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We present arguments for the existence of both globally regular and black hole solutions of the Einstein
equations with a conformally coupled scalar field, in the presence of a negative cosmological constant, for
space-time dimensions greater than or equal to four. These configurations approach asymptotically anti-de
Sitter space-time and are indexed by the central value of the scalar field. We also study the stability of
these solutions, and show that, at least for all the solutions studied numerically, they are linearly stable.
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I. INTRODUCTION

Within the various theories violating the no-hair con-
jecture, the case of a conformally coupled scalar field is of
particular interest. In asymptotically flat space with no
scalar self-interaction potential, this theory admits an ex-
act, closed-form black hole solution, which has a scalar
field diverging on the event horizon [1]. However, it is
known that this solution is unstable [2], and cannot be
considered as a valid example of a black hole with scalar
hair. There are also a number of theoretical results as well
as numerical evidence against the existence of black holes
with scalar field hair (with various couplings to the Ricci
scalar curvature) in asymptotically flat space-time (see, for
example, [3] for a recent discussion).

In an unexpected development, hairy black hole solu-
tions have been found in both theories with minimally as
well as nonminimally coupled scalar fields by considering
asymptotically anti-de Sitter (AAdS) boundary conditions
[4,5]. Moreover, some of these solutions are found to be
stable. Exact four-dimensional black hole solutions of
gravity with a minimally coupled self-interacting scalar
field have been presented by Martinez, Troncoso, and
Zanelli (MTZ) [6] and Zloshchastiev [7].

However, in many other theories admitting hairy black
hole solutions, these configurations survive in the limit of
zero event horizon radius, yielding particlelike, globally
regular configurations. Motivated by this observation, we
consider in this paper the case of a conformally coupled
scalar field in an n-dimensional AAdS space-time (with
n � 4) and look for both globally regular and black hole
solutions. In the black hole case, we extend the results of
Ref. [5] by considering higher dimensional configurations.
Since a negative cosmological constant allows for the
existence of black holes whose horizon has nontrivial
topology, we consider, apart from spherically symmetric
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solutions, topological black holes also. We find that the
spherically symmetric solutions admit a nontrivial regular
limit, representing gravitating scalar solitons. These con-
figurations are indexed by the central value of the scalar
field and are found to be stable against linear fluctuations.

The outline of this paper is as follows: in Sec. II we
introduce our model, the numerical results being presented
in Sec. III. The stability of our solutions is addressed in
Sec. IV. Our conclusions are presented in Sec. V.
II. THE MODEL

A. The ansatz and field equations

We consider the following action, which describes a
self-interacting scalar field � with nonminimal coupling
to gravity in n dimensions (throughout this paper we will
use units in which c � 8�G � 1):

S �
Z
dnx

�������
�g

p
�
1

2
�R� 2�� �

1

2
�r��2

�
1

2
�R�2 � V���

�
; (1)

where R is the Ricci scalar curvature, � � ��n� 2��
�n� 1�=2‘2 is the cosmological constant, and � is the
coupling constant. For a minimally coupled scalar field
� � 0 and for conformal coupling (which is the focus of
this paper) � � �c � �n� 2�=4�n� 1�.

The field equations are obtained by varying the action
(1) with respect to field variables g�� and �,
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(2)
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r2�� �R��
dV
d�

� 0: (3)

The Ricci scalar expression which follows from these equations is

R � �
2�n� 1���� �c��r��2 	 2��n� 1�� dV

d�� n�V��� 	��

n=2� 1	 2�n� 1����� �c��2 : (4)
Since for a negative cosmological constant topological
black holes may appear (with a nonspherical topology of
the event horizon), we consider a general metric ansatz

ds2 �
dr2

H�r�
	 r2d�2

d�2;k �H�r�e2��r�dt2; (5)

where d�2
n�2;k � d 2 	 f2k� �d�

2
2 denotes the line ele-

ment of an �n� 2�-dimensional space �k with constant
curvature. The discrete parameter k takes the values 1, 0,
and �1 and implies the following form of the function
fk� �:

fk� � �

8><
>:
sin ; for k � 1;
 ; for k � 0;
sinh ; for k � �1:

(6)

When k � 1, the hypersurface �1 represents a sphere; for
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k � �1, it is a negative constant curvature space and it
could be a closed hypersurface with arbitrarily high genus
under appropriate identifications. For k � 0, the hypersur-
face �0 is a �n� 2�-dimensional Euclidean space (see e.g.
the discussion in [8]).

A convenient parametrization of the metric functionH is

H�r� � k�
2m�r�

rn�3 	
r2

‘2
: (7)

Although a rigorous computation of the solutions’ mass
and action is a nontrivial task for � � 0, we assume that the
asymptotic value of m�r� corresponds to the mass of our
configurations, up to some n-dependent factor.

Within this ansatz, we find the resulting equations
(where a prime denotes the derivative with respect to r)
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(8)
B. Boundary conditions

The asymptotic solutions to these equations can be
systematically constructed in both regions, near the origin
(or event horizon) and for r� 1.

The corresponding expansion as r! 0 is (globally regu-
lar solutions may exist for k � 1 only)

H�r� � 1	
2��2�2�2

0R0 	�	 V0 � 2��0V 0
0�

�n� 1��n� 2����2
0 � 1�

r2
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��0R0 	 V0

0

2�n� 1�
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(9)

where
R0 �
n�V0 	�� � 2��n� 1��0V

0
0

n=2� 1	 2�n� 1����� �c��
2
0

(10)

is the Ricci scalar evaluated at the origin and V0 �

V��0�; V 0
0 � dV=d�j���0

.
For black hole configurations with a regular, nonextre-

mal event horizon at r � rh, the expression near the event
horizon is

H�r� � H0�rh��r� rh� 	O�r� rh�
2;

��r� � �h 	 �0�rh��r� rh� 	O�r� rh�
2;

��r� � �h 	�0�rh��r� rh� 	�2�r� rh�
2 	O�r� rh�

3;

(11)

where
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and

Rh �
n�Vh 	�� � 2��n� 1��hV

0
h

n=2� 1	 2�n� 1����� �c��
2
h

(13)

is the Ricci scalar evaluated at the event horizon; noting
that V�k�

h � V�k����j���h
.

To analyze the r� 1 region, we assume that the ge-
ometry approaches asymptotically the AdS space-time and
that the function m�r� does not diverge in the same limit.
These assumptions imply that limr!1��r� � 0 and

� �
c1

rn=2�1
	

c2
rn=2

�
c3

rn=2	1
	 . . . ;

H�r� � k�
2M

rn�3 �
2�r2

�n� 2��n� 1�
	 . . . ;

��r� �
�2
rn

	 . . . ;

(14)

and also impose some constraints on the scalar potential
(for example, in n � 4, the potential should satisfy as r!
1 the condition V � V0 � V 00 � V000 � 0). In the above
relations c1, c2, and M are real constants which fix the
values of the other coefficients in the asymptotic expan-
sion. In the simplest case of a vanishing self-interaction
potential, we find

c3 � �
c1k�n� 1��n� 2�2�n� 4�

16�
;

�2 � �
c21�n� 1��n� 2�3�n� 4�k	 8c22n�

16n�n� 1��n� 2��
:

(15)
C. Conformal transformation

The conformal transformation [1,9]

�g �� � �2=�n�2�g��; with � � 1� ��2 (16)

maps the original system (1) onto a much simpler one
involving just a minimally coupled scalar field, but with
a more complicated potential (this transformation is valid
only for those solutions with a nonvanishing �). For a
conformally coupled scalar field, the new action principle
takes the form
024017
S �
Z
dnx

�������
� �g

p � �R� 2�

2
�

1

2
� �r��2 �U���

�
; (17)

where a bar denotes quantities calculated using the trans-
formed metric �g and we define a new scalar field � as (for
� � �c)

� �
1�����
�c

p arctanh
�����
�c

p
�; (18)

with a nonvanishing potential

U��� � ��	 V�����cosh�
�����
�c

p
���2n=�n�2� ��: (19)

The main advantage of the rescaled frame is that the field
equations are much simpler. However, the potential (19) is
unphysical (for example, with V � 0, it is negative
everywhere).

In the transformed frame, the metric �g�� takes the form
(5), but with the quantities H and � replaced by �H and ��,
respectively. In addition, there is a new radial coordinate
�r � �1=�n�2�r, which is a good coordinate as long as

A � �n� 2��� 2r�c��0 > 0: (20)

This is an additional constraint on the scalar field �
required for the conformal transformation to be valid. For
all our numerical solutions, the conditions �;A> 0 are
satisfied.

III. NUMERICAL RESULTS

As analytic solutions to the coupled nonlinear equations
(8) appear to be intractable for every dimension, except for
the n � 4, k � �1 black hole solution found in [6], the
resulting system has to be solved numerically.

In this section we discuss mainly the case of a confor-
mally coupled scalar field without a self-interaction poten-
tial. Since for V��� � 0 the field equations are invariant
under the transformation �! ��, only positive values of
�i are considered. Here �i denotes the initial value of the
scalar field at the r � r0 [with r0 � �0; rh� for regular and
black hole solutions, respectively]. Also, by rescaling the
radial coordinate [together with m�r�], we can set � �
��n� 1��n� 2�=2 (i.e. ‘ � 1) without any loss of
generality.
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We follow the usual approach and, by using a standard
ordinary differential equation solver, we evaluate the initial
conditions at r � r0 	 10�6 for global tolerance 10�12,
and integrate towards r! 1. In this way we find that
nontrivial solutions may exist in any dimension n � 4
(both black hole and regular solutions exist also in three
space-time dimensions; however, their properties are
somewhat special and we do not discuss them here).
Black hole solutions seem to exist for any values of the
parameters �k;�h; rh� satisfying H0�rh�> 0.

Typical profiles are presented in Fig. 1 for regular con-
figurations and in Figs. 2 and 3 for black hole solutions.
The dependence of the mass parameter M and e2��r0� on �i

is plotted in Figs. 4–6 (note the occurrence of negative
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values ofM for k � �1 black holes, a common situation in
topological black hole physics).

The properties of the configurations can be summarized
as follows:
(1) F
-1
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-4
or n � 4, AAdS solutions exist for any values of
�i in the interval 0<�i < 1=

�����
�c

p
;

(2) T
he scalar field interpolates monotonically between
�i and zero and has no nodes;
(3) T
he value of the metric function e2� at the origin
(event horizon, respectively) decreases for an in-
creasing �i and approaches zero in the limit �i !
1=

�����
�c

p
.

As seen in Fig. 4, for regular solutions M approaches a
finite value in the same limit. In the black hole case, the
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The parameters M and gtt�0� � �e2��0� are shown as a
n of ��0� for spherically symmetric regular solutions in
space-time dimensions. Here and in Figs. 5 and 6 the
f the cosmological constant is � � ��n� 1��n� 2�=2
�� � 0.



-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5

φ(0)

n=4

n=5

n=6

k=1

M-1

-e2δ(rh)

FIG. 5. The parameters M and e2��rh� are shown as a function
of ��rh� for spherically symmetric black hole solutions in
several space-time dimensions.

CONFORMALLY COUPLED SCALAR SOLITONS AND . . . PHYSICAL REVIEW D 72, 024017 (2005)
critical value of M increases very rapidly with rh, which
makes its accurate determination a difficult task for large
rh. In the k � �1 case, the condition H0�rh�> 0 implies
the existence of a minimal value of the event horizon
radius,

rh >
�n� 1��n� 3��1� ��2

h�

�1	 n�n� 2��1��2
h=8��

1=2
: (21)

We have also found that nontrivial configurations may
exist in the presence of a nonzero scalar potential. In this
case the scalar field equation (3) in a fixed AdS background
has two exact solutions,

� �

�
1	

r2

‘2

�
p
; V��� � c�s; (22)
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with p � �2� n�=4, c � ��n� 2�3=8n‘2, s � 2n=�n�
2� in one case, and p � �n=4, c � �n3=8‘2�n	 2�, s �
2�n	 2�=n in the other.

However, we have restricted our analysis to the particu-
lar form V��� � 1=2�2�n, which for n � 4 corresponds
to the case considered in [6]. These solutions share many
properties with the zero-potential case, being also indexed
by the initial value of the scalar field �i. The shape of the
solutions is similar to the � � 0 case and we again found
no nodes in the scalar function. In Fig. 1 we plotted a
typical n � 4 regular solution with � � 0:3. Similar solu-
tions exist also in the black hole case. In this context, we
have found that the black hole solution found in [6] corre-
sponds to a n � 4, k � �1 configuration with a particular
choice of ��;�h�.

As expected, the mass M of the solutions increases with
� while the maximal value of �i decreases. We will not
address here the question of the limiting solution for � �

0, which seems to be an involved problem and a different
metric parametrization appears to be necessary. Our pre-
liminary results indicate that for� � 0 the metric function
��ri� remains finite in this limit, while the value of M
diverges.
IV. ON THE STABILITY OF SOLUTIONS

A. Stability of the numerical solutions

Following the standard method, we consider spherically
symmetric, linear perturbations of our equilibrium solu-
tions, keeping the metric ansatz as in (5), but now the
functionsH, �, and� depend on t as well as r. The algebra
is simplest if we work in the transformed frame (see
Sec. II C), where we have a minimally coupled scalar field,
and, once the perturbation equations have been derived,
transform back to the frame with a conformally coupled
scalar field. The metric perturbations can be eliminated to
yield a single perturbation equation for

� � r�n�2�=2�1� �c�2��1=2��; (23)

where �� is the perturbation in the conformally coupled
scalar field. For periodic perturbations (���t; r� �
ei�t���r�, etc.), the perturbation equation takes the stan-
dard Schrödinger form

�2� � �
d2

dr2�
�	V�; (24)

where we have defined the ‘‘tortoise’’ coordinate r� by

dr�
dr

�
1

He�
: (25)

For regular solutions, r� has values in a finite interval
�0; r�1� for some r�1 <1, while for black holes, r� 2
��1; 0�. The perturbation potential V is given as follows
(we write the formula explicitly only for the vanishing self-
interaction potential case, for simplicity):
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V �
He2�

r2

�
k
2
�n� 2��n� 3� �

A2H

�n� 2�2�2 �
�r2
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2��cnr2

�n� 2�2
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�
	

4��cn��0r3

A�

�
k
2
�n� 2�3�n� 3�r2�02 	

��n� 2�2r4�02

A2�

�
; (26)
where � is given in (16) and A is given in (20).
As is often the case for AAdS solutions, care is needed in

the use of boundary conditions to ensure that there is a self-
adjoint operator in the perturbation equation (24) (see, for
example, the discussion in [10] for the Einstein-Yang-Mills
case). We consider black hole and soliton solutions sepa-
rately in this regard.
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First, for black hole solutions, it is convenient to change
the independent variable to y � �r� so that y 2 �0;1�. In
order to have a self-adjoint operator, we need to impose the
boundary condition � � 0 at y � 0, which corresponds to
r! 1. Second, for the regular soliton solutions, boundary
conditions need to be imposed at both r� � 0 and r� � r�1
as we are working on a finite interval. Suitable boundary
conditions are � � 0 at both the end points, namely, at the
origin and at infinity. In both these cases, it is straightfor-
ward to check that these boundary conditions are sufficient
to enable a self-adjoint operator to be constructed from the
differential operator in (24) using the standard techniques
found, for example, in section XIII:2 of [11].

Some typical perturbation potentials (26) are shown in
Figs. 7–10. We find a complicated behavior of the pertur-
bation potential depending on the values of the parameters
�, �0, and � and the number of space-time dimensions.
As r! 0, we have
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the event horizon �0 � 1:8.
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V �
�n� 4��n� 1�

2r2
	O�1�; (27)

so for n > 4 the potential diverges to infinity, like a stan-
dard central well potential with angular momentum (see
Fig. 8). The potential V can also be seen to vanish at the
black hole event horizon (provided A> 0 and �> 0
there), and, at infinity, the leading order behavior is

V �
r2n�n� 4�

4‘4
	O�1�; (28)

so for n > 4 the potential again diverges to infinity (see
Figs. 8 and 10). Turning on the self-interaction potential
V��� tends to increase the perturbation potential (Fig. 7),
as also observed in [5].

In a limited number of cases we find that the perturba-
tion potential (26) is positive everywhere (see, for example,
some of the plots in Fig. 10). In these cases, we can
immediately conclude that the corresponding solutions
are (linearly) stable, since we have a self-adjoint operator
in (24). However, for the majority of the solutions exam-
ined, the potential is not positive everywhere, and in these
cases we examine the zero mode solution of the perturba-
tion equation (24), namely, the time-independent solution
when �2 � 0 (see [3] for further details of the zero mode
method applied to scalar field perturbations). For all the
solutions we examined, the zero modes have no nodes
(zeros). As the operator in (24) is self-adjoint, we can
apply standard theorems (see, for example, section XIII:7
of [11], or [12]), which state that the number of nodes of
the zero mode equals the number of eigenvalues �2 of (24)
which are less than zero. Therefore there are no eigen-
modes which grow exponentially in time and the solutions
are linearly stable. Our conclusion that our numerical
solutions are stable is in accordance with previous work
[3–5], in which solutions with a scalar field having no
zeros were linearly stable.

B. Stability of the closed-form solutions

We can also study the stability of the exact, closed-form
solutions on pure AdS space, given by (22). In this case we
keep the background AdS metric fixed and perturb simply
the scalar field. The equation for the tortoise coordinate r�
(25) can be explicitly integrated to give x � r�=‘ �
tan�1�r=‘�, where x 2 �0; �=2�, and the perturbation equa-
tion takes the form (24), for periodic perturbations, with r�
replaced by x, and the perturbation potential is now

V � �
1

4
�n� 2�2csc2�x� �

1

2
�n� 2��n� 3�sec2�x�

� 4p�p� 1�; (29)

where 4p�p� 1� � �n� 2��n	 2�=4 for the first type of
solutions, and 4p�p� 1� � n�n	 4�=4 for the second
type of solutions. Since the perturbation potential is so
simple in this case, we use an analytic, variational method
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to study the stability. We define a functional

F ��� �
Z �=2

x�0

�
��

d2�

dx2
	V�2

�
dx

�

�
��

d�
dx

�
�=2

x�0
	

Z �=2

x�0

��
d�
dx

�
2
	V�2

�
dx;

(30)

where in the second line we have integrated by parts. If we
can find a test function �0 such that

Z �=2

x�0
�2

0dx (31)

is finite, the boundary term in (30) vanishes, and F ��0�<
0, then there must be at least one bound state solution of the
perturbation equation (24) with �2 < 0, rendering the so-
lutions unstable. Using �0�x� � sin�2x� as our test func-
tion, the integral (31) is finite, the required boundary term
does indeed vanish, and

F ��0� �

� 1
16 ��13n2 	 56n� 44�;
1
16 ��13n2 	 52n� 48�;

(32)

for the first and second type of exact solutions, respec-
tively. Both the quadratics above are negative for all n � 4,
so our exact, closed-form solutions are unstable. This
instability is perhaps a little surprising given the stability
of the numerical solutions; however this may be under-
stood as a result of the particular form of the (negative-)
scalar field potential. If we perturb the scalar field slightly,
there is no nearby solution of the form (22) for it to
become. The nearest numerical solution will require a
finite change in the scalar field at some value of r, and
this shows up as a linear instability. However, it might be
reasonable to expect that the scalar field would settle on a
stable, nontrivial solution rather than radiating away to
infinity.

V. CONCLUSIONS

In this paper we have studied the Einstein-scalar system
in various space-time dimensions, with a conformally
coupled scalar field and a negative cosmological constant.
We find both regular and black hole solutions, generalizing
the black hole solutions of [5].

Both types of solutions are shown to be linearly stable,
apart from some exact, discrete, closed-form solutions on
pure AdS, which are linearly unstable. As with previous
solutions [3,5], this stability can be readily understood in
terms of the Breitenlohner-Freedman bound [13], which, in
n dimensions, states that scalar fields in pure AdS are
stable if their mass squared satisfies the inequality [13]

m2
BF >

��n� 1�

2�n� 2�
; (33)

noting that �< 0 so the bound is for negative mass
squared. In our case, with zero self-interaction potential,
-7
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the ‘‘effective’’ mass is given by

�cR�r! 1� �
�n

2�n� 1�
: (34)

For all n � 3, it is the case that �cR�r! 1�>m2
BF,

implying the stability of our solutions.
There are various interesting applications of these solu-

tions. The soliton solutions may be of interest in the
gravitational collapse of scalar fields in AAdS. Critical
collapse of a conformally coupled scalar field has been
studied in flat space [14], but not, to date at least, in 3	 1
dimensions in AAdS. Soliton solutions of the type found in
this paper do not occur in flat space, so their presence in
AAdS may change the phenomenology of gravitational
collapse, since there are no longer just the end-point pos-
sibilities of empty space or a black hole. However, since
the solitons we have found here are stable, they cannot be
the critical solutions, unlike the situation for Einstein-
Yang-Mills solitons in asymptotically flat space [15].

It would also be of interest to calculate the mass and
action of these solutions, and to look for possible applica-
tions within the context of the AdS/conformal field theories
024017
correspondence. The thermodynamics of black holes with
a conformally coupled scalar field with a positive or zero
cosmological constant has already yielded some surprises
(see, for example, [16] for a review), prompting a detailed
study of the thermodynamics when the cosmological con-
stant is negative.

Finally, it would be interesting to extend the results
derived in [17] within the isolated horizon formalism, to
the more general case considered in this work.

We hope to return to these questions in a future
publication.
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