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Noncommutative gravitational quantum well
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(Received 6 May 2005; published 22 July 2005)
*Electronic
†Electronic
‡Electronic
xElectronic
kElectronic

1550-7998=20
We study noncommutative geometry at the quantum mechanics level by means of a model where
noncommutativity of both configuration and momentum spaces is considered. We analyze how this model
affects the problem of the two-dimensional gravitational quantum well and use the latest experimental
results for the two lowest energy states of neutrons in the Earth’s gravitational field to establish an upper
bound on the fundamental momentum scale introduced by noncommutativity, namely,

����
�

p
& 1 meV=c, a

value that can be improved in the future by up to 3 orders of magnitude. We show that the configuration
space noncommutativity has, in leading order, no effect on the problem. We also analyze some features
introduced by the model, especially a correction to the presently accepted value of Planck’s constant to
1 part in 1024.

DOI: 10.1103/PhysRevD.72.025010 PACS numbers: 32.80.Rm, 03.65.Ta, 11.10.Ef
I. INTRODUCTION

The issue of noncommutative geometry has been exten-
sively discussed in the recent literature. Although its study
has a long-standing story [1], there has been a growing
interest on this subject since the discovery in string theory
that the low-energy effective theory of a D-brane in the
background of a Neveu-Schwarz–Neveu-Schwarz B field
lives on a noncommutative space [2,3]. Furthermore, it has
been suggested that the noncommutativity of our space-
time may arise as a quantum effect of gravity. Thus, non-
commutative spaces provide a natural background for a
possible regularization of quantum field theories [4].
Furthermore, since brane fluctuations are described by
gauge theories, the existence of noncommutative branes
has motivated an extensive study of noncommutative
gauge theories or, more generally, noncommutative field
theories. These theories are based on the Weyl-Moyal
correspondence, in which all products are replaced by
the star product in order to obtain their noncommutative
action [5].

An important issue is that, in the case of space-time
noncommutativity, the correspondent field theories are not
unitary, which makes them less appealing. However, for
lightlike noncommutativity, there is still a well-defined
quantum field theory (see [5,6], and references therein).

Another interesting feature of noncommutative geome-
try is its direct connection with the breaking of the Lorentz
invariance [7]. The violation of the Lorentz symmetry
arises directly from the commutator of the coordinates
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x� on the space-time manifold, which can be written as1:

�x�; x�� � i	��: (1)

Under an observer Lorentz transformation, which in-
cludes boosts and/or rotations of the observer’s inertial
frame, Eq. (1) transforms covariantly, as both the coordi-
nates x� and the noncommutative parameter 	�� transform
as Lorentz tensors. However, under particle Lorentz trans-
formations, which concern boosts and/or rotations of the
matter fields, 	�� behaves as the vacuum expectation value
of some Lorentz tensor arising from the spontaneous sym-
metry breaking of the underlying fundamental theory. This
means that this type of Lorentz transformation leaves 	��

unaffected, while the commutator �x�; x�� transforms co-
variantly in the usual way. Thus, space-time noncommu-
tativity directly implies the violation of the Lorentz
invariance.2

Although the effects of noncommutativity should pre-
sumably become significant at very high energy scales
(close, for instance, to the string scale), it is fascinating
to speculate whether there might be some low-energy
effects of the fundamental quantum field theory. These
effects might arise as a noncommutative version of quan-
tum mechanics, NCQM, which lately has also been the
focus of a lively discussion in the literature [4,11–15].

In this work, we study the phenomenology of a non-
commutative model of quantum mechanics, in which non-
commutativity of both configuration and momentum
spaces is considered. Even though, for instance, in string
1This form of commutation relation is usually referred to as
canonical noncommutativity, as opposed to other forms of non-
commutativity that may be considered (see, e.g., Refs. [6,8,9]).

2Notice, however, that 	�� can be regarded as a Lorentz tensor
and Lorentz invariance may hold, at least at first nontrivial order
in perturbation theory of the noncommutative parameter [10].
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theory noncommutativity appears only at the coordinates
level, it should be realized that, at quantum mechanical
level, momentum noncommutativity may naturally arise as
a consequence of coordinates noncommutativity, as mo-
menta are defined as the partial derivatives of the action
with respect to the noncommutative spatial coordinates
[16]. We analyze how the presence of both kinds of non-
commutativity may affect the commutation relation be-
tween coordinates and momenta, leading to a redefinition
of the Planck constant @.

We apply this NCQM model to the problem of a particle
in the quantum well of the Earth’s gravitational field to
determine how noncommutativity affects its energy spec-
trum. We then use the experimental results recently ob-
tained by Nesvizhevsky et al. [17,18] to place upper
bounds on the noncommutative parameters of the NCQM
model.

This paper is divided into five sections. In the next
section, we describe the main features of the noncommu-
tative model and determine how it modifies the Hamil-
tonian for the gravitational quantum well. In Sec. III, we
briefly describe the system’s energy spectrum and wave
functions in the commutative case, as well as the experi-
ment of Refs. [17,18]. In Sec. IV, we derive the bounds on
the noncommutative parameters that can be determined
from the latest experimental results and analyze how these
bounds can be improved in future experiments. Finally, in
Sec. V, we discuss the obtained results and some of the
features of the model in comparison with other recently
proposed noncommutative models.

II. NONCOMMUTATIVE QUANTUM MECHANICS

In a model where both configuration and momentum
space noncommutativity are considered, the coordinates
and momenta must satisfy, in a four-dimensional space, the
following algebra:

�x�; x�� � i	��; �p�; p�� � i���;

�x�; p�� � i@���;
(2)

where the parameters 	�� and ��� are antisymmetric. This
algebra is consistent with usual quantum mechanics
through the last commutation relation in Eq. (2).

In this work, we shall not consider timelike noncommu-
tative relations; i.e., we take 	0i � 0 and �0i � 0, as
otherwise the underlying quantum field theory is not uni-
tary, as previously referred to. Since the system in which
we study the effects of noncommutativity is two-
dimensional, we limit our analysis to the xy plane, where
the noncommutative algebra can be written as

�x; y� � i	; �px; py� � i�;

�xi; pj� � i@�ij; i � 1; 2; (3)

where, in the last commutation relation, we identified x1 �
x, x2 � y, p1 � px, and p2 � py.
025010
The parameters 	 and � correspond to the components
	12 and �12 of the noncommutative parameters in Eq. (2).
As such, they correspond to vacuum expectation values of
the components of some Lorentz tensors, making them
invariant under particle Lorentz transformations.
However, they are not invariant under a boost or rotation
of the observer’s inertial frame. This implies that, if the
observer’s inertial frame exhibits a motion which depends
on the space-time coordinates, then 	 and � will be also
space-time–dependent. For now, we consider that both
parameters are constant throughout all space-time. In
Sec. V, we will show that this is, in fact, a good approxi-
mation at least within the framework of the experiment
analyzed in this work.

The commutation relations Eq. (3) lead to the following
uncertainty relations:

	x	y �
	
2
; 	px	py �

�
2
;

	x	px �
@

2
; 	y	py �

@

2
:

(4)

These relations arise from the general uncertainty prin-
ciple which states that, for two Hermitian operators A and
B, 	A	B � hi�A;B�i=2 [19]. The first two uncertainty
relations show that measurements of positions and mo-
menta in both directions x and y are not independent.
Taking into account the fact that 	 and � have dimensions
of �length�2 and �momentum�2, respectively, then

���
	

p
and����

�
p

define fundamental scales of length and momentum
which characterize the minimum uncertainties possible to
achieve in measuring these quantities. One expects these
fundamental scales to be related to the scale of the under-
lying field theory (possibly the string scale) and, thus, to
appear as small corrections at the low-energy level of
quantum mechanics.

One possible way of implementing algebra Eq. (3) is to
construct the noncommutative variables fx; y; px; pyg from
the commutative variables fx0; y0; p0

x; p0
yg by means of lin-

ear transformations. Given the canonical Heisenberg com-
mutation relations,

�x0; y0� � �p0
x; p0

y� � 0; �x0i; p
0
j� � i@�ij; i � 1; 2;

(5)

one can easily verify that the commutation relations Eq. (3)
can be obtained through the linear transformations:

x � x0 �
	
@
p0
y; y � y0; px � p0

x;

py � p0
y �

�
@
x0;

(6)
-2
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or through the linear transformations:

x � x0; y � y0 �
	
@
p0
x; px � p0

x �
�
@
y0;

py � p0
y:

(7)

In the case of a two-dimensional system for which the
Hamiltonian remains invariant under a rotation of �=2,
both types of linear transformations Eqs. (6) and (7) are
equivalent, and the implementation of noncommutativity
can be achieved through either of them. However, for a
system that does not exhibit such a symmetry, as the one
we will study in this work, the two types of linear trans-
formations will lead to different results. This means that, in
general, the choice of the linear transformations through
which to implement noncommutativity is ambiguous. This
ambiguity turns the noncommutative model Eq. (3) into an
ill-defined problem that cannot correspond to any physical
reality.

The simplest way to solve this problem would be to
combine the two types of linear transformations into a
single one that simultaneously modifies all coordinates
and momenta, and not just x and py or y and px as in
Eqs. (6) and (7). We find that through the linear trans-
formations:

x � x0 �
	
2@
p0
y; y � y0 �

	
2@
p0
x;

px � p0
x �

�
2@
y0; py � p0

y �
�
2@
x0;

(8)

the two first commutation relations in Eq. (3) are recov-
ered. However, the last one is changed to

�xi; pj� � i@
�
1�

	�

4@2

�
�ij; i � 1; 2: (9)

Comparing Eqs. (3) and (9), we find that the linear
transformations Eq. (8) lead to the appearance of an effec-
tive Planck constant, which depends on the noncommuta-
tive parameters 	 and � and is given by

@ eff � @�1� ��; (10)

where � � 	�=4@2. For sure, this setup is consistent with
the usual commutative space-time quantum mechanics
only if �� 1. This is expected to be the case as � is of
second order on the noncommutative parameters 	 and �.
The results of the experiment by Nesvizhevsky et al. will
allow us to estimate an upper bound for the value of � and
to evaluate the consistency of the noncommutative model.
From now on, we can assume that the NCQM problem in
hand is well-defined. We mention that, in Ref. [16], an
effective Planck constant also appears as a consequence of
both space and momentum noncommutativity, even though
within a somewhat different framework.
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For completeness, we present the generalization of
Eq. (8) to the four-dimensional space:

x� � x0� �
	��
2@

p0�; p� � p0� �
���
2@

x0�: (11)

This leads to the following commutation relations:

�x�; x�� � i	��; �p�; p�� � i���;

�x�; p�� � i@
�
��� �

	�����
4@2

�
:

(12)

Notice that a modification such as this was discussed in
Ref. [20]. Hence, we see that in the four-dimensional case
not only is there an effective Planck constant given by

@ eff � @

�
1�

Tr�	��

4@2

�
; (13)

but also that �x�; p�� is no longer diagonal, with the off-
diagonal elements being proportional to products between
components of 	�� and���. One should notice that neither
the effective Planck constant nor the off-diagonal elements
appear in the case where only noncommutativity between
coordinates is considered.

Turning back to the two-dimensional case, it is clear that
we need the inverse transformations of Eq. (8) in order to
convert a commutative Hamiltonian into a noncommuta-
tive one. This is given by

x0 � C
�
x�

	
2@
py

�
; y0 � C

�
y�

	
2@
px

�
;

p0
x � C

�
px �

�
2@
y
�
; p0

y � C
�
py �

�
2@
x
�
;

(14)

where we have set C � �1� ���1.
Consider now a system of a particle of massmmoving in

the xy plane, subject to the Earth’s gravitational field, g �
�gex, where g ’ 9:81 ms�2 is assumed to be constant near
its surface. This corresponds to the experimental setup of
Refs. [17,18]. The system’s Hamiltonian is, in the commu-
tative case, given by

H0 �
p02
x

2m
�
p02
y

2m
�mgx0: (15)

The corresponding noncommutative Hamiltonian can be
straightforwardly obtained using the inverse transforma-
tions Eq. (14) to replace the commutative variables by the
-3



3This function corresponds to the Airy function Ai�z�, which is
normalizable. This does not happen with the Airy function Bi�z�,
which is also a solution to the problem.

4The extent to which the equivalence principle can be said to
hold in this experiment is discussed in Ref. [22].
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noncommutative ones:

H �
C2

2m

�
px �

�
2@
y
�
2
�
C2

2m

�
py �

�
2@
x
�
2

�mgC
�
x�

	
2@
py

�

�
C2

2m
p2x �

C2

2m
p2y �mgC

	
2@
py �

C2

2m
�
@
�xpy � ypx�

�
C2

8m@2
�2�x2 � y2� �mgCx: (16)

One should notice that

C2

2m
p2y �mgC

	
2@
py �

1

2m

�
Cpy �

m2g	
2@

�
2
�
m3g2	2

8@2
;

(17)

where the last term is an additive constant that can be
removed from the Hamiltonian.

By defining

�p x � Cpx; �py � Cpy �
m2g	
2@

; (18)

the noncommutative Hamiltonian can be written as

H �
�p2x
2m

�
�p2y
2m

�
C�
2m@

�x �py � y �px� �
C2

8m@2
�2�x2 � y2�

�mgCx�mgC
	�

4@2
x: (19)

Notice that the last two terms correspond to the commu-
tative gravitational potential:

mgCx�mgC
	�

4@2
x � mgC�1� ��x � mgx: (20)

Thus, the noncommutative Hamiltonian is given by

H �
�p2x
2m

�
�p2y
2m

�mgx�
C�
2m@

�x �py � y �px�

�
C2

8m@2
�2�x2 � y2�: (21)

The similarity between the first three terms in the com-
mutative and noncommutative Hamiltonians is evident, the
only difference lying in the redefined momenta �px and �py.
The constant term in the definition of �py, Eq. (18), propor-
tional to 	, has no physical meaning, as it produces only a
translation of all the eigenvalues of Cpy by the same
amount. It does not introduce any modifications whatso-
ever on the commutation relations of this operator either.
Hence, the only physical difference between the operators
py and �py resides on the factor C, as happens with px and
�px. Thus, the kinetic terms in the noncommutative
Hamiltonian differ from the commutative ones by a factor
C2.

Before we go further into the study of this noncommu-
tative Hamiltonian, we shall briefly describe in the next
025010
section the solutions to this problem in the commutative
case.
III. THE GRAVITATIONAL QUANTUM WELL

We consider now the experiment described in
Refs. [17,18]. In the case where a horizontal mirror is
placed at x � 0, a quantum well is formed by the mirror
and the constant gravitational field. This system is known
as the gravitational quantum well. The solutions to the
eigenvalue equation in the commutative case H0 n �
En n are well known [21]. The system’s wave function
can be separated into two parts, corresponding to each of
the commutative coordinates x0 and y0. The eigenfunctions
corresponding to x0 can be expressed in terms of the Airy
function ��z�,3

 n�x
0� � An��z�; (22)

with eigenvalues determined by the roots of the Airy
function, �n, with n � 1; 2 . . . ,

En � �

�
mg2@2

2

�
1=3
�n: (23)

The variable z is related to the height x0 by means of the
following linear relation:

z �
�
2m2g

@
2

�
1=3

�
x0 �

En
mg

�
: (24)

The normalization factor for the nth eigenstate is given
by

An �

"�
@
2

2m2g

�
1=3 Z �1

�n
dz�2�z�

#
�1=2

: (25)

In what concerns the part of the particle’s wave function
in the horizontal direction y0, one can easily deduce that it
corresponds to a group of plane waves with a continuous
energy spectrum, as the particle is free in the direction
transverse to the gravitational potential:

 �y0� �
Z �1

�1
g�k�eiky

0
dk; (26)

where the function g�k� determines the group’s shape in
phase space.

As a consequence of the particle’s discrete energy spec-
trum in the gravitational field’s direction, the probability of
finding the particle at a certain height will be maximum for
the classical turning point xn � En=mg for each quantum
state. This height corresponds to the classically allowed
height for a particle with energy En.4 As soon as the
-4
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particle’s height exceeds this value, the probability of
finding it starts to decay exponentially [17,18].

This property allowed Nesvizhevsky et al. to identify the
quantum states of neutrons in the quantum well formed by
the Earth’s gravitational field and a horizontal mirror. By
placing a scatterer/absorber above the horizontal mirror,
they were able to measure the neutron transmission
through the narrow slit between them. If the height of the
scatterer/absorber is much higher than the classical turning
point for a given quantum state, the neutrons pass through
the slit without significant losses. As the slit size decreases,
the probability of neutron loss will increase until the slit
height approaches xn and the slit stops being transparent to
neutrons. A more detailed description of the experimental
apparatus and procedure, as well as the report of the first
identification of the lowest quantum state, can be found in
Ref. [17].

Clearly, the choice of neutrons for the experiment is to
avoid that electromagnetic effects overlap the effect of the
Earth’s gravitational field on the energy spectrum.
Neutron’s long lifetime ( ’ 885:7 s) [23] and mass (mn ’
939:57 MeV=c2) also bring some advantages to the per-
formance of the experiment.

Recently, Nesvizhevsky et al. [18] were able to deter-
mine the values of the classical heights for the first two
quantum states, obtaining the following results:

xexp1 � 12:2� 1:8�syst� � 0:7�stat� ��m�;

xexp2 � 21:6� 2:2�syst� � 0:7�stat� ��m�:
(27)

The corresponding theoretical values can be determined
from Eq. (23) for �1 � �2:338 and �2 � �4:088, yield-
ing x1 � 13:7 �m and x2 � 24:0 �m, corresponding to
the energy eigenvalues E1 � 1:407 peV and E2 �
2:461 peV. These values are contained in the error bars
and allow for maximum absolute shifts of the energy levels
with respect to the predicted values:

	Eexp1 � 6:55� 10�32 J � 0:41 peV;

	Eexp2 � 8:68� 10�32 J � 0:54 peV:
(28)

In this experiment, neutrons exhibited a mean horizontal
velocity of hvyi ’ 6:5 ms�1.
5As long as it is a finite value, which is expected for a localized
group of plane waves.
IV. BOUNDS ON THE NCQM PARAMETERS

Consider now the noncommutative case, for which the
Hamiltonian is given by Eq. (21). To first order in the
noncommutative parameters 	 and �, the Hamiltonian is
approximately given by

H �
p2x
2m

�
p2y
2m

�mgx�
�
2m@

�xpy � ypx�

� H0 �
�
2m@

�xpy � ypx�: (29)
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Notice that C � 1� ��O��	��2�, so that, to first order
on the noncommutative parameters, �px and �py are equal to
px and py, respectively. Thus, we conclude that the non-
commutative Hamiltonian differs from the commutative
one by a term proportional to � at this order of approxi-
mation. It then follows that the configuration space non-
commutativity does not influence the gravitational
quantum well energy spectrum to leading order.

As previously referred to, � must be a small correction
at the quantum mechanical level, and so we can treat the
new term as a perturbation in the commutative
Hamiltonian. The shift caused by this term on the system’s
energy levels is given by the expectation value of the
perturbation on the system’s wave function. We first point
out that, as the Airy function is real,  n�x� �  �

n�x�; there-
fore,

hpxin �
Z �1

0
dx �

n

�
�i@

@
@x
 n

�

� �i@
�
� �

n n��1
0 �

Z �1

0
dx
@ �

n

@x
 n

�

� i@
Z �1

0
dx n

@ n
@x

� �
Z �1

0
dx �

n

�
�i@

@
@x
 n

�
� �hpxin � 0; (30)

where we have used the fact that  n�x � 0� � 0, due to the
presence of the horizontal mirror, and the normalizability
of the wave function. Thus, the term proportional to px in
Eq. (29) will not produce any shift on the system’s energy
levels, whatever the expectation value of y.5 Thus, the
leading order perturbative potential due to noncommuta-
tivity is then given by

V1 �
�
2m@

xpy: (31)

This is clearly analogous to a potential describing the
effect of a magnetic field B � Bez, where z is the direction
perpendicular to the plane, on a particle of charge q, with
the identification qB � �=2@. We point out that this is
simply a formal analogy with no physical meaning, as
particles in the gravitational quantum well may be neutral,
as is the case of the neutrons used in the experiment by
Nesvizhevsky et al.

The leading order energy correction to the nth quantum
state is given by the expectation value of potential Eq. (31),
which can be written as

	E�1�
n �

�k
2m

Z �1

0
dx �

n�x�x n�x�

�
�k
2m

��
2m2g

@
2

�
�2=3

A2nIn �
En
mg

�
; (32)

where the integral In is defined as
-5
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In �
Z �1

�n
dz��z�z��z�; (33)

and k � hpyi=@ � mhvyi=@ � 1:03� 10
8 m�1 for the ex-

periment by Nesvizhevsky et al. [18]. The values of the
normalization factor An and of the integral In were numeri-
cally determined for the first two energy levels; that is,

A1 � 588:109; I1 � �0:383213;

A2 � 513:489; I2 � �0:878893:
(34)

With these values, the leading order corrections to the
energy levels are given by

	E�1�
1 � 2:83� 1029� �J�;

	E�1�
2 � 4:94� 1029� �J�:

(35)

By requiring these corrections to be smaller or of the
order of the maximum absolute energy shifts allowed by
the experiment, we obtain the following upper bounds for
the value of �:

j�j & 2:32� 10�61 kg2 m2 s�2 �n � 1�;

j�j & 1:76� 10�61 kg2 m2 s�2 �n � 2�:
(36)

These values correspond to the following upper bounds
on the fundamental momentum scale:

j
����
�

p
j & 4:82� 10�31 kgms�1 & 0:90 meV=c �n� 1�;

j
����
�

p
j & 4:20� 10�31 kgms�1 & 0:79 meV=c �n� 2�:

(37)

We determine now the energy correction of second order
on the noncommutative parameters. The second order
perturbative potential is given by

V2 �
	�

2@2
p2x
2m

�
	�

2@2
p2y
2m

�
�2

8m@2
�x2 � y2�: (38)

The terms proportional to p2y and y2 do not affect the
particle’s energy spectrum in the direction of the gravita-
tional field and, thus, do not produce any shifts on the
discrete energy levels. Hence, the second order perturba-
tive potential reduces to

V2 �
	�

2@2
p2x
2m

�
�2

8m@2
x2: (39)

There are, thus, two second order terms that can modify
the particle’s energy spectrum. The first one is proportional
to the particle’s kinetic energy in the direction of the
gravitational field; the second one is formally identical to
an harmonic oscillator with frequency! � j�j=2m@.6 The
energy correction due to the first term on the nth quantum
state is given by
6Once again, we emphasize the fact that this is just a formal
analogy with no physical meaning.
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	E�2a�
n � �

	�
4m

Z �1

0
dx �

n�x�
@2 n
@x2

�x�

� �
	�
4m

A2n

�
2m2g

@
2

�
1=3
Jn; (40)

where the integral Jn is defined as

Jn �
Z �1

�n
dz��z�

d2�

dz2
�z�: (41)

We have determined the value of this integral numeri-
cally for the first two quantum states, obtaining the follow-
ing results:

J1 � �0:383213; J2 � �0:878893: (42)

In order to set an upper bound on the value of this
correction, we need not only the upper bounds obtained
for � but also an upper bound for the value of 	, which
cannot be estimated by the gravitational quantum well
experiment. Then one can resort to the bound on the value
of the coordinates commutator, derived in a different con-
text [7], 	 ’ 4� 10�40 m2 [which corresponds to 	 ’
�10 TeV��2 for @ � c � 1],7 or, otherwise, one can as-
sume a much more conservative point of view and argue
that the fundamental length scale introduced by noncom-
mutativity in our specific case should be at least smaller
than the minimum scale compatible with the quantum
mechanical approach to the gravitational quantum well
problem. This scale is given by the average neutron size
of �1 fm, below which the neutron’s internal structure
becomes significant. With this latter hypothesis, one can
get an upper bound on 	 of 10�30 m2 and, consequently,
the following upper bounds on the contribution of Eq. (40)
to the energy correction:

	E�2a�
1 & 7:83� 10�55 �J�;

	E�2a�
2 & 1:04� 10�54 �J�:

(43)

As for the contribution of the second term, it is given by

	E�2b�
n �

�2

8m@2
Z �1

0
dx �

n�x�x
2 n�x�

�
�2

8m@2

��
2m2g

@
2

�
�1
A2nLn �

�
2m2g

@
2

�
�2=3 2En

mg
A2nIn

�

�
En
mg

�
2
�
; (44)

where the integral Ln is defined by

Ln �
Z �1

�n
dz��z�z2��z�; (45)

whose values were numerically determined for the first two
7Another bound can be found, for instance, in Ref. [6].
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energy levels:

L1 � 0:537596; L2 � 2:15572: (46)

Hence,

	E�2b�
1 & 3:64� 10�38 �J�;

	E�2b�
2 & 6:39� 10�38 �J�:

(47)

Thus, we see that the contribution of the first set of
second order terms is negligible in comparison with the
contribution of the second term, which is itself 7 (6) orders
of magnitude smaller than the respective first order correc-
tion for n � 1 (n � 2). The perturbative approach is, thus,
valid using the upper bounds obtained for � for both
quantum states. Clearly, had we used the bound on 	
derived in Ref. [7], the energy corrections would have
been about 10 orders of magnitude smaller, i.e. even
more negligible than with the conservative bound used
for 	.

Hence, the results of Nesvizhevsky et al. constrain the
fundamental momentum scale to be below the meV=c
scale. However, one could expect the fundamental scale
to be smaller than this. An increase in the precision of the
experiment, which presently allows relatively large error
bars, may lead to more stringent bounds on the value of

����
�

p

if the results are still consistent with the theoretical pre-
dictions. One should take into account, however, that the
experimental energy resolution is bounded by the uncer-
tainty principle due to the finite lifetime of the neutron
[17]. The maximum energy resolution that can be achieved
corresponds to a minimum absolute energy uncertainty
given by

	Emin �
@

 
’ 1:2� 10�37 J

’ 7:4� 10�19 eV� 10�18 eV: (48)

If the theoretical predictions are confirmed by the ex-
periment with this precision, then one should be able to
place the following upper bounds on the value of �:

j�j & 5:22� 10�67 kg2 m2 s�2 �n � 1�;

j�j & 2:40� 10�67 kg2 m2 s�2 �n � 2�;
(49)

which correspond to the following upper bounds on the
value of the fundamental momentum scale:

j
����
�

p
j & 7:22� 10�34 kgms�1 & 1:35 �eV=c �n� 1�;

(50)

j
����
�

p
j & 4:90� 10�34 kgms�1 & 0:92 �eV=c �n� 2�:

(51)

These are the most stringent bounds that may be ob-
tained within the framework of the quantum gravitational
well.
025010
V. DISCUSSION AND OUTLOOK

The results obtained in the previous section allow us to
evaluate the consistency of the noncommutative model,
i.e., whether the �� 1 hypothesis is consistent in the
context of the results of the experiment by Nesvizhevsky
et al. With the upper bound on 	 of 10�30 m2 and the upper
bounds on �, Eqs. (36), that were obtained from the
experimental error bars of the Nesvizhevsky et al. experi-
ment, we obtain the following bounds on the value of �:

j�j & 5:2� 10�24 �n � 1�; (52)

j�j & 4:0� 10�24 �n � 2�: (53)

Hence, we can conclude that the modifications intro-
duced by noncommutativity on the value of @ are at least
about 24 orders of magnitude smaller than its value, which
is known with a precision of about 10�9 [23]. If we con-
sider the most stringent bounds on � obtained via
Heisenberg’s uncertainty principle, Eqs. (49), then

j�j & 1:2� 10�29 �n � 1�; (54)

j�j & 5:4� 10�30 �n � 2�: (55)

All the bounds on � become about 10 orders of magni-
tude smaller if we consider the upper bound 	 ’
�10 TeV��2 of Ref. [7]. Notice that these bounds also
provide an estimate of the four-dimensional correction to
the Planck constant, which is about the same order of
magnitude as the two-dimensional one.8 Hence, the non-
commutative model we have considered in this work is
consistent with all experimental results of ordinary quan-
tum mechanics.

As previously mentioned, there is the possibility that the
noncommutative parameters could exhibit a dependence
on the space-time coordinates (see, e.g., Refs. [6,10]). This
occurs whether the laboratory frame has a space-time–
dependent motion. As proposed in Ref. [24], it is likely
that both 	�� and ��� have fixed values in the cosmic
microwave background radiation frame, which may be
considered as approximately fixed to the celestial sphere.
Therefore, physical measurements must take into account
the effect of the Earth’s rotation about its axis, which
will yield a time dependence of the noncommutative
parameters.

In the case of the experiment by Nesvizhevsky et al., this
would, however, have a negligible effect within the time
scale of the experiment, which is limited by the neutron’s
finite lifetime, a mere 1% of the Earth’s rotation period.
Thus, assuming that the noncommutative parameters are
constant throughout the experiment seems to be a quite
good approximation. Nevertheless, for sure, our results
-7
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refer to the maximum effect that the parameter �may have
had on the system during the time frame of the experiment.

An important related issue is whether the effective
Planck constant exhibits such a time dependence. From
Eq. (10), we see that, if 	 and � are time-dependent, then
@eff should also depend on the time coordinate. However,
one must not forget that Eq. (10) refers to the correction
to @ from a two-dimensional model. The true four-
dimensional effective Planck constant is given by
Eq. (13). In this case, the correction behaves as a Lorentz
scalar in both particle and observer Lorentz transforma-
tions, meaning that its value is the same in all inertial
frames. Therefore, it can be concluded that the time de-
pendence of � will be canceled by the contraction and by
the time dependence of components of 	�� and ���.
Hence, @eff is a true constant and constitutes a fundamental
noncommutative parameter that is valid for all inertial
frames.

Recently, a relation between the noncommutative pa-
rameters has been proposed based on the assumption that
the Bose-Einstein statistics is unaffected in noncommuta-
tive quantum mechanics [12]. To obtain this relation, one
constructs the usual creation and annihilation operators for
a two-dimensional isotropic harmonic oscillator of massm
and frequency ! in terms of the noncommutative coordi-
nates and momenta in the plane:

ai �
��������
m!
2

r �
xi �

i
m!

pi

�
; (56)

ayi �

��������
m!
2

r �
xi �

i
m!

pi

�
; i � 1; 2: (57)

In order to retain the Bose-Einstein statistics, generated
by creation and annihilation operators in commutative
phase space, one should require that �ai; a

y
i � � 0 in non-

commutative phase space. This condition leads to the
relation

� � �m!�2	: (58)

Equation (58) yields a direct proportionality between the
two noncommutative parameters on the plane. This rela-
tion also exhibits a dependence on the parameters m and !
of the two-dimensional isotropic harmonic oscillator. In
many systems, the potential can be modeled by an har-
monic oscillator through an expansion about its minimum.
This is not, however, a general case. For instance, the linear
potential appearing in the gravitational quantum well ana-
lyzed in this work, mgx, has no minimum, and its second
derivative, which would correspond to its approximate
harmonic oscillator frequency !, has a null value for all
x. Thus, in our opinion, Eq. (58) has a limited applicability
and, for sure, cannot be applied to the gravitational quan-
tum well.

The dependence on the features of a particular system
could also appear in the model considered in this work
025010
without great harm, as far as the invariance of @eff under
Lorentz transformations is not spoiled. This dependence
could arise from the low-energy limit of the underlying
quantum field theory. However, a relation between the
noncommutative parameters should be valid for all sys-
tems, which is not the case of the underlying assumption
behind Eq. (58).

Finally, we point out that the bosonic creation and
annihilation operators are not really constructed from the
two-dimensional isotropic harmonic oscillator ones. Both
types of operators are independently built and satisfy the
same commutation relations in commutative phase space.
However, this relation cannot be extended to the noncom-
mutative case, where there is just an accidental connection
between the two kinds of operators. Thus, when one de-
mands �ai; a

y
i � � 0, one is not really guaranteeing the

Bose-Einstein statistics, but only ensuring that the action
of these operators on the energy eigenstates of the two-
dimensional isotropic harmonic oscillator is the same in
both commutative and noncommutative cases. Hence, we
conclude that the relation Eq. (58) cannot accurately de-
scribe the relation between noncommutative parameters.

On the other hand, the model discussed in this work does
not define any absolute relation between the two noncom-
mutative parameters on the plane. However, by means of
the effective Planck constant, it poses a Lorentz invariant
constraint on some of the components of the noncommu-
tative parameters in 4 dimensions, which is compatible
with the present experimental results.

In summary, we have studied in this work a model where
the effect of both configuration and momentum spaces
noncommutativity was considered for the two-dimensional
gravitational quantum well. The latest results from the
experiment by Nesvizhevsky et al. allow one to bound
the fundamental momentum scale introduced by noncom-
mutativity to be below 1 meV=c. Further improvements in
the experimental precision could lead to the minimum
upper bounds of order 1 �eV=c. We find that, to leading
order, noncommutativity in configuration space does not
affect the energy spectrum of the system. By assuming that
the latter introduces a fundamental length scale smaller
than the average neutron size, we can conclude that the
model modifies the Planck constant by a factor which is at
least 24 orders of magnitude smaller than its value, which
is experimentally consistent. The maximum achievable
energy resolution in the Nesvizhevsky et al. experiment
may lower this bound by a factor of about 10�5. This
modification turns out to be Lorentz invariant and con-
strains the components of the noncommutative parameters
	�� and ��� in a totally different way with respect to the
approach proposed in Ref. [12].

Given that noncommutativity is an attractive theoretical
concept which is not fully understood, the studied model
introduces some insights on the nature of noncommutativ-
ity that are so far consistent with experiments. Possibly,
-8
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most of the effects of noncommutativity may reveal them-
selves when our experimental capabilities approach the
string scale, which may not happen in the foreseeable
future. Meanwhile, low-energy experiments, as the one
considered in this work, can help to constrain these effects
and hopefully shed some new light on the physical reality.
025010
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and T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001).
[8] J. Madore, S. Schraml, and J. Wess, Eur. Phys. J. C 16, 161

(2000).
[9] A. Agostini, G. Amelino-Camelia, and F. D’Andrea, Int. J.

Mod. Phys. A 19, 5187 (2004).
[10] O. Bertolami and L. Guisado, Phys. Rev. D 67, 025001

(2003).
[11] V. P. Nair and A. P. Polychronakos, Phys. Lett. B 505, 267

(2001).
[12] Jian-zu Zhang, Phys. Rev. Lett. 93, 043002 (2004).
[13] Jian-zu Zhang, Phys. Lett. B 584, 204 (2004).
[14] M. Demetrian and D. Kochan, Acta Phys. Slovaca 52, 1

(2002).
[15] J. Gamboa, M. Loewe, and J. C. Rojas, Phys. Rev. D 64,

067901 (2001).
[16] T. P. Singh, S. Gutti, and R. Tibrewala, gr-qc/0503116.
[17] V. V. Nesvizhesky et al., Nature (London) 415, 297

(2002); Phys. Rev. D 67, 102002 (2003).
[18] V. V. Nesvizhesky et al., hep-ph/0502081.
[19] See, e.g., Stephen Gasiorowicz, Quantum Physics (Wiley,

New York, 1996), 2nd ed.
[20] A. E. F. Djemai and H. Smail, Commun. Theor. Phys. 41,

837 (2004).
[21] L. Landau and E. Lifchitz, Mécanique Quantique (Mir,
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