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Oscillatons formed by nonlinear gravity
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Oscillatons are solutions of the coupled Einstein-Klein-Gordon equations that are globally regular and
asymptotically flat. By means of a Legendre transformation we are able to visualize the behavior of the
corresponding objects in nonlinear gravity where the scalar field has been absorbed by means of the

conformal mapping.

DOI: 10.1103/PhysRevD.72.024004

I. INTRODUCTION

Nonlinear modifications of the Einstein-Hilbert action
have a long history [1] (for a discussion on recent issues see
[2,3], and references therein). They have been of interest
for a variety of reasons. For instance, it has been claimed,
that they could be good renormalizable models for quan-
tum gravity [4—6]. Also some nonlinear Lagrangians can
be chosen with the property that the field equations of the
metric are second order, these are the so-called Lovelock
actions [7-11], which arise from dimensional reduction
of the Euler characteristic. Also string theory predicts an
effective gravitational action containing the usual Einstein
term plus higher-order perturbative corrections in the cur-
vature [12,13]. When the Lagrangian is an exact function
of the Ricci scalar, a mapping exists to the usual Hilbert-
Einstein Lagrangian with a specific self-interacting real
scalar field; the equations of motion of the latter being
the so-called Einstein-Klein-Gordon (EKG) system. This
idea has been used, in different manners to relate well-
known scalar inflationary potentials with pure-gravity
higher-order curvature scalar Lagrangians [14-19].

On the other hand, the EKG system has been studied in
many situations. In particular, it has been shown that there
are spherically symmetric solutions that are globally regu-
lar and asymptotically flat; these solutions are called os-
cillatons [20-27] .

Our aim in this paper is to investigate the mapping of
oscillatons to nonlinear gravity (NLG) theories. We shall
search for the corresponding objects in these theories, and
whether we can get interesting information relating the
results in the NLG theory and those in the EKG system.

We will limit our models to specific scalar potentials for
which NLG theories can be constructed, and we will study
the “mapped” objects that may arise in them. It is not
argued that these gravity models would explain all the
range of gravity experiments [29]. Probably, as in string

*Electronic address: octavio@fisica.ugto.mx
Electronic address: lurena@fisica.ugto.mx
*Electronic address: fs@thp.uni-koeln.de

1550-7998/2005/72(2)/024004(6)$23.00

024004-1

PACS numbers: 04.40.—b, 04.50.+h

theory [12,13,30], higher-order perturbative corrections to
the Einstein-Hilbert action depending also on combina-
tions of the Riemann and Ricci tensors should also be
present in a more realistic theory, and the models consid-
ered here would be, possibly, a limit of these theories.

To set the stage for our analysis, we begin by recalling
some properties of the NLG and EKG systems. For the
former, we write

L= J=gfR), (M

where f is an arbitrary function of the scalar curvature R.
The field equations derived from (1) are

FRR =3 8, R+ (8,00 = Y, 9, )f(R) =0,
2

in which f/(R) = (df/dR) # 0.

Following a well-known procedure [14,15,31], we now
establish the connection between this NLG theory and the
EKG formalism. We first define the new variables

Zur = [ (R)g 3

where the conformal transformation between the metrics is
invertible and then well defined. Inserting this into Eq. (2),
we directly obtain the EKG equations

1 ~

e 2/3)kg® — f'(R),

Gur =R, — 5g,wR = k0T (D), (4a)
- av

Ob - —= 4b

dd 0 (4b)

where

1
T,,(®)=D ,® , — ng,[fl)"’(b’g +2vV(®)],  (5)

is the energy-momentum tensor of the scalar field ® en-
dowed with a scalar field potential V(®). The scalar field
potential is related to f and R through

1

V((I)) = 2K0f/2

(Rf' = /). (6)
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Also, kg = 87G (we use units in which i = ¢ =1, and
then the Plank mass is mp = GY2) and [ =
(1//=8)9,(J/—g§""9,) is the covariant d’Alembertian
operator. Notice that all metric quantities in the EKG
system will be denoted with a tilde. The corresponding
Lagrangian is

L=J=g[R-®°®, —2V(D)], )

where we see that the scalar field is minimally coupled to
the metric tensor g,

As a final point in this section, we would like to mention
the possible vacuum solutions of Eqs. (2) known so far. It
has been shown in [32] that, provided f(R) = R + a,R* +
-++ [33], if a, > 0 then the only static spherically sym-
metric and asymptotically flat solution with a regular hori-
zon is the Schwarzschild solution. As it can be seen, the
statement above is not as strong as the Birkhoff theorem
that arises in general relativity, that a spherically symmet-
ric gravitational field in empty space must be static, with a
metric given by the Schwarzschild one [34,35].

We should emphasize that, as we shall show below, the
transformation (3) will allow us to map known EKG-
oscillaton solutions onto a full NLG theory; that is, the
transformation will not be performed on the perturbative
expansion of a NLG theory.

Although we will exhibit the corresponding perturbative
expansion of the resulting NLG Lagrangian, it is not the
aim of this work to find solutions to any NLG perturbative
expansion. Nevertheless, the search for oscillaton kind of
solutions to a NLG theory could be of interest for the case
of other Lagrangians that, in particular, are expressed
through a (well defined) perturbative expansion.

Even though we have shown the formal equivalence
between two conformally related frames, it should be
reminded that this does not imply a physical equivalence
too. We will make use of the former to find solutions to
Eq. (2), and will comment on the latter equivalence in the
last sections. However, the present manuscript should not
be seen as a discussion on the trueness of one particular
frame, but rather as another example that may help us to
understand some of the (yet hidden) particularities of the
NLG frame.

The sections are organized as follows. In Sec. II, we
shall present the solutions to the EKG system and many of
their interesting features. In Sec. III, we find the corre-
sponding NLG theory and exhibit a way to compare the
mass-radius relation of the objects formed in both systems.
Section IV is devoted to final remarks.

I1. OSCILLATONS: NUMERICAL SOLUTIONS OF
THE EKG SYSTEM

Regular and asymptotically flat solutions of the EKG
equations (4) are called oscillatons, and then we expect
them to be related to the vacuum solutions of the field
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equations (2). As an example, we will focus our attention in
the simplest oscillaton, which arises from a quadratic
scalar potential of the form V(®) = (1/2)m3 ®?, in the
spherically symmetric case. Using the polar-areal slicing,
we write the line element as

ds> = —a*(f, PdP + a*(f, Hdi* + PdQ,  (8)

where @(7, 7) and a(7, 7) are the metric functions that
appear on the left hand side of Eq. (4a).

It is not possible to find analytical solutions to the EKG
system, but Egs. (4) can be solved numerically instead. In
order to find well-behaved solutions, the numerical solu-
tion should be fully time dependent. The most popular
solution is due to Seidel and Suen [20,21], that used
Fourier expansions of the functions involved in the EKG
equations. The method has been refined in [22,23] to
facilitate the numerical solution; and it is the latter which
is briefly described next to construct the oscillaton
solutions.

The Fourier series of the fields are of the form

V8TGD(T, 7) = i ¢ () cos(jwi), (9a)
=

@EH =3 & Peoson,  Ob)
=0

267 =Y aPeoson, (9
=

where w is the fundamental angular frequency of the
system.

Imposing boundary conditions of regularity at the origin
and of asymptotic flatness, the EKG system becomes an
eigenvalue problem. For each value of, say, ¢,(0), there is
a set of eigenvalues of w and & ;(0) for which the boundary
conditions are fulfilled (for more details see [23]). The
Fourier series have to be truncated by hand, and just a
few of the Fourier coefficients are taken into account.
However, all the solutions show convergence: the higher
the Fourier mode, the less it contributes to the series.

Typical profiles of the Fourier modes of the radial metric
field g, = @ are shown in Fig. 1, up to j = 12, which
corresponds to an oscillaton with total mass M, =
0.571(m3,/mg) (here ¢,(0) = 24/2). It should be noticed
that the time-dependent Fourier terms are confined, and
that outside a typical radius, say 7o5 (the radius within
which 95% of the total mass is contained in), the metric
matches the Schwarzschild solution,

@2 F>Fos) =a 2L, F>Fos) =1~ (10)

2GM s
—
We should add here that the mass of an oscillaton is finite
due to the fact that the scalar field vanishes exponentially
for 7 > Fos.
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FIG. 1. The Fourier coefficients corresponding to the radial

metric function g,, = &> according to expansion (9c), for an
oscillaton with total mass M = 0.571(m3,/mg) and for which
&1(0) = 24/2; also shown is its 95% radius ros = 9.34mg" (For
oscillatons, mg becomes the natural unit of distance). The
Fourier series was truncated at j = 12, and the profiles were
appropriately scaled to show them all in the same plot. The
convergence of the solution is manifest.

A curious point is that, by construction of the solution, ®
has only odd multiples of the fundamental angular fre-
quency w, and the metric functions & and a have the
even ones. This seems to indicate that the oscillaton in
Fig. 1 and alike are the simplest configurations (the less
massive) one can construct for the EKG system: the in-
clusion of all cosine coefficients or of sine terms would
result in more massive oscillatons [36].

An important issue of oscillatons that has not been fully
tackled is that of their stability. The numerical experience
so far points out that there exist intrinsically stable (S-
branch) and unstable (U-branch) oscillatons [24]; cf. the
more detailed description in catastrophe language in
[37,38]. The U-branch solutions migrate away from the
equilibrium solution under small perturbations. Stable os-
cillatons, on the other hand, do not migrate if perturbed a
little. Moreover, it seems that they play the role of final
states an arbitrary scalar field configuration evolves to-
wards to. However, there is not a definite proof for the
stability of oscillatons, but it seems that, if oscillatons are
not fully stable, they are long lived at least [20,24,26].

III. THE MASS-RADIUS RELATION IN THE NLG
AND EKG SYSTEMS

Now, we are to write explicitly the connection between
the NLG and the EKG systems for the particular example
of a quadratic oscillaton. Equation (6) is usually taken as a
differential equation for f(R) to be solved in terms of the
curvature R. As can be seen from Eq. (3), one obtains a
highly nonlinear differential equation, which is very diffi-
cult to solve.
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This can be ameliorated if we derive Eq. (6) once again
with respect to R, which yields

1 Lv R
[2/3)k, dd 2k,

The obvious and trivial solution, which appears for all
cases, is f"(R) = 0, which means f(R) = AR + B, with
A and B arbitrary constants, and also that ® = const. [39].

It turns out that, in the general case, f and R can be given
in parametric form in terms of ® by means of Egs. (3), (6),
and (11). To simplify the calculations, we define a new

dimensionless variable by In(x) = +/(2/3)kq®. Thus,

2K0f"[2f'v + } =0. (11

f= 2K0x2[V(x) + xd‘;ix)} (12a)
R= 4K0x[V(x) + % d‘;ix)} (12b)

In this form, it is easily seen that the Liouville theory, for
which V(®) = V,e*®, where V, and A are constants, is
one of the scalar-tensor cases that can be solved exactly
[14,15,31]. However, it seems that the Liouville theory
does not provide regular nor asymptotically flat solutions
of the EKG system; see for instance [40,41].

On the other hand, for the quadratic case V(®P) =
(1/2)m3,®2, Eqgs. (12) are rewritten as [31]

f= %méxz In(x)[In(x) + 2], (13a)

R = 3m3xIn(x)[In(x) + 1]. (13b)

A Taylor expansion of Egs. (13) around f(0) =0 (x = 1)
gives
1 1

R)=R+—R>———R3+ ORY. 14
f(R) 6m? 1813 (R*) (14)

Hence, a quadratic oscillaton corresponds to an R-regular
NLG theory.

It has been argued before that Lagrangians of the form
(14) accomplish some desirable features [43]. For instance,
the presence of an R term ensures that the EKG exists near
Minkowski spacetime, and the existence of an a,R? term
ensures regularity of the conformal transformation to flat
space; moreover, if a, > 0 then the Minkowski space is a
stable ground state solution. It also seems that curvature
corrections at all orders are essential in order to regulate
gravity [30].

It should be remarked that NLG theories with character-
istics as mentioned in the above paragraph correspond to a
very particular class of scalar potentials and probably are a
limit of a more general theory [12]. From Egs. (13), it can
be seen that Lagrangians of the form (14) correspond to the
case in which V(0) = (dV/d®)(0) = 0, i.e., the scalar
potential V(®) has a critical point at ® = 0. Explicitly,
the first Taylor coefficients for this type of potentials,
calculated from Egs. (12), are
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ag = O, a, = Xlx:1 = 1,
11 1
a === =
P 2R | 6V0)

1 R 1 1 V")

a3 = — ¢ 53 =T ol ey )
6 R° | =1 18[V"(0)] VoK, V"(0)

where " = % and ' = %. Higher Fourier terms depend on

higher derivatives of the scalar potential in a complicated
way, so that we do not show them here. However, it is
easily seen that a, > 0 only if the scalar field is also
massive, i.e., mfp = V"(0) > 0.

What else can we say of the NLG theory in (13)? First,
the line element in the NLG theory is spherically symmet-
ric and fully time dependent, properties preserved by the
conformal transformation (3). The metric fields have
Fourier expansions of the form

a? = e VW IPg2 = Z a(F) cos(jwi), (15a)
j=0
a? = e VEAIPG2 =N 4 (F) cos(jwd), (15b)

Jj=0

where, in contrast to Egs. (9) of an EKG oscillaton, all the
Fourier coefficients, odd and even, are nontrivial. Here, it is
the scalar field ® which provides the odd coefficients.
Second, the exterior form for both metrics g and g is the
Schwarzschild solution (10). In consequence, the ADM
mass is the same in both the NLG and the EKG.
Therefore, this theory permits the existence of regular
objects made of pure gravity, which are, in addition, vac-
uum solutions. Hence, there may be in some cases a
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complementary second part of the theorem mentioned
before [32]. We have shown here that there is a nonlinear
Lagrangian of the form f(R) = R+ a,R> + - -+, with
a, >0, that has two type of asymptotically flat vacuum
solutions: Schwarzschild (static), and that corresponding to
oscillatons (time dependent). It would be interesting to
investigate whether the above statement is true for any
massive real scalar field, since it has not been proved
completely that the EKG equations have regular stable
solutions only in the case mfp > 0; though this seems to
be the case, see for instance [44].

We observe that the form of all of the coefficients in the
Taylor expansion of the exact result (13) is determinant for
the existence of oscillaton solutions; had we started with
the approximate expansion (14), the results could have in
general differed from the results obtained in here, even
approximately.

On the other hand, it should be noticed that the simplest
solution to Egs. (2) is the metric g, whose coefficients are
expanded in a Fourier series of the form (15). As we said
before, this metric is spherically symmetric but is not
written in its so-called standard form. An observer in the
NLG frame would, however, notice that the coordinates 7, 7
are its usual Schwarzschild coordinates far from 7 = 0.
This would indicate her/him that there is an exterior (static)
vacuum solution and an inferior (time dependent) one.

This observer would also find more handy to continue
using (7, 7) as her/his metric coordinates, and then to pre-
serve g,,, in its simplest form. Thinking of this possibility,
we show a comparison between the radial metric functions
in the EKG and NLG cases in Fig. 2. We also plot the
corresponding M vs 7., graphs for both cases, where 7,
is the position of the maximum of the radial metric func-
tion (15b) at 7 = 0. There is a maximum mass for the NLG
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(Left) Comparison of the radial metric function obtained from the EKG and the NLG cases for the same case shown in

Fig. 1. It can be seen that the NLG solution is asymptotically flat and coincides with the EKG solution for 7 — oo; but it is conformally
flat at 7 = 0. (Right) M vs 7.« plots for the EKG and NLG solutions, the configuration corresponding to the leftmost (rightmost) point
of the plot has ,/ky®(0,0) = 0.8 (0.01). The NLG oscillatons are less compact that their EKG-counterparts, so that they are

distinguishable in principle, see text for details.
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case, which could be interpreted as an indication of the
existence of Stable and Unstable branches, as in the case of
the EKG theory.

IV. FINAL REMARKS

If the NLG theory in (13) were the fundamental gravity
theory, there would be many dark pure-gravity objects,
corresponding to oscillatons, in the Universe. For a given
mass, the object in the NLG theory is bigger than its EKG
counter part (Fig. 2), so that one could, in principle,
discriminate between them. Ultimately, by these means
we could determine which system, the NLG or the EKG,
is being measured.

On the other hand, we could ask at this point: how can
these objects be formed from the NLG point of view? As
we mentioned before, in the EKG, a self-gravitating scalar
field evolves and settle-down onto an S oscillaton. Because
of the spherical symmetry of the system, the only mecha-
nism of relaxation permitted is the emission of scalar
radiation (scalar field matter). This process has been
dubbed gravitational cooling [21,24,25,45], which has
been shown to be a very efficient mechanism for the
relaxation of self-gravitating scalar fields.

On the other hand, any initial scalar field configuration
in the EKG frame can be conformally transformed into a
pure-gravity configuration in the NLG. Moreover, also the
complete evolution of the EKG system can be conformally
transformed and followed in the NLG. As the system is
spherically symmetric also in the NLG, gravitational ra-
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diation is forbidden, and so there should exist a mechanism
for the relaxation which would be the “‘conformal’’ partner
of the gravitational cooling.

The only explanation we foresee is that, in the higher
derivative NLG frame, gravity must be allowed to have a
spin-0 component, which would provide the channel for
gravitational cooling. In fact, the existence of scalar gravi-
tational waves has been studied before, together with the
idea that actual interferometers built for the detection of
gravitational waves can also detect a scalar component of
gravitational radiation [46,47].

It would be interesting to determine the scalar gravita-
tional waves emitted for the system discussed here, for
which one would expect that the nonlinear terms would, in
a certain manner, take the role of the scalar field. The
procedure would be the full numerical evolution of
Egs. (2). For this, it would also help the formal equivalence
between the NLG and the EKG, as the numerical evolution
of the metric fields & and a can be mapped directly from
that of @&, a and ®. These calculations are in progress and
will be reported elsewhere.
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