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Do large-scale inhomogeneities explain away dark energy?
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Recently, new arguments [E. Barausse, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063537
(2005).][E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto, hep-th/0503117 [Phys. Rev. Lett. (to be
published)].] for how corrections from super-Hubble modes can explain the present-day acceleration of
the universe have appeared in the literature. However, in this paper, we argue that, to second order in
spatial gradients, these corrections only amount to a renormalization of local spatial curvature, and thus
cannot account for the negative deceleration. Moreover, cosmological observations already put severe
bounds on such corrections, at the level of a few percent, while in the context of inflationary models, these
corrections are typically limited to �10�5. Currently there is no general constraint on the possible
correction from higher order gradient terms, but we argue that such corrections are even more constrained
in the context of inflationary models.
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I. INTRODUCTION

The potential impact of large-scale perturbations on
local cosmology has been a subject of interest in different
contexts during the past decade [1]. In the standard theory
of cosmological perturbations, it is always assumed that
perturbations do not have any impact on the evolution of
background cosmology. However, there is no a priori
reason for neglecting the back-reaction from perturbations,
particularly since Einstein’s equations are highly nonlin-
ear. Although it is easy to see that corrections do exist, an
important question is whether these corrections, which are
of second order or higher in perturbations, will ever be-
come significant and if they do, what is the right way to
distinguish the real physical effects from the gauge ambi-
guities in the calculations. The key difficulty is that if the
perturbative effects are misinterpreted, one may overlook
physical bounds already existing on such effects because
the physical bounds are written in terms of variables not
manifestly connected with the perturbations.

Recently, [12,13] argued that corrections due to the
interplay between IR modes and UV modes may lead to
an apparent late time acceleration of the universe, with no
need for dark energy or a cosmological constant. The
correction term that is claimed to determine the apparent
acceleration is of the form ’r2’, where ’ is the gravita-
tional potential. It is argued that this correction can have a
large variance and its statistical nature may cause a nega-
tive value for the observed deceleration parameter.

Even without computation, one might guess that there is
a problem with this correction becoming significant from a
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phenomenological point of view. For scale-invariant fluc-
tuations of ’, the variance in ’r2’ scales as ��2, where �
is the physical length scale. Therefore, if this correction is
indeed �1 on the present-day Hubble scale to explain
away dark energy, it will be � 1 on smaller scales, which
undermines the incredible success of linear structure for-
mation theory in the low-redshift universe (see e.g., [14]).

In this paper, we investigate a related problem. In the
following sections we will demonstrate that the perturba-
tive corrections of the form ’r2’ cannot lead to a negative
deceleration parameter (at least not in the manner sug-
gested in [12,13]), because this effect stems from a renor-
malization of the local spatial curvature [15]. We then
argue how current cosmological observations put severe
constraints on the magnitude of these corrections. Finally,
we discuss the loopholes (e.g., our neglect of higher than
second order gradients) in our argument before concluding.
II. CORRECTIONS TO DECELERATION
PARAMETER DUE TO SPATIAL CURVATURE

The metric of a homogeneous and isotropic universe
(Friedmann-Robertson-Walker; FRW metric) can be gen-
erally described as

ds2 � �dt2 � a2�t�
�
1�

1

4
Kr2

�
�2
�ijdx

idxj; (1)

where a is the scale factor and K is the spatial curvature. It
is customary to normalize K such that it takes the values of
0, �1, and �1 corresponding, respectively, to flat, closed,
and open universes [16], but in general it could take any
value. Einstein’s equations for the above metric reduce to
the Friedmann equations
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H2 �
K

a2
�

8�G
3

�; (2)

�a
a
� �

4�G
3

��� 3p�; (3)

where dot denotes time derivative and H � _a=a, is the
Hubble constant, while � and p are, respectively, the total
energy density and pressure of matter components in the
universe. The deceleration parameter q which describes the
deceleration of the scale factor a�t� is defined as

q � �
�a

aH2 : (4)

In a matter dominated universe, where p � 0, Eqs. (2) and
(3) imply that

q �
1

2

�
1�

K

a2H2

�
: (5)
III. RENORMALIZATION OF THE LOCAL
CURVATURE DUE TO LARGE-SCALE

INHOMOGENEITIES

In this section we calculate the corrections to the local
spatial curvature, K, in a flat universe due to large-scale
inhomogeneities. To obtain these corrections, we will start
by expanding the metric to second order in perturbations in
the synchronous gauge, the same metric that Barausse et al.
use in [12], and then express all perturbative corrections in
terms of the peculiar gravitational potential ’, as they did,
while dropping all the terms of order higher than r2’ in
the gradient expansion (these are subdominant in the IR—
i.e., long wavelength—limit):

ds2 � �a2d�2 � a2�ijdxidxj; (6)
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9
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’;i’;j �

1

3
’;k’;k�ij

�
: (7)

We can also write the Taylor expansion of ’ around its
value at the location of a particular observer. Assuming that
’ is isotropic around this location [17], we have

’ ’ ’0 �
1

6
r2’r2: (8)

Note that this constant ’0 corresponds to the superhorizon
modes of the potential fluctuation. As we will see, it is the
interaction of these superhorizon modes with r2’ which
leads to a modification of the deceleration. Equation (8)
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further simplifies the �ij in the metric of Eq. (6) into

�ij �
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We now note that we can renormalize the scale factor
a��� to reproduce the metric in Eq. (1). This can be done
by taking

~a��� � a���
�
1�

10

3
’0 �

50

9
’2

0 �
�2

9
r2’

�
1=2

; (10)

leading to the following form for the metric

ds2 � �dt2 � ~a2���
�
1�

5

9
r2’r2

�
�ijdxidxj; (11)

where the ’0r
2’ terms cancel out and we have ignored

the higher order terms. For small values of the curvature
K, the above metric is equivalent to the metric of Eq. (1),
where the curvature term is now

K �
10

9
r2’�O
’2

0r
2’; �r2’�2�: (12)
IV. IMPACT OF LARGE-SCALE
INHOMOGENEITIES ON THE DECELERATION

PARAMETER

We now compute the correction to the deceleration
parameter q due to the renormalization of the local spatial
curvature K. Substituting from Eq. (12) into Eq. (5), we
find

q �
1

2

�
1�

10

9

r2’
_~a2

�
: (13)

Using Eq. (10), we find

_~a 2 � _a2
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(14)

Substituting Eq. (14) into Eq. (13), we end up with correc-
tions to the deceleration parameter

q �
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2
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2’; �r2’�2� (15)

(neglecting derivatives larger than second order).
Notice that the corrections to q (in particular the third

term including the coefficient), are the exact same correc-
tions that [12,13] argue have statistical nature and could
possibly be the reason for the apparent current acceleration
of the universe. However, our result implies that this
correction arises due to the renormalization of the local
spatial curvature, which in nature can never lead to an
acceleration of the universe (Note that as long as energy
density is positive semi-definite, 1�K=�aH�2 � 0).
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Furthermore, Wilkinson Microwave Anisotropy Probe [18]
constraints on �K (based on the location of cosmic mi-
crowave background Doppler peaks) lead to a bound on the
magnitude of these corrections:

4q �
1

2
�K �

K

2 _~a2
< 0:02: (16)

An even more severe constraint on the magnitude of
these corrections is obtained in the context of inflationary
models, which predict near scale-invariant power spectra
of inhomogeneities. We notice that matter overdensity in a
flat universe on large scales is in fact equal to �K.
Therefore, we find

h�q2i �
1

4
�2

K �
1

4
�2

m ’ 10�10 on Hubble scale, (17)

where the amplitude of matter overdensities for a scale-
invariant power spectrum, �m � 10�5, is observed in a
host of cosmological observations (see e.g., [18]).
V. DISCUSSION

One deficiency of our argument is that we neglect higher
order spatial gradients [19]. Unlike the second-order gra-
dients, which in the long wavelength limit correspond to
the local spatial curvature, there is no property of the
homogeneous universe which can be (without averaging)
associated with higher order spatial gradients of the metric
perturbations. Hence, in principle, there may be a way to
nonperturbatively arrange a large averaged correction to
�� 3p without disturbing K significantly [20].

In other words, if we integrate out UV degrees of free-
dom except modes with wave vector of order H0, the
renormalization to �� 3p may be significant without sig-
nificantly perturbing K [29]. Note that one need not
integrate out IR degrees of freedom because approximate
homogeneity and isotropy on cosmological scales of our
Hubble patch is consistent with all observations. Of course,
if the universe is extremely inhomogeneous outside of our
horizon, we must also integrate out IR modes to reduce the
approximate degree of freedom to �, p, and K [30].
Furthermore, a dynamical IR cutoff always exists due to
the existence of a Hubble horizon. Despite this caveat, one
unequivocal point of this paper is that this effect of re-
normalizing �� 3p without disturbing K must occur
through a pathologically nonuniformly convergent series
or nonperturbative behavior (e.g., without resorting to
derivative or small potential expansion) since perturba-
tively, the second gradient order term contributes to the
spatial curvature which by itself cannot account for the
acceleration of the universe (and is severely constrained
observationally).

To reemphasize the need for nonperturbative corrections
to have a possibility at explaining the acceleration of the
universe, we can estimate the observational bounds on
higher gradient order terms (assuming derivative expan-
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sions to be valid) in the context of inflationary models with
near scale-invariant power spectra. For scale-invariant per-
turbations in ’, higher order corrections in the gradient
expansion take the form

�nq� ’r2n’ / ��2n; (18)

where � is the physical scale at which �nq is observed.
However, fluctuations of q � 0:5�= ��c / �=H2

0 are well
measured at sub-Hubble scales of say �50 Mpc (the scale
of galaxy surveys) [31]

�nqj50 Mpc < �totqj50 Mpc �
1

2
�mj50 Mpc � 0:1 (19)

where �m � ��m=�m is the matter density fluctuation.
Therefore, on Hubble scales (� � H�1 � 5000 Mpc) we
find

�nqjH�1 �

�
H�1

50Mpc

�
�2n

�nqj50 Mpc &10�5�4�n�1�; (20)

and thus, at least to this order of approximation, the cor-
rections due to higher order terms are even more con-
strained. Note that averaging procedure will generically
give the same order of magnitude as long as the process is
perturbative. Hence, the nonlinear corrections appear to
have a chance of explaining the acceleration of the uni-
verse only if nonperturbative (or pathological) effects take
place.

VI. CONCLUSION

We computed the corrections to the local spatial curva-
ture due to large-scale perturbations (up to second deriva-
tive expansion) and showed that they are the same
corrections that [12,13] suggest may lead to the accelera-
tion of the universe (as far as second derivative corrections
are concerned). We conclude that as attractive as it may
seem to have inhomogeneities resolve the dark energy
problem, unfortunately, this term is insufficient due to the
fact that spatial curvature can never lead to an acceleration
of the universe (with energy density positive semi-
definite). Furthermore, there are already severe bounds
on this correction, implied from various cosmological ob-
servations, which indicate that this not only cannot serve as
an alternative to the dark energy but also cannot change the
value of the observed deceleration parameter significantly.
Because our arguments are based on expanding the metric
to second perturbative order in inhomogeneities and re-
stricting to second order in derivative expansion, one way
to evade these arguments is through nonperturbative
effects.
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