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Calorons of the SU�N� gauge group with nontrivial holonomy, i.e. periodic instantons with arbitrary
eigenvalues of the Polyakov line at spatial infinity, can be viewed as composed of N Bogomolnyi-Prasad-
Sommerfeld monopoles or dyons. Using the metric of the caloron moduli space found previously we
compute the integration measure over caloron collective coordinates in terms of the constituent monopole
positions and their U�1� phases. In the limit of small separations between dyons and/or trivial holonomy,
calorons reduce locally to the standard instantons whose traditional collective coordinates are the
instanton center, size, and orientation in the color space. We show that in this limit the instanton
collective coordinates can be explicitly written through dyons’ positions and phases, and that the
N-dyon measure coincides exactly with the standard instanton one.
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I. INTRODUCTION

Belavin-Polyakov-Schwartz-Tyupkin (BPST) instantons
[1,2] are known to play an important role in quantum
chromodynamics (QCD); see Refs. [3,4] for reviews. The
instanton liquid model [5] is especially helpful in provid-
ing a microscopic mechanism of the spontaneous chiral
symmetry breaking, which is due to the delocalization of
the would-be zero fermion modes in the instanton en-
semble [6].

At the same time, instantons do not lead to confinement,
at least in the naive dilute limit. In the pure glue version of
QCD, there are two well-known criteria of confinement:
the area behavior of large Wilson loops, and the zero
average of the Polyakov line [7] (which fluctuates about
the center-of-group values at temperatures above the de-
confinement transition). To be more precise, one can for-
mally obtain the area law for large Wilson loops from
averaging over the instanton ensemble, provided instanton
size distribution drops as d�=�3 for large-size instantons
[8]. However, such distribution implies that large-size in-
stantons overlap, which makes meaningless the description
of the vacuum fluctuations in terms of the instanton col-
lective coordinates: one has to use other degrees of
freedom.

To study the temperature dependence of the average
Polyakov line over the instanton ensemble, one needs first
to generalize the zero-temperature BPST instantons to the
periodic Harrington-Shepard instantons [9]. The quantum
weight of periodic instantons has been found by Gross,
Pisarski, and Yaffe [10], and the instanton ensemble at any
temperatures has been built in Ref. [11], using the varia-
tional principle of Petrov and one of the authors [5].
Averaging the Polyakov line over this ensemble, it has
been found that it is near zero at small temperatures and
rapidly approaches the center-of-group value at T � �
[12]. However, it is neither exactly zero at small T, nor is
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there a sharp phase transition. This is the kind of behavior
expected from the approximate treatment of large-size
instantons. It is another manifestation of the lack of the
phase transition with Harrington-Shepard calorons, found
in Ref. [11], and the lack of confinement. Again, one
concludes that in order to observe mathematically the
confinement-deconfinement phase transition, one needs
to use the degrees of freedom appropriate for overlapping
instantons. In a more simple 2d CPN�1 model also pos-
sessing instantons, the appropriate degrees of freedom
known as ‘‘instanton quarks’’ [13] or ‘‘zindons’’ have
long been available—see Ref. [14] for references and for
a detailed study of the CPN�1 instanton ensemble in terms
of their constituents.

For the 4d Yang-Mills theory, a somewhat similar con-
struction of instantons through their ‘‘constituents’’ be-
came available more recently, owing to Kraan and van
Baal [15] and Lee and Lu [16], first for the SU�2� gauge
group and later for the general SU�N� [17]. These authors
have found explicitly an exact self-dual solution of the
Yang-Mills equation of motion at any temperature with a
unity topological charge and with arbitrary eigenvalues of
the Polyakov line (or holonomy) at spatial infinity. We
shall call this general solution the KvBLL caloron. The
periodic Harrington-Shepard instanton is a limiting case of
the KvBLL caloron at trivial holonomy corresponding to
the Polyakov line assuming center-of-group values. A
caloron with the double topological charge has been con-
structed in Ref. [18].

The fascinating feature of the SU�N� calorons is that
they can be viewed as composed ofN Bogomolnyi-Prasad-
Sommerfeld monopoles [19] or, more precisely, dyons
since they carry both magnetic and electric charges; the
composite calorons are electrically and magnetically neu-
tral. Using the Coulomb gas representation based on the
chiral effective Lagrangian it was conjectured in Ref. [20]
that the adequate description should be in terms of N
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monopoles constituting an SU�N� instanton. Apart from
N � 1 eigenvalues of the Polyakov line at spatial infinity,
the SU�N� KvBLL caloron is characterized by 4N collec-
tive coordinates forming its moduli space. A natural choice
of the collective coordinates is to use 3N positions of the
dyons’ centers in space, and N dyons’ U�1� phases, 3N �
N � 4N. If all N dyons are spatially far apart, the action
density of the KvBLL caloron consists of N time-
independent 3d lumps whose profile is the well-known
energy density of individual BPS dyons. In the opposite
limit when all dyons are within the spatial range � 1=T
from each other, the KvBLL caloron becomes a single 4d
lump whose profile is close to the usual periodic instanton.
As the temperature goes to zero with dyons separation
fixed, the caloron action density tends to that of the stan-
dard BPST instanton. Contrary to the standard instanton,
however, the holonomy (or the Polyakov line at infinity)
remains nontrivial.

The average eigenvalues of the Polyakov line are deter-
mined by the dynamics of the ensemble of calorons with
nontrivial holonomy. For example, in the N � 1 super-
symmetric version of the Yang-Mills theory the dyon-
induced superpotential can be computed exactly [21],
and its minimum corresponds to the Polyakov line’s eigen-
values

L � P exp
�Z 1=T

0
dtA4

�
j ~xj!1

� diag�ei��1=N�; ei��3=N�; . . . ; ei���2N�1�=N�; (1)

such that trL � 0 as it should be in the confining phase.
Moreover, the known exact vacuum expectation value
(v.e.v.) of the gluino condensate corresponds to this par-
ticular holonomy, whereas the trivial-holonomy instantons
lead to a wrong value [21,22]. This result is even more
surprising since at T ! 0 the local difference between
gauge fields with trivial and nontrivial holonomy vanishes,
implying that long-range fields are critical, at least in the
supersymmetric gluinodynamics [22].

In the nonsupersymmetric Yang-Mills theory, the ques-
tion of which average holonomy is dynamically preferred
is open. From lattice simulations we know that in the
confining phase hTrLi � 0 but we do not know what
dynamics leads to it. Revealing it would be tantamount
to understanding the mechanism of confinement. A step in
that direction has been taken in Ref. [23] where the quan-
tum weight of the KvBLL caloron has been computed
exactly, as a function of the holonomy, dyon separation,
and temperature for the SU�2� group. Based on this calcu-
lation, an argument has been presented that at T < Tc �
1:125� a trivial holonomy becomes dynamically unfavor-
able from the free energy minimization viewpoint. Below
Tc, dyons repulse each other, and calorons presumably
‘‘ionize’’ into separate dyons. However, to find out their
fate and whether the system prefers the ‘‘confining’’ hol-
onomy (1), one has to study the dynamics of many dyons.
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To that end one has first of all to find the statistical or
quantum weight of a dyon configuration as given by the
combination of the collective coordinate measure and the
small oscillation quantum determinant.

This paper is devoted to the study of the measure of a
single SU�N� KvBLL caloron, written in terms of the dyon
coordinates and their U�1� phases. The metric tensor of the
moduli space has been first conjectured by Lee, Weinberg,
and Yi [24,25] and then derived by Kraan [26] using the
explicit Atiyah-Drinfeld-Hitchin-Manin-Nahm (ADHMN)
construction [27,28] for the SU�N� caloron [17]. We have
independently reproduced the same result for the moduli
space metric; however we do not present the derivation
here as it is lengthy but is not qualitatively different from
that by Kraan. Instead, we compute the determinant of the
metric tensor, which defines the integration measure over
the dyons’ collective coordinates for the general SU�N�
caloron, and compare it with the long-known instanton
measure [29] written in terms of the instanton position,
size, and group orientation. We demonstrate that the
SU�N� instanton measure written in these terms coincides
exactly with the one written in terms of the coordinates and
phases of the instanton constituents. This result is not
altogether trivial, as in the first case the measure arises
from the volume of the SU�N�=SU�N � 2� co-set whereas
in the second case it follows from the 3d geometry. We also
find the direct relation between the instanton group orien-
tation and the dyons’ positions and U�1� phases. We be-
lieve that it may be an important step in combining the
success of the small-size instantons in physics related to
the spontaneous chiral symmetry breaking, with the de-
scription of large-size instantons in terms of their dyon
constituents, which is presumably necessary for the con-
finement physics. Since this paper concentrates mainly on
the mathematical questions, we do not discuss here the
very interesting recent studies of the KvBLL calorons on
the lattice [30].

II. NOTATIONS

To help navigate and read the paper, we first introduce
some notations used throughout. Basically we use the same
notations as in Ref. [17]. In what follows we shall measure
all quantities in the temperature units and put T � 1. The
temperature factors can be restored in the final results from
dimensions.

Let the Polyakov line at spatial infinity have the follow-
ing eigenvalues:

L � P exp
�Z 1=T

0
dtA4

�
j ~xj!1

� Vdiag�e2�i�1 ; e2�i�2 . . . e2�i�N �V�1;

XN
m�1

�m � 0:

(2)

We use anti-Hermitian gauge fields A� � itaAa� � i
2�

aAa�,
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�tatb � ifabctc, tr�tatb� � 1
2�

ab. The eigenvalues �m are
uniquely defined by the condition

PN
m�1�m � 0. If all

eigenvalues are equal up to the integer, implying �m �
k=N � 1, m � k and �m � k=N, m> k where k �
0; 1; . . . �N � 1�, the Polyakov line belongs to the SU�N�
group center, and the holonomy is then said to be ‘‘trivial.’’
By making a global gauge rotation one can always order
the Polyakov line eigenvalues such that

�1 � �2 � . . . � �N � �N�1 � �1 � 1; (3)

which we shall assume done. The eigenvalues of A4 in the
adjoint representation, Aab4 � ifabcAc4, are ���m ��n�
and N � 1 zero eigenvalues. For the trivial holonomy all
adjoint eigenvalues are integers. The difference of the
neighbor eigenvalues in the fundamental representation
!m � �m�1 ��m determines the spatial core size 1=!m
of the mth monopole whose 3-coordinates will be denoted
as ~ym, and the spatial separation between neighbor mono-
poles in color space will be denoted by

~%m� ~ym� ~ym�1�%m�sin$mcos%m;sin$m sin%m;cos$m�;

%m�j ~%mj: (4)

With each 3-vector ~%m we shall associate a 2-component
spinor &y'm built according to the Euler parametrization

&y'm �

�������
%m
�

r �
exp

�
�i%m

(3
2

�
exp

�
�i$m

(2
2

�

� exp
�
�i m

(3
2

�	
'

2

�

�������
%m
�

r � sin$m2 exp
�
i  m�%m

2

�
cos$m2 exp

�
i  m�%m

2

�
2
664

3
775
'

: (5)

This spinor, together with its Hermitian conjugate &m' ,
forms a 2� 2 matrix for any m � 1 . . .N:

&y'm &m* �
1

2�
�12%m � ~( � ~%m�'*: (6)

These spinors are used in the construction of the caloron
field. The Euler angle  m is fictitious in parametrizing the
3d vector ~%m but enters explicitly the gauge field of the
caloron and belongs to its moduli space, together with ~%m.
In fact  m has the meaning of the U�1� phase of the mth
dyon. We shall also use the following notation for the
variation:

i�
%m

tr�&ym�&m � �&ym&m� � � m � cos$m�%m � ��m:

(7)

For trivial holonomy, the KvBLL caloron reduces to the
Harrington-Shepard periodic instanton at nonzero tem-
peratures and to the ordinary Belavin-Polyakov-
Schwartz-Tyupkin instanton at zero temperature.
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Instantons are usually characterized by the scale parameter
(the ‘‘size’’ of the instanton) �. It is directly related to the
dyons’ positions in space, actually to the perimeter of the
polygon formed by dyons,

� �

��������������������������
1

2�T

XN
m�1

%m

vuut ;
XN
m�1

~%m � 0: (8)

In these notations the KvBLL caloron gauge field can be
written as the following N � N matrix [17]:

Amn� �
1

2
%1=2
mk &

k
' �+a�!�(

a�'*&
y*
l @!fkl%

1=2
ln

�
1

2
�%1=2

mk @�%
�1=2
kn � @�%

�1=2
mk %1=2

kn � (9)

where the summation over k; l is understood and where

%�1
mn � �mn � &m' &

y'
n fmn: (10)

The N � N matrix fmn is in fact the ADHMN Green
function f��n;�m� found in [31]. In Appendix B we derive
a simple expression for this quantity used to obtain certain
limiting cases of the general equation (9).

III. ZERO MODES IN THE YANG-MILLS THEORY

Here we remind the reader what zero modes are and how
the moduli space metrics arises from the path integral. In
our notations the partition function for the pure Yang-Mills
theory reads

Z �
Z
DA exp��S�A�;

S�A � �
1

2g2
Z
d4x trF�!F�!;

(11)

where A��x4; ~x� must obey the periodicity condition
A��0; ~x� � A��1=T; ~x�.

The integration measure in Eq. (11) is defined through
the scalar product

hu; u0i � �2
Z
d4x tr�u��x�u

0
��x�� (12)

by

DA �
Y
n

d'n�������
2�

p
g

(13)

where A��x� �
P
n'nun��x� for the complete normalized

set of functions un��x�.
We want to compute the contribution to the partition

function from some set of solutions of the classical Yang-
Mills equation of motion A��Y; x� parametrized by the
collective coordinates Yp. This means that we have to
take into account only small fluctuations about the surface
formed by this set of solutions in the configuration space.
Usually S�A�Y� � Scl is the same for the whole set, and is
locally minimal. The integral over fluctuations is Gaussian
-3
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only in the directions orthogonal to the surface. We have to
separate Gaussian and non-Gaussian variables of
integration.

The result in the quadratic order after fixing the back-
ground gauge Dcl

�a� � 0 is

ZA�Y� � e�S
cl
Z
J
Y
p

dYp�������
2�

p
g

Z
Da�D6D �6 exp

�
�

1

2g2

�
Z
d4xaa�W

ab
�!a

b
! �

Z
d4x �6a�D2�ab6b

�
(14)

where a� � itbab� (tr�tatb� � 1
2�

ab) are small fluctuations
orthogonal to the zero modes of the operator W�!,

Wab
�! � �D2�A�Y�ab��! � 2facbFc�!�A�Y�; (15)

6 and �6 are the ghost fields from gauge fixing. The factor�������
2�

p
g comes from the definition of the measure. The

Jacobian J is in fact the determinant of the moduli space
metric tensor, i.e.

J �
��������������
detgpq

q
; gpq � h�pA��qA�i; (16)

where �pA� is a zero mode of W�!, associated with the
collective coordinate Yp through

�pA� � @YpA� �D��p (17)

where �p is chosen such that the background gauge con-
dition is satisfied,

D��pA� � 0: (18)

In the next section we present the result for the metric
tensor gpq for the KvBLL caloron of the SU�N� gauge
group.
IV. CALORON MODULI SPACE METRIC

As mentioned in the Introduction, the metric of the
moduli space of N different BPS monopoles of the
SU�N� gauge group has been first conjectured in
Refs. [24,25] generalizing the previous work [32], and
then confirmed by an explicit calculation in Ref. [26]. In
these papers, the metric tensor was expressed in terms of
the monopole—electric charge interaction potential wi�%�
satisfying the equation

:ijk@jwk� ~%� � @i
1

%
� �

%i
%3 : (19)

One introduces also an N � N matrix
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S �

1 �1
1 �1

. . .
1 �1

�1 1

0BBBBB@

1CCCCCA;

ST �

1 �1
�1 1

. . .
�1 1

�1 1

0BBBBB@

1CCCCCA;
(20)

such that the separation between consecutive dyons is
~�m � ~ym � ~ym�1 � �ST ~y�m. In terms of the dyon interac-
tion potential ~w� ~%� the metric found in Refs. [24–26] is
[33] (see e.g. Eq. (78) in [26])

ds2 � 8�2

�
d~yTG � d~y�

�
d(
4�

� ~W � d~y
�
T
G�1

�

�
d(
4�

� ~W � d~y
�	

(21)

where

~W � S ~WST; ~W �
1

4�
diag� ~w� ~%1�; . . . ; ~w� ~%N��;

(22)

G � N �
1

4�
SR�1ST; N � diag�!1; . . . ; !N�;

R � diag�%1; . . . ; %N�; (23)

d(m
4�

� !md?4 �
1

4�
�S �m: (24)

The metric (21) is implicit as it employs the notion of the
monopole-electric charge interaction potential ~w which by
itself is ambiguous as it does not exist without a Dirac
string singularity. The combination � ~w�%� � d ~%� is however
independent of the way one introduces the Dirac string
singularity. Choosing it along the z axis and solving
Eq. (19) we find the monopole-electric charge interaction
potential

~w� ~%� �
1

%
�� cot$ sin%; cot$ cos%; 0� (25)

if one parametrizes ~% � �sin$ cos%; sin$ sin%; cos$�.

Hence, ~W � ~dy in Eq. (21) can be rewritten as

~W � ~dy � S ~W � d ~%

�
1

4�
Sdiag�cos$1d%1; . . . ; cos$Nd%N�: (26)

Being combined with Eq. (24) it gives

d(
4�

� ~W � d~y � N d?4 �
1

4�
Sd� (27)
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where d�m � cos$md%m � d m according to Eq. (7).
Therefore, the second term in Eq. (21) can be written as�

N d?4 �
1

4�
Sd�

�
T
G�1

�
N d?4 �

1

4�
Sd�

�
(28)

where, according to Eq. (23),

G�1 �

�
N �

1

4�
SR�1ST

�
�1

� N �1 �N �1 1

4�
SR�1STN �1 � . . . : (29)

Since d?4 is, in this context, an N vector �d?4; . . . ; d?4�,
one has for all components �d?4S�m � 0; see the definition
of S in Eq. (20). Hence, the term quadratic in d?4 in
Eq. (28) is simply

N d?4G
�1N d?4 � d?24 (30)

where trN �
P
m!m � 1 has been used. Because of

�d?4S�m � 0, the terms linear in d?4 in Eq. (29) are zero.
In the last term, quadratic in d�, we note that

STG�1S � STN �1S�
1

4�
STN �1SR�1N �1S� . . .

� 4�R�4�R� STN �1S��1STN �1S:

(31)

We introduce N � N matrices K, L, M:

K �
1

�
R�

1

4�2 S
TN �1S; (32)

L � �R� RK�1R � RK�1��K � R�

� RK�1 1

4�
STN �1S; (33)

M � 4�2G: (34)

With the help of these matrices, the chain of Eq. (31) can be
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continued as

STG�1S � 4�R
1

4�2K
�14���K � R� � 4L: (35)

Thus, the last term in Eq. (28) is

1

4�2
d�Ld�: (36)

Combining all terms from Eq. (21) we obtain finally a
simple and explicit expression for the moduli space metric:

ds2 � 8�2d?24 � 2Mmnd~ymd~yn � 2Lmnd�md�n; (37)

where d�m is given by Eq. (7). As a matter of fact, we have
independently derived the moduli space metric in precisely
this form, using the ADHMN construction for the SU�N�
caloron. However, since the derivation is lengthy but not
qualitatively different from that of Kraan [26] we do not
present it here. Explicitly, the K, L,M matrices involved in
Eq. (37) are

Kmn �
�
%n
�

�
1

4�2!n
�

1

4�2!n�1

�
�mn �

1

4�2!m
�m�1;n

�
1

4�2!n
�m;n�1; (38)

Lmn � �Rmn � �RK�1R�mn; Rmn � �mn%n; (39)

Mmn �

�
4�2!n �

�
%n

�
�
%n�1

�
�mn �

�
%n
�m�1;n

�
�
%m

�m;n�1: (40)

Notably K and M are symmetric and differ only by inter-
changing 4�2!m and �m=�: this will be used in computing
the determinants.

As an example, we give the matrix M for the SU�4�
gauge group:
M�4� � �

4�!1 �
1
%1
� 1

%2
� 1

%2
0 � 1

%1

� 1
%2

4�!2 �
1
%2
� 1

%3
� 1

%3
0

0 � 1
%3

4�!3 �
1
%3
� 1

%4
� 1

%4

� 1
%1

0 � 1
%4

4�!4 �
1
%4
� 1

%1

2666664

3777775: (41)
The SU�2� gauge group is too ‘‘small’’ for the general
formula (40). In this case the matrix M is simply
M�2� � �
4�!1 �

1
%1
� 1

%2
� 1

%1
� 1

%2

� 1
%1
� 1

%2
4�!2 �

1
%1
� 1

%2

" #
(42)
where %1 � %2 � j ~y1 � ~y2j and !1 � !2 � 1.
V. THE DETERMINANT OF THE METRIC TENSOR

In the previous section we have written the moduli space
metric in the explicit form (37). However only the deter-
minant of the metric is needed in such calculations as the
saddle point approximation; see Eq. (14). In this section we
derive a compact expression for the volume of the general
SU�N� moduli space and then give examples for the spe-
cific cases of the SU�2� and SU�3� groups, as well as an
asymptotic formula for the general SU�N� group, valid at
large separations between the dyons.
-5
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First of all, we need to check the dimension or the
number of parameters of the moduli space. These are the
3N coordinates of dyon centers ~yi, one overall time posi-
tion ?4, and N � 1 relative color orientations  m entering
the metric (37) from Eq. (7). Therefore, the dimension of
the caloron moduli space is 4N as it should be for a general
self-dual solution with unity topological charge. We note
that the transformation � 1 � � 2 � . . . � � N is a
global U�1� gauge rotation leaving the gauge field un-
changed. As a consequence, the matrix L has one zero
eigenvalue

Lj1; . . . ; 1i � 0 (43)

which makes the size of the maximal nondegenerate minor
of the metric tensor (37) equal to 4N. The determinant of
the metric tensor is

g � detgpq � 8�223N det3M2N�1 det0L (44)

where det0L is the product of all nonzero eigenvalues of L.
The corresponding volume form is

! � 2N�1
����
N

p ���
g

p
d?4d3y1 . . .d3yNd'1 . . . d'N�1 (45)

where

'm �
 m
2

�
XN
n�1

 n
2N

; m � 1; . . . ; N � 1; (46)

'N �
XN
n�1

 n
2N

is a set of variables that parametrize the relative U�1�
orientations of the dyons. Note that 'N corresponds to
the trivial gauge transformation. The transformation matrix
has the form

Qmn �
d m
d'n

�
1

2

N�1
N � 1

N . . . � 1
N

� 1
N

N�1
N . . . � 1

N

..

. ..
. . .

. ..
.

1
N

1
N . . . 1

N

0BBBB@
1CCCCA

�1

:

The factor 2N�1
����
N

p
in Eq. (45) comes from the equation

det0�QTLQ� � lim
:!0

det�QTLQ� :�
:

� det�QQT�lim
:!0

det�L� �QQT��1:�
:

(47)

� det�QQT��QQT��1
00 det0�L� � �2N�1

����
N

p
�2 det0L (48)

where �QQT��1
00 � h1; 1; . . . ; 1j�QQT��1j1; 1; . . . ; 1i=N.

It turns out that det0L can be expressed through detK. To
show this let us introduce

V � 4���K � R� (49)

such that the matrix L from Eq. (39) can be written as
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L � �R� RK�1R � RK�1��K � R� �
1

4�
RK�1V:

(50)

Using that h1; 1; . . . ; 1jRK�1 � �h1; 1; . . . ; 1j we have

det0L � 41�N
detR det0V
�N detK

(51)

and from a simply calculable det0V � N=
QN
m�1 !m we

obtain

det0L �
N

22N�2�N detK

Q
%mQ
!m

: (52)

In its turn, detK has a simple relation to detM,

detM
detK

�

Q
4�2!mQ %m

�

(53)

which follows from the symmetry between the two matri-
ces mentioned at the end of Sec. IV. Thus, the final result
for the element of the volume of the moduli space is

! � �4��N�12N�1N detMd?4d
3y1 . . . d

3yNd'1 . . .d'N�1

(54)

where M is given by Eq. (40). One can also rewrite it in
terms of the ‘‘center-of-mass’’ position ~? �

P
m!m ~ym and

the separations between dyons neighboring in color space,
�m:

!��4��N�12N�1NdetMd4?d3�1 .. .d
3�N�1d'1 .. .d'N�1:

(55)
VI. INTEGRATION OVER DYONS’ U�1� PHASES

Since for a single-charged caloron the volume element
does not depend on the U�1� phases of the dyons  m or,
equivalently, 'm, these phases can be integrated out.
Fortunately the integration limits in 'm variables are sim-
ple. These variables parametrize a general diagonal SU�N�
matrix:

U�'m� � diagfei'1 ; ei'2 ; . . . ; ei'N�1 ; e�i
P

'mg: (56)

It is clear that U�'m� � U�'0
m� if and only if '0

m � 'm �
2�nm where nm are integers. However U�'m� and U�'0

m�
can differ by an element of the center of SU�N�, i.e.
U�'m� � UZU�'0

m� where UZ � e2�i=N1N . Since UZ acts
trivially in the adjoint representation we have to choose the
fundamental domain of integration, such that if 'm and '0

m
are elements of this domain, the condition U�'m� �
UZU�'

0
m� implies that 'm � '0

m. For example, one can
choose the fundamental domain to be

0 � '1 <
2�
N
; 0 � 'm>1 < 2�: (57)

We now integrate over 'm in the fundamental domain
-6
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specified by (57) and obtainZ
dN�1'm � �2��N�1 1

N
: (58)

Thus, the caloron measure integrated over the U�1� phases
(denoted by G) isZ

G
! � �4��2N detMd4?d3�1 . . .d

3�N�1: (59)

Below we find detM in the particular cases of the SU�2�
and SU�3� gauge groups and in the limit of large dyon
separations in a general SU�N� case.

A. SU�2�

The general expression for the N � N matrix M is given
in Eq. (40). Computing its determinant in the case of N �
2 we get

! � 29�6 1� 2�%1!1 �!1
%1

d4?d3%1d� 1 �  2� (60)

where we use the notation �!m � 1� !m. Integrating over
the U�1� phase � 1 �  2� and over space rotations we getZ

d3%1d� 1 �  2� � �4��2
Z
%2
1d%1 � 24�2

Z
%2
1d%1:

(61)

According to Eq. (46)  1 �  2 � 4'1 and thus
R
d� 1 �

 2� � 4
R
�
0 d'1 � 4�. Replacing %1 by the commonly

used instanton size variable according to Eq. (8), %1 �
��2, we arrive at the result already known in the SU�2�
case [15,23],Z

G;rotations
! � 214�10�1� 2�2�2!1 �!1��3d�d4?: (62)

At trivial holonomy (!1 � 0) it becomes the well-known
measure of the (periodic) SU�2� instanton.

B. SU�3�

Computing the determinant of the 3� 3 matrix M (40)
and putting it into Eq. (59) we obtain the caloron measure
for SU�3�:Z
G
! � 214�10

�
16�2!1!2!3 � 4�

�
!2 �!2
%1

�
!3 �!3
%2

�
!1 �!1
%3

	

�

�
1

%1%2
�

1

%2%3
�

1

%3%1

� 
d3%1d

3%2d
4?:
C. SU�N�, large separations

In the general case, detM cannot be written in an easy
form. However, for large separations between dyons in a
caloron, one can derive a simple asymptotic for detM,
Eq. (40). We expand it in inverse powers of %m. Let us
write
025003
M � 4�2N � �M1; N nm � �nm!m; (63)

where the matrix M1 is composed of the inverse powers of
%m. We have

detM � det�4�2N � exptr log
�
1�

N �1M1

4�

�

’ �2��2N
�
1�

X
m

1

4�%m!m
�

1

4�%m!m�1

�Y
n

!n:

(64)

Hence from Eq. (59) we obtain the caloron measureZ
G
! ’ 26N�4N

�
1�

X
m

1

4�%m

�
1

!m�1
�

1

!m

�	
�

Y
n

!nd3%1 . . . d3%N�1d4?: (65)

We remind the reader that periodicity in the indices is
assumed; for example !N � �N�1 ��N � �1 � 1�
�N .

Equation (65) can be interpreted as Coulomb repulsion
of dyons inside a caloron. However, not all dyons interact
with each other but only those that are ‘‘neighbors’’ in the
color space. In SU�3� all dyons are neighbors in this sense,
while the SU�2� group is too small to see the effect.

VII. RELATION TO THE INSTANTON MEASURE
IN THE TRIVIAL-HOLONOMY LIMIT

In this limit, the KvBLL caloron becomes the
Harrington-Shepard periodic instanton with the standard
BPST instanton moduli space. It is basically an SU�2�
configuration embedded into the SU�N� group. The
4N-parameter moduli space is usually described as four
‘‘center-of-mass’’ coordinates ?�, one ‘‘size‘‘ parameter �,
and 4N � 5 ‘‘gauge orientation‘‘ collective coordinates
determining the embedding. This has been the traditional
parametrization of instantons for 25 years, starting from
the work by Bernard [29] who computed the instanton
measure and its volume for a general SU�N� group.

At first glance, there is little in common between this
moduli space and that of the nontrivial caloron, given in the
previous sections in terms of the constituent dyons’ 3d
positions and U�1� phases. Our goal is to demonstrate
that the measures of the two moduli spaces in fact coincide
exactly, including the nontrivial normalization.

We shall do it in two steps. In this section we show that
the volume of the dyon moduli space coincides with that
found by Bernard in terms of the SU�2� embedding. In the
next section we give an explicit construction of the instan-
ton SU�N� gauge orientation matrix [determining the
SU�2� embedding] in terms of the 3d positions and U�1�
phases of the constituent dyons.

The trivial-holonomy limit corresponds to taking all
Polyakov eigenvalues equal, �m � k=N � 1, m � k and
�m � k=N, m> k, where k � 0; 1; . . . ; �N � 1�, meaning
-7
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all their differences !m � �m�1 ��m are zero except one
which is unity; see Sec. II. First of all we note that in this
limit one gets

detM � 4�N�1 sQ
m
%m

; s �
XN
m�1

%m; (66)

where s is the perimeter of the polygon formed by the
dyons. It is directly related to the instanton size � by
Eq. (8): � �

�����������
s=2�

p
. To find the volume of the dyons’

moduli space and relate it to the standard instanton one, we
have to integrate Eq. (59) over the dyons’ 3d positions with
the perimeter s fixed. More concretely, we have to evaluate

�N�s� �
Z YN

i�1

d3%m detM�
�XN
i�1

%m � s
�
�3

�XN
i�1

~%m

�

�
Z YN

i�1

d3%m
4�N�1sQ
m
%m

�
�XN
i�1

%m � s
�
�3

�XN
i�1

~%m

�
:

(67)

Leaving unintegrated the center-of-mass 4-coordinate ?�
and the instanton size �, the moduli space volume is, from
Eq. (59), Z

G
! �

Z
�4��2N�N�s�dsd

4?: (68)

The integral (67) is computed in Appendix A with the
result

�N�s� �
23�2Ns2N�3

�N � 1�!�N � 2�!
: (69)

Consequently

Z
G
! �

Z 26N�2�6N�2

�N � 1�!�N � 2�!
�4N�5d�d4?; (70)

coinciding exactly with Bernard’s result [29]. It is interest-
ing to note that it was obtained there in a completely
different way—by computing the group volume for the
embedding of SU�2� into SU�N�. There seems to be noth-
ing near it in the present derivation.
VIII. LIMITING CASES OF THE CALORON
GAUGE FIELD

In this section we give the trivial-holonomy limit of the
KvBLL gauge field. It is the Harrington-Shepard SU�2�
instanton imbedded into SU�N�. The way it is embedded
depends on the constituent dyons’ color orientations and
their relative positions. As a by-product, we give the gauge
field of the KvBLL caloron with the exponential precision
[i.e. dropping terms of the order of O�e�2�rm!m�, where rm
is a distance to the mth dyon].
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A. Far from the cores

With the exponential precision, the matrix Fmn [see
Eq. (B5)] is diagonal and so is the matrix fmn:

fmn � 2��mn�rm � rm�1 � %m��1 �O�e�2�rm!m�: (71)

From Eq. (6) one has

fmn&
y
m&m �

%m
�
fmn; fmn&

m �+�!&
y
m � �

%am
�
fmn �+

a
�!;

(72)

and from Eq. (10)

%mn ’ �mn
rm � rm�1 � %m
rm � rm�1 � %m

: (73)

The last term in Eq. (9) is zero, and with the exponential
precision we can write the gauge field

Amn� ’
1

2
�%@!� �+�!f�

y�mn ’ �
%am
2�

�+a�!%mk@!fkn

’ �+a�!
%am
2%m

%mk@!%�1
kn : (74)

This expression is similar to the one found in [23] for the
SU�2� case. It is given in a nonperiodical gauge. To pass to
the periodical gauge one has to add 2�i�m�mn to A4 (see
the discussion at the end of Sec. VIII C). A4 has the
Coulomb-like form. In the periodical gauge

Aper
4mn � 2�i�m�mn�!4 �

i
2
�mn

�
1

rm
�

1

rm�1

�
; (75)

Aper
imn � �

i
2
�mn

�
1

rm
�

1

rm�1

�

�

���������������������������������������������������������������������������
�%m � rm � rm�1��%m � rm � rm�1�

�%m � rm � rm�1��rm � rm�1 � %m�

s
�e’m�i

(76)

where ~e’m � ��~rm�1 � ~rm�=j ~rm�1 � ~rmj.

B. Reduction to the trivial-holonomy case

In the trivial-holonomy limit (!L � 1, !m�L � 0)
Eq. (B1) simplifies. It becomes a Shrödinger equation on
the unit circle with only one delta function in the left-hand-
side. The solution is independent of N and can be found in
Ref. [17]. It is given by

f��m;�n� � f0

�
� sinh�2�r�

��2 sinh�2�r� � r cosh�2�r� � r cos�2�x0�

(77)

where 2��2 �
P
�m and r � rL.

We now introduce a N � N unitary matrix U which
plays the role of the ‘‘color orientation‘‘ of the (periodic)
instanton to which the KvBLL reduces in the trivial-
-8



SU�N� CALORON MEASURE AND ITS RELATION TO . . . PHYSICAL REVIEW D 72, 025003 (2005)
holonomy case. The first two columns of U are defined
through the spinors

Um
n �

1

�
&m' ; n � ' � 1; 2: (78)

The rest of the columns are constrained only by the uni-
tarity condition UyU � 1N; they are not involved in the
field construction. Correspondingly, the first two rows of
Uy are given by the Hermitian conjugate spinors,

Uyn
m �

1

�
&y'm ; n � ' � 1; 2: (79)

This definition is noncontradictory if the two complex N
vectorsUm

1 andUm
2 are orthogonal and normalized to unity.

Indeed, using Eqs. (6) and (8), we obtain

XN
m�1

Uy'
m Um

' �
1

�2

XN
m�1

&y'm &m'

�
1

2��2

XN
m�1

�%m�'* � ~%m � ~('*� � �'*: (80)

To write down the gauge field of the trivial-holonomy
instanton from the general expressions (9) and (10) we first
replace there & ! U according to Eqs. (78) and (79):

f0&
m
' &

y'
n � f0�

2�U�0Uy�mn ;

@!f0 �+
a
�!&

m
' �(

a�'*&
y*
n � @!f0�

2 �+a�!�U�
aUy�mn ;

(81)

�%�1�mn � �mn � f0�
2�U�0Uy�mn

� Um
' �1� f0�2�0�'*U

y*
n ; (82)

where ��0; �a� are N � N matrices with �12; (a� put into
the left-upper corner. The last term in Eq. (9) is again zero,
and we arrive at the compact result for the trivial-
holonomy caloron:

�A��
m
n �

1

2
�+a�!�U�

aUy�mn @! log# (83)

where

# �
1

1� f0�
2 � 1�

��2 sinh�2�r�
r�cosh�2�r� � cos�2�x0�

: (84)

This formula reproduces exactly the Harrington-Shepard
instanton with arbitrary ‘‘gauge orientation‘‘ U defined, as
we see from Eq. (78), by the dyon relative coordinates ~%m
and the relative U�1� orientation angles.

C. Small-size KvBLL caloron

Another important limit when the caloron field has a
simple form is the case of small � �

�����������������������������P
m%m=�2�T�

p
�

1=T implying that the dyons’ separations are small, %m �
1=T (in this subsection we restore the temperature factors).
We are interested in the caloron field at the distances r from
025003
the center of the group of N dyons, larger than the separa-
tions between them, r� �� %m. Therefore, we can put in
the leading order rm � r for all m � 1; . . . ; N. We also
consider the range of x4 � �where the field is large. In this
range, the ADHM Green function is simply

fmn �
1

r2 � x24 � �2 : (85)

Repeating the calculations from the previous subsection
we arrive at a standard expression for the BPST instanton:

A� �
1

2
�+a�!U�

aUy@! log#; # � 1�
�2

r2 � x24
;

(86)

where the instanton orientation matrix U is given by
Eq. (78). Corrections to Eq. (86) die out as T in the range
r� x4 � �� %m where the field is large.

Equation (86) is the approximate gauge field for small-
size calorons in the nonperiodic gauge used in Ref. [17]. To
obtain the approximate small-� field in the periodic gauge,
one has to gauge-transform Eq. (86):

Aper
!mn � 2�i�m�mn�!4 � �gyA!g�mn (87)

where gmn � �mne2�i�mx4 .
We note finally that when all the dyons’ separations %m

are small, the metric determinant is given by Eq. (66) (even
though the holonomy can be nontrivial), and the caloron
measure coincides with that of the standard instanton, as
shown in Sec. VII.
IX. CONCLUSIONS

The metric of the 4N-dimensional moduli space of the
general SU�N� caloron with arbitrary eigenvalues of the
Polyakov line at spatial infinity and at any temperature is
given in terms of the spatial coordinates of theN dyons that
constitute the caloron, and their U�1� phases.

We have computed the determinant of the metric tensor,
which defines the weight of the SU�N� caloron contribu-
tion to the partition function. The metric determinant is a
function of the 3d separations between dyons and of the
Polyakov loop eigenvalues. When all those eigenvalues are
equal, it is the ‘‘trivial-holonomy’’ case, and the KvBLL
caloron reduces to the usual periodic instanton whose
moduli space is usually written in terms of the instanton
position, size, and orientation. We have shown that the
SU�N� instanton measure written in these variables coin-
cides exactly with the one written in terms of the coordi-
nates and phases of the instanton constituents, the dyons.
This result is not altogether trivial, as in the first case the
measure arises from the volume of the SU�N�=SU�N � 2�
co-set whereas in the second case it follows from the 3d
geometry. We have also identified the instanton SU�N�
orientation matrix through the dyons’ positions and U�1�
phases.
-9
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The following emerging physical picture may be plau-
sible. The adequate degrees of freedom in the Yang-Mills
vacuum are, at any temperature, calorons with nontrivial
holonomy, which are more general than the standard peri-
odic instantons with trivial holonomy. The measure should
be described in terms of the dyons’ positions and phases.
The free energy of the ensemble of interacting dyons
should be studied; hopefully at low temperatures it has a
minimum at the ‘‘most nontrivial holonomy’’ correspond-
ing to trL � 0; however at T > Tc related to � there must
be N degenerate minima corresponding to trivial holon-
omy. An indication that this may indeed be the case has
been presented for SU�2� in Ref. [23]. If correct, it would
serve as the microscopic mechanism of the confinement-
deconfinement transition.

At low temperatures, although the correct description is
still in terms of dyons with nontrivial holonomy supporting
the confinement, statistical fluctuations will lead to a large
portion of dyons that are not widely separated. If a group of
N different-type dyons happen to be close to each other, the
configuration is locally undistinguishable from the stan-
dard SU�N� instanton. Small-size instantons can be de-
scribed both in the ‘‘position-size-orientation’’ terms, and
in terms of dyons. However, for large-size overlapping
instantons the former language loses sense while the latter
remains valid.

This physical picture (calling, of course, for a detailed
mathematical study) may justify the adequacy of the small-
size instantons in physics related to the spontaneous chiral
symmetry breaking, while simultaneously explaining con-
finement as presumably due to dyons.
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APPENDIX A: VOLUME OF THE MODULI SPACE

To get the moduli space volume, one has to integrate
over the positions of N dyons with the perimeter of the N
polygon fixed. More precisely we have to evaluate the
following integral:

�N�s� �
Z YN

m�1

d3%m detM�
�XN
i�1

%m � s
�
�3

�XN
m�1

~%m

�

�
Z YN

m�1

d3%m
4�N�1sQ
m
%m

�
�XN
m�1

%m � s
�
�3

�XN
m�1

~%m

�
:

(A1)
To reduce the number of integrations in Eq. (A1) we use
the following trick. We introduce auxiliary integrals over
Feynman parameters to reproduce the � functions:
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�N�s��
Z YN

m�1

d3%m
4�N�1sQ
m
%m

Z d3'd*

�2��4

�exp
�
i
�X

%m�s
�
�*� i:�� i

XN
m�1

~%m ~'
�
: (A2)

The infinitesimal i: is added to ensure convergence. Now
we can integrate over ~%m since the integrals are factorized:

�N�s� �
Z d3'd*

�2��4

�
YN
i�1

�Z d3%m
%m

ei%m�*�i:��i ~%m ~'
�
4�N�1se�i*s:

(A3)

The i: shift makes each integral over %m finite. One can
easily calculate it:

Z
d%md cos$2�%me

i%m�*�i:�ei%m' cos$ �
4�

'2 � �*� i:�2
:

(A4)

Now the measure can be written as a 4d integral

�N�s� �
Z 4�'2d'd*

�2��4
4�4��N�N�1s

�'2 � �*� i:�2N
e�i*s: (A5)

From dimensions, �N�s� � 'Ns
2N�3 where 'N is a con-

stant to be computed; we find it by induction. We first
consider the N � 2 case where�2�s� can be found directly
from Eq. (A1):

�2�s� �
Z
d3%1

8�3

%1
��2%1 � s� � 23�4s: (A6)

This implies '2 � 23�4. For general N we rotate the
integration contour '! �i' in Eq. (A5) since the poles
are at ��*� i:�. We can then rewrite Eq. (A5) in an SO�4�
invariant form

�N�s�� �
is
�

Z d4'

�2��4
�4�2�N�1��1�N

�'�'��N
e�i'�s� (A7)

where '� � � ~'; *�. The crucial step is the following
recurrent relation:
-10
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�N�1�s��

s
�

1

4�2 @
2
�
�N�s��

s
�
'N
4�2 @

2
�s

2N�3

�
'N
4�2

1

s3
@s�s3@ss2N�4�

�
'N
4�2 �2N � 4��2N � 2�s2N�6 (A8)

where we have used that the radial part of the 4d Laplace
operator is @2�f�s� �

1
s3
@s�s

3@sf�s��. The solution to this
equation is

'N �
�2'N�1

�N � 1��N � 2�
: (A9)

Since '2 is known, it immediately follows that

�N�s� �
'2�

2N�4s2N�3

�N � 1�!�N � 2�!
�

23�2Ns2N�3

�N � 1�!�N � 2�!
(A10)

which is used in Sec. VI.

APPENDIX B: GREEN FUNCTION OF THE ADHM
CONSTRUCTION

The Green function f�z; z0� is a very important object in
the ADHM construction and is used in many formulas. We
derive here a compact expression for this key quantity. An
alternative expression for f�z; z0� can be found in Ref. [31].
For the SU�N� caloron it is defined by a Shrödinger equa-
tion on the unit circle [17]:��

1

2�i
@z � x0

�
2
� r�z�2

�
1

2�

X
m

��z��m�%m

	
f�z; z0� � ��z� z0� (B1)

where r�z� � j ~x� ~y�z�j.
To find f�z; z0� we first derive a closed system of linear

algebraic equations for fmn � f��m;�n�. Assuming fmn
and fm�1;n are known we can present f�z; �n� in the
interval ��m;�m�1� in a standard way from solving
Eq. (B1):

f�z; �n� � �e2�ix0�z��m�fmn
sinh�2�rm�z��m�1�

sinh�2�rm!m�

� e2�ix0�z��m�1�fm�1;n
sinh�2�rm�z��m�

sinh�2�rm!m�
:

(B2)

SU�N� CALORON MEASURE AND ITS RELATION TO . . .
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Taking the derivatives near the discontinuity points one has

f0��m � :;�n� � 2�
�
ix0fmn � rm coth�2�rm!m�fmn

� e�2�ix0!m
rm

sinh�2�rm!m�
fm�1;n

�
;

f0��m � :;�n� � 2�
�
ix0fmn

� rm�1 coth�2�rm�1!m�1�fmn

� e2�ix0!m�1
rm�1

sinh�2�rm�1!m�1�
fm�1;n

�
:

It follows from Eq. (B1) that

�
1

4�2 discf
0��m;�n� � �mn �

%m
2�

fmn (B3)

and we can conclude that

fmn � F�1
mn (B4)

where

2�Fmn � �mn�coth�2�rm!m�rm

� coth�2�rm�1!m�1�rm�1 � %n

�
�m�1;nrme�2�ix0!m

sinh�2�rm!m�
�
�m;n�1rne2�ix0!n

sinh�2�rn!n�
:

(B5)

Now we can reconstruct f�z; z0� for arbitrary z and z0. We
look for the solution in the form

f�z; z0� � sm�z�fmns
y
n �z0� � 2�s�z; z0���z�z0 (B6)

where s��m; z
0� � 0; s��n; z

0� � 0; we denote �z � m if
�m � z < �m�1. The first term satisfies the homogeneous
equation with given boundary conditions; the second term
gives ��z� z0� and vanishes at the boundary. The functions
appearing in Eq. (B6) are

sm�z� � e2�ix0�z��m�
sinh�2�rm��m�1 � z�

sinh�2�rm!m�
�m�z

� e2�ix0�z��m�
sinh�2�rm�1�z��m�1�

sinh�2�rm�1!m�1�
�m;�z�1;

(B7)
s�z; z0� � e2�ix0�z�z
0�
sinh�2�r�z�minfz; z0g ���z�� sinh�2�r�z���z�1 �maxfz; z0g��

r�z sinh�2�r�z!�z�
: (B8)

Equation (B6) is convenient in some calculations since the main dependence on z; z0 is factorized.
-11
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