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Horizon entropy in modified gravity
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We present an observation about the proposal that four-dimensional modification of general relativity
may explain the observed cosmic acceleration today. Assuming that the thermodynamical nature of
gravity theory continues to hold in modified gravity theories, we derive the modified horizon entropy
formula from the modified Friedmann equation. We argue that our results imply that there are conceptual
problems in some models of four-dimensional modification of general relativity.
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It is a well-known result that in general relativity, we can
assign an entropy to black hole horizon [1] and cosmologi-
cal horizon [2] by the same formula:

S �
A
4G

; (1)

where A is the proper area of the horizon.
On the other hand, Jacobson [3] made an interesting

observation that Einstein equation can be derived by as-
suming the universality of Eq. (1) on any local Rindler
horizons.

From those two results, we have the observation
that four-dimensional gravitational theory and gravita-
tional entropy formula are very likely in one-to-one
correspondence.

Recently, there are intense discussions on whether the
observed cosmic acceleration is due to the fact that general
relativity will be modified at large scale so that currently
the Friedmann equation is modified [4–8]. There are sev-
eral different proposals to modify general relativity in the
literature, e.g. extra dimensions [6], higher derivative cur-
vature terms [5], etc. In this work, we will consider the
possibility that modified Friedmann equation of the form
(7) is the result of four-dimensional modification of general
relativity in the large scale [4]. In this framework, the
Universe is always matter dominated, but due to large-
scale modification of general relativity, matter can cause
the Universe to accelerate today. Then based on the above
observation, it is conceivable that the formula for gravita-
tional entropy will also be modified in large scale. We will
show that this is indeed the case. Thus, the main result of
this paper is that, when we try to build models of four-
dimensional modification of general relativity to explain
cosmic acceleration, we should bear in mind that the
modified gravity theory should reproduce the modified
horizon entropy formula derived in this paper. In-
terestingly, some of the modified entropy formula is so
obviously unphysical (e.g. the �< 0 Cardassian model)
stanford.edu
ss will be valid after Sep. 21, 2005

05=72(2)=024030(4)$23.00 024030
that it tells us that we had better not spend our time on such
endeavor.

As the cosmology driven by modified Friedmann equa-
tion is generally not de Sitter, we should first address the
question of whether can we assign a gravitational entropy
to it? If yes, then since the event horizon, apparent horizon
and particle horizon are different, which one should we
consider?

We think the proper choice is the apparent horizon
which is the boundary surface of antitrapped region. In
Ref. [9], the particle horizon is taken as the holographic
boundary. However, in Ref. [10], it is shown that this
choice will violate the holographic bound in inflation.
Indeed, let us assume that inflation expands only 1030, it
occurs at the GUT scaleH � 10�6 (in Planck units) and the
temperature after reheating is T � 10�3. In this case the
size of particle horizon after inflation will be LPH �
H�1 � 1030 � 1036, the area A� L2

PH � 1072 and the en-
tropy S� T3L3

PH � 1099, which clearly violates the bound
S=A < 1. Instead, if we consider the holographic bound as
the apparent horizon LA �H�1 � 106. Then the area A�
L2
A � 1012 and the entropy S� T3L3

A � 109 which clearly
satisfies the holographic bound. Thus, insisting on the
validity of holography during inflation, we should choose
the apparent horizon as the holographic boundary.

Moreover, research in black holes also supports the
viewpoint that we should focus on apparent horizon.
General accelerating cosmological spacetimes are quite
similar to dynamical black holes. For dynamical black
holes, we also face the question of whether can we assign
gravitational entropy to them and how can we define
horizon. This problem is analyzed several years ago by
Hayward et al. [11]. The conclusion is that it is sensible to
assign a gravitational entropy to the trapping horizon of
dynamical black holes defined as hypersurfaces foliated by
marginal surfaces. Moreover, as argued by Jacobson [3],
the entire framework of black hole thermodynamics and, in
particular, the notion of black hole entropy extends to any
causal horizon. In cosmological spacetime, the corre-
sponding object is just the apparent horizon.

Thus, we will focus on the entropy associated with the
cosmic apparent horizon in this work. Let us assume that in
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modified gravity theory, the gravitational entropy is still
determined solely by the area of the apparent horizon. So
we have

S � f�A=4G�; when LA >
1

H0
: (2)

where f is an arbitrary function which we will show in the
below that it is determined by the modified Friedmann
equation, A � 4�L2

A and LA � 1=H are the area and ra-
dius of the apparent horizon. From the discussion below,
this assumption is actually equivalent to the requirement
that the modified Friedmann equation does not contain
derivatives of H.

Since temperature of the horizon is derived from the
requirement that the wick-rotated metric is smooth on the
horizon, it is independent of the gravity theory that leads to
the horizon geometry (see e.g. Ref. [12]). Thus the expres-
sion for temperature should remain the same in modified
gravity theory, which reads T � 1=�2�LA�.

The heat flux across the apparent horizon is given by
[11]

dQ � A� tdt�  rdr�; (3)

where  is the energy-supply vector defined as

 a � Tba@bLA � w@aLA (4)

where w is the work density defined as w � Tabhab. Tab is
the projection of the 4d energy-momentum tensor T�� of a
perfect fluid on the normal direction of the two-sphere
defined as r � const:.

Then we can find that in FRW metric, the heat flux is
given by

dQ � A��� p�dt: (5)

where we have used the fact that r � 1=�aH� on the
apparent horizon.

Assuming the thermodynamical nature of gravity con-
tinues to hold in modified gravity theory [3], we have the
relation dQ � TdS. Then from this and Eqs. (5) and (2),
we can find that

_H � �
4�G

f0�A=4G�
��� p�: (6)

Note that for f�x� � x, what we did above is exactly the
derivation of Einstein equation from gravitational entropy
formula by Jacobson in the special case of Firedmann-
Robertson-Walker metric. It is also important to notice
that we did not use the first law of thermodynamics in
deriving Eq. (6) so we circumvented the question of defin-
ing gravitational energy in general cosmological space-
time, which is still unresolved.

Now let us consider the general form of modified
Friedmann equation studied in Ref. [4],

H2 � H2
0g�x�; (7)
024030
where g is an arbitrary function and x 	 �=�c0 with �c0
the current critical density.

An example of the form (7) that has received much
discussion in recent literature is the so called
‘‘Cardassian’’ cosmology [8]:

H2 �
8�G
3

�� B��: (8)

When �< 2=3, this can drive an accelerating Universe
without introducing dark energy [8].

Of course, modified gravity may not be the unique way
to arrive at Eq. (7). For example, Reference [13] proposed
that Eq. (8) may be the result of exotic interaction property
of dark matter. In this paper we will focus on the possibility
that the modified Friedmann Eq. (7) is the result of large-
scale modification of general relativity.

From Eq. (7) and the continuity equation _�� 3H���
p� � 0, we can get

_H � �4�Gg0�x���� p�: (9)

Comparing Eq. (9) with Eq. (6), we can find that f and g
is related by

f0�A=4G� �
1

g0�x�
: (10)

Since x can be expressed in terms of A from Eq. (7), we can
find f in terms of g from Eq. (10).

From Eq. (10), we can immediately get an important
conclusion: modified Friedmann equations which will give
g0�x�< 0 are probably physically inconsistent because that
means that the horizon entropy S � f�A=4G� will decrease
with increasing horizon area. This seems to be in contra-
diction with the (generalized) second law of thermodynam-
ics. Especially, this will rule out Cardassian expansion
model with �< 0. Thus, while fitting with cosmological
data allows �< 0 [14], the �< 0 case (if as a result of
four-dimensional modification of general relativity), is
conceptually problematic. Furthermore, it is also interest-
ing to notice that the g0�x�< 0 case just corresponds to
‘‘superaccelerating’’ Universe, i.e. _H > 0. Thus, building
models of superaccelerating cosmology from four-
dimensional modification of general relativity is problem-
atic. On the other hand, if it is firmly established from
observation that our Universe is indeed superaccelerating
today. Then based on our analysis, the acceleration of our
Universe is probably due to some other mechanisms such
as a real dark energy component.

As an example, let us consider Cardassian cosmology
with �> 0. From Eq. (8) and (10), we can find that when
the second term in Eq. (8) begins to dominate, i.e. the
Universe begins to accelerate, we have

f0�A=4G� �
1

1� �C A
4G�

�1=���1
(11)
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where

C � ��=�1���
�
3B���1

c0

8�G

�
1=�1���H2

0G
�

: (12)

Integrating Eq. (11), we can get the modified entropy
formula. For example, for � � 1=3, we can integrate
Eq. (11) explicitly to give

S �
arctan�CA=4G�

C
: (13)

while for � � 1=2, we have

S �
ln�1� CA=4G�

C
: (14)

Thus, as commented at the beginning, any four-
dimensional theory that intends to explain Cardassian ex-
pansion must reproduce the strange entropy formulas
above. However, those entropy formulas are so strange
(the entropy does not scale like any geometric property
of the system) that in our point of view, this actually
disfavors the existence of such a theory.

The horizon entropy formula in some other proposed
modified Friedmann equation can also be derived in similar
ways. For example, let us consider the modified Friedmann
equation proposed by Dvali and Turner [7]:

H2 �
H�

r2��c
�

8�G
3

�: (15)

Differentiating Eq. (15) with respect to time and using
the continuity equation, we can get

_H � �
4�G

1� �H��2

2r2��c

��� p� (16)

Comparing this to Eq. (6) and using the fact that A �
4�=H2, we have

f0�A=4G� � 1�
�

2r2��c

�
A
4�

�
1��=2

: (17)
024030
which gives

S �
A
4G

�
�

�4� ��r2��c

�
�
G

�
�=2�1

�
A
4G

�
2��=2

: (18)
For � � 0, Eq. (18) reduce to the standard formula. This is
expected as the � � 0 case is just the standard Friedmann
equation with a cosmological constant. For � � 1, S will
decrease with cosmic expansion which is unphysical. Thus
this case cannot be derived from a four-dimensional theory
(but it can be derived in models with extra dimensions and
branes [6]). For � � �1, Swill scale like A5=2 with cosmic
expansion, which is again very strange based on our current
understanding of entropy in thermal field theory.

In conclusion, assuming thermodynamical relation
dQ � TdS continues to hold in four-dimensional modifi-
cation of general relativity, we derived the modified hori-
zon entropy formula in a class of modified Friedmann
equation. Because of the strange form of the modified
entropy formula, we argue that this actually poses a prob-
lem for attempts in this direction.

Finally, we should also comment that our analysis do not
apply to all the current four-dimensional modified gravity
theories. For example, for the f�R� gravity theory, since the
modified Friedmann equation contains derivatives of H,
we cannot establish a relationship with entropy formula of
the form (2). Thus our analysis cannot be applied to it
(entropy and other thermodynamical quantities in f�R�
gravity were discussed in Ref. [15]). Furthermore, in bra-
neworld models where we can also get modified
Friedmann equation of the form (7), our analysis also
cannot apply directly since the heat flux in this context
may also contain contributions from the bulk matter. It is
interesting to pursue whether can we make an analogous
analysis in braneworld models.

I would like to thank Sergei D. Odintsov for helpful
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