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In this paper a new double-domain spectral method to compute binary black hole excision initial data is
presented. The method solves a system of elliptic partial differential equations in the exterior of two
excised spheres. At the surface of these spheres, boundary conditions need to be imposed. As such, the
method can be used to construct arbitrary initial data corresponding to binary black holes with specific
boundary conditions at their apparent horizons. We give representative examples corresponding to initial
data that fulfill the requirements of the quasistationary framework, which combines the thin-sandwich
formulation of the constraint equations with the isolated horizon conditions for black holes in quasi-
equilibrium. For all examples considered, numerical solutions with extremely high accuracy were
obtained with moderate computational effort. Moreover, the method proves to be applicable even when
tending toward limiting cases such as large radius ratios for the black holes.
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I. INTRODUCTION

Spectral methods utilizing multiple spatial domains
have been used by many authors in order to solve elliptic
partial differential equations in general relativity, see e.g.
[1–10]. In this paper we demonstrate the strength of these
methods by applying them to the calculation of initial data
corresponding to binary black hole systems.

In a ‘3� 1’-splitting of space and time, Einstein’s equa-
tions may be formulated as constraint and evolution equa-
tions. The constraints form elliptic equations on spacelike
hypersurfaces, which must be fulfilled by any data set that
describes some initial state of the binary system. In con-
structing data of this kind, two different approaches have
been explored, (i) puncture methods [11–16] and (ii) ex-
cision techniques [3,4,9,10,17–22].

In the puncture methods, a special polelike structure of
the singularity inside the black hole is assumed which can
be taken into account by a specific ansatz for the initial
data. Therefore the relevant space for the constraint equa-
tions is all of R3. In contrast, the excision techniques solve
the constraints only in the exterior of two excised spheroids
within which the singularities are located. At the surface
of these spheroids, special boundary conditions need to
be imposed, see e.g. [3,4,9,10,17,18,23–25]. A promising
approach for providing physically realistic data that de-
scribe binary systems in quasistationary orbits is given by
the combination of the conformal thin-sandwich formula-
tion [26,27] (for a review see [28]) and the isolated horizon
framework [10,25,29–32]. While the conformal thin-
sandwich equations incorporate the concept of quasistatio-
narity into the constraint equations, the isolated horizon
framework describes specific boundary conditions valid at
the apparent horizons of the black holes that ensure a
quasiequilibrium state.

In this paper, a new numerical scheme is presented that
calculates binary black hole excision data by means of a
double-domain spectral method. The scheme is an alter-
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native approach to the spectral techniques used in [3,4] and
to those utilized in [9,10]. It works on two spatial subdo-
mains and requires relatively small spectral expansion
orders to render highly accurate solutions. The complexity
of the numerical scheme is comparable to the one pre-
sented in [16] for a single-domain puncture method, there-
fore allowing the code to run on a single processor.

The central idea of the method is the introduction of two
spatial domains, within which the initial data admit a
rapidly converging spectral expansion. In order to achieve
this it is essential for the data to be smooth within these
subdomains. At first, bispherical coordinates [33,34] are
introduced through which the entire exterior of the two
excised balls becomes the image of a single rectangular
box (see Sec. II). In particular, a compactification of spatial
infinity is realized, which corresponds to a mere line on a
side of the box. However, as illustrated in Sec. III for the
Laplace equation, a solution to an elliptic equation is in
general only C0 at this line, which suggests the introduc-
tion of an additional mapping. This map folds the box
along the line in question, see Sec. IV. As a result, for a
two-dimensional cross section, we get a domain of pentan-
gular shape, which we divide up into two quadrangular
ones. Each one of the two quadrangular regions is mapped
diffeomorphically onto a square. As explained in Sec. V,
spectral expansions for all data entries are carried out
within these cuboids, and the collection of constraint equa-
tions, boundary, asymptotic fall off, regularity and transi-
tion conditions (the latter ones to be imposed at the
boundary between the two domains) yield a complete set
of equations to determine all spectral coefficients. We
obtain the solution by means of a Newton-Raphson
method. For a three-dimensional code, only an iterative
scheme for executing the linear step inside the Newton
solver is computationally affordable. Together with a re-
formulation of the regularity conditions (to be enforced at
the axis along which the black holes are aligned) a specific
plane relaxation scheme has been implemented that results
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in a convergent iterative procedure. In Sec. VI we present
first examples satisfying the equations and boundary con-
ditions following from the above quasiequilibrium frame-
work. We obtain extremely high accuracy even in limiting
cases such as very large radius ratios for the excised
spheres. Since only relatively little spectral resolution is
needed, the code is of low computational cost. This makes
it especially useful for the detailed study of wide classes of
initial data sets. In Sec. VII we discuss future applications
of the scheme, which will include a detailed mathematical
and physical investigation of various initial data sets and
the use of these data for a dynamical evolution.
II. BISPHERICAL COORDINATES

In this section we consider bispherical coordinates
[33,34] through which the entire space exterior to the
two excised spheres becomes the image of a single rectan-
gular box. Let the spheres be denoted by S� and their radii
by %�. We assume the centers of S� to be aligned along the
x axis at a distance D from each other and introduce
cylindrical coordinates �x; �; ’� about the x axis, i. e.

x � x; y � � cos’; z � � sin’; (1)

with �x; y; z� being Cartesian coordinates. In the bispherical
mapping the location of the �x � 0� plane is chosen such
that the product of the coordinates of inner and outer
crossing points of the x axis with the surfaces @S� (see
Fig. 1) is the same for both spheres. That is

xi�x
o
� � xi�xo� � a20 (2)

together with
FIG. 1. Illustration of the bispherical mapping (6)–(9) for D � 5%
entire space exterior to the S� in the right panel is obtained as the
panels, solid and dashed curves correspond to constant � and � coo
infinity is emphasized by a bullet.
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xo� � xi� � �2%�; (3)

�xo� � xi�� � �xo� � xi�� � 2D: (4)

Here a0 > 0 is the common distance of a ‘‘geometric’’
center of the two balls to the coordinate origin. It is given
by

a0 �
1

2
D�1

���������������������������������������������������������������������������
D4 � 2D2�%2� � %2�� � �%2� � %2��

2
q

: (5)

The bispherical coordinates ��; �; ’� are most easily in-
troduced by the complex mapping

c � ia0 coth
�
2
; (6)

where

c � �� ix; � � �� i� (7)

are complex combinations of cylindrical and bispherical
coordinates, respectively. Explicitly, the coordinates � and
x are given in terms of � and � as follows:

x � a0
sinh�

cosh�� cos�
(8)

� � a0
sin�

cosh�� cos�
: (9)

Note that the angle ’ remains unchanged under this
transformation.

A characteristic feature of the bispherical coordinates is
that all coordinate lines
�; %� � 2%� (with the azimuthal coordinate ’ suppressed). The
image of the rectangular box displayed in the left panel. In both
rdinate lines, respectively. The line (15) corresponding to spatial
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� � constant and � � constant (10)

correspond to circles in the cylindrical coordinates �x; ��,
see Fig. 1. In particular it follows that

�x� a0 coth��2 � �2 �
a20

sinh2�
(11)

x2 � ��� a0 cot��
2 �

a20
sin2�

: (12)

Among these circles we find the surfaces @S� of the
excised spheres, which are described by

� � �� � �arsinh
a0
%�

: (13)

From the preceding steps it becomes apparent that the
entire space exterior to S� is obtained as the image of a
single rectangular box,

� 2 ���; ��	; � 2 �0; �	; ’ 2 �0; 2��: (14)

While we have already seen that � � �� corresponds to
the surfaces @S�, the faces � � 0 and � � � (in Fig. 1
denoted by A� and B) represent outer and inner sections
of the x axis, respectively. Note that spatial infinity is
obtained as the image of the line

� � 0 � �; ’ 2 �0; 2��: (15)

At first glance, the bispherical mapping suggests a spectral
expansion of the excision data in terms of the coordinates
��; �; ’�. However, as will be demonstrated in Sec. III, the
data are in general only C0 at the above line corresponding
to spatial infinity. We resolve this issue by another coor-
dinate transformation, as will be discussed in Sec. IV.

III. BISPHERICAL SOLUTIONS OF THE LAPLACE
EQUATION

We include this section about the bispherical solutions of
the Laplace equation in order to illuminate some basic
properties of the excision data, in particular, at spatial
infinity. Exterior to S� consider

Uxx �Uyy �Uzz � 0 (16)

subject to specific Dirichlet conditions that are enforced at
the excision boundaries. In bispherical coordinates this
reads as follows:

DOUBLE-DOMAIN SPECTRAL METHOD FOR BLACK . . .
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a�20 �cosh�� cos��5=2
�
V�� � V�� � V’’csc

2�

� V� cot��
1

4
V
�
� 0; (17)

where the potential V is related to U via

U � V
�����������������������������
cosh�� cos�

p
: (18)

In this formulation the solution can be found by separation
of variables [34]. It reads

U �
�����������������������������
cosh�� cos�

p X1
l�0

Xl
m��l

��lme�l�1=2��

��lme
��l�1=2��	Yml ��;’�: (19)

The coefficients �lm and �lm are obtained from an expan-
sion of the known Dirichlet values of V at � � �� with
respect to spherical harmonics Yml .

We notice that the analytic behavior of the solution (19)
at spatial infinity is determined by the factor

�����������������������������
cosh�� cos�

p
�

����������������������������
2 sinh

�
2
sinh

��
2

s

�

���
2

p

2

�����������������
�2 � �2

q
�O�j�j3�; (20)

which is only C0 at � � 0. Although one might argue that
the decomposition (18) resolves this issue for the Laplace
equation, this is not a strategy for solving general nonlinear
elliptic equations since the corresponding solutions contain
terms with and without the factor (20). We therefore pursue
a different approach leading to new coordinates in which
(20) is analytic.
IV. FOLDING INFINITY

The regularity problem addressed in the previous section
is very closely related to issues discussed in [16], see
formulas (48–50) therein. Indeed, introducing coordinates
X and R via

Z � R� iX �
���
�

p
; (21)

where the square root is taken such that X and R are non-
negative in the computational domain (see Fig. 2), imme-
diately yields that
�����������������������������
cosh�� cos�

p
�

���
2

p

2
�X2 � R2�

�������������������������������������������������������������������������������������������
1�

X1
k�1

Z4k

4k�2k� 1�!

��
1�

X1
k�1

�Z4k

4k�2k� 1�!

�vuut (22)
is analytic in X and R, in particular, at X � R � 0.
By performing the transformation (21) and leaving the

azimuthal coordinate ’ unchanged, the rectangular box
(14) is folded about the line (15) such that a pentangular
region is created upon which X and R are defined, see
Fig. 2. Since for the spectral method the spectral coordi-
nates �A;B;’� introduced below are given on a cuboid, we
draw a border that splits the pentangular region into two
-3



FIG. 2. Illustration of the mapping (21). The example dis-
played corresponds to the geometrical picture shown in Fig. 1.
The border that separates the two quadrangular regions ��� is a
line in this diagram. Solid and dashed curves correspond to
constant A and B coordinate lines, respectively, (see (24)–(27)).
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subdomains ��) of quadrangular shape. Now the coordi-
nates �A;B� with

�A;B� 2 �0; 1	  �0; 1	 (23)

are mapped to values �X;R� on these subdomains via

(i) r
egion �:

X � �X�AB� R�A sinh���B� � X0Be 
�A;

R � �R�AB� R�A cosh��
�B� � R0Be

� �A

(24)
(ii) r
egion �:

X � �X�AB� X�A cosh��
�B� � X0Be

 �A;

R � �R�AB� X�A sinh���B� � R0Be� 
�A

(25)
where

Z� � R� � iX� �
�������
��

p
;

Z� � R� � iX� �
�������������������
�� � i�

p
;

�� � arsinh�X�=R��;

�� � arsinh�R�=X��;

 � � ln�X�=X0�:

(26)
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A value for X0 (R0 � �=�2X0�) may be chosen in order to
create subdomains of comparable size:

X0 �
��������������
X�X�

p
; R0 �

��������������
R�R�

p
: (27)

With this transformation, the surfaces @S� are obtained for
A � 1. Exterior and interior sections of the x axis (i.e. A�

and B) are given by B � 0 and B � 1 respectively, and the
common border between the two subdomains is described
by A � 0.
V. THE NUMERICAL SCHEME

Our numerical scheme possesses a number of common
features with the method described in [16] for the spectral
calculation of puncture initial data. However, there are also
specific differences, which we depict in the following
paragraphs.

In a spectral approximation all functions U! to be de-
termined by our elliptic boundary value problem are con-
sidered at specific gridpoints that correspond to the zeros or
extrema of the spectral basis functions being used. Here we
perform Chebyshev expansions with respect to A andB and
a Fourier expansion with respect to ’. Since the quasista-
tionary framework requires sophisticated boundary values
at @S� for the initial data (see Sec. VI), we choose to use
the extrema of the Chebyshev polynomials so as to have
gridpoints lying on the boundary. That is, the gridpoints are
given by

Aj � sin
2

�
�j

2�nA � 1�

�
; Bk � sin

2

�
�k

2�nB � 1�

�
;

’l �
2�l
n’

(28)

where

0 � j < nA; 0 � k < nB; 0 � l < n’: (29)

The numbers nA; nB and n’ describe the spectral expansion
orders of our scheme.

The next step in the scheme is the setting of a vector ~U,
whose components are derived from the values

U!�
jkl (30)

of all functions U! at the above gridpoints �Aj; Bk; ’l� in
the two subdomains ���. The index ! 2 f1; . . . ; !0g labels
the different functions appearing in the elliptic system,
with !0 being the total number of equations (!0 � 5 for
the quasistationary constraints discussed in Sec. VI).

A way to set ~U that works well in the context of the
relaxation method described below is given by the follow-
ing unique decomposition of U! :

U!�A;B;’� � V!�A;B� �W!�A;B;’�; (31)

W!�A;B; 0� � 0: (32)
-4
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We use this decomposition and collect all values V!�jk and

W!�
jkl for l > 0 in order to build up the vector ~U. This means

that in our approach the U!�
jkl are not stored directly in ~U,

but can be recovered from the entries of ~U through the
above sum (31).

The collection of elliptic equations valid in the exterior
of S�, boundary conditions imposed at A � 1 (i.e. at @S�),
transition conditions to be imposed at A � 0 (i.e. at the
common border) and specific regularity conditions that
need to be fulfilled at B � 0 and B � 1 (i.e. at the x
axis) yield a discrete nonlinear system

~f� ~U� � 0 (33)

of dimension

2!0nAnBn’: (34)

The corresponding solution describes the desired spectral
approximation of the solution to our elliptic boundary
value problem. Let us discuss in detail the several entries
f!�jkl of the vectorial function ~f:
(1) T
he spectral method enables us to calculate first and
second derivatives of the U! from the values U!�

ijk at
the above grid points up to the chosen approxima-
tion order. Using them in the given elliptic equations
evaluated at these grid points provides relations
between the U!�

jkl . Note that the elliptic equations
are only considered at inner grid points, i.e. for

1 � j � nA � 2; 1 � k � nB � 2;

0 � l < n’;
(35)

thus filling

2!0�nA � 2��nB � 2�n’ (36)

entries of ~f.

(2) I
n exactly the same manner, we use the boundary

conditions valid at A � 1 to fill

2!0nBn’ (37)

entries of ~f. Note that the boundary conditions are
also considered at the x axis, i.e. at gridpoints with
j � 0 or j � nB � 1.
(3) S
ince the border between the two domains is some
artificial transition surface that we have introduced,
each function U! must be smooth there. In the
formulation of the elliptic boundary value problem,
this is ensured by requiring the U! to be continuous
and to possess continuous normal derivatives at A �
0. These conditions are enforced along the entire
border except the line (15) where the values ofU! at
infinity are imposed, thus leading altogether to

2!0nBn’ (38)

entries of ~f.
024018
(4) S
-5
pecial care is needed for setting the remaining
discrete equations that correspond to regularity con-
ditions along the x axis. Any function U that is
smooth along the x axis with respect to Cartesian
coordinates can be expanded in a Taylor series:

U�x; y; z� � U�x; 0; 0� � ��Uy�x; 0; 0� cos’

�Uz�x; 0; 0� sin’	 �O��2� (39)

from which it follows that

lim
�!0

U’’ � 0 (40)

and

lim
�!0

�U� �U�’’� � 0: (41)

The entire set of equations turns out to be solvable
only if we consider both conditions (40) and (41). In
particular, we require (40) at gridpoints with ’> 0
(i.e. l > 0) and (41) at gridpoints with ’ � 0 (i.e.
l � 0). The corresponding relations fill the remain-
ing

4!0�nA � 2�n’ (42)

entries of ~f. Note that different conditions need to be
imposed if the underlying function U is not smooth
along the x axis with respect to Cartesian coordi-
nates. An example for this is given by the bispher-
ical components of a vectorial function. In a
subsequent publication we will discuss in detail
this issue in connection with the momentum con-
straint equations.
In treating the system (33) we follow very much the
approach described in [16], see section II therein. In par-
ticular, the solution is obtained by Newton-Raphson iter-
ations, and the linear step inside this solver is performed
with the preconditioned Biconjugate Gradient Stabilized
(BCGSTAB) method [35]. In complete analogy to [16], we
construct a second order finite difference representation of
the Jacobian of (33), which will be used in the precondi-
tioning step. Note that, because of the decomposition (31),
for every gridpoint not only adjacent neighboring points
need to be considered, but also the values for l � 0. The
resulting finite difference Jacobian matrix has therefore at
most 27!0 nonvanishing entries per row.

A crucial difference to the method used in [16] is the
performance of the preconditioning step in which an ap-
proximate solution of the system

JFD* ~U � � ~f� ~U� (43)

is obtained. The matrix JFD appearing here represents the
finite difference approximation of the Jacobian J �

@ ~f=@ ~U which was mentioned above. The vector * ~U de-
scribes a correction to ~U obtained through the values ~f� ~U�.
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We use a specific preconditioner that consists of succes-
sive plane relaxations with respect to the planes ’ �
constant � ’l. These plane relaxations in turn are com-
posed of two different line relaxation schemes. We con-
sider the method in more detail:
(1) F
or the first one of the two line relaxation schemes,
let us pick one of the two regions ( � ) and some
values j; l and !. Then all values *W!�

jkl (or *V!�jk
for l � 0) along the coordinate line

A � Aj; B 2 �0; 1	; ’ � ’l (44)

are determined simultaneously through (43) while
all other entries of * ~U are held fixed. This gives a
tridiagonal system of dimension nB which can be
solved with low computational cost.
We perform this procedure within the plane ’ � ’l
for all values j and ! and in both regions ( � ).
Hereby, the loop over j takes on all even values first
and then all odd ones, thus describing a ‘‘zebra‘‘ line
relaxation scheme.
(2) S
imilarly, for the second line relaxation scheme k; l
and ! are chosen, and all values *W!�

jkl (or *V!�jk for
l � 0) along the coordinate line

A 2 �0; 1�; B � Bk; ’ � ’l (45)

are determined simultaneously through (43) in both
regions ( � ), thus leading to a tridiagonal system of
dimension (2nA � 3). Here we make use of the
continuity of the U! at the transition border. Note
that we leave out the values at the boundary A � 1,
which for specific boundary conditions might be
problematic for the convergence of the relaxation.
We therefore obtain an update of these values only
through the line relaxations described in 1.
Again we apply these steps within the plane ’ � ’l
for all values k and ! using a zebra loop with respect
to k.
(3) T
he plane relaxation scheme within the plane ’ �
’l is composed of several of the above orthogonal
line relaxation schemes. A zebra loop with respect
to l completes the relaxation method.
The preconditioning step, consisting of a number of such
relaxations (a typical value is 20), is the fragile ingredient
of the method. A simple reformulation of the boundary or
regularity conditions might spoil the convergence of the
scheme that otherwise is obtained through its iterative
application. Since for interesting excision data the collec-
tion of elliptic equations and boundary conditions form a
complicated system, it is very difficult to know how to pick
a particular formulation in advance in order to ensure a
stable convergent iteration. Nevertheless, for the relevant
examples discussed in Sec. VI it was possible to cast the
conditions into a suitable form.

Note that in general, relaxation schemes are computa-
tionally quite expensive if high resolution is used. In this
024018
case, it would be possible to include the relaxation scheme
within a multigrid solver. However, since the spectral
resolution can be chosen to be rather small (see Sec. VI),
the method is already very efficient as it stands.

A preconditiong step consisting of 20 relaxation itera-
tions gives a good approximation for the BCGSTAB
method. Typically, only about 6 iterations within this
scheme are needed to complete the linear Newton step.
Thus the numerical scheme converges rapidly to the de-
sired finite spectral approximation of the solution.

VI. QUASI-STATIONARY EXCISION DATA

The numerical scheme presented is applicable to an
arbitrary set of elliptic equations that is valid in the exterior
of two spheres and subject to specific boundary conditions
required at the surfaces of these shells. In particular, it
should prove fruitful for the calculation of a variety of
initial data sets corresponding to binary black hole sys-
tems. In this section we apply the method to the important
example, in which the initial data are given through the
quasistationary framework.

In a first subsection we review the thin-sandwich ap-
proach which yields the set of elliptic equations to be
considered. Next the isolated horizon boundary conditions
describing a black hole in a quasiequilibrium state are
discussed. The main focus of this section is on the presen-
tation of exemplary solutions to the corresponding bound-
ary value problem, which have been obtained by means of
the scheme to an extremely high accuracy. In particular, we
illustrate the strength of the method in the limiting case of
very large ratios %�=%�.

A. The thin-sandwich equations

In the ADM-formulation of a ‘3� 1’-splitting of the
spacetime manifold, the general relativistic line element is
written as

ds2 � -ij�dxi � .idt��dxj � .jdt� � 02dt2; (46)

where -ij is the 3-metric, and .i and 0 are the shift vector
and lapse function, respectively. Einstein’s field equations
can be split up into a set of constraint and evolution
equations for the 12 quantities -ij and Kij where

Kij �
1

20
� �ri.j � �rj.i � @t-ij� (47)

is the extrinsic curvature ( �rj represents the spatial cova-
riant derivative associated with -ij). The definition (47)
yields one of two sets of six evolution equations.

In York’s ‘Conformal Thin-Sandwich Decomposition’
[26] the evolution of the metric between two neighboring
slices t � constant is considered. More precisely, the
Eqs. (47) make it possible to prescribe specific values for
the initial time derivative of the conformal metric ~-ij,
which is connected to -ij via -ij �  4 ~-ij where  is a
-6
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‘‘conformal factor‘‘. Note that this splitting is unique only
if we require some normalization for ~-ij, e.g. det�~-ij� � 1.
In addition the extrinsic curvature is decomposed:

Kij �  �10 ~Aij �
1

3
-ijK; K � Ki

i: (48)

In order to obtain initial data corresponding to a binary
black hole in a quasistationary orbit, the constraint and
evolution equations are considered in a comoving frame of
reference in which the time derivatives of the metric quan-
tities are assumed to be small initially. The thin-sandwich
decomposition allows us to set

@t ~-ij � 0 (49)

in an initial slice t � t0 from which by virtue of (47) it
follows that

~A ij �
 6

20
�~L.�ij (50)

with

�~L.�ij � ~ri.j � ~rj.i �
2

3
~-ij ~rk.

k: (51)

In this formulation the constraint equations are given by

~r 2 �
1

8
 ~R�

1

12
 5K2 �

1

8
 �7 ~Aij ~A

ij � 0 (52)

~r j�~L.�
ij � �~L.�ij ~rj�ln0 

�6� �
4

3
0~riK � 0: (53)

Note that in these formulas ~rj and ~R are the spatial
covariant derivative and the Ricci scalar, respectively, as-
sociated with the conformal metric ~-ij. Indices are raised
and lowered with respect to this metric.

The Hamiltonian (52) and momentum constraints (53)
are elliptic equations which can be used to determine the
conformal factor  and the shift .i respectively. Moreover,
in the quasistationary framework it is possible to consider
an additional equation which is obtained from the evolu-
tion equations through the requirement

@tK � 0 (54)

on the initial slice. This also gives an elliptic equation
which determines the lapse function 0:

~r 2�0 � � 0 
�
1

8
~R�

5

12
 5K2 �

7

8
 �8 ~Aij ~A

ij
�

�  5.i ~riK: (55)

Thus in total we have five elliptic Eqs. (52), (53), and (55)
in order to determine the five quantities  ;.i and 0. Note
that the conformal metric ~-ij and the trace K are free data
that enter these equations. From the framework being
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presented no further restrictions on these quantities follow.
In this paper we choose examples that correspond to maxi-
mal and conformally flat data, i.e. we set

K � 0 (56)

and

~- ij � *ij (57)

in the Cartesian coordinates �x; y; z� (with *ij denoting the
Kronecker symbol).

B. Boundary conditions

The above quasistationary formulation is completed by a
set of boundary conditions that control the data at the
excision boundaries and at infinity. The excision boundary
conditions are given through the ‘‘Isolated Horizon
Framework‘‘ [10,25,29–32] (see also [3,4]) and describe
black holes in a quasiequilibrium state. In particular the
following is required:
(1) W
-7
ithin the initial slice, both excision boundaries are
apparent horizons, i.e. two-dimensional hypersurfa-
ces with S2 topology and the property that the out-
going null vectors k possess vanishing expansion.
(2) I
nitially, the apparent horizon is tracked along k and
its coordinate location does not move in the time
evolution of the data.
Cook [10,25] incorporated these requirements into the
thin-sandwich formulation and arrived at the following
boundary conditions for  and .i that are required at @S�:

~s i ~ri�ln � � �
1

4
�~hij ~ri~sj �  2J� (58)

.i � 0 �2~si � .i
jj
: (59)

Here the vector ~si is the outward pointing unit vector
normal to @S� (with respect to ~-ij) and ~hij � ~-ij � ~si~sj
the conformal metric induced on @S�. The quantity J is
given by

J �  �6 ~hij ~A
ij �

2

3
K (60)

and the vector .i
jj

tangent to @S� is proportional to a

conformal Killing vector of the conformal metric ~hij,
with the proportional factor describing the angular velocity
of the black hole. Note that the isolated horizon framework
does not yield a boundary condition for the lapse 0, which
we are therefore free to choose.

In the examples discussed below we consider corota-
tional black holes for which the angular velocity of the
black holes, as seen within the comoving frame of refer-
ence, vanishes, i.e.
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FIG. 3. The convergence of the ADM mass corresponding to
binary black hole initial data sets with vanishing orbital angular
velocity � � 0. The geometrical parameters of the individual
configurations are given by D � 10%� and %�=%� 2
f1; 10; 100; 1000g. For these axisymmetric calculations nA �
nB � n and n’ � 3 have been chosen. We compared the corre-
sponding results for the ADM masses to those of reference
solutions with n 2 f50; 60; 70; 80g for the above choices of
%�=%�.
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.i
jj
� 0: (61)

Moreover, we take the following boundary condition for
the lapse, which was used among others in [10] :

~s i ~ri�0 � � 0: (62)

At infinity we impose the appropriate asymptotic behav-
ior

lim
j~rj!1

 � lim
j~rj!1

0 � 1 (63)

lim
j~rj!1

�.i � � ~� ~r�i	 � 0 (64)

resulting from the fact that .i is a shift vector in a comov-
ing frame of reference that rotates with the angular velocity
~�. In the Cartesian coordinates ~r � �x; y; z� we take

~� � � ~ez (65)

corresponding to an orbital motion of the black holes.

C. Examples

A well-known maximal and conformally flat solution to
the above quasistationary boundary value problem is given
by the Misner-Lindquist initial data [23,36] which are used
for the evolution of a head-on collision of two black holes.
These data are characterized by vanishing 0 and .i

jj
at the

horizon (i.e. these data do not fulfill the condition (62)
which we impose below) and moreover by � � 0 (from
which it naturally follows that they do not represent two
orbiting black holes in a quasistationary state). In order to
find quasistationary data, we need additional requirements
such as the equality of ADM and Komar masses discussed
below. Nevertheless, we start the investigation of the quasi-
stationary boundary value problem in question by calcu-
lating solutions that represent modifications to the Misner-
Lindquist data. In particular, we take the boundary condi-
tion (62) (instead of 0 � 0) but retain all remaining con-
ditions. Whereas the corresponding boundary value
problem for a single black hole admits a solution which
can be given explicitly [10,37], no exact solution is known
in the binary case. However, we may take a superposition
of the solutions known for the single black hole in order to
create ‘‘start up‘‘ data for the Newton-Raphson scheme
inside the numerical scheme. We consider the resulting
solutions for D � 10%� and four different choices of the
radius ratio, %�=%� 2 f1; 10; 100; 1000g. The excellent
convergence of the spectral method has been checked
globally for all functions U! appearing in our elliptic
boundary value problem. We illustrate it in Fig. 3 for the
total ADM mass of the system which is given in Cartesian
coordinates by the following surface integral evaluated at
024018
infinity:

MADM �
1

16�

Z
1
�-ij;j � -jj;i�d2Si: (66)

We find that the convergence seems to be geometric, as
exhibited by a roughly linear decrease of the error in this
diagram.

Note that almost machine accuracy is reached for all
ratios considered, thus proving that the method is well
suited to the case of extreme radius ratios (and likewise
to situations in which the distance D is extremely large).
This may be clarified by the following considerations.

We know from the study of single black holes that the
Dirichlet boundary values of the data remain restricted
independent of the ratio %�=%�. However, because of
the different scalings involved in the problem, one might
not expect that the normal derivatives of the data at the
surface of the small sphere remain bounded as %�=%�

increases. This in turn would mean that a spectral expan-
sion needs more and more resolution, which for extreme
ratios becomes computationally unachievable.

To illustrate why nevertheless our method handles these
critical cases with moderate computational effort, consider
a special solution (19) to the Laplace equation (17), given
by

V � e������=2: (67)

It corresponds to the potential of a single point mass
located at �x; �� � ��a0; 0� and possesses a finite value
V � 1 at S�. For the potential V we need not fold the
rectangular box (14) at the line (15) in order to obtain
-8
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analyticity there, but may directly introduce spectral coor-
dinates on (14), i.e. �Â; B̂� via

� � �� � ��� � ���Â; � � �B̂: (68)

Now the derivative

@V

@Â

��������Â�0
� �

1

2
��� � ��� (69)

tends only logarithmically to infinity as %�=a0 ! 0 (see
(13)). Since the folding of (14) along (15) does not modify
the qualitative behavior of the derivatives, a rapid spectral
convergence emerges generally in these critical cases. Note
that our coordinates are somewhat similar to those intro-
duced in [38] via a logarithmic mapping in order to capture
very different length scales appearing there.

In the second example we calculate initial data corre-
sponding to two corotational black holes in a quasistation-
ary orbit. It has been argued [3,4,10,25] that a suitable
value for the angular velocity � is obtained by requiring
the equality of the ADM mass and the Komar mass which
is defined by the following surface integral at infinity:

MK �
1

4�

Z
1
-ij� �ri0� .kKik�d

2Sj: (70)

In the example considered here, D � 10%� and %� � %�

have been chosen. For these data an orbital angular veloc-
ity � � 0:036 975=%� emerges. Note that we introduce
the vector

.̂ i � .i � � ~� ~r�i (71)
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FIG. 4. The convergence of the ADM mass corresponding to a
corotating binary black hole initial data set in a quasistationary
orbit. The geometrical parameters of the configuration are given
by D � 10%� and %� � %�. The data are characterized by the
equality MADM � MK through which an orbital angular velocity
of � � 0:036 975=%� emerges. For these calculations the spec-
tral resolutions nA � nB � 2n’ � 1 � n have been chosen. We
compared the corresponding results for the ADM mass to that of
the reference solution with n � 51.
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into our numerical scheme which enables us to set definite
values of the corresponding U! at infinity.

Again we illustrate the rapid convergence of the method
by displaying the relative error of the total ADM mass, see
Fig. (4). In contrast to the above axisymmetric examples, a
roughly linear section of the curve for small resolution is
followed by a much more flattened part as the accuracy
approaches 10 digits.

A similar convergence rate was found for puncture
initial data possessing individual linear momenta of the
black holes [16]. In that paper the authors argue that an
algebraic convergence of their scheme is caused by loga-
rithmic terms in the expansion of the data at spatial infinity.
From a specific numerical resolution on, this algebraic
convergence rate governs the overall convergence. In the
corresponding diagram (see figure 4 of [16]) this is exhib-
ited by the fact that a roughly linear section of the curve for
small resolution is followed by a more flattened part, which
is exactly what we observe here. In a detailed mathematical
study, we plan to clarify whether or not logarithmic terms
also appear in the expansion of the above quasistationary
data at spatial infinity, which would explain the behavior of
the convergence rate in Fig. 4.
VII. CONCLUSIONS

In this paper we presented a numerical scheme that
calculates binary black hole excision data by means of
spectral methods. The central idea of the scheme is the
introduction of specific coordinates that are related to bi-
spherical coordinates, in order to permit rapid convergence
of the spectral expansions. In particular, the entire space
exterior to the two black holes is obtained as the image of
two spatial domains within which the spectral expansions
are carried out. A special formulation of the boundary and
regularity conditions enables us to use a specific iterative
technique to approach the solution that corresponds to the
spectral approximation of the desired data.

The scheme has been used to calculate examples corre-
sponding to the important quasistationary framework
which is given by the conformal thin-sandwich decompo-
sition together with the isolated horizon boundary condi-
tions. It exhibits a rapid spectral convergence of the
numerical solutions up to an extremely high accuracy. In
particular, configurations with large radius ratios of the
black holes may be considered up to this precision, with
only moderate computational effort.

In future applications of the scheme we shall calculate a
variety of initial data sets. The high accuracy of these data
will enable us to investigate physical and mathematical
properties thoroughly. Moreover, we intend to study sev-
eral formulations of the constraint equations in order to
select physically interesting data which correspond to a
binary system with a realistic content of ingoing and out-
going radiation. For this it will prove fruitful to handle
explicitly extreme configurations that correspond to limit-
-9
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ing cases (such as the test mass limit). Finally we plan to
use the data in a dynamical evolution of the system which
ultimately will help clear up the physical significance of
the data being considered.
024018
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