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Highly accurate numerical solutions to the problem of black holes surrounded by uniformly rotating
rings in axially symmetric, stationary spacetimes are presented. The numerical methods developed to
handle the problem are discussed in some detail. Related Newtonian problems are described and
numerical results provided, which show that configurations can reach an inner mass-shedding limit as
the mass of the central object increases. Exemplary results for the full relativistic problem for rings of
constant density are given and the deformation of the event horizon due to the presence of the ring is
demonstrated. Finally, we provide an example of a system for which the angular momentum of the central
black hole divided by the square of its mass exceeds one (Jc=M2

c > 1).
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I. INTRODUCTION

There are many reasons for choosing to study black
holes with a surrounding ring. Both in the collapse of a
single neutron star to a black hole and in the coalescence of
two compact objects, it is expected that such a system
exists, if only for a short time (see e.g. [1,2]). The model
considered here is also of interest for modelling massive
black holes (and surroundings), which are now known to be
contained in most galaxies. Furthermore, there exists
speculation that the accretion of matter onto a black hole
may be responsible for gamma ray bursts, e.g. [3]. In
addition to this astrophysical motivation, there is interest
in studying a black hole ring system in order to see how
matter affects the properties of the black hole. Finally, it
seems worthwhile to study the few types of physical solu-
tions to Einstein’s equations that can be handled (even if
only numerically) with extremely high accuracy. The nu-
merical solutions that are obtained can also serve as initial
data for a time evolution program. Because of the fact that
very little is available in the way of good physical initial
data for a two-body problem, such solutions are all the
more important.

The problem of a slowly rotating black hole surrounded
by an infinitesimal ring was handled perturbatively by Will
in [4,5]. The problem of accretion from a ring onto a
central object and the importance of the self-gravitation
of the ring was discussed by various authors in [6–8]. The
dynamics of rings in the background metric of a black hole
including the possibility of a runaway instability has been
studied in [9–11]. Lanza [12] provided numerical solutions
to the problem of an infinitely thin disc surrounding a black
hole by using a multigrid method. Using an integral for-
mulation of Einstein’s equations, Nishida and Eriguchi
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[13] numerically solved the problem of a differentially
rotating ring surrounding a black hole. They considered
the ring to be a polytropic perfect fluid and prescribed a
one-parameter rotation law. The methods used (more than
ten years ago now) did not allow for an accuracy high
enough to resolve the impact of the matter distribution on
the black hole completely, and the authors were misled into
making incorrect conjectures regarding the shape of black
holes with zero angular momentum.

This paper is organized as follows. In Sec. II A we
discuss Einstein’s equations and the appropriate boundary
conditions for describing the black hole and then turn our
attention in Sec. II B to related Newtonian problems.
Section III is devoted to defining various physical quanti-
ties and Sec. IV to the numerical methods and some of the
difficult issues that arise. We present first results for both
the Newtonian and relativistic scenarios in Sec. V, provid-
ing examples for homogeneous rings and paying particular
attention to the effect of the ring on the black hole. We
recapitulate some of the results in Sec. VI and discuss
future plans.
II. FIELD EQUATIONS AND BOUNDARY
CONDITIONS

A. Relativistic equations

The equations and boundary conditions that hold for a
stationary, axisymmetric, asymptotically flat spacetime
containing a black hole and a fluid with purely rotational
motions were discussed lucidly and at length in [14]. In this
paper we adopt for the most part the notation used there
and summarize the results that are relevant for this work.
The line element can be written as

ds2 � �e2�dt2 � %2B2e�2��d’�!dt�2

� e2��d%2 � d�2�;
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where the metric functions �, B, !, and � depend only on
% and � . For a region of spacetime in which the pressure p
is zero, it is possible to find a coordinate transformation for
% and � yielding B � 1. Since, however, our spacetime
contains a ring with pressure, such a transformation cannot
be performed globally. In the absence of a black hole, the
requirement that the normal derivatives of the metric func-
tions be continuous everywhere (even across the surface of
the ring) together with the regularity of B specifies the
coordinates uniquely. When a black hole is present, how-
ever, there is a singularity inside the horizon, and regularity
cannot be required everywhere. We thus use the additional
coordinate freedom we have to choose coordinates in
which the event horizon is a sphere and then excise the
region inside the event horizon. Having chosen the horizon
to be a sphere, it is natural to introduce the spherical
coordinates r and � defined by

% � r sin�; � � r cos�:

The location of the horizon will be denoted by

r � constant �: rc:

The fact that this two-surface is indeed an event horizon
is realized by imposing the boundary conditions1

e2� � 0; B � 0; ! � constant �: 
c: (1)
1The boundary condition for B reads more generally %B � 0.
In the coordinates (Weyl coordinates) for which B � 1 holds,
this implies that the event horizon must be a piece of the
coordinate axis % � 0.
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Whereas � tends to �1 as one approaches the horizon,
the quantity

u :� �� lnB (2)

is a regular function everywhere outside of the black hole,
which makes it appropriate for numerical calculations.

On the horizon, it is possible to define a constant

� :� e��
@
@r
e�
��������r�rc ; (3)

which plays the role of temperature in black hole thermo-
dynamics (see e.g. [15]).

The energy-momemtum tensor for the ring is taken to be
that of a perfect fluid

Tab � �"� p�uaub � pgab;

where " is the energy density, p the pressure and ua the
four-velocity of a fluid element. Introducing the angular
velocity of the matter in the ring relative to infinity 
r �
d’=dt and the velocity

v: � %Be�2��
r �!�

measured for a fluid element by a zero angular momentum
observer, we can write the field equations as:
r � �Br�� �
1

2
%2B3e�4��r!�2 � 4�e2�B

�
�"� p�

1� v2

1� v2
� 2p

�
; (4a)

r � �%2B3e�4�r!� � �16�%B2e2��2��"� p�
v

1� v2
; (4b)

r � �%rB� � 16�%Be2�p; (4c)

42��
1

%
@�
@%

�r�ru�
1

4
%2B2e�4��r!�2 � �4�e2��"� p�: (4d)
Here the operator r has the same meaning as in a
Euclidean three-space in which %, � and ’ are cylindrical
coordinates. Thus the first three of the field equations can
be applied as they are in r, �,’ coordinates. In Eq. (4d), the
operator 42 :� @2=@%2 � @2=@�2 is not coordinate
independent.

As an alternative to Eq. (4d), one can combine the
Einstein equations to arrive at two first order differential
equations for �, the integrability condition of which is
guaranteed to hold as a result of the Bianchi identities.
Using this formulation, � can be found via a line integral
once �, B and ! are known.

At the boundary of the ring, which is defined to be the
surface of vanishing pressure, the following condition
holds:

e2��1� v2� � constant �: e2V0 ; (5)

where e2V0 is the value for gtt in a frame of reference
rotating together with the ring.

By making use of the boundary conditions (1) on the
horizon and the field Eqs. (4a)–(4c), we can derive the
following further conditions that must hold on the horizon:

@2B

@r2
� �

3

rc

@B
@r
;

@u
@r

�
1

rc
;

@!
@r

� 0: (6)
B. Newtonian equations

There are two reasons for our considering a Newtonian
central body surrounded by a ring. On the one hand, it is
generally helpful to consider a Newtonian problem before
turning to a related one within the scope of general rela-
tivity. On the other hand, Newtonian theory will provide us
-2
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with an approximative solution to Einstein’s equations for
the problem being considered here, which we require for
our numerical methods.

The first thought that comes to mind when looking for an
approximative solution to Einstein’s equations, is to use the
analytically known Schwarzschild (or Kerr) solution sur-
rounded by a test-ring.2 We know from Newtonian theory
however, that a central object surrounded by a uniformly
rotating test-ring of finite dimension cannot remain in
equilibrium.

To see this, consider the accelerations of two fluid
elements in the equatorial plane of the ring, one at the
inner and the other at the outer edge. In a corotating frame
of reference, the accelerations have three sources: the
gravitational attraction to the central object, the pressure
gradient within the ring, and the centrifugal effects.
Remembering that the ring does not influence the gravita-
tional field of the central object, it is clear that the field
strength at the location of the inner particle is greater than
that at the outer one. The pressure gradient causes an
acceleration acting toward the coordinate origin at the
inside of the ring and toward infinity at the outside. Since
the ring is taken to be in uniform rotation, the centrifugal
acceleration must be greater at the outer edge than at the
inner one. Now each of these three accelerations tends to
increase the separation between the two particles so that
their sum must rip the ring apart.

Since we therefore do not have a relativistic solution at
hand, we turn to Newtonian theory. The Newtonian poten-
tial for a uniformly rotating ring of constant density sur-
rounding a central body is, of course, a solution of the
Poisson equation

4U � 4�"; (7)

where " � "c � "r, "c being the source of the central body
and "r the mass density, here taken to be constant, inside
the ring and zero elsewhere. Because the potential due to
the central object is often singular, it is convenient for
numerical reasons to work with the potential of the ring
alone

Ur :� U�Uc;

where Uc is the part of the potential arising from "c.
Consider, for example, the situation in which the central
body is a point particle. Then the potential

Ur � U�Mc=r;

where Mc is the mass of the central object, is regular
everywhere and is thus better suited to numerical calcula-
tions thanU. On the boundary of the ring,Ur must obey the
equation
2By ‘test-ring’ we mean a ring without self-gravitation.
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Ur �
1

2
�
rr sin��2 � V0 �Mc=r; (8)

where V0 is the constant ‘‘corotating potential’’.
In order to prepare the groundwork for the approxima-

tive solution to the Einstein equations that was discussed at
the beginning of this section, we now consider the situation
in which the central potential Uc takes on a different form.
As was mentioned in footnote 1, a black hole in Weyl
coordinates is located along the axis of symmetry. In
analogy, we now consider a line of mass of constant linear
mass density located along the axis of rotation %W � 0
and extending from �W � �Mc to �W � Mc, where
�%W; �W; ’W� are cylindrical coordinates and Mc is the
total mass of the infinitely thin rod. The potential for
such a configuration is given by

Uc � �
1

2

Z Mc

�Mc

dz����������������������������������
%2W � ��W � z�2

q

� �
1

2
ln
� Mc � �W �

��������������������������������������
%2W � �Mc � �W�

2
q

�Mc � �W �
��������������������������������������
%2W � �Mc � �W�

2
q

�
: (9)

If we introduce the coordinates �%; �; ’� defined by

%W � %
�
1�

�
Mc

2r

�
2
�
; �W � �

�
1�

�
Mc

2r

�
2
�
;

’W � ’

with r :�
�����������������
"2 � �2

p
, then the original line of mass be-

comes a sphere of radius r � Mc=2 and Eq. (9) becomes

Uc � ln
�
1�Mc=2r
1�Mc=2r

�
:

Defining the quantities

B :� 1� �Mc=2r�2 (10)

and

uc :� Uc � lnB � �2 ln�1�Mc=2r�; (11)

we find that at the radius r � Mc=2, the following con-
ditions hold: e2Uc � 0, B � 0 and uc is a regular function.
Furthermore, B is a solution to Eq. (4c) in the vacuum
region. Because of this complete analogy to the relativistic
case (see Eqs. (1) and (2)), and because ! is small in
comparison to the other potentials for small total mass,
we can use the potentials described above to construct an
initial solution for the numerical program as will be dis-
cussed in more detail in Sec. IV.
III. PHYSICAL PARAMETERS

As one approaches spatial infinity, the metric functions
behave as
-3
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� �
�Mtot

r
�O

�
1

r2

�
; B � 1�O

�
1

r2

�
;

! �
2Jtot
r3

�O

�
1

r4

�
; � �

Mtot

r
�O

�
1

r2

�
:

(12)

Since the spectral methods used here involve compactify-
ing all of spacetime onto various domains, the above
equations can be used to read off the total mass and total
angular momentum directly from infinity.

The total angular momentum, as well as the individual
angular momenta of the ring and the black hole, can also be
found by integrating Eq. (4b). The integral of the right-
hand side, which clearly vanishes in the vacuum region, is a
multiple of the angular momentum of the ring, namely
�16�Jr (see [14] for more details). Thus we have

Jr �
ZZZ

e2��2�%B2�"� p�
v

1� v2
%d%d�d’; (13)

where the integral is performed over the entire matter
region. The integral on the left-hand side of Eq. (4b) can
be converted using the divergence theorem into a surface
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integral at infinity and one at the horizon. Using the
asymptotic behavior given in Eq. (12), the surface integral
at infinity can be shown to be equal to �16�Jtot. The
equality of Eq. (4b) itself means that the surface integral
over the horizon yields the angular momentum of the black
hole Jc. We thus have

Jc �
�1

16�

ZZ
r2sin2�B3e�4� @!

@r
r2 sin�d�d’

��������r�rc
�

�r4c
8

Z �

0
sin3�e�4u 1

B
@!
@r
d�

��������r�rc
�

�r4c
8

Z �

0
sin3�e�4u @

2!

@r2

�
@B
@r

�
�1
d�

��������r�rc ; (14)

where l’Hôpital’s rule was used to get from the second to
the third line (@!=@rjr�rc � 0, cf. Eq. (6)).

We can proceed similarly in order to calculate the com-
ponents of mass. Taking the combination of equations
�4a� �!�4b�=2, we obtain from the integral over the mat-
ter distribution
Mr �
ZZZ

e2�B
�
�"� p�

1� v2

1� v2
� 2p� 2%Be�2��"� p�!

v

1� v2

�
%d%d�d’

�
ZZZ

e2�B
�
�"� p�

1� v2

1� v2
� 2p� 2%Be�2��"� p��!�
r�

v

1� v2
� 2%Be�2��"� p�
r

v

1� v2

�
%d%d�d’

�
ZZZ

e2�B
�
�"� p�

1� v2

1� v2
� 2p� 2�"� p�

v2

1� v2

�
%d%d�d’� 2
rJr

�
ZZZ

e2�B�"� 3p�%d%d�d’� 2
rJr: (15)
Note that in the step from the second to the third equals
sign, 
r was pulled out of the integral, which is only valid
for uniform rotation. The left-hand side of the equation can
again be written as a total divergence and one finds 4�Mtot

for the surface integral at infinity. The surface integral over
the horizon yields

Mc �
r2c
4�

ZZ �
B
@�
@r

�
1

2
r2csin

2�B3e�4�!
@!
@r

�

� sin�d�d’
��������r�rc

�
r2c
2

Z �

0
B
@�
@r

sin�d�
��������r�rc�2
cJc

�
r2c
2

Z �

0

@B
@r

sin�d�
��������r�rc�2
cJc: (16)

The last two quantities we wish to define are the proper
equatorial and polar radii (the former is often called the
circumferential radius). They are defined by taking the
invariant length of the closed loop along the horizon with
d� � 0 and d’ � 0 respectively, and dividing by 2�. The
proper equatorial radius is

Re � rceu�r�rc;���=2�: (17)

For Rp we find

Rp �
rc
�

Z �

0
e�jr�rcd� �

rc
��

Z �

0
eu
@B
@r

��������r�rcd�; (18)

where � is defined in Eq. (3).
For the purposes of later comparison, we also write

down the ratio of proper polar to equatorial radius for the
Kerr metric:

�Rp

Re

�
Kerr

�

��������
2r�

p

�
�����
M

p E
�

a�������������
2Mr�

p

�
; (19)

where a � J=M, r� � M�
������������������
M2 � a2

p
, J and M are the

angular momentum and mass of the Kerr black hole and
E�k� is the complete elliptic integral of the second kind of
modulus k. The value of Rp=Re falls monotonically from 1
to 0:608 00 . . . as can be seen in Fig. 1.
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FIG. 2. The division of the %-� plane into the domains used in
the spectral methods. The fifth domain is the interior of the ring
and the black hole is at the position of the quarter circle that is
extracted from the origin. The physical parameters chosen in this
example are %i=%o � 0:56 and rc=%o � 0:08. The further do-
main divisions were chosen by setting ~x0 � 0:45, ~y0 � 1:2 and
x1 � %2

1 � 0:064%2o, which implies that domain 3 is a spherical
shell with an inner radius of 0:08%o and an outer radius of
� 0:2530%o.

0.25 0.50 0.750 1
0.6

0.7

0.8

0.9

1.0

a/ M

R p

R e

FIG. 1. The value of the radius ratio Rp=Re for a Kerr black
hole as the parameter a=M is varied from 0 to 1.
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IV. NUMERICAL METHODS

In order to solve both the Newtonian and the relativistic
free-boundary problem, we resort to a multidomain, pseu-
dospectral method. The techniques used are in essence
those described in [16], and we here provide only a brief
description of the general method, concentrating however
on those issues that are unique to the problem being
considered here. We shall describe the method used to
solve the relativistic problem of a ring circumscribing a
black hole (i.e. Eqs. (4) together with the appropriate
boundary conditions, asymptotic behavior and regularity
conditions), but the method can be applied with minor
modifications to the Newtonian problems discussed above.

As was mentioned in Sec. II A, the metric functions
depend only on % and � . Assuming reflectional symmetry
with respect to the equatorial plane (� � 0), we need only
consider half of the %-� plane. The quarter circle located at
%2 � �2 � r2c is removed (i.e. we excise the interior of the
black hole) and the remainder is divided up into five
domains. It is essential that one of the domain boundaries
coincide with the (unknown) surface of the ring. The
location of the other three domain boundaries and indeed
the number of domains that is chosen is somewhat arbitrary
and we here describe a choice that has proved fruitful. In
order to compactify the vacuum domain, we introduce the
complex coordinate ~z, defined by

z �: i%m cot
~z
2

�z :� %� i�; ~z :� ~%� i~��; (20)

whereby %m, which can take on any value between the
inner radius %i and outer radius of the ring %o, is here taken
to be the arithmetic mean

%m :�
1

2
�%i � %o�:

Regularity along the axis and in the equatorial plane is
024019
ensured by introducing the coordinates

x :� %2; y :� �2;

~x :� sin2
~%
2
; ~y :� sinh2

~�
2
;

(21)

and requiring that the potentials in these coordinates be
analytic there. A simple calculation shows that the relation
between these coordinates can be expressed as

x �
xm~y�1� ~y�

�~x� ~y�2
; y �

xm~x�1� ~x�

�~x� ~y�2
; (22)

with

xm :� %2m:

It is clear from Eq. (22) that ~x is defined on the interval

0; 1�. As can be seen in Fig. 3, ~y is bounded in the vacuum
region by 0 from below and by the surface of the ring from
above.

An exemplary division of the %-� plane into five do-
mains can be found in Fig. 2. Each of the five domains is
mapped onto the square �s; t� 2 I2 � 
0; 1� � 
0; 1� as fol-
lows:
-5



Black Hole

3

ỹ

x̃1

ỹ1 = 0.1175 . . .

0.01063 . . .

0.9048 . . . 0.99

FIG. 4. A blowup of domain 3 of Fig. 3.

4

3

2
1

ỹ

x̃x̃ 0

ỹ0

ỹ1

0 1

ring surface

FIG. 3. The vacuum region of Fig. 2 depicted in ~x-~y space.
Note that the plot is scaled such that two units in the ~x direction
correspond to one unit in the ~y direction.
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domain 1: ~x � ~x0s2�1� t�

~y � s2t�s�~y0 � ~x0� � ~x0� (23a)

domain 2: ~x � s�1� t�~x0 �
�1� s��xm � x1t�
xm � x1�1� 2t�

~y � st~y0 �
�1� s�x1t

xm � x1�1� 2t�
(23b)

domain 3: ~x � 1�
r2c�t� 1�

xm*� r2c�1� 2t�

~y �
r2ct

xm*� r2c�1� 2t�

with * :�
�
r2c
x1

�
1�s

(23c)

domain 4: ~x � t�1� s� � �1� t�~xs�s�

~y � t�s~y0 � �1� s�~y1� � �1� t�~ys�s� (23d)

domain 5: x � %2i � s�%
2
o � %2i �

y � �1� t�ys�s�: (23e)
3For an introduction to spectral methods including a definition
of collocation points, see e.g. [17].
The meaning of the various quantities not yet defined
can be explained most easily by referring to Figs. 2– 4. The
constants ~x0, ~y0, and x1 � %21 are chosen, as appropriate,
for the configuration being considered, and can be seen in
Figs. 3 and 4. It then follows from Eq. (22) that ~y1 �
x1=�xm � x1�. We choose the domain boundary between
domains 2 and 3 to be a circle in %-� coordinates (see
Fig. 2). The surface of the ring, which must be solved for as
part of the global problem, enters into the coordinate trans-
formation via ys�s� of Eq. (23e). The value for �~xs�s�; ~ys�s��
024019
can be found once ys�s� is known by inverting Eq. (22) and
taking xs�s� � %2

i � s�%
2
o � %2i �.

Each of the metric potentials as well as the function
describing the boundary of the ring is expanded in terms of
Chebyshev polynomials and truncated at a predetermined
order. The boundary conditions at the event horizon, the
asymptotic behavior and the continuity of the functions at
the domain boundaries is guaranteed by the specific repre-
sentation for the potentials that is employed in the program
(see [16] for more details). What remains is to prescribe
four physical parameters (for example the mass and angu-
lar momentum for each of the two objects) and formulate n
equations to solve for the n unknown coefficients in the
polynomial representation of the functions. We formulate
the Einstein equations at the collocation points3 in the
interior of each domain and require that the normal deriva-
tives of the metric functions be continuous at the colloca-
tion points along the one-dimensional domain boundaries.
This leads to an algebraic system of nonlinear equations for
the Chebyshev coefficients, which is then solved using a
Newton-Raphson method.

The Newton-Raphson method relies on an initial
‘‘guessed’’ solution that cannot be far away from the
desired solution if the method is to converge. Most of the
time, we simply take an existent solution as the initial
guess and vary the four parameters in order to arrive at a
new solution. The question arises, however, as to how one
goes about constructing the very first solution. Ideally, one
would like to have an analytic solution as a limiting
solution to the problem being studied, and could use such
a solution as an initial ‘‘guess’’. When dealing with one-
body problems, such analytic solutions are available: the
Maclaurin spheroids in the Newtonian limit, the global
Schwarzschild solution in the static limit or the relativistic
disc of dust [18] in the highly flattened limit, for example.
As was shown in Sec. II B, the Newtonian test-ring limit
does not exist if one restricts oneself to uniform rotation
-6
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FIG. 5. The functions f�x� (solid line) and f�x�~x�� (dotted line)
with - � 0:01. See text for the definition of these two functions.
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however. Thus, we do not expect the limit of a
Schwarzschild (or Kerr) black hole surrounded by a test-
ring to exist either. We do expect, however, that it will be
possible to construct a sufficiently good initial guess by
solving the Newtonian problem described in Sec. II B of a
ring surrounding a line of mass represented in coordinates
in which the central mass is a sphere. This expectation
relies on the fact that in the limit in which this sphere as
well as the total mass become infinitesimal, one arrives at
the point mass Newtonian limit of the relativistic situation.

To solve the Newtonian problem, we took the numeri-
cally determined potential of a ring (without a central
body) from the program described in [19] and linearly
superposed the potential uc of Eq. (11) with Mc=%o � 1
in order to acquire an initial solution with which to solve
the Newtonian two-body problem (where the potential on
the boundary of the ring is given by Eq. (8)). We then
increased the value of Mc=%o until the masses of the ring
and the central object were comparable, but keeping the
total mass small. This choice was made since the limit of a
vanishingly small central mass is numerically difficult to
handle for reasons that will be discussed in the next para-
graph. Using u � uc � ur as supplied by this program, B
given by Eq. (10) and setting ! � 0, we created a success-
ful initial file for ‘‘starting up’’ the relativistic program.

An aspect of the two-body problem that presents some
difficulty is the fact that two different length scales are of
significance. This is particularly pronounced as one ap-
proaches the limit in which the central black hole vanishes
or in the weak relativistic regime when the total mass is
small (in this limit, the sphere representing the black hole
also becomes small). One can well imagine that if the mass
of the black hole is significantly smaller than that of the
ring, then the behavior of the metric potentials throughout
most of spacetime is essentially governed by the ring and
will not differ significantly from the behavior that would be
found were the black hole not there at all. Nonetheless, the
fact that one can prescribe boundary values for ! on the
horizon and the fact that e2� and B must vanish there,
means that the values of the metric functions very close
to the black hole (i.e. somewhere in domain 3 of Figs. 2–4)
do differ significantly from their values elsewhere. As the
mass of the black hole grows smaller, the metric functions
come closer and closer to being nondifferentiable. This can
lead to problems when trying to represent such functions
using a Chebyshev expansion.

The nature of this problem and the solution that we
provide to it will now be demonstrated using exemplary
functions with essentially the same behavior as that of the
metric potentials. The relativistic potential u of Eq. (2) for
a black hole is similar in its qualitative behavior to the
Newtonian uc of Eq. (11). The potential of the ring, which
we could model by an infinitesimal ring of constant den-
sity, is roughly constant in the vicinity of the central object.
Consider therefore simply the function
024019
f�x� � 2 ln
�

1

1� a

�
(24)

with

a �
2-

x� 2-
; x 2 
0; 1�;

where - is a dimensionless mass parameter reflecting the
size of the central object (for our relativistic two-body
system, we can take e.g. - � Mc=%o). If - is small, then
a is close to 0 everywhere except when x approaches zero,
since a�0� � 1 holds for any value of -. Such a function
cannot be approximated well using a Chebyshev expansion
since the derivative of the function at the point x � 0,

df
dx

��������x�0
�

1

2-
;

is quite large for small -. Taking into account this behav-
ior, however, we can dramatically attenuate the problem by
introducing an appropriately rescaled x

x � -
��

1�
1

-

�
~x
� 1

�
: (25)

The derivative of f with respect to ~x at ~x � 0 is

df
d~x

��������~x�0
�

1

2
ln
�
1�

1

-

�
;

which merely grows logarithmically as - tends to zero. A
similar issue is encountered in the context of excision
initial data for binary black holes with extreme radius
ratios and is discussed in [20]. A comparison of the behav-
ior of the functions f as it depends on x and ~x for - � 0:01
can be found in Fig. 5. To see how well the Chebyshev
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FIG. 7. Cross sections of Newtonian rings surrounding a point
mass with varying ratios of central to ring mass Mc=Mr. The
normalized coordinate �=%o is plotted against %=%o. For each of
these configurations, the ratio of inner to outer radius of the ring
was chosen to be %i=%o � 0:6 and for the normalized total mass
we took Mtot

���
"

p
� �Mc �Mr�

���
"

p
� 1.

FIG. 6. The common logarithm of the absolute value of
the Chebyshev coefficients cn is shown for an expansion of
the functions from Fig. 5. The expansions are of the form
f�x� � 1

2 c0 �
P24
n�1 cnTn�2x� 1� and f�x�~x�� � 1

2 ~c0 �P24
n�1 ~cnTn�2~x� 1�, where Tn are Chebyshev polynomials of

the first kind. The coefficients are determined such that the
function and its polynomial approximation have the same value
at each of the collocation points. The open circles show the
coefficients cn and the filled circles ~cn.
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expansion approximates a given function, one can look to
see how quickly the coefficients grow small. Figure 6
shows the logarithm of the absolute value of the coeffi-
cients for the expansion of f�x� and f�x�~x��. As in the
computer program described above, the coefficients were
calculated by requiring that the polynomial expansion take
on the value of the underlying function at the collocation
points. One can see clearly that the coefficients of f�x� do
not show the rapid fall off exhibited by those of f�x�~x��.
This is precisely the reason why we chose a coordinate
transformation in domain 3, Eq. (23c), in which there is an
exponential dependence on s. We shall see in Sec. V that
we are indeed able to reach very small values for the mass
of the black hole.
V. FIRST RESULTS

A. A Newtonian ring surrounding a point mass

In this subsection, we present a few characteristic fea-
tures of the point mass-ring system. As was shown in
Sec. II B, a Newtonian, rigidly rotating test-ring of finite
size cannot exist in equilibrium. Since we know that rings
without a central body exist within Newtonian theory
[19,21–26], there must exist a maximum for the ratio of
the mass of the central body to that of the ring if the ring is
to remain a finite size. One would expect the gravitational
pull towards the central object to grow ever stronger until
mass-shedding at the inner edge sets in, i.e. until the
gradient of pressure at the inner edge of the ring in the
equatorial plane vanishes and a cusp develops, marking the
024019
point at which a fluid element is about to be pulled away
from the ring. This is indeed what is observed. In Fig. 7, a
sequence of rings about a point mass is shown for an
increasing ratio of the central to the ring mass Mc=Mr.
The ratio of inner to outer radius of the ring was held
constant at the value %i=%o � 0:6 and the total (normal-
ized) mass of the system was taken to be Mtot

���
"

p
� 1.

If we consider the sequence of configurations at the
inner mass-shedding limit and with constant total mass,
then we can vary a third parameter such as Mc=Mr. In the
limit for which this ratio of masses goes to zero (i.e. when
the point mass vanishes), we arrive at the configuration
denoted by ‘(H)’ in Fig. 6 of [19]. As described there, such
a configuration can be found along the sequence bifurcat-
ing from the Maclaurin spheroid with an eccentricity of
. � 0:985 23 . . . and marks the transition from a spheroidal
to a toroiodal topology. Presumably, there is no upper limit
to the value of Mc=Mr that can be reached. However, this
test-ring limit could only be reached if the ring were not of
finite size, i.e. in the limit Mc=Mr ! 1 it follows that
%i=%o ! 1. The cross sections for configurations with an
inner mass-shed can be seen in Fig. 8.
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FIG. 8. Cross sections of Newtonian rings surrounding a point
mass with varying ratios of central to ring mass Mc=Mr. The
normalized coordinate �=%o is plotted against %=%o. Each of
these configurations possesses an inner mass-shed and has a
normalized total mass of Mtot

���
"

p
� �Mc �Mr�

���
"

p
� 1.
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B. A Ring Surrounding a black hole

An example of the convergence and extreme accuracy of
the numerical relativistic program can be found in Table I.
All of the dimensionless parameters listed in this section
(and denoted by a bar) are normalized with respect to the
(constant) energy density ". Thus we have
TABLE I. Physical parameters for a ring surrounding a black hole
order, m, of the polynomial approximation. The configuration was
0:24 and rc=%o � 0:06.

m 8 16

�Mtot 0.137 611 0.137 603 06
�Mc 0.068 712 1 0.068 707 899
�Mr 0.068 922 3 0.068 895 164
�Jtot 0.020 395 7 0.020 389 051
�
c 0.133 435 0.133 424 71
�
r 0.603 778 0.603 877 35
Rp=Re 0.998 385 0.998 332 54
�%o 0.573 379 0.573 346 07

jMi�Mo

Mo
j 2� 10�4 4� 10�8

j Ji�JoJo
j 2� 10�5 1� 10�8
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�M tot :� Mtot

���
"

p
�Mc :� Mc

���
"

p
�Mr :� Mr

���
"

p

�Jtot :� Jtot" �Jc :� Jc" �Jr :� Jr"

�
c :� 
c=
���
"

p �
r :� 
r=
���
"

p
�%o :� %o

���
"

p
:

The configuration in Table I was calculated by prescribing
Jc=%2

o � 0, %i=%o � 0:8, Mtot=%o � 0:24 and rc=%o �
0:06. An indication of the accuracy of the solution at
each approximation order can be found in the last two
rows, in which the total mass and angular momentum are
calculated via Eq. (12)

Mo :� Mtot Jo :� Jtot calculated at infinity

and compared to the values

Mi :� Mtot Ji :� Jtot calculated via integral

found by adding Eq. (15) to (16) for the mass and Eq. (13)
to (14) for the angular momentum. All the digits listed in
the final column are valid, showing that machine accuracy
can be reached. With such high accuracy it is possible to
study effects that were misunderstood previously due to the
slight inaccuracies associated with older numerical meth-
ods. In particular, Nishida and Eriguchi [13] presumed that
Rp=Re � 1 is strictly valid for Jc � 0, i.e. that a black hole
with no angular momentum has a nondeformed horizon.
One can see in the seventh row of Table I, that the value is
indeed very close to 1, but not strictly equal to one. A
coordinate cross section of the surface of the ring and the
horizon of the black hole can be found in Fig. 9.

We calculated a series of configurations for which we
prescribed the values Jc=%2o � 0, %i=%o � 0:9 and
Mtot=%o � 0:24 and varied the ratio of the black hole’s to
the ring’s mass. In Fig. 10 we plot Rp=Re versusMc=Mr for
the entirety of this sequence, i.e. from the limit Mc=Mr !
0 right up to an endpoint, which turned out to be an inner
mass-shedding limit (and hence analogous to the
Newtonian results). Because of the exponential coordi-
nates that were discussed in Sec. IV, it was possible to
showing the convergence of the numerical solution for increasing
determined by prescribing Jc=%2

o � 0, %i=%o � 0:8, Mtot=%o �

22 28

0.137 603 059 5 0.137 603 059 537
0.068 707 899 42 0.068 707 899 434 4
0.068 895 160 11 0.068 895 160 102
0.020 389 050 76 0.020 389 050 761 1
0.133 424 704 7 0.133 424 704 700
0.603 877 360 4 0.603 877 360 278
0.998 332 478 6 0.998 332 478 18
0.573 346 081 3 0.573 346 081 40

1� 10�10 1� 10�13

5� 10�11 2� 10�13
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0.07

0.09

M c / M r

Ω̄c

ω̄(0, 0)r in g

•

inner mass-shed

FIG. 11. �
c versus Mc=Mr is plotted for the configurations of
Fig. 10, i.e. with Jc=%2

o � 0, %i=%o � 0:9 and Mtot=%o � 0:24.
The label �!�0; 0�ring indicates the value that the metric function
�! � !=

���
"

p
assumes at the point �%; �� � �0; 0� when the black

hole is absent.

FIG. 9. The cross section of the ring surrounding the black
hole described in Table I. The normalized coordinate �=%o is
plotted against %=%o. Note that in these coordinates, the black
hole always appears as a circle.
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calculate configurations with Mc=Mr very close to zero
(e.g.Mc=Mr � 1=50). We see that as the mass of the black
hole tends to zero, the deformation of its horizon vanishes.
This may well be because it shrinks to a point in this limit
and no tidal forces are present to distort it. In essence, this
is the limit of an infinitesimal spherical black hole at the
origin of the spacetime in the external field of the ring.
Figure 11 lends credit to this interpretation. For the same
sequence of configurations, we have plotted �
c versus
Mc=Mr and indicated the value !�% � 0; � � 0�=

���
"

p
�

�!�0; 0�ring � 0:078 23 . . . that this metric function assumes
at the point �%; �� � �0; 0� in the absence of a black hole (as
calculated with a numerical program as described in [27]).
In the limit Mc=Mr ! 0, the black hole, which has no
angular momentum, is not flattened, although it rotates
with precisely the angular velocity that arises due to the
frame dragging effect of the ring.

It should be noted that whereas Figs. 10 and 11 would
likely look qualitatively similar for different values of
%i=%o and Mtot=%o, the choice Jc=%2o � 0 is special. Had
we chosen a nonzero value for Jc=%2o, then it is unlikely
that we could have reached an arbitrarily small value for
Mc=%o since Jc=M2

c cannot, most likely, become arbitrarily
large. In other words, we expect that a physical limit,
0 5 10 15 20 25
0.998

0.999

1

M c / M r

R p

R e

•

inner mass-shed

FIG. 10. Rp=Re versus Mc=Mr is plotted for configurations
with Jc=%2

o � 0, %i=%o � 0:9 and Mtot=%o � 0:24. Despite the
fact that the black hole has no angular momentum, a small
deformation of the horizon is apparent.

024019
analogous to that reached by the extreme Kerr solution,
will prohibit the possibility of prescribing arbitrarily large
values for Jc=M2

c . We shall see, however, toward the end of
this section that it can become greater than one. Moreover,
by fixing a value for Mtot=%o, we have precluded the
possibility that Mr=%o can become arbitrarily large so
that the limit Mc=Mr ! 0 would not exist. Fixing a value
for %i=%o, we also precluded the limit Mc=Mr ! 1, since
the sequence would end in a mass-shedding limit.

In Fig. 12 we provide an example of a significantly
distorted horizon. By prescribing the angular momentum
0 10 20 30 40 50
0.85

0.90

0.95

1.00

Kerr(M c , J c)

M c / M r

R p

R e

FIG. 12. Rp=Re versus Mc=Mr is plotted for configurations
withMc=%o � 0:14, Jc=%2

o � 0:015 and "%2
o � 0:24. The dotted

lines convey that this sequence continues on and tends to the
value indicated by Kerr�Mc; Jc�. The label Kerr�Mc; Jc� indicates
the value for Rp=Re for a Kerr black hole with the same mass and
angular momentum as were prescribed here.
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FIG. 14. The cross section of the ring surrounding the black
hole described in Table II. The normalized coordinate �=%o is
plotted against %=%o. Note that in these coordinates, the black
hole always appears as a circle.

0 10 20 30 40 50
0

3

6

9

12

M c / M r

J c
J r

FIG. 13. Jc=Jr versus Mc=Mr is plotted for the series of con-
figurations in Fig. 12. As in that figure, the dotted lines convey
that this sequence continues on.
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and mass of the black hole, we are able to make use of
Eq. (19) and compare values when a ring is present to those
when it is absent. We plot Rp=Re versusMc=Mr for a series
of configurations for which we prescribe Mc=%o � 0:14,
Jc=%

2
o � 0:015 and "%2

o � 0:24, but allow Mr=%o to be-
come arbitrarily large and can thus approach the limit
TABLE II. Physical parameters for a ring surrounding a black hole
order of the polynomial approximation. The configuration was deter
0:35 and rc=%o � 0:025.

m 8 16

�Mtot 0.177 955 0.177 950 18
�Mc 0.031 409 5 0.031 405 521
�Mr 0.146 562 0.146 544 68
�Jtot 0.040 778 3 0.040 765 569
�Jc 0.001 038 48 0.001 038 217 6
�Jr 0.039 716 5 0.039 727 351
�
c 2.993 21 2.992 429 9
�
r 0.656 494 0.656 612 65
Rp=Re 0.930 597 0.930 387 25
�%o 0.508 443 0.508 429 10

jMi�Mo

Mo
j 9� 10�5 1� 10�7

j Ji�JoJo
j 6� 10�4 1� 10�8
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Mc=Mr ! 0. As the mass of the ring tends to zero (i.e.
Mc=Mr ! 1), we see that the distortion of the horizon
approaches that of a Kerr black hole. As one increases the
mass of the ring however, the deviation from this oblate-
ness becomes significant. Of interest is the fact that, in
contrast to Fig. 10, the value ofRp=Re does not approach its
unperturbed value as the relative mass of the black hole
becomes negligible. This may be related to the fact that
here the angular momentum of the ring as well as its mass
tend to infinity. This is illustrated in Fig. 13 in which Jc=Jr
is plotted against Mc=Mr and the curve intersects the
origin. The sequence plotted here was cut off at an arbitrary
value for Mc=Mr as indicated by the dotted lines. The two
limits that are relevant to Figs. 12 and 13,Mc=Mr ! 0 and
Mc=Mr ! 1, are also interesting in that they represent two
entirely different limits for a system containing an infi-
nitely thin ring. A more thorough investigation of such
limits is planned for a future publication.

Finally, we provide a second table showing the conver-
gence and high accuracy of the program. What is particu-
larly interesting in Table II is that the value of the angular
momentum of the black hole divided by the square of its
mass exceeds one. We prescribed the values Jc=M2

c �
20=19, %i=%o � 0:7, M=%o � 0:35 and rc=%o � 0:025
and were able to reach machine accuracy. The horizon of
this black hole and surface of the ring in cross section can
be seen in Fig. 14.

VI. FUTURE WORK

We have seen that it is possible to calculate axisymmet-
ric, stationary configurations consisting of a black hole
surrounded by a ring of matter numerically up to machine
accuracy. The basic ideas behind the numerical methods
are not all that different from those presented in [16], but
there are specific numerical challenges that must be over-
come and which were, in part, presented here. Such a
showing the convergence of the numerical solution for increasing
mined by prescribing Jc=M2

c � 20=19, %i=%o � 0:7, Mtot=%o �

22 28

0.177 950 181 9 0.177 950 181 905
0.031 405 519 59 0.031 405 519 584
0.146 544 662 4 0.146 544 662 32
0.040 765 568 04 0.040 765 568 044
0.001 038 217 538 0.001 038 217 537 2
0.039 727 350 51 0.039 727 350 507
2.992 429 509 2.992 429 505 8
0.656 612 708 6 0.656 612 709 03
0.930 386 766 1 0.930 386 760 0
0.508 429 091 2 0.508 429 091 16

7� 10�10 7� 10�12

7� 10�11 5� 10�13
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numerical code allowed us to take a look at the influence of
matter on the properties of the black hole and we saw in
Figs. 10 and 12 how the shape of the horizon deviates from
its unperturbed value. We also saw that the presence of the
ring allows us to construct situations in which Jc=M2

c > 1
for the angular momentum and mass of the black hole.

The fact that the configurations considered here contain
four parameters means that a rigorous exploration of the
solution space is an ambitious task. We thus first intend to
focus our attention on particular aspects of the solutions
that we believe could prove fruitful. These include: (1)
analysing the limits that hold for Jc=M2

c , (2) studying the
influence of matter on the black hole more extensively by
024019
considering multipole moments on the horizon (see e.g.
[28]), (3) considering other equations of state and (4)
exploring a possible parametric transition to an infinitely
flattened ring.
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