutions of BPS equations for composite
states.

Once H0 is given, the matrix function S�xm� can be
determined by the last two equations in Eq. (2.8) up to
the U�NC� gauge transformation. To solve it, it is useful to
introduce a gauge invariant matrix

� � SSy (2.16)

which transforms as �! V�Vy under the world-volume
transformation (2.14). Then the remaining BPS equation
(2.9) can be reexpressed in terms of � as

4 �@z�@z���1� � 4 �@w�@w���1� � cg2�1NC
��0�

�1�;

c�0 � H0H
y
0 : (2.17)

We call this the master equation for our 1=4 BPS system.
The energy density for the 1=4 BPS states consists of

contributions with the vorticity densities .v in the 1-3
plane and .v0 in the 2-4 plane, the instanton number density
.i, and the current divergence for the correction term @mJm
as

E � 2/c�.v � .v0 � �
8/2

g2 .i � @mTrJm: (2.18)

The vorticity densities .v in the 1-3 plane and .v0 in the 2-4
plane are given in terms of � as
M, the total moduli space is decomposed into topological
sectors, according to the homotopy class of the map S2 ! M.
Then each topological sector contains a finite number of moduli
parameters.

7We have not yet clarified how the total moduli space is
decomposed into different topological sectors in the case of
instantons. It was, however, completely clarified [30,34] in the
case of the moduli space of the domain walls given in Eq. (4.16),
below, which is obtained by the dimensional reduction of this
system.
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8We cannot exhaust all 1=4 BPS states by this method. For
example, vortices in the 2-4 plane cannot be expressed in the
effective theory on the world volume of the vortex. We will
return to discuss this problem in Sec. V.
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.v � �
1

2/
TrF13 �

1

/
�@z@z logdet�;

.v0 � �
1

2/
TrF24 �

1

/
�@w@w logdet�:

(2.19)

For finite energy configurations, � must approach �0 at
asymptotic spacial infinity in the codimensions (along the
direction perpendicular to the vortex). Therefore topologi-
cal charge such as the vorticity in the 1-3 plane 0v is
determined by boundary conditions encoded in �0 as

0v �
Z
dx1dx3.v �

1

2/i

I
1
dz@z logdet�0; (2.20)

and similarly for vorticity 0v0 in the 2-4 plane. Then the
maximal power of jzj2 and jwj2 of the determinant of �0

gives the vorticity 0v and 0v0 , respectively. On the other
hand, the instanton density .i is given in terms of � as

.i �
1

16/2 Tr�Fmn ~Fmn�

�
1

/2 Tr� �@z�@w���1� �@w�@z���1�

� �@z�@z���1� �@w�@w���1��: (2.21)

To obtain the instanton number 0i, we should just integrate
over the density .i over the Euclidean four space as 0i �R
d4x.i: In the case of instantons in the Higgs phase, �

approaches to �0 at the infinity (jzj ! 1) perpendicular to
the host vortices in the 1-3 plane. On the other hand, it does
not approach to �0 at infinities �jwj ! 1� along the host
vortices, but to the solution of 1=2 BPS vortices �v�z; �z�
which does not depend on w; �w. Instanton charges can be
calculated by evaluating asymptotic values of �; @w� and
�@w� at infinities (jwj ! 1). This can be correctly per-
formed by using the Manton’s effective action [35] of the
host vortices as we will show in the next section. Finally
the current divergence for the correction term @mJm is
given in terms of � as

@mTrJm � �
2

g2 @
2
mTr� �@z��

�1@z�� � �@w��
�1@w���:

(2.22)

Theories with NF >NC are called semilocal theories,
and vortices in these theories are called semilocal vortices
[36]. In this case of NF >NC we can consider the strong
gauge coupling limit g2 ! 1 in which the model reduces
to the nonlinear sigma model whose target space is the
cotangent bundle over the complex Grassmann manifold,
T��GNF;NC

� [33], and semilocal vortices become
Grassmannian sigma-model lumps. In this limit the master
equation (2.17) becomes the algebraic equation as
[22,30,31]

�g2!1 � �0 � c�1H0H
y
0 : (2.23)

Equation (2.23) requires the moduli matrixH0 to have rank
025011
NC for the entire complex �z; w� plane, in order for � to be
invertible. Therefore the moduli space in this limit be-
comes simply the space of all the holomorphic maps
from the complex two plane to the complex Grassmann
manifold

M g2!1
vv0i � f’jC2 ! GNF;NC

; �@z’ � �@w’ � 0g: (2.24)

Let us recall that the moduli space Mvv0i in Eq. (2.15) at
finite g2 admits isolated points where the rank of H0 is less
than NC. Such isolated points correspond to Abrikosov-
Nielsen-Olesen (ANO) vortices [37] sizes of whose cores
are of order Lv � 1=�g

���
c
p
�. In the infinite gauge coupling

limit, the ANO vortices tend to zero-size singular configu-
rations of the delta function. In the sigma models (g2 ! 1)
such singular configurations give small lump singularities

and are no longer points in the moduli space Mg2!1
vv0i . In

other words, the small lump singularities in Mg2!1
vv0i are

blown up in the moduli space Mvv0i for finite gauge
coupling by inserting the degrees of freedom of the ANO
vortices. However not the all singularities in the moduli

space Mg2!1
vv0i in the strong gauge coupling limit are

smoothed out in the moduli space Mvv0i for finite gauge
coupling. The moduli space Mvv0i still has singularities
interpreted as small instanton singularities as shown in the
next section.

For the case of NF � NC where we cannot take the
infinite gauge coupling limit the moduli space purely con-
tains degrees of freedom of the ANO vortices and instan-
tons as studied in the next section.
III. INSTANTONS IN THE HIGGS PHASE

We have derived the master equation (2.17) of our 1=4
BPS system and have shown that the total moduli space is
given by Mvv0i ’H nG in Eq. (2.15) (A! C in Fig. 1). It
is, however, difficult to clarify what configuration each
point of the moduli space gives, because we cannot solve
the master equation (2.17) in its full generality. In order to
overcome this problem partially, we here restrict ourselves
to consider 1=4 BPS solutions which can be interpreted as
1=2 BPS lumps (B! C in Fig. 1) on the world volume of
1=2 BPS vortices in the 1-3 plane (A! B in Fig. 1).8 Such
restricted solutions constitute a moduli subspace in the
total moduli space Mvv0i defined as the space of all the
holomorphic maps from complex plane to the vortex mod-
uli space Mv ’ C� M̂v [given in Eq. (3.2) below]:

f’jC!Mv; �@w’ � 0g

’ C� f’jC! M̂v; �@w’ � 0g �Mvv0i; (3.1)
-6
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where the factor C representing the center of positions of
the vortices is factored out from the target space because
lumps cannot wrap it. In the case of a single vortex the
reduced moduli space M̂v coincides with the target space
of lumps and the moduli space (3.1) reduces to that of the
lump as will be shown below. The further study is required
for the case of multiple vortices.

This section consists of two subsections. In the first
subsection we give the effective action on 1=2 BPS vorti-
ces, which we call the vortex theory (B in Fig. 1), and
explain a relation between the 1=4 BPS states and the 1=2
BPS states in the vortex theory (A! B! C in Fig. 1). In
particular we work out the vortices in the theory withNC �
NF � N focusing on N � 2, but not the semilocal vortices
with NF >NC. In the second subsection we find the 1=4
BPS solutions for instantons in the Higgs phase by embed-
ding the lump solution holomorphically into the moduli
matrix for the vortex of 1=4 BPS solutions (A! C in
Fig. 1).

A. Instantons as lumps on vortices

Let us first work out the 1=2 BPS non-Abelian vortex
(A! B in Fig. 1). The 1=2 BPS equations for the vortices
in the 1-3 plane can be derived under 1=2 SUSY condition
with the projection defined by �v. They are obtained by
ignoring dependence on w in Eqs. (2.8) and (2.9). Then the
master equation for vortices is also obtained by throwing
away the w dependence in Eq. (2.17). The moduli matrix
Hv0 for vortices does not depend on w and is holomorphic
with respect to z. The total moduli space of the non-
Abelian vortices is also obtained from Mvv0i in
Eq. (2.15) by ignoring w dependence:

M v �H vnGv; (3.2)

G v � fHv0jC ���! M�NC � NF;C�; �@zHv0 � 0g;

H v � fVjC ���! GL�NC;C�; �@zV � 0g:

The effective Lagrangian using the method of Manton [35]
is obtained by promoting the moduli parameters 2i in the
background solutions with �v�H0�2�; H

�
0�2

��� to fields
2i�xu� depending on the world-volume coordinates xu

(u � 0; 2; 4) on vortices. After a lengthy calculation taking
the Gauss’s law into account, we find the following effec-
tive Lagrangian on the world volume of the vortices [38] in
terms of �v (B in Fig. 1):

L v �
Z
d2x

�
�u�yuc logdet�v

�
4

g2 Trf �@z��u�v�
�1
v ��

y
u �@z�v�

�1
v �

� �@z�@z�v�
�1
v ��

y
u ��u�v�

�1
v �g

�
; (3.3)

where the variation �u and its conjugate �yu act on complex
025011
moduli fields as �u�v �
P
i@u2

i���v=�2i� and �yu�v �P
i@u2

i����v=�2i��, respectively.
The original theory with NF >NC reduces to the non-

linear sigma model on T�GNF;NC
in the strong gauge cou-

pling limit g2 ! 1 as stated in the last section. Semilocal
vortices become 1=2 BPS Grassmannian sigma-model
lumps. The second term in the effective Lagrangian (3.3)
for the vortices vanishes in this limit and we get the Kähler
potential of the effective action for the Grassmannian
lumps as Klumps � c

R
d2x logdet�g2!1 with �g2!1 in

Eq. (2.23). This form of the Kähler potential is well known
in the case of the CPNF�1 lumps corresponding to the case
of NC � 1 [14,15].

Let us now clarify the correspondence between 1=4 BPS
states of the parent theory (A! C in Fig. 1) and 1=2 BPS
states on the vortex theory (A! B! C in Fig. 1). To this
end, it is very important to observe a relation between the
effective Lagrangian (3.3) of the vortex theory and the
energy density (2.18) of 1=4 BPS states with Eqs. (2.19)
and (2.21). Similarly to the last equation in Eq. (2.8), the
1=2 BPS equation for lumps on the vortex theory is ob-
tained as

�@ w2i � 0: (3.4)

Assuming a static solution, we obtain

�u � �yu � @u2i �
�2i � @u2

j� �
�2j�

� �2
�
@w2

i �
�2i �

�@w2
j� �
�2j�

� �@w2
i �
�2i � @w2

j� �
�2j�

�
: (3.5)

The 1=2 BPS equation (3.4) on the vortex theory implies
that the variation �u � �yu can be identified with �2@w �
�@w on the 1=2 BPS states

�u � �yu jBPS on vortexi � �2@w � �@wjBPS on vortexi:

(3.6)

Thus the effective Lagrangian (3.3) evaluated on the 1=2
BPS states correctly gives the minus of the energy density
(2.18) omitting the contribution of vortices in the 1-3 plane.
More explicitly, the first term in Eq. (3.3) corresponds to
the vortices in the 2-4 plane and the second term to the
instantons. This assures that instantons as 1=4 BPS states
can be identified as 1=2 BPS states on the vortex theory.

To avoid inessential complications, let us consider the
theory in the case of N � 2. The moduli space for a single
vortex in this theory was found to be C�CP1 in
Refs. [23,24] where C parametrizes zero modes for broken
translational symmetries in the two codimensions and CP1

for broken global SU�2�F symmetry in the internal space,
respectively. Let us first find out the moduli matrices for
the single vortex and recover the previous results in
Refs. [23,24] in terms of the moduli matrices (A! B in
-7
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Fig. 1). As was mentioned in the previous section, det�0 /

detH0H
y
0 for the single vortex has to be proportional to

jz� z0j
2 with z0 the position of the vortex. We find that

general moduli matrices for the single vortex can be trans-
formed by the world-volume symmetry (2.14) to either of
the following two matrices:

Hsingle
v0 �z; z0; b� �

���
c
p
�
z� z0 0
b 1

�
;

H0single
v0 �z; z0; b0� �

���
c
p
�

1 b0

0 z� z0

�
;

(3.7)

with b; b0 2 C. These two matrices can be transformed to
each other with the relation b0 � 1=b by a world-volume
transformation (2.14) 9 except for specific points b � 0 and
b0 � 0. Clearly, the moduli space of the single vortex can
be identified as C� S2 ’ C�CP1. More explicitly, C
and S2 ’ CP1 are covered by z0 and by two patches b
and b0 in Eq. (3.7), respectively. The moduli parameter b
can be identified as the orientational moduli parameter
which is associated with the spontaneously broken
SU�2�F flavor symmetry [23,24]. In fact, the above moduli
matrix can be rederived from that with b � 0 by acting
U 2 SU�2�F combined with a world-volume transforma-
tion VU:

Hsingle
v0 �z; z0; b� � VUH

single
v0 �z; z0; 0�U; (3.8)

with

U �
�
21 22

�2�2 2�1

�
; VU �

�
2�1 �22�z� z0�
0 1=2�1

�
:

(3.9)
Here j21j

2 � j22j
2 � 1 and we have identified b �

�2�2=2
�
1. Note that Hsingle

v0 �z; z0; 0� breaks SU�2�F into
U�1�F, so the orientational moduli space is found to be
CP1 ’ SU�2�F=U�1�F parametrized by homogeneous co-
ordinates 21 and 22 or an inhomogeneous coordinate b or
b0. Hsingle

v0 �z; z0; b� is the most general for a single vortex in
the sense that it contains all solutions with a single vortex.
This is consistent with the results in Ref. [23], where the
real dimension of the moduli space of the non-Abelian k
vortices was obtained as 2kN by making use of the index
theorem.

Let us next solve the master equation for the single
vortex with the moduli matrix (3.7). To do this, we first
recall the case of N � 1, where we obtain the well-known
ANO vortex. In our formulation, the ANO vortex is given
by �? satisfying

4 �@z@z log�? � cg2�1� jz� z0j2��1
? �: (3.10)

Returning to the N � 2 case, let us first take the diagonal
moduli matrix Hsingle

v0 �z; z0; 0�. The solution of the master
equation (2.17) for the 1=2 BPS vortex with this moduli
matrix Hsingle

v0 �z; z0; 0� is obtained by embedding the ANO
9H0 single
v0 �z; z0; b

0 � 1=b� �
�

0 1=b
�b z� z0

�
Hsingle

v0 �z; z0; b�.
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vortex solution �? as �vjb�0 � diag:��?; 1� [23]. The
solutions corresponding to the general moduli matrix Hv0

in Eq. (3.7) can be obtained by using the world-volume
transformation VU in Eq. (3.9) as

�v�VU��vjb�0�V
y
U�

�?�jbj2jz�z0j2

1�jbj2
�b�z�z0�

b� �z� �z0� 1�jbj2

 !
: (3.11)

We now reach the place where the effective theory of the
single vortex can be exactly obtained (B in Fig. 1). This can
be achieved by promoting the moduli parameters z0 and b
in the solution (3.11) into fields on the vortex world volume
z0�t; w; �w� and b�t; w; �w� and by plugging them into the
effective Lagrangian (3.3) [35]. We thus find the Kähler
potential with the coefficient of the Kähler metric (Kähler
class) 4/=g2 for the full moduli fields z0�t; w; �w� and
b�t; w; �w� :

Kv � c/jz0j
2 �

4/

g2 log�1� jbj2�: (3.12)

The first term comes from the first term of the effective
Lagrangian (3.3) and the second term from the second term
of (3.3) corresponding to the instantons. This Lagrangian
with the Kähler class 4/=g2 was also determined in [23] by
the brane configuration and in [10] by using the 1=4 BPS
states with monopoles in the Higgs phase.

Following the prescription given in the introduction,
next we consider the 1=2 BPS lumps in the effective theory
on the 2� 1 dimensional world volume of the vortex (B!
C in Fig. 1). The BPS equation (3.4) can be solved for
k lumps using rational functions of degree k [14,16] as

b�w� �
Pk�w�

8Pk�w� � aQk�1�w�
; (3.13)

with

Pk�w��
Yk
i�1

�w�pi�; Qk�1�w��
Yk�1

j�1

�w�qj�: (3.14)

The moduli parameters fp1; p2; . . . ; pkg have one-to-one
correspondence with the positions of the k lumps in the
host vortex, a with the total size of the configurations and
fq1; q2; . . . ; qk�1g with the relative sizes of the k lumps.
The remaining modulus 8 parametrizes CP1 at the bound-
ary (the infinity) of w since b�w� ! 1=8 as jwj ! 1.
Especially, fpi; a; qjg can precisely be identified with posi-
tions and sizes of k lumps when 8 � 0.10 Notice that zeros
of the denominator in Eq. (3.13) are not true singularities
but mere coordinate singularities. This is an artifact caused
by the fact that b is an inhomogeneous coordinate of the
CP1 manifold. Namely the corresponding configurations
are smooth and continuous at these coordinate singular-
ities. On the other hand, the point a � 0 and the points
For 8 � 0 we should redefine these parameters to describe
the physical positions and sizes. For the case of k � 1 see
Eq. (3.25).
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pi � qj are true singularities of the moduli space of the
lumps since the degree of the solution (3.13) decreases and
the corresponding configurations become singular. These
singularities are called small lump singularities.

As was expected, the mass of k lumps precisely agrees
with that of the k instantons, namely 8/2k=g2. This mass
comes from the second term in Eq. (3.12) which originally
corresponds to the instanton charges as was shown in the
previous section. We thus can identify the 1=4 BPS in-
stantons in the original theory in d � 4� 1 dimensions
(A! C in Fig. 1) as the 1=2 BPS lumps in the effective
theory on the d � 2� 1 dimensional world volume of the
vortex (A! B! C in Fig. 1).

Returning to the vortex, orientational moduli space for
spontaneous symmetry breaking by the single non-Abelian
vortex for the case of N > 2 was shown to be
SU�N�=�SU�N � 1� �U�1�� ’ CPN�1 [23–25]. One of
the patch for moduli space of the single vortex is given by

Hv0 �
���
c
p

z� z0 0 0 � � � 0
b1 1 0 � � � 0

b2 0 1 . .
. ..

.

..

. ..
. . .

. . .
.

0
bN�1 0 � � � 0 1

0BBBBBBBB@

1CCCCCCCCA
; (3.15)

with bi complex parameters. There exist other N � 1
patches for CPN�1 given through the world-volume trans-
formation (2.14). There exist N complex moduli parame-
ters z0 and bi. Here z0 is the position of the vortex and bi
are orientational moduli parametrizing CPN�1. The Kähler
potential for the orientational moduli parameters bi can be
determined up to the constant factor as K / log�1�P
jbij2� by discussing only symmetry. The factor can be

precisely determined without exact solutions or any calcu-
lations by recognizing an equivalence between the mass of
the 1=4 BPS objects in the original theory and the 1=2 BPS
12We can consider the polynomial functions Ak0 of order k0 and
Bk0�1 of order k0 � 1 for k0 > k� 1. However, we can always set
k0 � k� 1 by use of the world-volume transformation without
loss of generality.

025011
objects in the vortex theory. Then we get

Kv � /cjz0j
2 �

4/

g2 log
�
1�

XN�1

i�1

jbij
2

�
: (3.16)

The multilump solution for the CPN�1 model is also
known [15].

B. 1=4 BPS solutions of the instantons in the Higgs
phase

The aim of this subsection is to specify the moduli
matrix H0�z; w� for the instantons in the Higgs phase as
the 1=4 BPS states (A! C in Fig. 1), which have been
found to be the 1=2 BPS lumps on the vortex theory in the
previous subsection (A! B! C in Fig. 1). We will also
specify the moduli space of the instantons in the Higgs
phase. Our basic strategy is to replace the moduli parame-
ter b in the moduli matrix Hsingle

v0 �z; z0; b� in Eq. (3.7) for a
single vortex by the lump solution b�w� in Eq. (3.13):11

H0�z; w� �H
single
v0 �z; z0; b�w�� �

���
c
p z� z0 0

Pk
8Pk�aQk�1

1

 !
:

(3.17)

Although this procedure is very simple, there exists a
technical complication; a solution b�w� is not holomorphic
at some points in w where b�w� diverges, whereas all
components in the moduli matrix H0�z; w� have to be
holomorphic with respect to both z and w at any point
�z; w� 2 C2 to cover the whole solutions consistently. This
can be overcome by noting that the lump solution b�w� is
given in an inhomogeneous coordinate b on CP1.
Therefore we should transform the moduli matrix
Hsingle

v0 �z; z0; b�w�� written in the inhomogeneous coordi-
nate b into the one in homogeneous coordinates. This can
be achieved by
H0�z; w� �
���
c
p
�
�z� z0�Ak�1�w� �z� z0��8Ak�1�w� � aBk�2�w��

Pk�w� 8Pk�w� � aQk�1�w�

�
; (3.18)
with Ak�1 and Bk�2 being the polynomial functions of
order k� 1 and k� 2 in w, given by

Ak�1�w� �
Xk
i�1

1

Qk�1�pi�

Yk
i0��i��1

�
w� pi0

pi � pi0

�
;

Bk�2�w� �
Xk�1

j�1

�1

Pk�qj�

Yk�1

j0��j��1

�w� qj0
qj � qj0

�
:

(3.19)

These Ak�1�w� and Bk�2�w� have been uniquely deter-
mined by the condition12
Ak�1Qk�1 � Bk�2Pk � 1 (3.20)

requiring that the vorticity of the solution should coincide
with the one in Eq. (3.17), namely, that the solutions should
have a single vortex in the 1-3 plane and no vortices in the
2-4 plane. Now the relation between the right hand side of
Eq. (3.17) and Eq. (3.18) is shown to be

H0�z; w� � V�Pk�w�; Qk�1�w��H
single
v0 �z; z0; b�w��; (3.21)

with the matrix V�Pk;Qk�1� defined by
11The exact relation between these matrices is given in
Eq. (3.21), below.
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V�Pk;Qk�1� �
a

8Pk�aQk�1
�z� z0��8Ak�1 � aBk�2�

0 8Pk � aQk�1

� �
:

(3.22)

This matrix is a valid world-volume transformation (2.14)
only in a particular region of w with 8Pk � aQk�1 non-
zero, since it has a singularity in w. Although V�Pk;Qk�1�
is not a valid world-volume transformation (2.14) because
of singularities in w, it is needed to obtain the regular
moduli matrix (3.18) by compensating singularities in
Hsingle

v0 �z; z0; b�w��.
Next let us examine the moduli parameters of the

k instantons in the Higgs phase in detail. No new parame-
ters appear in Ak�1 and Bk�2, and therefore the configura-
tion of k instantons in the Higgs phase has the 2k� 2
complex moduli parameters �z0; fpig; fqjg; a; 8�. Here z0

is the position of the single vortex on the 1-3 plane. As was
mentioned in the first of this section, this decouples with
other moduli parameters. So the moduli space of this
configuration can be simply written as

Mk-instantons ’ C�Mk-lumps

’ C� f’jC! M̂1-vortex; �@w’ � 0g: (3.23)

Note that this decoupling property of z0 from
�fpig; fqjg; a; 8� can also be read from the Kähler potential
(3.12). From the discussion given in the previous subsec-
tion, we realize that fpig corresponds to the positions of
k instantons inside the vortex, a to the total size and the
orientation of the configurations and fqjg to the relative
sizes and orientations of the instantons. It is very interest-
ing to observe that the small lump singularities with a � 0
or pi � qj in Eq. (3.13) are now interpreted as the small
instanton singularities in the Higgs phase. In fact, in the
limit with a tending to zero the rank of the moduli matrix
(3.18) reduces by one and its determinant vanishes. Then
the point a! 0 is singular in the moduli space. On the
other hand, the small lump singularities coming from pi �
qj in Eq. (3.13) appear as the divergences of 1=Pk and
1=Qk�1 in Ak�1 and Bk�2 in Eq. (3.19).13 The remaining
parameter 8 parametrizes CP1 similarly to the lump solu-
tions. In summary we find z0 2 C, pi 2 C, a 2 C� �
C� f0g ’ R� S1, qj 2 C� fp1; p2; . . . ; pkg and 8 2
CP1.

Now we discuss the simplest case of a single instanton
�k � 1� with A0 � 1 and B�1 � 0 in more detail. Then we
have
13In Eq. (3.19) these also appear to diverge when pi � pi0 for
i � i0 and qj � qj0 for j � j0, respectively, but it is not the case;
We can show that the factors pi � pi0 and qj � qj0 in denomi-
nators are always canceled with numerators after the summation.
Hence the points pi � pi0 and qi � qj0 are not singular in the
moduli space.

025011
b�w� �
w� p1

8�w� p1� � a

) H1-instanton
0 �

���
c
p z� z0 8�z� z0�

w� p1 8�w� p1� � a

 !
:

(3.24)

To clarify the physical significance of these four complex
moduli parameters z0; p1; a; 8, let us transform the moduli
matrix in Eq. (3.24) into that with 8 � 0 by the SU�2�F
rotation. This can be performed by choosing 22 � �82

�
1

of U in Eq. (3.9) and factor out the world-volume symme-
try in Eq. (2.14). Then we get the physical position p0 and
the size ja0j of the instanton in the vortex

p0 � p1 �
8�

1� j8j2
a; ja0j �

jaj

1� j8j2
: (3.25)

These are invariant under the SU�2�F transformation. We
illustrate this configuration in four Euclidean space sche-
matically in Fig. 2.

Let us discuss the global structure (topology) of the
moduli space M1-instanton of one instanton. The moduli
matrix in one patch H00 corresponding to the second one
in Eq. (3.7) is related to that in the other patch H0 in
Eq. (3.24) by a world-volume transformation V as

H01-instanton
0 �

���
c
p 80�w� p01� � a

0 w� p01
80�z� z0� z� z0

 !

� VH1-instanton
0 ;

V �
0 1=8

1=8 0

 !
;

(3.26)

with the following relation between coordinates in two
patches

80 �
1

8
; a0 � �

a

82 ; p01 � p1 �
a
8
: (3.27)

Here both 8 and 80 are the patches of the standard inho-
mogeneous coordinates of the CP1 and they are enough to
cover the whole manifold. We see that p1 and a transform
in the union of the two patches 8 and 80. We find that a
requires a nontrivial transition function �1=82 between
two patches, showing that it is a tangent vector as a fiber on
2

4

FIG. 2 (color online). Single instanton in the Higgs phase. The
size of the vortex is given by Lv � 1=g

���
c
p

.
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the CP1. However, instead of p1 we can use the coordinate
p0 in Eq. (3.25) which is an invariant global coordinate for
two patches, indicating that the space C parametrized by
p0 is a direct product to the CP1. Therefore we obtain the
topology of the moduli space of one U�2� instanton in the
Higgs phase as

�z0; p0; a; 8� 2 C�C� �C� 32 CP1� ’M1-instanton;

(3.28)

with F 32 B denoting a fiber bundle over a base space Bwith
a fiber F. More precisely C� 32 CP1 is the tangent bundle
without zero section.14

Here we make a comment on (non)normalizability of
zero modes. Some zero modes corresponding to these
moduli parameters in (3.28) are not normalizable under
four-dimensional integration over the all codimensions.
For instance the modulus z0 for the position of the vortex
is normalizable in two dimensions perpendicular to the
vortex but is apparently nonnormalizable in four dimen-
sions. The modulus 8 parametrizes the boundary condition
of the sigma-model instanton in the effective theory on the
vortex. It is also nonnormalizable in the effective theory
and therefore in the original theory. Nevertheless we em-
phasize that all of the moduli parameters in (3.28) are
needed to determine the configuration of this composite
state, and that dynamics of the composite state is described
by these parameters.15

For the case of N > 2 we can specify the moduli matrix
H0�z; w� for a particular class of 1=4 BPS solutions iden-
14It is interesting to observe that the moduli space (3.28) with
zero section added is homeomorphic to that of single U�2�
noncommutative instanton, C2 � T�CP1 [20].

15This phenomenon of nonnormalizable modes is a common-
place issue in composite solitons, and has been observed in the
case of the wall junction [39]. Let us explain the inevitability of
nonnormalizable modes in composite solitons by taking the
junction as the simplest example. The 1=4 BPS junction can
be formed if three or more half-infinite 1=2 BPS walls meet at a
junction. Nambu-Goldstone (NG) fermions necessarily arise
corresponding to the broken 3=4 of supercharges. One might
hope that these NG fermions are localized around the junction
and are normalizable in the codimension two plane of the
junction of walls. One can show that they cannot be normalizable
as follows. Take any one of the constituent walls. Those NG
fermions corresponding to the supercharges broken by that wall
have support on the wall, which extends to infinity along the
wall. Hence they are nonnormalizable as modes on the codi-
mension two composite soliton (junction of walls). We can
choose the remaining NG modes which do not have support
on that particular wall. However, these NG fermions correspond
to supercharges broken by at least one of the other walls. Then
they have to have support along the walls which break the
supercharge. Consequently all of the NG fermions should have
support infinitely extending along at least one of the walls, and
are nonnormalizable. One can easily recognize that this feature
of nonnormalizable modes is a usual phenomenon of composite
solitons, and care should be exercised when we discuss effective
theories on the composite solitons.
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tified as 1=2 BPS states in the vortex theory, similarly to the
case of N � 2. We could also obtain the moduli matrices
and the moduli space for 1=4 BPS states corresponding to
the U�N� instantons in the Higgs phase by repeating the
same discussion.
IV. MONOPOLES AND CALORONS IN
THE HIGGS PHASE

Recently, 1=4 BPS states of the monopoles in the Higgs
phase were studied [8–12] in 3� 1 dimensional massive
SQCD with nondegenerate masses for hypermultiplets.
Unlike the case of the massless model (or the massive
model in which all the mass parameters are degenerate),
the SU�NF� flavor symmetry is explicitly broken to
U�1�NF�1 in the massive case. Therefore vortices in the
model with nondegenerate masses are essentially Abelian
(ANO) vortices, and moduli fields corresponding to the
orientational moduli parameters [9,13,25] are not exactly
massless moduli in the effective theory of vortices. It has
been found that the effective theory of the non-Abelian
vortices can be constructed in the case where the mass
difference is much smaller than the FI parameter j(mj !
ĝ

���̂
c
p

[8,32]. Here ĝ and ĉ are the gauge coupling and the FI
parameter in 3� 1 dimensions, respectively. The effective
theory has a potential V̂ � k2 where k is a Killing vector on
the moduli space of the non-Abelian vortices in the mass-
less model [8,32]. In the following of this section we call
the vortex theory with the potential massive vortex theory
and the vortex theory without any potential massless vortex
theory.

It has been shown in Ref. [8] that the 1=4 BPS state of
the monopoles in the Higgs phase can be realized as the
1=2 BPS kinks in the massive vortex theory (A0 ! B0 ! C0

in Fig. 1). In this section we will find the 1=4 BPS solution
corresponding to the monopoles in the Higgs phase di-
rectly. Namely, we specify the moduli matrix for the 1=4
BPS state of the monopoles in the Higgs phase (A0 ! C0 in
Fig. 1). To achieve this, we find that it is very useful to
promote the 3� 1 dimensional massive theory to the 4� 1
dimensional massless theory (A0 ! A in Fig. 1). By this
procedure a monopole in 3� 1 dimensions becomes a
monopole string in 4� 1 dimensions. This 4� 1 dimen-
sional point of view (the triangle ABC in Fig. 1) not only
gives a nice realization of the monopoles but also leads to
calorons in the Higgs phase which interpolate between the
instantons and the monopoles in the Higgs phase.

A. Walls, vortices and monopoles revisited

The four-dimensional massive model with nondegener-
ate masses

M � diag �m1; m2; . . . ; mNF
�; (4.1)

for hypermultiplets can be derived from our five-
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TABLE I. Gamma matrices of the projection operators for 1=4
BPS states in 4 and 5 dimensions. Here we define �5 � �i�4 �
i�0�1�2�3. In our previous paper [22], we used another set of
gamma matrices related by the redefinition �m ! ��mi�5, and
chose the wall profile along x3 instead of the present choice of
x2.

d � 4� 1 World volume �

Vortex 0,2,4 ��13 � i�3

Vortex 0,1,3 ��24 � i�3

Instanton 0 �0 � 12

d � 3� 1 World volume �

Vortex 0,2 ��13 � i�3

Wall 0,1,3 �i�2�5 � i�3

Monopole 0 �0 � 12
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dimensional massless SQCD16 by performing the Scherk-
Schwarz (SS) dimensional reduction [27] (A! A0 in
Fig. 1), in which the fifth direction x4 is compactified on
S1 with radius R using a twisted boundary condition

H�x;; x4 � 2/R� � H�x;; x4�ei2/RM; (4.2)

with 0 " mA < 1=R. If we ignore the infinite towers of the
Kaluza-Klein modes, we have the lightest mass field Ĥ�x;�
as a function of the four-dimensional space-time coordi-
nates

H�x;; x4� �
1����������

2/R
p Ĥ�x;�eiMx

4
; (4.3)

with ; � 0; 1; 2; 3. Other fields neutral under the SU�NF�
flavor symmetry are of the form

W;�x;; x4� � W;�x;�;

��x;; x4� � iW4�x
;; x4� � ��x;� � i�̂�x;�:

(4.4)

The 1=4 BPS equations (we have ignored H2 and �) in
(2.8) and (2.9) reduce to those in four dimensions [22]

F12 � �D3�̂; F23 � �D1�̂; �DzĤ � 0;

D2Ĥ � ĤM� �̂ Ĥ;
(4.5)

F13 �D2�̂ � �
ĝ2

2
�ĉ1NC

� ĤĤy�: (4.6)

Here the gauge coupling ĝ and the FI parameter ĉ in four
dimensions are given by

1

ĝ2 �
Z 2/R

0
dx4 1

g2 �
2/R

g2 ;

ĉ �
Z 2/R

0
dx4c � 2/Rc;

(4.7)

respectively. It was known that these BPS equations admit
walls, vortices and monopoles as 1=4 BPS states [8,22]
(A0 ! C0 in Fig. 1). The supercharges preserved by the
above BPS equations are summarized in Table I. Table I
shows that vortices in the 1-3 plane, vortices in the 2-4
plane and instantons in five dimensions are the BPS states
with the conserved supercharge specified by the same
projection as vortices in the 1-3 plane, walls transverse to
the x2 direction and monopoles in four dimensions, respec-
tively. Therefore after the SS dimensional reduction, these
16In Ref. [22], we studied the massive SQCD in d � 4� 1
dimensions. This can be derived from the six-dimensional mass-
less SQCD by the Scherk-Schwarz dimensional reduction, in
exactly the same manner.

025011
BPS solitons in five dimensions reduce to the respective
BPS solitons in four dimensions. In fact, the instanton
charge coincides with the monopole charge under the SS
dimensional reduction as

1

2g2

Z
d3x

Z 2/R

0
dx4Tr�Fmn ~Fmn��

2

ĝ2

Z
d3x ~@ �Tr�� ~F�̂�:

(4.8)

The BPS equations in Eqs. (4.5) and (4.6) in 3� 1
dimensional massive theory have been solved in terms of
the moduli matrix of the system [22]. Especially all the
exact solutions were obtained in the strong gauge coupling
limit ĝ2 ! 1 in the semilocal case withNF >NC. Here we
reconsider Eqs. (4.5) and (4.6) in a general case of NF �
NC from the five-dimensional point of view. For that
purpose, let us consider a restricted sector of the moduli
space which is specified by the moduli matrix H0�z; w� in
the form of

H0�z; w� �
1����������

2/R
p Ĥ0�z�e

Mw; (4.9)

where an NC � NF matrix Ĥ0�z� does not depend on w; �w,
and is holomorphic with respect to z. The matrix Ĥ0�z�
should have rank NC in generic points of z (namely, apart
from isolated points). Note that this restriction (4.9) is up to
the world-volume transformation (2.14). For the restricted
moduli matrix given above the ‘‘source’’ �0 of the master
equation (2.17) is independent of the x4 coordinate
�0�x

M� � ĉ�1Ĥ0e
2Mx2

Ĥy0 � �̂0�x
;�. Then the solution

� of Eq. (2.17) is also independent of the x4 coordinate:
S�xM� � Ŝ�x;� and ��xM� � SSy � ŜŜy � �̂�x;�: At
this stage, the master equation (2.17) reduces to

4 �@z�@z�̂�̂�1� � @2�@2�̂�̂�1� � ĉĝ2�1NC
� �̂0�̂

�1�:

(4.10)

Their solution (2.12) can also be rewritten as follows:
-12
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H �
1����������

2/R
p Ŝ�1Ĥ0eMw; �Wz � �iŜ

�1 �@zŜ;

W2 � i�̂ � �iŜ
�1@2Ŝ:

(4.11)

Notice that the above solution automatically satisfies the
condition of the SS dimensional reduction (4.3) if we
identify

Ĥ�x;� � Ŝ�1�x;�Ĥ0�z�e
Mx2

: (4.12)

The master equation (4.10) and its solutions (4.11) and
(4.12) completely agree with those for the 1=4 BPS states
containing walls, vortices and monopoles [22]. Therefore
the restriction (4.9) to the form of the moduli matrix gives a
map from 1=4 BPS solutions in 3� 1 dimensions to those
in 4� 1 dimensions (C! C0 in Fig. 1).

We now realize that all the 1=4 BPS states of the walls,
vortices and monopoles in the massive SQCD [22] have
one-to-one correspondence with those in the restricted
sector (4.9) of our 1=4 BPS states (vortices and instantons)
in the five-dimensional massless SQCD. The moduli space
of the former can also be understood from the five-
dimensional point of view as

Mwvm �HwvmnGwvm; (4.13)

Gwvm � fĤ0jC ���! M�NC � NF;C�; �@zĤ0 � 0g;

Hwvm � fVjC ���! GL�NC;C�; �@zV � 0g;

where Ĥ0�z� must have the maximal rank NC in generic z
except for several points. It is interesting to observe that
this total moduli space agrees with that for the non-Abelian
vortices in Eq. (3.2), Mwvm ’Mv, although the former is
for 1=4 BPS states and the latter is for 1=2 BPS states. In
the strong gauge coupling limit the moduli space Mwvm

becomes

M g2!1
wvm � f’jC! GNF;NC

; �@z’ � 0g; (4.14)

in the case of NF >NC. This coincides with the moduli
space of the Grassmannian sigma-model lumps [17] which
can be classified by /2�GNF;NC

� � Z if we compactify C to
CP1.

Moreover, if we push forward this descent relation from
Mvv0i to Mwvm, we arrive at solutions of the non-Abelian
walls and their moduli space Mw which have been exten-
sively studied in Refs. [30,40]. To achieve this, we ignore z
dependence in Mwvm:

Mw �HwnGw ’ GNF;NC
; (4.15)

Gw � f ~H0jC0 ���! M�NC � NF;C�; rank NCg

� fM�NC � NF;C�; rank NCg;

Hw � fVjC0 ���! GL�NC;C�g � GL�NC;C�;
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where C0 is just a point. The condition on the constant
matrix ~H0 to have the maximal rank NC has been deduced
from the condition on H0�z; w� or Ĥ0�z� in generic points
of z or �z; w� in the case of instantons or monopoles,
respectively. It comes from the fact that the moduli matrix
must have rank NC in the vacuum. It is interesting that in
the strong gauge coupling �NF >NC� the total moduli
space is unchanged

M g2!1
w ’Mw; (4.16)

unlike the case of other solitons because the moduli matrix
~H0 is a constant matrix here.

We thus have found that solutions of our BPS equations
(2.8) and (2.9) can give all four kinds of solitons: walls,
vortices, monopoles and instantons. The relations between
their total moduli spaces are given by

M w �Mwvm�’Mv� �Mvv0i: (4.17)
B. Monopoles in the Higgs phase

Let us next find the solution of Eqs. (4.5) and (4.6) (A0 !
C0 in Fig. 1) corresponding to one monopole in the Higgs
phase, namely, a single monopole attached to a vortex. To
be precise, we restrict ourselves into the simplest case with
NC � NF � N � 2 in the following of this section. As was
explained in Sec. III, the most general moduli matrix
containing a single vortex can be written in the form of

Ĥ 0�z� �
���̂
c
p z� z0 0

bc 1

� �
; (4.18)

where bc is a constant complex parameter. Notice that this
is the same form with the moduli matrix (3.7) generating
only a single vortex in the massless theory. However in the
massive theory the moduli matrix (4.18) gives not only a
vortex but also a monopole, where bc gives the position
and the phase of a monopole inside the vortex, as will be
shown below. The difference between the massless theory
and the massive theory appears as the factor eMx

2
in

Eq. (4.12) which is absent in Eq. (2.12). In the massless
limitM ! 0, the moduli matrix (4.18) gives a single vortex
only as expected.

Similarly to instantons in the Higgs phase, we can
calculate charge of the monopole in the Higgs phase in
terms of the massive vortex theory. To this end, let us recall
the following two facts. One is that the instantons can be
realized as lumps in the massless vortex theory with the
Kähler potential (3.12) (A! B! C in Fig. 1). The other
is that 1=4 BPS states in the four-dimensional massive
theory can be obtained by the restriction (4.9) on 1=4
BPS states in the five-dimensional massless theory (C!
C0 in Fig. 1). Combining these facts together, we naturally
arrive at a notion of the SS dimensional reduction for the
vortex theory (B! B0 in Fig. 1). In order to achieve this,
we should first find what the action of the SS dimensional
-13



17The symmetry breaking SU�2�F ! U�1�F is given by (m in
the Higgs phase, and by the vacuum expectation value (VEV) of
the adjoint scalar in the case of the Coulomb phase (’t Hooft-
Polyakov monopole). In fact, by replacing (m by the VEVof the
adjoint scalar, we correctly reproduce the mass of the monopole
in the Coulomb phase.
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reduction to the vortex theory is. In terms of the moduli
matrixH0�z; w� the above twisted boundary condition (4.2)
can be translated in terms of the moduli matrix as
H0�z; w� 2/iR� � VH0�z; w�e2/iRM where V�z; w� is an
element of world-volume transformation (2.14). This natu-
rally induces the following twisted boundary condition on
the moduli fields z0�t; x

2; x4� and b�t; x2; x4� in the moduli
matrix Hsingle

v0 �z; z0; b� in the effective theory of the host
vortex

Hsingle
v0 �z; z0�t; x

2; x4 � 2/R�; b�t; x2; x4 � 2/R��

� VHsingle
v0 �z; z0�t; x2; x4�; b�t; x2; x4��ei2/RM; (4.19)

with V � e�2/iRM. Hence we can identify the twisted
boundary condition to the moduli fields as z0�t; x2; x4 �
2/R� � z0�t; x2; x4� and b�t; x2; x4 � 2/R� �
ei2/R(mb�t; x2; x4� with (m � m1 �m2. We thus get the
action of the SS dimensional reduction for z0 and b as

z0�t; x2; x4� � ẑ0�t; x2�; b�t; x2; x4� � ei(mx
4
b̂�t; x2�:

(4.20)

Plugging (4.20) into the effective Lagrangian with the
Kähler potential (3.12) of the 2� 1 dimensional massless
vortex theory, we can obtain the effective Lagrangian for
the massive vortex theory after integrating over x4 (B! B0

in Fig. 1). The resulting 1� 1 dimensional massive vortex
theory consists of the scalar potential V̂v arising from the
kinetic term in extra dimension x4 and the Kähler potential
K̂v, given by

K̂ v � ĉ/jẑ0j
2 �

4/

ĝ2 log�1� jb̂j2�;

V̂v �
4/

ĝ2

(m2jb̂j2

�1� jb̂j2�2
:

(4.21)

These exactly agree with the results in Ref. [8] including
the Kähler class of the Kähler potential and the coefficient
of the scalar potential.

The scalar potential in Eq. (4.21) admits two discrete
SUSY vacua at b̂ � 0;1. Thus 1=2 BPS states on the
vortex theory become kinks (B0 ! C0 in Fig. 1). In fact,
the 1=2 BPS equation (3.4) reduces to

@2b̂� (mb̂ � 0; (4.22)

and the solution interpolating between b̂ � 0 and b̂ � 1 is
found to be

b̂�t; x2� � e�i?e(m�x2�x2
0�; (4.23)

where e�i? is a phase and a real parameter x2
0 is a position

of the kink [26]. Although this configuration exponentially
grows, the energy density is localized around x2 � x2

0

E �
4/

g2

(m2

cosh2(m�x2 � x2
0�
; (4.24)
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implying usual wall profile in suitable coordinates. The
mass of the kink can be obtained by integrating this over
the x2 coordinate and we get 4/(m=ĝ2. This coincides
with the mass of a monopole in the Coulomb phase.17 Thus
monopoles in the Higgs phase can be seen as the 1=2 BPS
kinks in the vortex theory [8].

Before closing this subsection, let us clarify the relation
between bc in the moduli matrix (4.18) and ? and x2

0 in the
1=2 BPS kink solution (4.23). For that purpose the five-
dimensional point of view (triangle ABC in Fig. 1) gives us
a very nice picture. Taking Eq. (4.20) into account, the
monopole(kink) solution (4.23) is understood in the mass-
less vortex theory (3.12) as [�B0 ! C0� ! �B! C� in
Fig. 1]

b�t; x2; x4� � ei(mx
4
b̂�t; x2� � e��(mx

2
0�i?�e(mw: (4.25)

Note that the Kähler potential (3.12) with this solution
substituted is independent of x4 because it is a function
of jbj � e(m�x2�x2

0�. Therefore the energy density of this
configuration extends along the x4 axis to infinity. Then
this configuration is understood as a 1=4 BPS state of the
monopole string in the Higgs phase. Let us next find the
moduli matrix H0�z; w� in five dimensions corresponding
to the moduli matrix given in Eq. (4.18) for the monopole
in the Higgs phase in four dimensions. This can be ob-
tained from the first equation in Eq. (4.11) with S�xM� �
Ŝ�x;� as [�A0 ! C0� ! �A! C� in Fig. 1]

H0�z; w� �
���
c
p
� z� z0 0

b�w� 1

�
�

���
c
p
V
� z� z0 0

bc 1

�
eMw;

V � e�Mw: (4.26)

We thus find b�w� � bce(mw. Comparing this with the
kink solution in (4.25), the complex parameter bc can be
identified as [�A! C� � �A! B! C� in Fig. 1]

bc � e��(mx
2
0�i?�: (4.27)

Hence, we conclude that the 1=4 BPS moduli matrix
(4.18) describes a monopole in the Higgs phase and the
complex parameter bc therein is the position and the phase
of the monopole. In the massless limit (m! 0 with (mx2

0
fixed, bc becomes the orientational moduli of the non-
Abelian vortex since the SU�2�F flavor symmetry, which
is explicitly broken to U�1�F by nonzero (m, is restored
when (m � 0.
-14
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C. Calorons in the Higgs phase

In the Coulomb phase (unbroken gauge symmetry) there
is well known way to get ordinary monopole solution
independent of x4 from instanton solutions [28,29].
Range the instantons with equal size along the x4 axis
periodically. After taking the limit where the size parame-
ter of instantons goes to infinity the configuration becomes
one BPS monopole-string solution extending to the x4 axis
[28,29]. In the Higgs phase, instantons, a monopole string
and calorons which interpolate between instantons and the
monopole string can be understood in terms of the defor-
mations of the lump solutions in the vortex theory. In this
subsection we will concentrate on 1=2 BPS states in the
2� 1 dimensional massless vortex theory with the Kähler
potential (3.12) (B! C in Fig. 1). However we can easily
find the moduli matrix for the corresponding 1=4 BPS
states (A! C in Fig. 1).

Let us first examine the monopole-string solution (4.25)
as the sigma-model lump in the massless vortex theory in
more detail. We first note that the solution b � bce

(mw in
Eq. (4.25) is a 1=2 BPS state in the vortex theory since this
is holomorphic in w and is a solution of the BPS equation
(3.4) in the vortex theory. Although this solution has one
codimension in the vortex theory, this is not a domain wall
which is a topological soliton supported by the homotopy
group /0 because there is no scalar potential here. Rather,
we should realize this solution as a topological object
which consists of an infinite number of 1=2 BPS lumps
supported by the homotopy group /2. To see this, we
decompose the solution as b � bce

(mx2
ei(mx

4
. Then it is

clear that a strip ��k�l � f�x
2; x4�jx2 2 ��1;1�; x4 2

�2/k=(m; 2/�k� 1�=(m�g is mapped to the CP1 mani-
fold once by this configuration. Then the solution b �
bce(mw has infinite winding number /2�CP1� � 1.
Hence this can be realized as a topological object which
has an infinite number of lump charges. The energy density
of the solution is the same form as that in Eq. (4.24). If we
integrate this in a strip ��k�m � f�x2; x4�jx2 2
��1;1�; x4 2 �2/kR; 2/�k� 1�R�g (R is a compactifica-
tion radius associated with the SS dimensional reduction),
-5
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we find that the tension of the solution in the strip ��k�m

coincides with to the mass of the monopole 4/(m=ĝ2. So
this solution is suitable to be called the monopole string.

Let us next consider 1=4 BPS calorons in the Higgs
phase as periodic lumps in the vortex effective theory
(3.12)

b�w� � �1� ?�e;�w�w0� � ?; ? �
1

a;
: (4.28)

Here, ; and a are arbitrary real parameters with mass
dimension one and minus one, respectively. Similarly to
the ordinary calorons in the Coulomb phase [28,29], the
calorons in the Higgs phase can be continuously deformed
to the monopole string or instantons. In fact, in the limit
?! 0 with ; fixed, this solution reduces to the 1=4 BPS
monopole string b! e;�w�w0� as shown in Fig. 3(a). There
is an another limit ?! 1 with a fixed. In this limit this
solution reduces to 1=4 BPS states of an instanton in the
Higgs phase as shown in Fig. 3(d). For general ?, we find
periodic lump solutions inside a vortex which can be
understood as the 1=4 BPS caloron as shown in
Figs. 3(b) and 3(c). The parameter a is the size of the
instanton and 1=; is the period of the caloron. By simply
replacing b in (3.7) by (4.28), we can actually obtain the
correct moduli matrix for the 1=4 BPS calorons without
encountering singularities in w.

In view of this solution, we can guess that the monopole
strings with large instanton charges in the compactified
theory are unstable as follows. If we compactify the
x4 direction with radius R, the mass of the monopole-string
solution b � e;�w�w0� is 8/2R;=g2. To be precise, let us
represent ; � �k� @�=R with k 2 Z and @ 2 �0; 1�. Then
the above mass of the monopole string can be rewritten as

8/2

g2
k�

4/

ĝ2 (m;
�
@
R
� (m

�
: (4.29)

This mass corresponds to the mass of k instantons and a
monopole with a ‘‘fractional’’ instanton charge @. Then the
monopole string with mass 8/2R;=g2 can be decomposed
into these solitons by continuous deformation like (4.28).
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Since the aggregate of the decomposed solitons has larger
entropy, the monopole string with instanton charge greater
than unity is unstable and may decay into instantons and a
monopole string with the fractional instanton charge, if this
system is put at finite temperatures.
18Similar 1=4 BPS states of intersecting vortices were discussed
in [41].

19A similar situation occurs in a domain wall junction [39,42].
The energy of the intersecting wall receives contributions from
constituent walls and from the junction. The known analytic
solution in Ref. [39] shows that the contribution from the
junction is negative. This phenomenon may naturally be under-
stood as a kind of binding energy of constituent walls.
V. CONCLUSION AND DISCUSSION

Previously monopoles in the Higgs phase were obtained
merely as 1=2 BPS kinks in the effective theory [23] on a
1=2 BPS vortex [8]. Similarly instantons in the Higgs
phase were suggested as 1=2 BPS lumps in the vortex
effective theory [13]. In our previous paper [22] we have
constructed monopoles in the Higgs phase (together with
walls) as 1=4 BPS composite states in the fundamental
theory in five dimensions. In this paper we have general-
ized this method to construct instantons in the Higgs phase
as another type of 1=4 BPS composite states, not just a 1=2
BPS state in the vortex effective theory.

We have solved 1=4 BPS equations for composite states
made of instantons and vortices. We have shown that all
solutions are generated by the moduli matrix which is a
holomorphic function of z � x1 � ix3 and w � x2 � ix4.
The moduli matrix contains all solutions with different
boundary conditions and/or different topological charges.
As a first step toward the complete classification of all
solutions, we have specified the moduli matrix for 1=4 BPS
states which can be interpreted as lumps on a single vortex.
We have found that the mass of k lumps precisely agrees
with that of the k instantons. Small instanton singularities
have been shown to correspond to small lump singularities.
We have determined the moduli space for a single instan-
ton in the Higgs phase to be the direct product of C2 and
the tangent bundle over CP1 without zero section. We have
clarified the relations between the moduli spaces of 1=4
BPS states for vortices and instantons, of 1=4 BPS states
for walls, vortices and monopoles, of 1=2 BPS vortices,
and of 1=2 BPS walls. We also have constructed calorons
in the Higgs phase which interpolate between instantons
and a monopole string in the Higgs phase.

We did not exhaust all solutions in this paper: our moduli
matrix contains more varieties of solutions. The complete
classification of all solutions is a very important open
problem. Let us discuss this issue. First of all we could
consider multiple vortices as host solitons. However the
moduli matrix for multiple vortices is not available yet. It is
now in progress to specify the moduli parameters in the
moduli matrix, and therefore we have to wait for the
completion of that work [38] to discuss the multiple lumps
on multiple vortices.

Second, if we do not restrict ourselves to solitons which
can be understood as lumps on vortices, we can obtain
more varieties of solitons. The intersection of two or more
vortices cannot be understood as solitons in the effective
theory on a host vortex, because the energy of such solitons
diverges in the effective theory in general. Instead, we can
025011
directly construct solutions of intersecting vortices as fol-
lows.18 In the same model with N � 2, the following two
moduli matrices give configurations with 0v � kz�� 0�
vortices in the 1-3 plane and 0v0 � kw�� 0� vortices in
the 2-4 plane

H0 �

�
zkz 0
0 wkw

�
; H0 �

�
zkzwkw 0

0 1

�
: (5.1)

The vortices intersect at a point for both cases. It is,
however, a trivial intersection for the former case, and
they carry no instanton charge. On the other hand, they
intersect nontrivially for the latter case, and the intersecting
point carries the instanton charge 0i � �kzkw. In this case
the instantons give a negative energy contribution.
However, there is no inconsistency, since the total energy
including vortices is always positive.19 Since the instanton
is stuck at the intersecting point of vortices, it may be
called an ‘‘intersecton.’’ It cannot move once the vortices
are fixed. We thus conclude that there exist two kinds of
instantons; one is what lives inside a vortex and the other is
an instanton stuck at the intersection point of vortices. As
we have seen, there also exist trivially intersecting vortices.
We expect that the most general solution is given by the
mixture of these configurations.

Here we show that the intersections found above essen-
tially exist in U�1� gauge theories. To this end we consider
multiple semilocal vortices in the theory with NF >NC.
We take the strong gauge coupling limit g2 ! 1 to obtain
an exact solution. In this limit the model reduces to a
nonlinear sigma model whose target space is the cotangent
bundle over the complex Grassmann manifold, T��GNF;NC

�

[33]. Then the master equation (2.17) can be solved alge-
braically as Eq. (2.23). For definiteness we consider a
model with NC � 1 and NF � 4. The following moduli
matrix gives nontrivially intersecting vortices with 0v �
kz; 0v0 � kw

H0 � �z
kzwkw; zkz ; wkw ; 1�: (5.2)

The � can be calculated as

�g!1 � �0 � �jzj2 � 1�kz�jwj2 � 1�kw (5.3)

and the exact solution can be obtained as H �
�1=

�������������
�g!1
p

�H0. The instanton number can be calculated
to be the product of vorticities, namely 0i � �kzkw. This
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solution explicitly shows that the U�1� instantons are stuck
at the intersection of vortices. We can show that the in-
stanton charge 0i changes its sign under the duality trans-
formation NC, ~NC � NF � NC [30]. Therefore, there also
exist intersections with positive instanton charges.

We discuss some more issues in the following. Although
we ignore � and the zeroth component of gauge potential
W0 in this paper, we can also construct electrically charged
solitons whose charge is Qe / g

2
R
d4x@mTr��F0m� by

restoring these fields. The Bogomol’nyi completion gives
the most general BPS equations

D 0� � 0; Fm0 �Dm� � 0;

D0Hi � i�Hi � 0;
(5.4)

added to Eqs. (2.8) and (2.9). These equations have to be
solved with the Gauss’s law

1

g2 DmFm0 �
i

g2 ��;D0�� �
i
2
�HD0Hy �D0HHy�:

(5.5)

We can show that solutions of these equations are 1=4 BPS
states. If we turn off the FI parameter c and set Hi � 0,
these BPS solutions reduce to that for the 1=2 BPS dyonic
instanton [43]. The time-independent solutions of the
dyonic instantons in the Higgs phase can be obtained as
follows. First we solve the BPS equations (2.8) and (2.9) as
shown in this paper. Next we set @0 � 0 and W0 � �� to
solve additional Eqs. (5.4). Finally � can be obtained by
solving the Gauss’s law under a given solution of instan-
tons in the Higgs phase as the background

D mDm� � �
g2

2
�HHy���HHy�: (5.6)

To obtain a nontrivial solution, we may need mass differ-
ences for hypermultiplets. In superstring theory dyonic
instantons in the pure SUSY Yang-Mills theory were found
to be supertubes [44] (and see also references in [45])
between parallel D4-branes [46]. Brane constructions for
the dyonic instantons in the Higgs phase is an open
problem.

Our instantons in the Higgs phase share some properties
with noncommutative instantons. First U�1� instantons can
exist in the Higgs phase as shown in Eq. (5.2) like non-
commutative U�1� instantons [20]. Second their topologies
are similar (but not identical) as stated in footnote 14. The
moduli space of (noncommutative) instantons has the
hyper-Kähler structure. Although the moduli space of the
former has the Kähler structure at least and has real di-
mensions four multiplied by Z, we do not know if it has the
hyper-Kähler structure. It may be not the case because
there remain only two SUSY in the former, but their moduli
space may be obtained as a deformation of the moduli
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space of the latter preserving only the Kähler structure. It
is very interesting to explore more similarities between
instantons in the Higgs phase and noncommutative instan-
tons [20]. It is also desired to obtain the ADHM construc-
tion for our instantons in the Higgs phase.

Dynamics of instantons within a vortex is equivalent to
the dynamics of lumps [14,15]. Further study in dynamics
of sigma-model lumps would clarify dynamics of instan-
tons in more general configurations. Not only classical
dynamics but also quantum effects in these solitons are
important subjects. It was found by Dorey in [47] that the
BPS spectra in d � 4 N � 2 SUSY gauge theory with
NF >NC and d � 2 N � �2; 2� SUSY CPN model with
twisted masses completely coincide. One explanation for
this coincidence has been given in [10,13] by considering a
monopole inside a vortex. In conformity with these obser-
vations, there exist similarities between d � 4 Yang-Mills
instantons and d � 2 sigma-model instantons (lumps). Our
results in the present paper give further evidence for the
relation because we have realized instantons inside a vor-
tex as sigma-model lumps on the vortex theory. For in-
stance, small instanton singularities are understood as
small lump singularities. It is also quite interesting to
generalize the instanton counting [21] to the case of the
instantons in the Higgs phase.

Non-Abelian walls found in [30] have been recently
realized as D-brane configurations in string theory [40].
By doing this the diverse phenomena of non-Abelian walls
can be easily understood by the dynamics of D-branes.
Monopoles in the Higgs phase are also realized by the
same brane configuration [11,13]. Hence we would like
to realize the instantons in the Higgs phase by some D-
brane configuration, and we expect that the relation be-
tween monopoles and instantons in the Higgs phase can be
interpreted as a T-duality in such a D-brane configuration,
as in the case of the ordinary monopoles and instantons.
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