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Weak lensing analysis in three dimensions
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We present a comprehensive full-sky 3-dimensional analysis of the weak lensing fields and their
corresponding power spectra. Using the formalism of spin-weight spherical harmonics and spherical
Bessel functions, we relate the two-point statistics of the harmonic expansion coefficients of the weak
lensing shear and convergence to the power spectrum of the matter density perturbations, and derive
small-angle limits. Such a study is relevant in view of the next generation of large-scale weak lensing
surveys which will provide distance information about the sources through photometric redshifts. This
opens up the possibility of accurate cosmological parameter estimation via weak lensing, with an
emphasis on the equation of state of dark energy.
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I. INTRODUCTION

Like the cosmic microwave background (CMB) a de-
cade ago, the study of gravitational weak lensing on a
cosmic scale is now entering a promised golden age. As
with the CMB, it is well understood theoretically [1,2], it
has now been detected (see e.g. [3–8]) and ambitious
experimental projects are under way. The uniqueness and
thus the appeal of weak lensing lies in its clean and direct
sensitivity to the total mass distribution of the Universe.
Indeed, it arises from the deflection of light by the gravi-
tational potential of the matter along the photon path,
regardless of the precise nature or state of the intervening
matter. With weak lensing one can hope to measure for the
first time the 3D matter power spectrum over a wide range
of scales, in principle independently of any model for
evolution. It thus provides complementary information to
that rendered by the CMB alone or other lower redshift
cosmological probes. The CMB does provide the cleanest
possible window into the physics of the early Universe and
its parameters [9,10], but lacks strong sensitivity to the
Universe’s subsequent evolution. Large-scale galaxy sur-
veys are hindered by the presence of nonlinearities which
affect the luminous baryonic matter on small scales and
have to rely on assumptions about (or deductions of) the
relationship between luminous matter and mass distribu-
tion on large scales [11–13]. Supernova studies are af-
flicted by complicated systematics [14]. Hence, weak
lensing can considerably help in the determination of
poorly constrained parameters linked to the matter evolu-
tion and the moderate-redshift evolution of the redshift-
distance relation. The most significant parameter is the
equation of state of dark energy, w � p=�c2, and its
time evolution. As is now generally accepted, there is
strong evidence from a variety of cosmological probes
like supernovae [15] and the CMB [10] that a dark energy
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component makes up about 70% of the total energy density
budget of our Universe but its precise nature and state
remain a mystery. Answers are unlikely to come from
particle physics and our hopes lie in cosmology.

A variety of deep, large sky weak lensing surveys are
either ongoing, scheduled or planned in the foreseeable
future (Deep Lens Survey [16], NOAO Deep Survey [17],
CFHT Legacy Survey [18], DarkCAM on VISTA,
Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS) [19], Large Synoptic Survey
Telescope [20] and SNAP [21]). If one can rigorously
account for the various systematics (such as the seeing,
calibration, anisotropic point spread functions, redshift
uncertainties, etc.) likely to permeate the data, such sur-
veys can offer if not definite answers at least fundamental
clues on the nature of the dark energy, which lensing
surveys are beginning to constrain w [22]. In combination
with other data sets, weak lensing surveys data can further
overcome intrinsic degeneracies characteristic of each of
the cosmological probes and strengthen the constraints on
our cosmological model. In particular, predictive studies
have been done which explore the possible improvements
for parameter estimation of considering the three dimen-
sionality of weak lensing, where photometric redshifts are
used to provide estimates in three dimensions of the weak
lensing shear field. As shown by Ishak [23], cosmic com-
plementarity and 3D lensing tomography bring uncertain-
ties on the equation of state to the level of a few percent.
The use of full distance information on weak lensing
surveys, enabling a full 3D analysis rather than tomogra-
phy, can further reduce statistical errors on cosmological
parameters [24].

Besides reducing statistical errors, there are other rea-
sons for wishing to have photometric redshifts: weak lens-
ing studies have to deal with systematic errors which could
dominate the error budget as surveys improve (see [24] and
references therein). The most important of these is the
redshift distribution of the sources but correlated source
galaxy intrinsic ellipticities (to date still not well known)
and the effect of source clustering are likely to become a
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considerable nuisance in the future. A reasonably accurate
knowledge of the redshift of the sources can help in under-
standing, quantifying and ultimately removing such sys-
tematics. Furthermore, since acquisition of photometric
redshifts requires several images of each galaxy in differ-
ent bands, there is scope for better shape measurement,
independent lensing studies, and so on.

In the past, most of the weak lensing analysis was
essentially limited to 2D approaches due to the lack of,
or imprecise, photometric redshift information about indi-
vidual galaxies. Moreover, such studies were usually ap-
plied to small patches of the sky necessarily involving a
flat-sky approximation (see e.g. [4,7,25,26] for an applica-
tion to data). A useful exception to this early trend is the
theoretical work by Stebbins [27] who explored the 2D
curved sky by means of the tensor spherical harmonics
formalism. But over the last few years or so, with the
arrival of surveys with more accurate photometric redshift
information and the prospect of them reaching wider areas
of the sky, interest has steadily grown in exploring the
inherently full-sky 3D information contained in the lensing
observables (see e.g. [28–30]). The way of dealing with
any source redshift information has thus evolved over the
years from basically a black and white picture to a ‘‘fabu-
lous technicolor‘‘ approach. Originally it was used as a
way of determining the redshift distribution of the sources
only. It then evolved to a so-called tomographic analysis,
where the sources were divided up in slices at different
redshifts and a 2D analysis was then performed on each
one of the slices. This can be useful when trying to detect
clusters of galaxies [30–33]. As shown by Hu [34] at a
statistical level such method also presents certain advan-
tages depending on the parameters one is interested in
retrieving. For instance, for the amplitude of the matter
power spectrum there can be significant gains when a
source population is split into two, but little is gained by
further finer subdivisions. For w the gains are much larger
as the 2D analysis constraints are weak. It is worth noting
here that other 2D routes have been explored in pursuit of
cosmologically sensitive weak lensing estimators such as
the study of higher-order statistics (for bispectrum detec-
tions see [35,36]) but if one wants to place strong con-
straints on w a 3D study is compulsory. Several theoretical
studies [37– 40] investigated how the lensing equations can
be inverted to extract the 3D gravitational potential di-
rectly, thus offering the possibility of reconstruction of
the 3D mass density field from weak lensing data. Only
recently in Heavens [24], was a truly 3D spectral statistical
analysis on the full sky developed, in which the individual
source redshifts were taken into consideration per se. In
there, the attention was mainly focused upon understand-
ing the amount of extra information on the cosmological
parameters that can be gleaned from a 3D shear map, rather
than on establishing a framework for 3D weak lensing
studies. Motivated by the previous theoretical considera-
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tions and the upcoming experimental prospects, it is timely
to develop in detail a description of the weak lensing
observables on the full three-dimensional sky.

A full-sky 3D study of the weak lensing observables
needs to combine at its root both the 3D weak lensing
characteristics and the full-sky formalism. The weak lens-
ing effect can be observed as a local modification of the
surface number density of background galaxies (the mag-
nification) and a distortion of their shape (the shear). As
has been pointed out repeatedly before, the weak shear
components present striking similarities with the Stokes
parameters Q and U describing the linear polarization of
the CMB light, the major difference being its additional
radial dependence. Like them, they are not invariant under
a rotation of the reference frame used to describe them but
rather transform as rank-2 tensors. One can then legiti-
mately extend to the third radial dimension past work done
for the full-sky polarization of the CMB [41–45] and adapt
it to the weak lensing analysis. In this work, we develop in
more detail Heavens’ original 3D full-sky analysis [24]
weaving into our approach both the CMB polarization
formalism and past weak lensing theoretical 2D studies
[25–27]. We use a spectral decomposition as it allows one
to restrict the analysis to, for example, the linear or mildly
nonlinear regime and rely on the spin-weighted formalism,
originally developed by Newman and Penrose in the
1960s [46].

This paper is organized as follows. In Sec. II, we review
the main results of the theory of gravitational weak lensing
which we generalize to 3 dimensions so that the relevant
theoretical expressions depend explicitly on the radial
distance from us. In Sec. II B we start by presenting the
weak lensing theoretical expressions in the familiar tenso-
rial formalism, both in the full-sky and in the flat-sky
approximations. In Sec. II C we introduce an alternative
differential formalism we name the edth formalism, which
encompasses the full- and the flat-sky geometries. Such a
mathematical apparatus reveals itself to be extremely con-
venient when working on the full sky and has been exten-
sively used in studies of the CMB polarization but which
we develop here for 3D weak lensing fields. In Sec. III, we
spectrally decompose in the 3D full-sky the (spin-weight 2)
weak lensing shear and (scalar) convergence fields in terms
of spin-weighted spherical harmonics and Bessel func-
tions. We derive their expansion coefficients in function
of the gravitational potential coefficients by making full
use of the edth formalism. In Secs. IVA and IV B, we
calculate the weak lensing 3D power spectra in the full sky
and derive small-angle limits for completeness. Finally in
Sec. V we present results for the 2-point correlation func-
tion of the 3D shear field. In the Appendixes, we review
in more detail the notation, the mathematics and the con-
ventions chosen of the spin-weight s functions and of the
associated geometrical spin-raising and lowering (ð and ð)
operators defined over any two-dimensional Riemannian
manifold.
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II. WEAK LENSING THEORY IN 3D

A. The lensing potential

In the linear regime, many scalar fields on the sky that
are associated with large-scale structures can be interpreted
as line-of-sight integrations of functions of the gravita-
tional potential � with a given weight. A few examples
of such scalar fields are the integrated Sachs-Wolfe effect
[47] or the Ostriker-Vishniac effect [48] imprinting them-
selves on the CMB and the gravitational weak lensing by
cosmological structure (for a comprehensive review see
[1]). For the gravitational weak lensing case, one can
associate the so-called weak lensing potential for a given
source at a 3D position in comoving space r � �r; �; ’� to
the peculiar gravitational potential� defined along the line
of sight via (see [1])

�r� � �r; �; ’� �
2

c2
Z r

0
dr0

fK�r� r0�
fK�r�fK�r0�

��r0; �; ’�

(1)

where the Born approximation was assumed (i.e. the path
of the integration, corresponding to the path of the photons
emitted by the source, is assumed to be unperturbed by the
lens). Although usually the lensing potential  is regarded
as a 2D radial projection of the 3D gravitational potential,
it is in reality a 3D quantity. It is customary to average over
the redshift distribution of the source galaxies, but this is
not necessary if one has distance information about the
individual sources. Here and in the remainder of the manu-
script, bold letters denote 3-dimensional vectors, c is the
speed of light, r � r�t� is the comoving distance of the
source at instant t from the observer at the origin (r � 0)
and fK�r�d is the comoving transverse dimensionless
separation for points separated by d . We have fK�r� �
sinr, r and sinhr for closed (k � 1), flat (k � 0) and open
(k � �1) universes, respectively. The gravitational poten-
tial � is related to the underlying overdensity field ��r� �
���r�=� by the Poisson equation

r2r��r� �
3
mH

2
0

2a�t�
��r� (2)

where the 3D gradient rr is defined relative to comoving
coordinates,
m is the present-day total-matter density, H0
is the Hubble constant today in units of km=s=Mpc and
a�t� � 1=�1� z� is the scale factor. We use the comoving
gauge or total-matter gauge (see e.g. [49,50]).

If one wants to make a spectral expansion, such as a
Fourier transform, then immediately one has a subtlety to
consider. The lensing potential field, indirectly observed
through its effect on the shapes of lensed galaxies, is not
homogeneous, as it is viewed on the past light cone of the
galaxies, and is a function of the gravitational potential
which evolves with cosmic epoch. When referring to the
transform of a field, such as the gravitational potential, at a
lensed galaxy at distance r, we will mean the transform of
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the homogeneous field existing everywhere at the cosmic
epoch corresponding to the time the observed light left the
distant galaxy. Thus the coefficients of the expansion de-
pend on the look back time of the observation, and hence,
rather paradoxically, on the distance r itself.

There is a natural choice of basis functions to use for an
expansion. Spherical coordinates are natural for various
reasons, partly because the lensing potential is a radial
integral, partly because partial sky coverage is more easily
dealt with, as demonstrated in large-scale structure studies
by [51]. In addition, errors in distances (from using photo-
metric redshifts as distance indicators, for instance) are
radial errors. The first of these means the coefficients of the
expansion of the gravitational potential and of the lensing
potential are straightforwardly related. The choice of basis
functions is motivated by Poisson’s equation (2). It makes
sense to use the eigenfunctions of the Laplacian operator,
since then the coefficients of the gravitational potential and
of the density field are closely related (essentially by a
factor �k�2). In Cartesian coordinates, the eigenfunctions
are the familiar exponential functions of Fourier analysis.
If however the Laplacian is written in spherical coordinates
(r; �; ’), then in flat space the eigenfunctions become
products of spherical harmonics and spherical Bessel func-
tions: Y‘m��; ’�j‘�kr�, with eigenvalue �k2. So for scalar
fields f�r� in a flat background geometry, the natural 3D
expansion is

f‘m�k� �

����
2

�

s Z
d3rf�r�kj‘�kr�Y	

‘m��; ’�; (3)

where the numerical factor and the presence of k are
chosen for convenience. The inverse transform is

f�r� �

����
2

�

s Z
kdk

X1
‘�0

X‘
m��‘

f‘m�k�j‘�kr�Y‘m��;’�: (4)

This is readily obtained from the orthonormality of the
spherical harmonics and the orthogonality of the spherical
Bessel functions [see Eqs. (B2) and (B5)].

Using this 3-dimensional expansion, one can relate the
transform of the lensing potential to the gravitational po-
tential field in a flat geometry [24] by

‘m�k� �
4k

�c2
Z 1

0
dk0k0

Z 1

0
drrj‘�kr�

�
Z r

0
dr0

�
r� r0

r0

�
j‘�k0r0��‘m�k0; r0�: (5)

It is worth remarking that our expression differs from
Eqs. (6) and (7) found in Heavens [24] due to a different
choice of the 3D expansion conventions. One can further
relate �‘m�k; r� to the expansion of the matter overdensity
�‘m�k; r� by using the Poisson equation:

�‘m�k; r� � �
3
mH

2
0

2k2a�r�
�‘m�k; r�; (6)
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where here we put the time dependence (see discussion
above) in the coefficients of the gravitational potential and
matter overdensity fields by explicitly writing the coeffi-
cients as functions of the distance r in addition to ‘, m and
k. We point out that the expansion coefficients of the
lensing potential  do not have the time dependence ex-
plicitly shown because  is not by definition a homoge-
neous and isotropic field in 3D space.

These equations establish the relations between the sca-
lar fields , � and �. Since the statistical properties of �
are known for a given cosmological model, this opens up
the possibility of using weak lensing in 3D (via ) for
estimation of cosmological parameters. This would nor-
mally be done using the weak lensing shear field,  �r�,
which is not a scalar field, but rather a spin-weight 2 field.
We will consider the statistics of this observable field in
Sec. III.

B. Weak lensing and the gravitational potential in the
tensorial formalism

In this section we review the main results of the theory of
gravitational weak lensing in the tensorial formalism on
the 3-dimensional spherical sky. In addition, we introduce
the relevant formulas in the 3-dimensional flat-sky ap-
proximation for completeness.

1. Weak lensing on the full sky

The 2-dimensional distortion of images of distant
sources, located at a certain 3D comoving position in space
r, caused by the weak gravitational lensing by intervening
structures is given by [1,42,52,53]�

rirj �
1

2
gijr

2

�
�r� � � 1�r�#3 �  2�r�#1ij (7)

where the indices i, j � ��; ’� stand for the polar 2D
coordinate indices on the sphere, #1 and #3 are the Pauli
matrices defined on the 2D spherical sky, gij is the 2D
metric on that surface given by g � diag�1; sin2�� and  is
the lensing potential related to the gravitational potential�
by Eq. (1). Here, and throughout,  1 and  2 are the
components of the weak lensing shear produced by the
gravitational tidal field, and which may be conveniently
written as a complex shear  �r� �  1�r� � i 2�r�. They
correspond to the two orthogonal modes of the distortion
which are, a priori, measurable on the sky with respect to a
chosen fixed coordinate system. At fixed r, comparison of
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 at different locations (�; ’) on the sphere is not possible.
In curved space, comparisons are only possible locally,
and, as  is not a scalar, parallel transport of  from place
to place is path dependent. This fact lies at the source of the
interest in first developing rotationally invariant CMB
polarization components in terms of electric and magnetic
components [41] as we will see shortly in the context of
weak lensing. The differential operator r corresponds to a
2D covariant derivative on the sphere of radius r, which for
a scalar is given by the partial derivative ri � @i, for a
covariant vector Xi (i.e. rank-1 covariant tensor) is given by
rjXi � @jXi � �kjiXk and for a contravariant vector Xi is
given by rjX

i � @jX
i � �ikjX

k with the Christoffel sym-
bol �kji depending on the metric gij (see for instance [54]).
In our case, for which g � diag�1; sin2��, we will have
only three nonzero Christoffel symbols which are �011 �
� sin� cos� and �101 � �110 � cot�. By construction, the
Christoffel symbol is always symmetric in its lower indices
�kji � �kij. Because of this symmetry property, there is an
important result for scalar fields X which is that rirkX �
rkriX. In the remainder of this work we will apply this
property to the lensing potential .

The lensing potential  can alternatively be observed by
means of the magnification via the isotropic convergence
scalar field & defined as

�&�r�ij � &�r�Iij �
1

2
gijr

2�r� (8)

where r2 � rir
i and Iij is the identity matrix. We name

�&ij the convergence field tensor. Note that the weak
lensing regime corresponds to lensing configurations
such that j&j � 1 and j j � 1. In this specific regime,
the magnification and the distortion of galaxy sources are
so small that one cannot measure them individually, rather
one needs to perform a statistical study of the lensed
population.

It will be useful later to have the expressions (7) and (8)
explicitly expanded in terms of covariant derivatives on the
2D spherical sky. Transforming from the Cartesian
fêx�n̂�; êy�n̂�g to a spherical polar 2-dimensional coordi-
nate system fê��n̂�; ê’�n̂�g, where we choose the basis of
the two coordinate systems to be aligned such that dx �
d� and dy � sin�d’, we can explicitly express Eq. (7) for
the weak lensing shear as
� �r�ij �
 1�r� sin� 2�r�

sin� 2�r� �sin2� 1�r�

� �
�

1
2 �r�r� � csc2�r’r’ r’r�

r’r�
1
2 �r’r’ � sin2�r�r�

 !
�r�: (9)

� ij is the 2� 2 symmetric and traceless cosmic shear tensor field associated to a source at a 3D position r defined on the
sky and again ri corresponds to a 2D covariant derivative on the sphere. We used the general result for scalar fields
r�r’ � r’r�. The sin� terms in the weak lensing shear tensor � ij appear because the orthogonal ��;’� basis is not
orthonormal. This result has been repeatedly used when describing the polarization tensor P ij of the CMB on the full sky
-4
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(see for example [55]). One can extract from Eq. (9) the individual components of the weak lensing shear  1 and  2

 1�r� �
1

2
�r�r� � csc2�r’r’�r�;  2�r� � csc�r’r��r�: (10)

Similarly, one obtains for the convergence field tensor �&ij given by Eq. (8) the following expanded expression:

�&�r�ij �
1 0
0 sin2�

� �
&�r� �

1
2 �r�r� � csc2�r’r’ 0

0 1
2 �r’r’ � sin2�r�r�

 !
�r� (11)
where &, the scalar convergence field in the 3D full sky, is
given by

&�r� �
1

2
�r�r� � csc2�r’r’�r�: (12)
2. Weak lensing on the flat sky

When analyzing data on a small patch of the sky, one can
use the flat-sky, or small-angle, approximation. There, one
defines the standard Cartesian coordinate system
fêx�n̂�; êy�n̂�g with metric given by g � diag�1; 1�. The
covariant derivatives simplify to the standard partial dif-
ferentiation operators ri ! @i. The above Eq. (9) then
reduces to [26]

� �r�ij �
 1�r�  2�r�
 2�r� � 1�r�

� �
�

�
@i@j �

1

2
�ijr2

�
�r�

(13)

in such a way that we recover the well-known expressions
for the components  1 and  2 of the shear on the 3D flat
sky

 1�r� �
1

2
�@2x � @2y��r�;  2�r� � @x@y�r�: (14)

The convergence field takes the form

&�r� �
1

2
r2�r� �

1

2
�@2x � @2y��r� (15)

where r2 � @i@i � @i@i as the metric is given by g �
diag�1; 1�.

C. Weak lensing shear as a spin-weight 2 object

Weak lensing induces a complex shear field  �r� which
transforms under a rotation (by an angle  in the anticlock-
wise direction in our conventions) of the fixed coordinate
system according to  !  e�is , where s � 2 is its spin
weight. This phase dependence expresses the fact that the
complex shear field  �r� is invariant under a rotation over
� radians. Also, the two components of the shear field,  1
and  2, are related by a �=4 radians rotation which trans-
forms one field into the other:  0

1 � � 2 and  0
2 �  1

where the prime denotes the transformed fields. In this
section we use a description of the field based on a geo-
metrical differential operator called edth and symbolized
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by ð. This operator was first introduced by Newman and
Penrose in 1966 [46] (see also [56]) on the surface of the
sphere in order to define the now widely used ‘‘spin-weight
s spherical harmonics’’ which live on the 2D spherical
space. A spin-weight s spherical harmonic, symbolized
as sY‘m, can be seen as a generalization of the scalar, vector
and tensor spherical harmonics (see [57,58]). The sY‘m (not
defined for jsj> l) form a complete orthonormal basis for
each s, a result that we will use later in order to describe the
spin-weight s functions on the 2D sphere. The spin s of a
function is related to its transformation properties under
a rotation of the frame field where it is defined (for example
a scalar is a spin-0 function). The ð (and its complex
conjugate ð) act as raising (and lowering) operators on
the ‘‘quantum number’’ s (integral number), such that

sY‘m are eigenfunctions of ðð and can be obtained by
applying ð to the standard spin-weight 0 spherical harmon-
ics Y‘m. The operator ð is effectively a covariant differen-
tiation operator acting on the surface of the sphere which
enables one to relate quantities of different spin. In par-
ticular, it allows one to conveniently relate spin-weight s
objects, which are not invariant under rotations of the
coordinate frame, to scalar quantities, which are invariant
quantities under rotations. All invariant differential opera-
tors on the sphere may be expressed in terms of it.

The operator ð and the concept of spin-weight s func-
tions have been generalized to any 2D Riemannian mani-
fold (a 2D manifold with a metric) (e.g. [43,59]). For
details and further references see Appendix A, in particu-
lar, Eq. (A5) for the expressions relating the ð operator to
covariant derivatives in a 2D Riemannian manifold.

As pointed out originally by Newman and Penrose [46],
any spin-weight s function defined on a 2D Riemannian
manifold can be uniquely decomposed into a scalar gra-
dient (or electric/even) E component and a scalar curl (or
magnetic/odd) B component. We say that the spin-weight s
field . is even if . � ðsf and odd if . � iðsf for some
real-valued spin-weight 0 function f [if s < 0 then we
interpret ðs as ��ð�jsj]. For s � 1 this decomposition cor-
responds exactly to the classical Hodge-Helmholtz decom-
position of a vector field into the sum of a gradient and a
curl component.

As a spin-weight 2 object, the shear field can be written
as the second edth derivative of a complex potential [25–
27,41,46,60,61]:
-5
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 �r� �  1�r� � i 2�r� �
1

2
ðð�E�r� � iB�r�; (16)

 	�r� �  1�r� � i 2�r� �
1

2
ð ð�E�r� � iB�r� (17)

where we introduce two scalar real functions E�r� and
B�r� for the even and odd parts. The normalization factor
of 2 was chosen so that one can later identify immediately
the lensing potential to the even fieldE�r�. As we will see,
weak shear is derivable from a real (lensing) potential
E�r� � �r�, requiring B�r� � 0. This definition differs
from the convention used in CMB polarization studies (see
for instance [43,44]) and comes about due to the conven-
tions adopted for the spin-weight formalism (see
Appendix A 1). Note that the scalar functions E and B
introduced are invariant under rotations of the reference
frame.

We emphasize that the spin-raising and lowering opera-
tors ð and ð act on the 2D manifold at a distance r. We are
interested in their expressions both in the full-sky 2D
sphere and in the flat-sky 2D Euclidean space. Their deri-
vation in both geometries for any value of spin s is detailed
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in the Appendix A 2 and A 3 and we give the final
expressions for ð and ð here. In the 2D spherical full sky
we have

ðsf��; ’� � ��@� � i csc�@’ � s cot��sf��;’�

� �sins��@� � i csc�@’�sin�s�sf��;’�; (18)

and

ðsf��; ’� � ��@� � i csc�@’ � s cot��sf��;’�

� �sin�s��@� � i csc�@’�sin
s�sf��; ’�:

(19)

In the 2D flat sky the latter reduce to

ðsf�x; y� � ��@x � i@y�sf�x; y�;

ðsf�x; y� � ��@x � i@y�sf�x; y�:
(20)

If we use these results, or rather these results expressed in
terms of covariant derivatives, Eq. (16) can be reexpressed
explicitly in terms of covariant derivatives on the sphere
and in the tensorial formalism used in Sec. II B as
� �r�ij �
 1�r� sin� 2�r�

sin� 2�r� �sin2� 1�r�

� �

�
1
2 �r�r� � csc2�r’r’ r’r�

r’r�
1
2 �r’r’ � sin2�r�r�

 !
E�r�

�
� csc�r’r�

1
2 �sin�r�r� � csc�r’r’

1
2 �sin�r�r� � csc�r’r’ sin�r’r�

 !
B�r� (21)
where we obeyed to the conventions defined in the
Appendix A 1 and A 2. In particular, we projected the
complex cosmic shear  into a tensor � ij by means of
relation Eq. (A3) and again used the general result
r�r’ � r’r�. We can now compare directly the
general E-B decomposition of the shear Eq. (21) with the
theoretical predictions for gravitational weak lensing shear
on the 3D full sky Eq. (9). We can do this because the
choice of the 2D polar coordinate system in both cases is
the same. It is then mathematically straightforward to
identify E with the lensing potential  such that E�r� �
�r� and B�r� � 0. Similarly one can make such an
identification in the flat-sky approximation and reexpress
explicitly Eq. (16) in terms of partial derivatives on a 2D
Euclidean space in the same tensorial formalism as above

� �r�ij �
�
@i@j �

1

2
�ijr2

�
E�r�

�
1

2
�"kj@i@k � "ki@k@j�B�r� (22)

where "ij is the antisymmetric 2-dimensional Levi-Cività
tensor for which "00 � "11 � 0 and "01 � �"10 � 1 [26].
If we compare this equation with the weak lensing theo-
retical expression in the flat-sky limit Eq. (13), the identi-
fication between  and E is, as expected, immediate.
Therefore the shear field induced by gravitational tidal
fields only produces an E pattern in cosmic shear maps.
Such a result has been shown before [25–27,62,63] and has
been applied to weak lensing data in the flat-sky limit [4–
8]. It was to be expected as density (scalar) perturbations
only produce E-type effects. Hence the decomposition of
the weak lensing data into E and B components presents a
clear advantage over the  1 and  2 decomposition. On the
full sky it allows one to isolate the effect caused by weak
lensing and disentangle it from any nonlensing contribu-
tions like noise, foregrounds or systematics which should
contribute similarly to both the E and the B modes. It is
worth noting that both gravitational waves [27], multiple
light lensing scattering effects and source clustering [60]
may also induce B modes, but their levels are expected to
be small. As we will mention shortly, one can have addi-
tional spurious curl-type effects caused by the observatio-
nal pixelization or by finite fields, due to a leakage between
the E and the B modes [43,44]. In such a situation the B
-6
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mode acts as a vital test for any nongravitational signal in
the data. Aside from such complications arising by finite
fields and pixelization, the E and B potentials have also the
advantage of being rotationally invariant and so there are
no ambiguities in their definition related to the rotation of
the coordinate system on the sphere. Their interpretation is
thus clearer than the one of the  1 and  2 decomposition
over the whole sky.

Having established this correspondence in 3D, one can
recast both Eqs. (7) and (13), as the following valuable
relation between the weak lensing shear  and the lensing
potential in terms of the ð and ð operators

 �r� �
1

2
ðð�r�; (23)

 	�r� �
1

2
ð ð�r� (24)

or, alternatively, the equivalent relation for the two or-
thogonal components of  

 1�r� �
1

4
�ðð � ð ð��r�;

 2�r� � �
i
4
�ðð � ð ð��r�:

(25)

Similar expressions can be obtained for the scalar con-
vergence field which is a spin-weight 0 object. As shown in
Eq. (A8) of Appendix A, the Laplacian acting on a rank-0
tensor is equivalent to applying the combination �ðð �

ðð=2 to the corresponding spin-weight 0 quantity. In
particular, if one compares directly Eq. (A14) expressed
in the full sky to Eq. (12) one sees that Eq. (12) can
equivalently be written as

&�r� �
1

4
�ðð � ðð�r�: (26)

Such an identification can also be performed in the flat-sky
case. Note that there are natural extensions to higher spin-
weight objects: F �r� � � 1

6 �ððð � ððð � ððð��r� and
G�r� � 1

2 ððð�r� are the analogs of the first and second
flexion, respectively (see [64,65]).

We now have both the weak lensing shear and conver-
gence fields expressed in the edth formalism which en-
compasses both the full-sky and the flat-sky limits.
Because of the role of the ð (ð) differential operators as
spin raising (lowering) the spin of spin-weight s spherical
harmonics, this alternative compact mathematical tool will
be of particular beneficial use when studying weak lensing
in the 3D full sky.

III. DECOMPOSITION OF 3D FULL-SKY WEAK
LENSING INTO SPIN-WEIGHT SPHERICAL

HARMONICS

In the previous sections we have expressed the weak
lensing shear and convergence fields as spin-weight func-
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tions. Aided by the edth formalism we have established
their relation with the weak lensing potential by means of a
simple and unique E-B decomposition scheme. In the
present section, we concentrate on the 3D (geometrically
flat) spherical sky where the previous fields can be decom-
posed into a combination of spin-weight spherical harmon-
ics and Bessel functions. We thereby derive the relation
between the expansion coefficients of the weak lensing
quantities and the expansion coefficients of the weak lens-
ing potential. The latter is readily related to the expansion
coefficients of the gravitational potential and hence to
those of the matter density field.

A. Representation of a general distortion field in
spin-weight spherical harmonics

For spin-weight 2 fields such as the weak shear field, the
natural 3D basis functions are products of radial functions
and spin-weight 2 spherical harmonics. With this choice,
the 3D expansion coefficients of  are related very simply
to the expansion coefficients of the lensing potential, where
the latter is expanded in products of ordinary (spin-
weight 0) spherical harmonics and the same radial
functions.

Let us first assume a general distortion shear field .�r�.
This field can be decomposed in two orthogonal compo-
nents: .�r� � .1�r� � i.2�r�. Because of its transforma-
tion properties, such a field is a spin-weight 2 object. By
consequent it can be decomposed into an even/E and an
odd/B part by means of two scalar real functions defined on
the 2D sphere of radius r, E (for the even part) and B
(for the odd part) as in Eqs. (16) and (17)

.�r� �
1

2
ðð�E�r� � iB�r�;

.	�r� �
1

2
ð ð�E�r� � iB�r�:

(27)

As discussed previously, the two real scalar functions E
and B introduced completely characterize the distortion
field. They have the advantage of being scalars which are
invariant under any rotation of the coordinate system. We
can then expand them in 3D on the full sky as we expanded
the lensing potential field in Eq. (4) in terms of the standard
(spin-0) spherical harmonics Y‘m and of Bessel functions

E�r� � �2
Z 1

0
dk

X1
‘�0

X‘
m��‘

�����������������
�‘� 2�!

�‘� 2�!

s
aE;‘m�k�

� Zk‘m�r; �; ’�;

B�r� � �2
Z 1

0
dk

X1
‘�0

X‘
m��‘

�����������������
�‘� 2�!

�‘� 2�!

s
aB;‘m�k�

� Zk‘m�r; �; ’�

(28)

where we introduced the orthonormal basis functions Zk‘m
for simplicity and which, in a spatially flat background
-7
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geometry, are given by

Zk‘m�r; �; ’� �

����
2

�

s
kj‘�kr�Y‘m��; ’�: (29)

Apart from the normalization factor of 2, the normalization
terms and the sign in Eqs. (28) were introduced to maintain
consistency with previous works on CMB polarization
[44]. The factor 2 is linked to the choice of the spin-weight
conventions as established in Appendix A and is necessary
if one wants to recover relations between the expansion
coefficients of  and of the fields E and B which are
analogous to the relations between the CMB polarization
field P ij and the electric and magnetic scalar fields [44].
We point out here that we do not assume 3D homogeneity
and isotropy (at a fixed instant in time) for the scalar fields
E and B and so do not introduce the time r dependence
in the coefficients of their expansion as discussed in
Sec. II A. If we now substitute Eqs. (28) into Eqs. (27)
and use the properties of the operators ð and ð acting on the
standard (spin-weight 0) spherical harmonics [Eqs. (B6)]
one obtains naturally the following relations for .:

.�r� �
Z 1

0
dk

X1
‘�0

X‘
m��‘

2.‘m�k�2Zk‘m�r; �; ’�;

.	�r� �
Z 1

0
dk

X1
‘�0

X‘
m��‘

�2.‘m�k��2Zk‘m�r; �; ’�

(30)

where the expansion coefficients are related to the E and
B expansion coefficients by [41,44]

2.‘m�k� � ��aE;‘m � iaB;‘m�k�;

�2.‘m�k� � ��aE;‘m � iaB;‘m�k�;
(31)

aE;‘m�k� � �
1

2
�2.‘m � �2.‘m�k�;

aB;‘m�k� �
i
2
�2.‘m � �2.‘m�k�;

(32)

and where now the orthonormal basis functions �2Zk‘m are
expressed in terms of a set of functions, the spin-weight �2
spherical harmonics �2Y‘m, the ideal basis to express any
spin-weight �2 function

sZk‘m�r; �; ’� �

����
2

�

s
kj‘�kr�sY‘m��; ’� (33)

where the spin is given by s � �2. As we can see, any
distortion field . defined on the 3D full sky is most
naturally expressed in terms of spin-weight 2 spherical
harmonics, which define a set of orthonormal basis on
the surface of the sky. The edth formalism introduced in
the previous section has just shown its mathematical ad-
vantages when working in spherical space with spherical
harmonics.
023516
Inserting Eqs. (31) into Eqs. (30) we can also relate the
.1 and .2 orthogonal components to the E-B decomposi-
tion expansion coefficients of the distortion field as

.1�r� � �
Z 1

0
dk

X1
‘�0

X‘
m��‘

�aE;‘m�k�X1;k‘m�r; �; ’�

� iaB;‘m�k�X2;k‘m�r; �; ’�;

.2�r� � �
Z 1

0
dk

X1
‘�0

X‘
m��‘

�aB;‘m�k�X1;k‘m�r; �; ’�

� iaE;‘m�k�X2;k‘m�r; �; ’�

(34)

where we defined two new basis sets: X1;k‘m � �2Zk‘m �

�2Zk‘m�=2 and X2;k‘m � �2Zk‘m � �2Zk‘m�=2. As we have
the relations X	

1;k‘m � �X1;k�‘m, X	
2;k‘m � �X2;k�‘m,

a	E;‘m � aE;�‘m and a	B;‘m � aB;�‘m, the coefficients  1
and  2 are real quantities.

Both representations can be chosen to study a general
observed distortion field ., i.e. either use the .1 and .2
components or transform them into E- and B-type quanti-
ties. They contain the same information but, as explained
before, the E and B are rotationally invariant on the full sky
and behave differently under parity transformation [42,46].
In terms of the expansion coefficients, aE;‘m�k� has parity
��1�‘ while aB;‘m�k� has parity ��1�‘�1, a property which
may certainly be useful when trying to characterize the
origin of the distortion field observed on the sky. In par-
ticular, the E-B decomposition components have a special
meaning in the context of weak lensing studies as weak
lensing is in nature an E-type field and does not produce
any B-type component, as we saw before in Sec. II C.

In practice, if one wants to determine the real scalar
functions E and B describing a given distortion field on
the sky one should use Eqs. (27). This is a trivial task if our
observations are performed over the full sky because one
can use the orthogonality of the spin-weight spherical
harmonics to obtain the E and B expansion coefficients
from the measured field  . But full-sky observations are
unrealistic. Even if an experiment does cover the whole
sky, certain regions always need to be removed in order to
minimize the foreground contribution (such as bright
stars). The perverse side effect of partial sky coverage is
to induce an E-B-mode mixing. In this case the nonlocal
decomposition (27) is not unique. If one tries to solve for
E or B by taking linear combinations of second deriva-
tives of the distortion field one gets

r2�r2 � 2�E �
1

2
�ð ð.� ðð.	;

r2�r2 � 2�B �
i
2
�ð ð.� ðð.	:

(35)

This result enables one to use distortion observations to
construct the E and B distortion shear modes on the full
sky. But over a cut sky, solving this system implies the
-8
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specification of unknown boundary conditions (i.e. value
of the potentials and their derivatives at the boundaries).
This problem has been extensively studied by many in the
context of CMB polarization measurements [43,44] but to
date separation of E-B modes has been performed statisti-
cally during the estimation of the power spectra using the
so-called pseudo-C‘ method (see [66]). On the flat sky and
in the context of weak lensing, the locally defined aperture
massMap may similarly provide unambiguous mode sepa-
ration [67,68]. A similar statistic can be built for the weak
lensing Bmode. It is beyond the scope of this work to enter
into technical details related to mode separation, so we
refer the reader to Challinor [58] for a useful recent CMB
polarization review and Van Waerbeke and Mellier [2] for
an updated weak lensing review.

B. Representation of the weak lensing shear and
convergence fields in spin-weight spherical harmonics

The previous results can easily be applied to the case of
the weak lensing shear field  for which [see Eqs. (23) and
(24)]

 �r� �
1

2
ðð�r�;  	�r� �

1

2
ð ð�r�

where  is the lensing potential defined in Eq. (1) and
which we can expand in 3D as in Eq. (4) where the
expansion coefficients are ‘m�k�. Comparison of the 3D
expansion of the lensing potential  with Eq. (28) shows
that the aE;‘m and the ‘m are related by

aE;‘m�k� � �
1

2

�����������������
�‘� 2�!

�‘� 2�!

s
‘m�k�: (36)

As demonstrated before, for gravitational weak lensing,
aB;‘m�k� � 0. The 3D full-sky coefficients of the spin-
weight 2 shear field  , 2 ‘m�k� and �2 ‘m�k�, defined
similarly to Eq. (30) are then related to ‘m by (see
[24,38,42])

2 ‘m�k� � �2 ‘m�k� �
1

2

�����������������
�‘� 2�!

�‘� 2�!

s
‘m�k�: (37)

The standard components of the weak lensing shear  1 and
 2 can be directly obtained from this last relation. If one
uses the Eq. (34) with aB;‘m�k� � 0 and the following
expansion in 3D for the shear components  1 and  2

 1�r� �
Z 1

0
dk

X1
‘�0

X‘
m��‘

 1;‘m�k�X1;k‘m�r; �; ’�;

 2�r� �
Z 1

0
dk

X1
‘�0

X‘
m��‘

 2;‘m�k�X2;k‘m�r; �; ’�

(38)

where X1;k‘m and X2;k‘m were defined as in Eq. (34), one
immediately has

 1;‘m�k� � i 2;‘m�k� � �aE;‘m�k�; (39)
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where the expression for aE;‘m in terms of the lensing
potential was defined in Eq. (36). As we see, aside from
the physical and experimental advantages of the E-B de-
composition scheme, using either of the expansion coef-
ficients  1=2;‘m or aE;‘m is equivalent as they are very
simply related.

Likewise, we can do the same exercise for the conver-
gence field &. From Eq. (26) and using Eqs. (B6), the
(scalar) expansion coefficients of & are given by [42]

&‘m�k� � �
‘�‘� 1�

2
‘m�k�: (40)

To summarize, the coefficients of the expansion of the
shear field in spin-weight 2 spherical harmonics and
spherical Bessel functions, �2 ‘m�k� are related to those
of the lensing potential ‘m�k� by Eq. (37). The‘m�k� are
related to the gravitational potential�‘m�k� by Eq. (5), and
these are in turn related to the overdensity field by
Poisson’s equation (6). In this way we establish a connec-
tion between the observable shear quantities �2 ‘m�k� (and
associated quantities) and the overdensity field, whose
statistical quantities have known dependence on cosmo-
logical parameters. In the knowledge of such results one
may proceed to the derivation the 3D full-sky power spec-
tra (or any relevant statistics) of the weak lensing shear and
convergence fields.
IV. WEAK LENSING 3D POWER SPECTRA

We shall now be interested in calculating the weak
lensing shear  and convergence & 3D power spectra and
in relating them to the 3D gravitational potential power
spectra C�� both in the full-sky and flat-sky
approximations.

A. Weak lensing 3D power spectra on the full sky

If one performs a 3D spectral decomposition in the full
sky of a statistically homogeneous and isotropic field
f�r; r� at time instant defined by r (one can use the comov-
ing distance r as a measure of real time t as r and t are
physically equivalent being related via the scale factor a)
with coefficients f‘m�k; r� as in Eq. (3), then the 3D power
spectrum of the field at time r, C‘�k; r�, is defined by

hf‘m�k; r�f
	
‘0m0 �k0; r�i � C‘�k; r��D�k� k0��‘‘0�mm0 (41)

where �ij is a Kronecker delta function and �D�x� a 1D
Dirac delta function. The time dependence (introduced
through r) of the coefficients, at which the spectral expan-
sion is performed, was explained in Sec. II A and is neces-
sary to ensure the 3D spatial homogeneity (and isotropy) of
the field we are expanding at a certain time instant. Most
importantly, C‘�k; r� is independent of ‘, and is simply the
3D power spectrum P�k; r�:

C‘�k; r� � P�k; r� (42)
-9
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where P�k; r� is obtained from performing a 3D Fourier
expansion of the field f�r; r� so that hf�k; r�f	�k0; r�i �
�2��3P�k; r��3D�k� k0�. Indeed the spherical expansion in
3D of Eq. (4) for f�r; r� is equivalent to the 3D Fourier
expansion

f�r; r� �
1

�2��3
Z
d3kf�k; r�eik�r (43)

because of the well-known identity [49]

eik�r � 4�
X
‘

Xm�‘
m��‘

i‘j‘�kr�Y‘m��k; ’k�Y‘m��r; ’r�: (44)

One can see this by substituting Eq. (44) into Eq. (43) and
using the identity d3k � k2d
kdk where
k � ��k; ’k� so
that we obtain the following relation between the expan-
sion coefficients f‘m�k; r� [see Eq. (3)] and f�k; r� [49]

f‘m�k; r� �
1���������
8�3

p ki‘
Z
d
kf�k; r�Y‘m��k; ’k�:

One can then substitute this last expression in Eq. (41)
and use hf�k; r�f	�k0; r�i � �2��3P�k; r��3D�k� k0�.
The trick then relies in replacing �3D�k� k0� �R
d3xei�k�k0��x=�2��3 and using the identity (44). The or-

thogonality relations of the spherical harmonics (B2) and
of the Bessel functions (B5) as well as Y	

‘m � ��1�mY‘�m
will then be useful to reach the final result, i.e. C‘�k; r� �
P�k; r�.

Now if we use the expansion coefficients of the field
located at different distances (or equivalently at different
times from us) say at r and r0, to effectively calculate the
cross-power spectrum of two different homogeneous and
isotropic fields, f�r; r� and f�r0; r0�, then one can still argue
that the 3D homogeneity and isotropy argument holds:

ha‘m�k; r�a
	
‘0m0 �k0; r0�i � C‘�k; r; r

0��D�k� k0��‘‘0�mm0

(45)

where now we have the identity

C‘�k; r; r
0� � P�k; r; r0� (46)

where again P�k; r; r0� is defined by hf�k; r�f	�k0; r0�i �
�2��3P�k; r; r0��3D�k� k0�. A similar result is frequently
utilized to determine the cross-power spectra of different
homogeneous and isotropic fields, like for instance the
weak gravitational lensing of the CMB and the cosmic
shear fields [53]. It will be necessary to us when calculating
the power spectra of the gravitational potential field �
which comes about when calculating the spectra of the
lensing potential. Again we stress that, contrary to the
gravitational potential, the 3D lensing potential  is not
homogeneous and isotropic in 3D space. It is given by a 2D
projection at each source distance r of the gravitational
potential existing between us and the source and so it
maintains the homogeneity and isotropy characteristics of
the gravitational potential field on the 2D sky, but not in the
radial direction. We will then use for the field the relation
023516
h‘m�k�
	
‘0m0 �k0�i � C‘ �k; k0��‘‘0�mm0 ; (47)

where C‘ is the 3D lensing potential power spectrum.
Contrary to the case of a 3D homogeneous and isotropic
field, an equivalent relation to Eq. (42) does not hold any
longer. Naturally, the lensing potential, the shear and the
convergence all share the same statistical properties.

For completeness, although redundant, we present the
various possible shear power spectra depending on the type
of shear decomposition chosen. If one uses the expansion
coefficients of the shear  �r� itself, i.e.�2 ‘m�k; r� of
Eq. (37), then one gets

C  ‘ �k1; k2� �
1

4

�‘� 2�!

�‘� 2�!
C‘ �k1; k2� (48)

where C‘ is the lensing potential power spectra. All the
remaining power spectra can then be conveniently ex-
pressed in terms of C  ‘ �k1; k2�. For the E-B decomposition
components, i.e. aE;‘m�k� of Eq. (36) and aB;‘m�k�, one has
[42]

CEE‘ �k1; k2� � C  ‘ �k1; k2�; CBB‘ �k1; k2� � 0: (49)

And finally for the  1 and  2 shear decomposition
Eqs. (38) and (39) one obtains

C 1 1‘ �k1; k2� � C 2 2‘ �k1; k2� � C  ‘ �k1; k2�; (50)

where for symmetry reasons C 1 2 � 0. Note that the
expansions of  1 and  2 are in terms of the orthogonal
but not orthonormal functions X1;k‘m and X2;k‘m, so  1 and
 2 each contribute half to the power of  , as expected.
Concerning the convergence field we have [42]

C&&‘ �k1; k2� �
‘2�‘� 1�2

4
C‘ �k1; k2�: (51)

The next and final step is to relate the lensing and the
gravitational potential power spectra, C‘ and C��‘ re-
spectively, by means of Eq. (5). After some straightforward
algebra we obtain

C‘ �k1; k2� �
16

�2c4
Z 1

0
k2dkI‘�k1; k�I‘�k2; k� (52)

with

I‘�ki; k� � ki
Z 1

0
drrj‘�kir�

Z r

0
dr0

�
r� r0

r0

�
j‘�kr0�

�
���������������������
P���k; r0�

q
(53)

where we have used Eq. (45) applied to the gravitational
potential field and introduced the familiar 3D power spec-
trum of the gravitational potential P�� via Eq. (46). For a
nonuniform clustering of sources, the number density
needs to be introduced into the outer integral [69]. The
correlations in the potential field are significantly nonzero
for small separations (much smaller than the speed of light
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times the time scale over which it evolves), so we have
assumed for convenience that the gravitational potential
power spectrum can be accurately approximated by

P���k; r; r0� ’
�����������������������������������������
P���k; r�P���k; r0�

q
: (54)

This can be seen by noting that Poisson’s equation implies
that

��k; r� � �
3
mH2

0

2a�t�k2
��k; r� (55)

and so

h��k; r��	�k0; r0�i �
�
3
mH2

0

2

�
2 Z d3rd3r0

a�t�a�t0�

�
h��k; r��	�k0; r0�i

k2k02
e�ik�r�ik

0�r0

(56)

and the correlation of � is restricted to small scales jr�
r0j � 100 Mpc. The look back time over such a distance is
small, so we can approximate r ’ r0 (or t ’ t0). Therefore
we can replace the power spectra P���k; r; r0� by either
P���k; r� or P���k; r0�. For algebraic convenience, we
choose the geometric mean of the power spectra, which
allows us to separate two internal integrals and reduce
computation time significantly. (A further justification is
apparent in Fig. 2: the Bessel functions cut off long-
wavelength contributions with k � ‘=rmax where rmax is
the extent of the survey.) Practical issues of implementa-
tion are briefly discussed at the end of the next section.
Note that the two-point statistics of the shear field are
dependent on the nonlinear potential power spectrum,
which is related to the nonlinear matter power spectrum
via Poisson’s equation. Accurate fits for the nonlinear
matter power spectrum are available to enough wave num-
bers [70], but the accuracy for high-precision determina-
tion of dark energy properties needs to be tested with
simulations.

B. Weak lensing 3D power spectra in the flat-sky limit

In the flat sky, we can expand a 3D field f at 3D position
r � �r; ~�� on the sky into a combination of 2D Fourier
modes and Bessel functions in the radial direction r

f�r; ~�� �

����
2

�

s Z 1

0
kdk

Z 1

0

d2 ~‘

�2��2
f�k; ~‘�j‘�kr�e

i ~‘� ~�; (57)

f�k; ~‘� �

����
2

�

s Z 1

0
r2dr

Z 1

0
d2�f�r; ~��kj‘�kr�e�i

~‘� ~� (58)

where the notation ~x describes 2D vectors. Such an expan-
sion was chosen to maintain a direct relation with the 3D
full-sky expansion introduced previously. It thus presents
the same attractive advantages as its full-sky counterpart
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(see discussion in Sec. II A). One can now easily obtain the
full-sky to flat-sky correspondence, i.e. establish a relation
between the expansion coefficients f�k; ~‘� in the flat sky as
defined above and f‘m�k� in the full sky defined in Eq. (4).

For small angles around the pole of spherical coordi-
nates, defined by the angles ��;’� ignoring the radial
dependence, for which �! 0, one can use the following
expansion of the plane 2D wave [42,71]:

ei ~‘� ~� ’

�������
2�
‘

s X
m

imY‘m��; ’�e�im’‘ (59)

where ~‘ � �‘ cos’‘; ‘ sin’‘� and ~� � �� cos’; � sin’�.
The vector ~‘ can be interpreted as the continuous limit of
the integer that labels the spherical harmonics Y‘m.
Replacing Eq. (59) into Eq. (57) and making use ofR
1
0 d

2 ~‘ �
R
1
0 ‘d‘

R
2�
0 d’‘ !

P
l‘
R
2�
0 d’‘ for high ‘,

one obtains the following relation between the 3D flat-
sky and the 3D full-sky coefficients:

f‘m�k� �

�������
‘
2�

s
im
Z 2�

0

d’‘
2�

e�im’lf�k; ~‘�: (60)

The inverse relation is

f�k; ~‘� �

�������
2�
‘

s X
m

i�mf‘m�k�e
im’l : (61)

We point out that, as expected, we recover the same
relations that were obtained by others for the 2D case
[42,71], as the small-angle limit only affects the 2D angu-
lar expansion, not the radial direction. As the reader may
have guessed, we also recover that the flat-sky C�� and the
full-sky C�� power spectra are equivalent in the high-‘
limit. For a fully 3D homogeneous and isotropic field, like
the gravitational potential we have

C ���k; l; r� �
‘!1

C��‘ �k; r� � P���k; r� (62)

where we have used Eq. (41), the definition
h��k; ~‘��	�k0; ~‘0�i � �2��2C���k; ‘��D�k� k0��2D� ~‘�
~‘0� and Eq. (42). Again P�� is the 3D gravitational poten-
tial power spectrum. For a 3D field which is homogeneous
and isotropic only on the 2D sky (e.g. the lensing potential)

C �k1; k2; l� �
‘!1

C‘ �k1; k2� (63)

where in this case we have defined the power spectra via
h�k; ~‘�	�k0; ~‘0�i � �2��2C�k; k0; ‘��2D� ~‘� ~‘0� and
h‘m�k�	

‘0m0 �k0�i � C‘ �k; k0��‘‘0�mm0 .
One then has the following identical expressions for the

flat-sky power spectra of the shear and the convergence
fields [42]

C   �k1; k2; ‘� �
‘4

4
C�k1; k2; ‘�; (64)
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FIG. 1. The left-hand panel shows a gray scale cross section through the C  �k1; k2; ‘� 3D matrix where each element has been
multiplied by k1k2. The black/white color represents positive/negative values. The right-hand panel represents a cut in the �k1; k2� plane
for a given value of ‘ and k1. The fiducial cosmological model parameters chosen are 
� � 0:73, 
m � 0:27, 
b � 0:27, H0 �
71 km=s=Mpc and w � �1.
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C &&�k1; k2; ‘� �
‘4

4
C�k1; k2; ‘�; (65)

where now

C �k1; k2; ‘� �
16

�2c4
Z 1

0
k2dkI�k1; k�I�k2; k� (66)

with I as before [see Eq. (53)]. The Eqs. (53), (64), and (66)
FIG. 2. These plots show diagonal cuts in the �k1; k2� plane at diffe
the approximate Bessel function inequality, kr � ‘, in Eq. (53) ca
covariance do not become significant until krmax � ‘, where rma
cosmological model chosen is the same as in Fig. 1.
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open up the possibility of cosmological parameter estima-
tion with the shear field, whose 2-point statistics are here
related to those of the underlying gravitational potential
field (and hence to the matter density via Poisson’s equa-
tion). For clarity, we have not considered here the practical
issues of noise, source selection function, weighting
schemes, or errors in the photometric distance indicators.
These can be dealt with, and are studied in a companion
paper [69], which addresses the accuracy with which cos-
rent ‘ values through the C  �k1; k2; ‘� 3D matrix. The effect of
n be seen. As the ‘ value increases the diagonal terms of the
x is the upper limit imposed on the r integral. The fiducial
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FIG. 3. Dependence of the diagonal part of the 3D shear power
spectrum C  �k1; k2; ‘� on ‘, for various k values in Mpc�1. The
fiducial cosmological model chosen is the same as in Fig. 1.

WEAK LENSING ANALYSIS IN THREE DIMENSIONS PHYSICAL REVIEW D 72, 023516 (2005)
mological parameters can be estimated with current and
future 3D weak lensing surveys. Also considered in that
paper is that one has to assume a fiducial cosmological
model in order to translate source redshifts into comoving
distance coordinates r.

In Figs. 1–4 we illustrate the amplitude and shape of the
signal produced by the 3D shear power spectrum
C  �k1; k2; ‘� of Eq. (64) one may ideally expect to mea-
FIG. 4. The derivative of the diagonal elements of the 3D covarian
dark energy equation of state parameter w. The fiducial cosmological

023516
sure. We also show how the shear power spectrum varies
with the value of the equation of state parameter w. The
plots are for a fiducial �CDM cosmological model with
parameters 
� � 0:73, 
m � 0:27, 
b � 0:27, H0 �
71 km=s=Mpc and equation of state of dark energy pa-
rameter w � �1. Figures 1–3 show the features of the 3D
shear power spectrum by taking various cuts through the
3D (k1; k2; ‘) space. We consider a survey to rmax �
5000 Mpc, which replaces infinity as the upper limit of
the radial integral in Eq. (53). The sampling interval in
wave number k is 2:5� 10�4 Mpc�1 and in multipole
log10�‘� is 0.025. We also illustrate in Fig. 4 how the shear
power spectrum varies with w. The differences are slight in
an individual power spectrum, but as this is a 3D study,
there are many useful ‘ modes, which increase the sensi-
tivity of the 3D shear as a cosmological parameter
diagnostic.
V. 3D CORRELATION FUNCTION

For surveys with complicated geometry, the 3D shear
correlation function may be a more appropriate tool to use,
in place of the 3D shear power spectrum. It is straightfor-
ward to relate the 3D shear correlation function to the
lensing potential power spectrum (and hence the matter
power spectrum), via (52), as follows. The shear expansion
as defined in Sec. III B implies that
h �r� 	�r0�i �
X

‘m‘0m0

Z
dkdk0h2 k‘m2 

	
k0‘0m0 i2Zk‘m�r; �; ’�2Z

	
k0‘0m0 �r0; �0; ’0�: (67)
ce matrix C  �k1; k2; ‘� for various ‘ values, with respect to the
model chosen is the same as in Fig. 1 where w is allowed to vary.
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Using (48), this reduces to

h �r� 	�r0�i �
2

�

X
‘m

1

4

�‘� 2�!

�‘� 2�!

Z
dkdk0C‘ �k; k0�kk0j‘�kr�j‘�k0r0�2Y‘m��; ’�2Y

	
‘m��

0; ’0�: (68)

Using the generalized addition theorem for spin-s spherical harmonics [72], we find

h �r� 	�r0�i �
1

2�

X
‘

���������������
2‘� 1

4�

s
�‘� 2�!

�‘� 2�!

Z
dkdk0C‘ �k; k0�kk0j‘�kr�j‘�k

0r0�2Y‘;�2�8;9�e
�2i:; (69)
where 8 is the angle between the directions ��; ’� and
��0; ’0�, and 9 and : are the angles between the line joining
the two points on the celestial sphere and the lines of
constant ’. An explanatory diagram can be found in
[72]. Note that one might expect that the correlation func-
tion would depend only on the angular separation through
8, but as  is defined with reference to the orthogonal
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coordinate system ��;’�, there is an additional dependence
on the angles 9 and :. Note also that the 3D correlation
function is not homogeneous. If one chooses, one may
simplify slightly by considering pair correlations of the
shear defined with respect to axes parallel and perpendicu-
lar to a great circle joining the two galaxies on the sky. The
rotation of the  coefficients (to ~ ) then gives
h~ �r�~ 	�r0�i �
1

2�

X
‘

���������������
2‘� 1

4�

s
�‘� 2�!

�‘� 2�!

Z
dkdk0C‘ �k; k0�kk0j‘�kr�j‘�k0r0�2Y‘;�2�8; 0� (70)

where 2Y‘;�2��; 0� may be simplified to a weighted sum of 3 associated Legendre functions.
One can derive equivalent flat-sky relations by using the expressions (14) for the weak lensing shear on the flat sky and

the expansion (57) for the lensing potential. Using the result  �k; ~‘� � ��‘2x � ‘2y�=2� i‘x‘y�k; ~‘�, where ~‘ and k are
defined as in the previous section, we easily obtain

h �r; ~�� 	�r0; ~�0�i �
1

8�3
Z
d2 ~‘‘4

Z
dkdk0C�k; k0; ‘�kk0j‘�kr�j‘�k0r0�ei

~‘�� ~�� ~�0� (71)
where C�k; k0; ‘� is the flat-sky power spectra of the
lensing potential. Alternatively, one can reach the same
result by expanding Eq. (69) around the pole of spherical
coordinates � ’ 0 and taking the continuous limit of high
multipoles ‘.
VI. CONCLUSIONS

In this paper we have developed in detail a complete
formal study of 3D weak lensing, where one has estimates
of the weak lensing shear field at known locations in 3D
space. Most cosmological weak lensing surveys to date
have been analyzed in projection on the 2D sky, where the
individual distances of the lensed galaxies are ignored.
With distance information, a more sophisticated analysis
is possible, which offers the prospect of greater statistical
power. A partly 3D approach is to divide the sources into
redshift slices, a process often referred to as tomography,
but this crude division fails to explore the complete poten-
tial provided by distance information, and it makes sense to
exploit as fully as possible the 3D information available:
one essentially has a noisy estimate of the 3D shear field at
the positions of all the source galaxies. For the estimation
of some parameters, such as the amplitude of the power
spectrum, 3D information adds relatively little, but for
others, such as the equation of state of dark energy, 3D
weak lensing analysis is very promising, and this facet of
3D lensing is explored in a companion paper [69]. Indeed,
weak lensing on a cosmic scale may be the best cosmo-
logical method able to answer the important question of the
nature of the dark energy.

To effect a 3D analysis, we have used the theory of spin-
weight functions successfully applied in the past to studies
of the 2D CMB polarization on the sky [41–45], as well as
theoretical 2D weak lensing analysis [25–27]. We have
shown that the natural expansion basis to use for the 3D
shear field is the product of spin-weight 2 spherical har-
monics and spherical Bessel functions, which form a
complete and orthonormal system of tensor functions on
the three-dimensional space. Alternative expansions are
clearly possible such as using tensor spherical harmonics
[27] but these are more difficult to work with and have been
in some way abandoned by the CMB polarization com-
munity. With our basis choice, the two-point statistics (3D
shear power spectrum, 3D correlation function) of the
weak lensing 3D shear field can be related in a straightfor-
ward manner to the 3D power spectrum of matter density
fluctuations. The statistics of the 3D shear field are then
-14
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connected to cosmological parameters via this relation, in
addition to the redshift-distance dependence which enters
the transform. This connection is easily shown using the
edth differential operators. We are also able to relate the
power spectrum of a full-sky 3D shear expansion to the
power spectrum of a small-angle survey, where the use of
spin-weight spherical harmonics is cumbersome, and a
more familiar transverse Fourier expansion can be em-
ployed. This is the basis for cosmological parameter esti-
mation using 3D weak lensing, and the formalism
presented here provides a useful theoretical framework
for 3D weak lensing studies.
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APPENDIX A: SPIN-WEIGHT s FUNCTIONS AND
SPIN RAISING AND LOWERING OPERATORS

In this Appendix we review the notation and the mathe-
matics of spin-weight s functions and of the geometrical
spin raising and lowering (ð and ð) operators defined over
any two-dimensional Riemannian manifold (defined as a
2D space with a metric). The relation between the spin-
weight functions and tensor quantities is explained. We
also clarify the relations between the ð (ð) operators and
covariant derivatives on the 2-dimensional manifold. We
then particularize to both the 2-dimensional unit sphere
and unit Cartesian space, which will be of use to us in the
main body of this work. We finally give an overview of the
spherical spin-weight spherical harmonics. Many articles
and appendixes in the literature have been dedicated to this
topic (see [41,43,45,46,56,73] to cite just a useful few).

The spin-weight functions and the so-called edth (ð and
ð) operators were first introduced in the 1960s by Newman
and Penrose [46] and further explored by Goldberg et al.
[56]. They mainly started to be used as a convenient tool in
the context of the theory of gravitational wave radiation
(see e.g. Thorne [74]) and later they were introduced in the
study of the CMB all-sky polarization as an alternative to
the tensor formalism (see [41]). The similarity between the
CMB polarization Stokes parameters Q and U and the
weak lensing components  1 and  2 as well as the per-
spective of future large-field high resolution observations
triggered recent full-sky weak lensing studies using the
spin-weight formalism [24,42,53].

1. Representation of spin-weight functions in 2D
Riemannian manifolds

Let us define an orthonormal basis at any point of a two-
dimensional manifold with a metric gij fê1; ê2g. The choice
of the basis is not unique. Indeed, if we define the vectors
m and m with respect to fê1; ê2g, the choice of the basis is
described up to a phase  such that
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m �
1���
2

p �ê1 � iê2� ! e�i m;

m �
1���
2

p �ê1 � iê2� ! ei m:

(A1)

The vector m and its complex conjugate m obey the
relations mjmj � mjmj � 0, mjmj � 1 and mimj �

mimj � �ij, where �ij is the Kronecker delta function.
Here and throughout this manuscript, we use the Einstein
summation convention.

A complex function defined by sf�n̂� � f1�n̂� � if2�n̂�,
where f1 and f2 are real quantities defined on the manifold,
is said to have spin-weight s if under the transformation
Eq. (A1) it transforms as sf�n̂� ! e�is sf�n̂�. If we con-
sider an arbitrary vector on the manifold v�n̂� then, for
instance, the quantities v � ê1 � iv � ê2 transform as spin-
weight �1 quantities. Generalizing to a rank-s tensor
Fi1���is (where i � 0; 1), the object Fi1���ism

i1 � � �mis trans-
forms as a spin-weight s object as each individual vector
min contributes with a factor e�i when it is transformed.
The rank of the tensor is thus reflected in the transforma-
tion properties, and thus the spin, of the corresponding
complex quantity constructed.

One can therefore associate to every symmetric and
trace-free component of a rank s tensor a spin-weight s
quantity such that

sf�n̂� � Fi1���ism
i1 � � �mis ;

�sf�n̂� � Fi1���ism
i1 � � �mis :

(A2)

The trace-free condition refers to the vanishing under
contraction of any two indices in the tensor. For example,
for a rank-2 tensor, it refers to Fii � Fii0g

i0i. As irreducible
tensors of rank s in 2 dimensions have only two linearly
independent components, say F00���0 and F10���0, we can
combine them to create the associated spin-weight �s
complex quantities �sf�n̂� � F00���0 � iF10���0. It is a
one-to-one mapping. Conversely, one can express any
symmetric and trace-free rank s tensor in terms of spin-
weight �s objects

Fi1���is � sf�n̂�mi1 � � �mis � �sf�n̂�mi1 � � �mis : (A3)

An important property of spin-weight objects is that there
exists a geometrical spin-raising (lowering) operator ð (ð)
that has the ability of raising (lowering) the spin-weight s
of an object such that under the transformation (A1)

ð�sf�n̂� ! e�i�s�1� ð�sf�n̂�;

ð�sf�n̂� ! e�i�s�1� ð�sf�n̂�:
(A4)

Most relevant is that these spin-raising and lowering op-
erators are related to the covariant derivatives of the rank-s
tensor associated to the spin-weight s object on the mani-
fold
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ð�sf�n̂� � �
���
2

p
mi1 � � �mismkrkFi1���is ;

ð�sf�n̂� � �
���
2

p
mi1 � � �mismkrkFi1���is

(A5)

for s � 0, and with min replaced by min for s < 0. The
choice of the sign and the normalization are conventional
but were chosen so that the form of the spin-raising and
lowering operators on the 2D sphere match the original
definition of Newman and Penrose [46] (see next section).
The covariant derivative is defined as usual. For a rank-1
tensor Xi, for example, rjXi � @jXi � �kjiXk with the
Christoffel symbol depending on the metric. If one repla-
ces Eq. (A3) into Eq. (A5), one can rewrite Eq. (A5) for
s � 0 as

ð�sf�n̂� � �
���
2

p
�rk�sf�n̂�m

k � s=sf�n̂��;

ð�sf�n̂� � �
���
2

p
�rk�sf�n̂�mk � s=sf�n̂��

(A6)

where

= � rkmim
imk: (A7)

The equivalent relations for s < 0 follow from these. One
can express any differential operator in two dimensions in
terms of ð and ð. For instance for a spin-weight s field sf,
we have the following relation between the ð operators and
the Laplacian operator:

r2�sf �
1

2
�ðð � ððsf: (A8)
2. Representation of spin-weight functions on the unit
sphere

We choose the orthonormal basis on the sphere to be
aligned with the coordinate basis vectors 	̂ and ’̂ of a
spherical polar coordinate system fê��n̂�; ê’�n̂�g where n̂ is
the radial direction vector normal to the surface of the
sphere. The transformation defined in Eq. (A1) corre-
sponds to a right-handed rotation by an angle  of this
basis around the vector n̂. The convention chosen for the
rotation is the same as in Zaldarriaga and Seljak [41] and
Okamoto and Hu [45] but differs from Newman and
Penrose [46] and Goldberg et al. [56] so that it conforms
to the majority of CMB polarization publications.

The metric tensor is given by

gij �
1 0
0 sin2�

� �
(A9)

and the nonzero Christoffel symbols are

�011 � � sin� cos�; �101 � �110 � cot�: (A10)

The tensor components of the vector m [see Eq. (A1)] are
chosen to be

m k �
1���
2

p �1; i csc��; mk �
1���
2

p �1; i sin��: (A11)
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To obtain the exact relation for the spin-raising and low-
ering operators ð and ð on the sphere we use Eqs. (A6) and
(A7). To calculate = we need to evaluate explicitly the
covariant derivatives rimj on the spherical basis with
coordinates �	̂; ’̂�. We obtain

r�m’ � 0; r’m� �
i���
2

p cos�;

r’m’ �
1���
2

p sin� cos�
(A12)

such that

= �
� cot����

2
p (A13)

yielding Eqs. (18) and (19). We note that the expressions
obtained are identical to expressions found elsewhere
[41,43,45,46]. This stems from the choice of a suitable
formalism convention. Another useful result is the full
expression of the Laplacian acting on a spin-0 quantity 

r2 �
1

2
�ðð � ðð � �r�r� � csc2�r’r’:

(A14)

We remark that r2 corresponds to �‘�‘� 1� in spherical
harmonic space.

3. Representation of spin-weight functions in Euclidean
space

We will also be concerned with fields defined over a 2-
dimensional Euclidean space in the so-called flat-sky ap-
proximation for which the natural basis is the Cartesian
coordinate system fêx�n̂�; êy�n̂�g where n̂ is the vector
normal to the surface of the sky. In this case, the metric
tensor is given by

gij �
1 0
0 1

� �
: (A15)

The tensor components of the vector m [see Eq. (A1)] are
chosen to be

m k �
1���
2

p �1; i�; (A16)

where mk � mk. The Christoffel symbols are all zero and
thus in Eqs. (A6) and (A7) we have that = � 0. In this case,
the differential operators ð and ð naturally reduce to
Eqs. (20) [26]. For completeness, the Laplacian in
Cartesian coordinates reduces to

r2 �
1

2
�ðð � ðð � �@2x � @2y: (A17)
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APPENDIX B: SPIN-WEIGHT SPHERICAL
HARMONICS

A scalar field defined on the sphere can be expanded in
spherical harmonics Y‘m��; ’�, which form a complete and
orthonormal basis on the sphere. This basis of spherical
harmonics is no longer appropriate to describe objects of
spin weight s. There exists similar sets of functions defined
on the sphere that can be used instead. These are called
spin-weight spherical harmonics sY‘m��; ’� and are de-
fined by [75]

sY‘m��; ’� �

������������������
�2‘� 1�

4�

s
D‘

�s;m��; ’; 0� (B1)

whereD is the Wigner-D function (for technical details see
[57,76]). Using the previous relation one can prove that the
spin-weight s spherical harmonics satisfy the relation of
orthogonalityZ 2�

0
d’

Z 1

�1
d cos�s0Y	

‘0m0 ��; ’�sY‘m��; ’� � �‘‘0�mm0�ss0 ;

(B2)

where �ij is a Kronecker delta function. Also sY
	
‘m �

��1�s�sY‘�m. A given spin-weight s function on the 3D
sphere can thus be expanded as [49]

sf�x� �
Z 1

0
dk

X1
‘�0

X‘
m��‘

�as;‘m�k�sZk‘m�x; �; ’�;

as;‘m�k� �
Z
d3x�sf�x�sZ	

k‘m�x; �; ’�;

(B3)

where in spatially flat geometry the basis functions sZk‘m
are given by combinations of spherical Bessel functions
and spin-weight s spherical harmonics as in Eq. (33). They
are orthonormalZ

d3xsZk‘m�x; �; ’�s0Z
	
k0‘0m0 �x; �; ’�

� �D�k� k0��‘‘0�mm0�ss0 (B4)
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where we have used Eq. (B2) and the relation

Z
x2dx

� ����
2

�

s
kj‘�kx�

�� ����
2

�

s
k0j‘�k0x�

�
� �D�k� k0�: (B5)

If we are not assuming a spatially flat space then the radial
functions need to be changed. For an open universe for
example j‘�x� ! X‘�
K; x�where X‘ is the hyperspherical
Bessel function (see Liddle and Lyth [49] for details).

A few properties of spin-weighted spherical harmonics
when acted by spin-lowering and rising operators [as de-
fined in Eqs. (18) and (19)] can be very useful

ðsY‘m � ��‘� s��‘� s� 1�1=2s�1Y‘m;

ðsY‘m � ���‘� s��‘� s� 1�1=2s�1Y‘m;

ððsY‘m � ��‘� s��‘� s� 1�sY‘m;

ððsY‘m � ��‘� s��‘� s� 1�sY‘m:

(B6)

In particular, the spin-0 and spin-2 spherical harmonics are
related through

ððY‘m �

�����������������
�‘� 2�!

�‘� 2�!

s
2Y‘m; ð ðY‘m �

�����������������
�‘� 2�!

�‘� 2�!

s
�2Y‘m:

(B7)

A useful consequence of these properties is

ð ð ððY‘m � ððð ðY‘m �
�‘� 2�!

�‘� 2�!
Y‘m

� �‘� 2��‘� 1�‘�‘� 1�Y‘m (B8)

which reduces to (see e.g. [44])

ð ð ðð � ððð ð � r2�r2 � 2� (B9)

when acting on spin-zero variables and where r is a
covariant derivative on the sphere.
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