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I examine the standard formalism of calculating curvature perturbations in inflation at horizon crossing,
and derive a general relation which must be satisfied for the horizon-crossing formalism to be valid. This
relation is satisfied for the usual cases of power-law and slow-roll inflation. I then consider a model for
which the relation is strongly violated, and the curvature perturbation evolves rapidly on superhorizon
scales. This model has Hubble slow-roll parameter � � 3, but predicts a scale-invariant spectrum of
density perturbations. I consider the case of hybrid inflation with large �, and show that such solutions do
not solve the ‘‘� problem’’ in supergravity. These solutions correspond to field evolution which has not yet
relaxed to the inflationary attractor solution, and may make possible new, more natural models on the
string landscape.
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I. INTRODUCTION

The physics of density perturbations in inflationary cos-
mology is well-trodden ground [1–12]. The central ingre-
dients of the ‘‘standard lore’’ of inflationary perturbations
are (a) the slow-roll approximation, and (b) the concept of
‘‘mode freezing’’ at horizon crossing, which allows one to
relate physical quantities far outside the horizon to varia-
bles evaluated when a given length scale was redshifted
through the horizon during inflation. While many circum-
stances have been studied in which the slow-roll approxi-
mation breaks down [13–21], relatively little attention has
been given to the second ingredient of the standard lore:
mode freezing at horizon crossing [22–27]. The horizon-
crossing formalism must be carefully applied, since mode
freezing is a good approximation only for certain quantities
such as the gauge-invariant generalization of the New-
tonian potential [28]. Even then decaying-mode solutions
exist which are not constant on superhorizon scales.
Curvature perturbations can be also generated at late times
via a curvaton [29,30]. Other perfectly physical variables
can evolve strongly on superhorizon scales and cannot be
approximated by their values at horizon crossing.

In this paper, I examine the horizon-crossing formalism
in detail. Section 1 gives a review of the general relativistic
perturbation theory relevant for inflation, with an emphasis
on gauge issues. In Sec. III, I review the horizon-crossing
formalism, and derive a relation which must be satisfied in
order for the horizon-crossing formalism to be valid. I
consider only perturbations which are directly generated
from fluctuations in the inflaton. I show that the horizon-
crossing formalism is good for de Sitter space and for
power-law inflation, and is valid in an approximate sense
for slow-roll inflation. In this sense, the slow-roll and
horizon-crossing formalisms are closely related.

In Sec. IV, I consider a simple inflation model for which
the comoving curvature perturbation R evolves rapidly on
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superhorizon scales, and for which the horizon-crossing
formalism is invalid. The model is strongly non–slow roll,
with the second Hubble slow-roll parameter � � 3, but
nonetheless gives a scale-invariant spectrum of density
perturbations. In Sec. V, I generalize this result to the
case of non–slow-roll hybrid inflation considered in
Refs. [15,16] and show that, contrary to the conclusions
of these papers, inflationary solutions far from slow roll
can result in density perturbations consistent with obser-
vation. These solutions are identified as early-time tran-
sients in which the field evolution has not yet reached the
inflationary attractor solution, similar to the case consid-
ered by Starobinsky [13]. In Sec. VI, I comment on the
application of these results to string-inspired model build-
ing and show that they do not solve the famous ‘‘� prob-
lem’’ in supergravity. However, non–slow-roll evolution
opens up a range of largely unexplored dynamical regions
of the inflationary parameter space. This may be helpful in
constructing more natural models on the string landscape.
Section VII presents a summary and conclusions.
II. CURVATURE PERTURBATIONS IN INFLATION

In this section, we discuss the evolution of a scalar field
dominated cosmology using the useful fluid flow approach
[12,31–34]. This approach makes the expression of physi-
cal quantities in comoving gauge especially transparent,
which is important since the power spectrum of curvature
perturbations PR is defined in terms of the intrinsic curva-
ture perturbation on comoving hypersurfaces. Consider a
scalar field � in an arbitrary background g��. The stress-
energy tensor of the scalar field may be written

T�� � �;��;� � g��

�
1

2
g	
�;	�;
 � V���

�
: (1)
We can define a fluid four velocity for the scalar field by
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u� �
�;������������������������

g	
�;	�;


q : (2)

It is straightforward to show that this vector has unit inner
product, u�u� � 1. We then define the ‘‘time’’ derivative
of any scalar quantity f�x� by the projection of the deriva-
tive along the fluid four velocity:

_f � u�f;�: (3)

In particular, the time derivative of the scalar field itself is

_� � u��;� �
�����������������������
g	
�;	�;


q
: (4)

The stress-energy tensor (1) in terms of _� takes the form

T�� �

�
1

2
_�2 � V���

�
u�u�

�

�
1

2
_�2 � V���

�
�u�u� � g���: (5)

We can then define a generalized density � and pressure p
by

� �
1

2
_�2 � V���; p �

1

2
_�2 � V���: (6)

Note that despite the familiar form of these expressions,
they are defined without any assumption of homogeneity of
the scalar field or even the imposition of a particular
metric. In terms of the generalized density and pressure,
the stress energy (1) is

T�� � �u�u� � ph��; (7)

where the tensor h�� is defined as

h�� � u�u� � g��: (8)

The tensor h�� can be easily seen to be a projection
operator onto hypersurfaces orthogonal to the four velocity
u�. For any vector field A�, the product h��A� is identi-
cally orthogonal to the four velocity:

�h��A
��u� � A��h��u

�� � 0: (9)

Therefore, as in the case of the time derivative, we can
define gradients by projecting the derivative onto surfaces
orthogonal to the four velocity

�rf�� � h��f;�: (10)

Note that despite its relation to a ‘‘spatial’’ gradient, rf is
a covariant quantity, i.e. a four vector. Identification of rf
as a purely spatial gradient is dependent on the choice of
gauge. In the case of a scalar field fluid with four velocity
given by Eq. (2), the gradient of the field identically
vanishes,

�r��� � 0: (11)
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Clearly, the identification of the time derivative (3) and
the gradient (10) suggest a favored foliation of the space-
time, i.e. a choice of gauge. In the case of a scalar field, we
can define comoving gauge as a coordinate system in which
spatial gradients of the scalar field � are defined to vanish.
Therefore the time derivative (3) is just the derivative with
respect to the coordinate time in comoving gauge

_� �

�
@�
@t

�
c
: (12)

Similarly, the generalized density and pressure (6) are just
defined to be those quantities as measured in comoving
gauge.

The equations of motion for the fluid can be derived
from stress-energy conservation,

T��
;� � 0 � _�u� � �rp�� � ��� p�� _u� � u���;

(13)

where the quantity � is defined as the divergence of the
four velocity,

� � u�;�: (14)

We can group the terms multiplied by u� separately,
resulting in familiar-looking equations for the generalized
density and pressure

_������ p� � 0; �rp�� � ��� p� _u� � 0:

(15)

The first of these equations, similar to the usual continuity
equation in the homogeneous case, can be rewritten using
the definitions of the generalized density and pressure (6)
in terms of the field as

	��� _�� V 0��� � 0: (16)

This suggests identifying the divergence � as a general-
ization of the Hubble parameter H in the homogeneous
case. In fact, if we take g�� to be a flat Friedmann-
Robertson-Walker (FRW) metric and take comoving
gauge, u� � �1; 0; 0; 0�, we have

u�;� � 3H; (17)

and the generalized equation of motion (16) becomes the
familiar equation of motion for a homogeneous scalar,

	�� 3H _�� V 0��� � 0: (18)

Now consider perturbations �g�� about a flat FRW
metric,

g�� � a2���	��� � �g��
; (19)

where � is the conformal time and � is the Minkowski
metric � � diag�1;�1;�1;�1�. We specialize to the case
of scalar perturbations, so that the metric perturbations can
be written generally in terms of four scalar functions A, B,
R, and HT :
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�g00 � 2A; �g0i � @iB;

�gij � 2	R�ij � @i@jHT
:
(20)

If we specialize to comoving gauge, ui � 0, the norm of
the four velocity can be written

u�u� � a2�1� 2A��u0�2 � 1; (21)

and the timelike component of the four velocity is, to linear
order,

u0 �
1

a
�1� A�; u0 � a�1� A�: (22)

The velocity divergence � is then

� � u�;� � u0;0 � �	
	0u

0

� 3H
�
1� A�

1

aH

�
@R
@�

�
1

3
@i@i

@HT

@�

��
; (23)

where the unperturbed Hubble parameter is defined as

H �
1

a2
@a
@�

: (24)

Fourier expanding HT ,

@i@iHT � k2HT; (25)

we see that for long-wavelength modes k � aH, the last
term in Eq. (23) can be ignored, and the velocity diver-
gence is

� ’ 3H
�
1� A�

1

aH
@R
@�

�
: (26)

The metric perturbation R is of particular interest, since it
determines the intrinsic curvature of comoving hypersur-
faces,1

�3�Rc � 4
�
k
a

�
2
Rc: (27)

We can define the number of e folds measured relative to
the unperturbed metric as integral of the velocity diver-
gence relative to flat hypersurfaces:

N �
Z

Hdt: (28)

Similarly, we can define the number of e folds on a
comoving hypersurface as the integral of the velocity
divergence along comoving world lines:

N �
1

3

Z
�ds �

1

3

Z
�	a�1� A�d�
: (29)

Using Eq. (26) for � and evaluating to linear order in the
metric perturbation results in
1A good explanation of the relationship of this quantity to the
gravitational potential and the comoving density perturbation is
given in Ref. [33].
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N �
Z

Hdt�R; (30)

so that the comoving curvature perturbation is given by the
difference between the number of e folds N on comoving
hypersurfaces and the number of e folds N on flat hyper-
surfaces:

R � N �N : (31)

We can express N as a function of the field �:

N �
Z

Hdt �
Z H

_�
d�: (32)

For monotonic field evolution, we can express _� as a
function of �, so that

�N
��

�
H
_�
; (33)

and the curvature perturbation is given by

R � N �N �
�N
��

�� �
H
_�
��: (34)

Note that this is an expression for the metric perturbation
R on comoving hypersurfaces, calculated in terms of
quantities defined on flat hypersurfaces. For �� produced
by quantum fluctuations in inflation, the two-point corre-
lation function is

h��2i1=2 �
H
2$

; (35)

and the curvature perturbation is

R �
H2

2$ _�
; (36)

which is the well-known result.
Two comments are in order. First, the comoving pertur-

bation R is often referred to as ‘‘gauge invariant,’’ when it
is in fact a manifestly gauge-dependent quantity. On flat
hypersurfaces, the intrinsic curvature perturbation is zero.
Even when the curvature R is defined in a gauge-invariant
way, gauge considerations become important when it is
evaluated on comoving hypersurfaces. This is not a trivial
distinction: we will see later that the choice of a preferred
foliation of the spacetime is strongly dependent on the late-
time behavior of the scalar field. Second, it is not imme-
diately obvious from this analysis which values of � and _�
to choose when evaluating the perturbation amplitude. The
canonical procedure is to evaluate R for a given Fourier
mode k at ‘‘horizon crossing,’’ i.e. when the wavelength of
the mode is equal to the horizon size. This is valid as long
as the metric perturbation R does not evolve when a mode
is outside the horizon. (We will see later that the metric
perturbation R can in some circumstances evolve rapidly
on superhorizon scales.) In the next section, we tackle the
issue of horizon crossing in detail.
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III. THE HORIZON-CROSSING FORMALISM

Consider a free scalar field ’ evolving in an inflationary
background. The equation of motion for the field fluctua-
tion can be written in terms of a mode function u � a’ in
the well-known form:

d2uk
d�2

�

�
k2 �

1

a
d2a

d�2

�
uk � 0: (37)

Let us consider the particularly simple case of a de Sitter
background, H � const, with conformal time given by

� � �
1

aH
: (38)

It is convenient to write the mode Eq. (37) in terms of the
quantity y � k=�aH� � �k�,

y2
d2uk
dy2

� �y2 � 2�uk � 0; (39)

with normalized solution

’k �
uk
a

�
H��������
2k3

p �1� iy�eiy: (40)

This is an exact solution of Eq. (39), valid when the mode
is both inside and outside the horizon. There is no necessity
to match asymptotic solutions at horizon crossing: we can
simply follow the mode from the short-wavelength limit to
the long-wavelength limit. Figure 1 shows the field fluc-
tuation uk=a in both the long- and short-wavelength limits.
FIG. 1 (color online). A free field fluctuation in de Sitter space.
The vertical line is horizon crossing, k � aH, and the perturba-
tion ‘‘freezes out’’ on superhorizon scales.
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Standard lore has it that quantum modes during inflation
‘‘freeze out,’’ or cease to evolve, after their wavelength
becomes larger than the horizon size. This, of course,
depends on which quantity one considers. The amplitude
of the mode function uk does not freeze out at horizon
crossing, but instead increases linearly with proper wave-
length (or scale factor) outside the horizon, uk / a. It is the
field perturbation ’k � uk=a which becomes constant
after horizon crossing. However, this is only true in the
limit of long wavelength. The field fluctuation is not even
approximately constant at the time it crosses the horizon:��������1

’
d�’�
dy

��������y�1
�

1���
2

p : (41)

We can compare the amplitude of the field fluctuation at
horizon crossing to the amplitude in the asymptotic limit,��������uk

a

��������y�1
�

���
2

p ��������uk
a

��������y!0
; (42)

and the standard expression for the power spectrum of the
scalar field corresponds to the asymptotic limit,

P’�k�
1=2 �

���������
k3

2$2

s ��������uk
a

��������y!0
�

H
2$

: (43)

This differs in normalization by a factor of 2 from its value
at horizon crossing. This difference of a constant factor
may seem a trivial detail, since asymptotic amplitudes can
be easily expressed in terms of amplitudes at horizon
crossing by using a constant correction factor. However,
this procedure breaks down for modes which exit the
horizon but never reach the asymptotic limit [35]. The
situation also becomes more subtle when considering
background evolution for which H � const, especially in
the case of curvature fluctuations.

Fluctuations �� in the inflaton field � are more com-
plicated because they couple at linear order to the metric
perturbation. We define a gauge-invariant analog of the
field fluctuation u by [10]:

u � a���
a _�
H

R: (44)

On flat hypersurfaces, the Mukhanov variable u is just the
fluctuation in the scalar field, u � a��. On comoving
hypersurfaces (�� � 0) the variable u is related to the
curvature perturbation,

R c �

��������Hu

a _�

���������
��������u
z

��������; (45)

where the quantity z is defined as

z �
a _�
H

: (46)

For small fluctuations ��, flat and comoving hypersurfa-
ces are related by a gauge transformation. It is very im-
-4
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portant for what follows to note that, while the variable u is
gauge invariant, the quantity R is gauge dependent, and
Rc is defined on spacetime hypersurfaces for which the
field fluctuation vanishes, �� � 0. In what follows, we
will drop the subscript and implicitly evaluate the metric
perturbation R in comoving gauge. We can write the
power spectrum of the curvature perturbation R in terms
of the Fourier modes uk as,

P1=2
R �k� �

�
k3

2$2 hR
2i

�
1=2

�

���������
k3

2$2

s ��������uk
z

��������; (47)

where gauge-invariant function uk satisfies the equation of
motion [10]

d2uk
d�2

�

�
k2 �

1

z
d2z

d�2

�
uk � 0: (48)

The derivative of z is given by

1

z

d2z

d�2
� 2a2H2

�
1� (�

3

2
�� (2 � 2(��

1

2
�2

�
1

2
)2

�
; (49)

where the Hubble slow-roll parameters (, �, and )2 are
defined as derivatives of the background Hubble parameter
with respect to the field [36,37]:

( �
m2

Pl

4$

�
H0���

H���

�
2
; � �

m2
Pl

4$
H00���

H���
;

)2 �
m4

Pl

16$2

H0���H000���

H2���
:

(50)

This decomposition is valid only for monotonic evolution
of the scalar field �. There is a useful relation between the
scale factor and the variable z in terms of the slow-roll
parameter ( which we will use frequently:

z �
a _�
H

� �
mPl

2
����
$

p �a
���
(

p
�: (51)

In the case of de Sitter background, H � const and _� � 0,
and the Mukhanov variable becomes identical to a free
field fluctuation u � a��. The equation of motion (48)
becomes identical to the mode equation for a free field
(37).

To generalize our discussion to the non–de Sitter case,
H � const, we first consider the exactly solvable case of
power-law inflation,

a / t1=(; (52)

where ( � const is the first slow-roll parameter (50). In
this background,

1

a

d2a

d�2
�

1

z
d2z

d�2
: (53)

As in the de Sitter case, the mode equation for curvature
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perturbations is identical to that for free field perturbations.
We again write the mode equation in terms of the variable

y �
k
aH

�
�k�
1� (

; (54)

with the result

y2�1� (�2
d2uk
dy2

� 	y2 � �2� (�
uk � 0: (55)

The normalized solution is a Hankel function,

uk �
1

2

����������������������
$
k

�
y

1� (

�s
H�

�
y

1� (

�
; (56)

where

� �
3� (

2�1� (�
: (57)

This equation, like that for the de Sitter case, is exact at all
wavelengths, and does not require any matching at horizon
crossing (y � 1). Likewise, the two-point correlation func-
tion for the mode uk is unambiguous for all wavelengths,
and we can consistently define the power spectra for free
field and for curvature perturbations in the long-
wavelength limit,

P’�k�1=2 �

���������
k3

2$2

s ��������uk
a

��������y!0
(58)

and

PR�k�1=2 �

���������
k3

2$2

s ��������uk
z

��������y!0
: (59)

From Eq. (46), we see that the power spectra differ by a
constant factor,

P’�k� �
m2

Pl

4$
(PR�k�: (60)

Nowhere have we invoked mode freezing or ‘‘horizon
crossing’’ when calculating the power spectra. The power
spectrum does ‘‘freeze’’ in the sense of approaching a
time-independent amplitude in the limit y � k=�aH� !
0, a statement which is true even for time dependent H.
The asymptotic value of the power spectrum is [11]:��������uk

a

��������y!0
� 2��3=2 ����

��3=2�
�1� (���1=2

�
H

k3=2
���
2

p

�
y3=2��:

(61)

Note that despite the apparent dependence on the quantities
H and y, this expression is time independent. This can be
derived using the expression

dH
dy

�
H(
1� (

y�1; (62)
-5



WILLIAM H. KINNEY PHYSICAL REVIEW D 72, 023515 (2005)
so that

d
dy

�Hy3=2��� � 0: (63)

The spectral index of perturbations can be calculated by
taking the derivative of Eq. (58) with respect to k at
constant time, i.e. aH � const,

d ln�P’�

d ln�k�

��������aH�const
� 3� 2� � �

2(
1� (

: (64)

We can then define a conserved quantity

H��k� � Hy3=2�� (65)

which is a time-independent function of wave number k.
Note, however, that since the function H��k� is exactly time
independent, inside and outside the horizon, we are free to
evaluate it at any time. Therefore, it is convenient to
express H� in terms of the value of H when the mode
crossed the horizon, y � k=�aH� � 1:

H��k� � Hy3=2�� � Hjy�1: (66)

We then have an expression for the power spectrum

P1=2
’ �k� �

���������
k3

2$2

s ��������uk
a

��������y!0
� A���

�
H��k�
2$

�
; (67)

where the constant A��� approaches unity in the de Sitter
limit, � � 3=2:

A��� � 2��3=2 ����
��3=2�

��� 1=2�1=2��: (68)

This is the ‘‘horizon-crossing’’ formalism. Note that the
expression (67) is not the value of the power spectrum at
horizon crossing, but the value of the power spectrum in
the long-wavelength limit, expressed in terms of a con-
served quantity evaluated at horizon crossing. We can
obtain an expression for the spectral index equivalent to
(64) by differentiating H��k� with respect to k,

d ln�P’�

d ln�k�

��������k�aH
�

d ln	H2
��k�


d ln�k�
�

a
H

dH2

d�aH�
� �

2(
1� (

:

(69)

Similarly, we can derive the horizon-crossing expression
for the curvature perturbation using Eq. (60), since the
power spectra are simply related by a constant factor,

P1=2
R �

���������
k3

2$2

s ��������uk
z

��������y!0
�

2
����
$

p

mPl

P1=2
’���
(

p � A���
H2

_�
y3=2��:

(70)

Comparing with Eqs. (61) and (63), we see that there is a
conserved quantity relevant to curvature perturbations,

d
dy

�
H
(
y3=2��

�
�

d
dy

�
H2

_�
y3=2��

�
� 0; (71)
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so we can define an analog of H� for curvature perturba-
tions,

�N��k� �
H2

2$ _�
y3=2�� �

H2

2$ _�

��������y�1
: (72)

The power spectrum for curvature perturbations is

P1=2
R �k� �

���������
k3

2$2

s ��������uk
z

��������y!0
� A����N��k�: (73)

We can generalize Eq. (71) to the case of arbitrary
background evolution by noting that

d
dy

� �
a _�

k�1� (�
d
d�

�
1

y�1� (�
d
dN

; (74)

where we have defined N in the conventional way to tend to
zero at the end of inflation. This relation is exact for any
background evolution. Then we can write the derivative of
�N� as,

y
d
dy

�
H���
(

p y3=2��
�
�

�
3

2
� �

��
H���
(

p y3=2��
�

�
y3=2��

1� (
d
dN

�
H���
(

p

�
: (75)

The last term can be evaluated using the flow function
relations [38]

dH
dN

� H(; (76)

and

d
���
(

p

dN
�

���
(

p
��� (�; (77)

where we have adopted the sign convention

���
(

p
� �

mPl

2
����
$

p
H0���

H���
: (78)

We then have an expression valid for arbitrary background
evolution,

d ln��N��

d ln�y�
�

3

2
� ��

2(� �
1� (

: (79)

As expected, this expression vanishes for the de Sitter case,
� � 3=2, ( � � � 0, and for the power-law case, for
which � � (, and � is given by Eq. (57). It is important
to emphasize that the relation (79) is a background relation.
The constant � is only related to the power spectrum (and
therefore the slow-roll parameters) in the limit that the field
perturbations can be approximated by Hankel functions.

The generalization to the case of slow-roll inflation is
straightforward. In the slow-roll approximation, ( and �
are small, independent parameters, and the equation of
motion for the curvature perturbation can be written in
the approximate form
-6
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y2
d2uk
dy2

� 	y2 � �2� 2(� 3��
uk � 0; (80)

where we have ignored terms of order (2, �2 and so forth.
The solution is again a Hankel function:

uk / y1=2H��y�; � �
3

2
� 2(� �: (81)

Unlike the de Sitter and power-law cases, the solution in
terms of Hankel functions is only approximate, valid in the
limit that the slow-roll parameters ( and � can be approxi-
mated as constant. Likewise, the horizon-crossing formal-
ism is only approximate, since for slow roll,

d ln��N��

d ln�y�
�

(�2(� ��
1� (

’ (�2(� ��: (82)

The variation in �N� is second order in slow roll, and
corrections to observables are expected vanish to first
order. This can be verified by considering the asymptotic
form of the power spectrum,

PR�k�1=2 �

���������
k3

2$2

s ��������uk
z

��������y!0
/

�
H���
(

p

�
y3=2��: (83)

We can calculate the spectral index by differentiating this
expression with respect to k at constant time, i.e. aH �
const,

n� 1 �
d ln�PR�

d ln�k�

��������aH�const
� 3� 2� � �4(� 2�;

(84)

which is the standard result, but derived without expressing
the power spectrum in terms of horizon-crossing variables.
We can express the normalization of the power spectrum in
terms of horizon-crossing variables by using the approxi-
mate relation

�N� �
H2

2$ _�
y3=2�� ’

H2

2$ _�

��������y�1
; (85)

an approximation which is valid as long as the variation in
�N� with scale (82) is small. It might at first seem that the
horizon-crossing formalism is bound to fail in the case of
slow roll, since inflation ends when the parameter ( � 1.
However, for modes already far outside the horizon, the
rapid variation in �N� near the end of slow-roll inflation
will affect all modes identically. Therefore, any effects
from the breakdown of slow roll will appear as corrections
to the horizon-crossing expressions for the normalization
and not the spectral index. Such changes to the normaliza-
tion of R during changes in the cosmological equation of
state are well known [33,39].

So far, everything we have discussed is standard lore.
We have, however, emphasized that the horizon-crossing
formalism, while exact in the de Sitter and power-law
cases, is only approximate for curvature perturbations in
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slow roll. In the case of slow roll, the error induced by
expressing the power spectrum in horizon-crossing varia-
bles is of higher order in the slow-roll parameters. In the
next section, we construct an exactly solvable inflation
model for which the horizon-crossing approximation is
strongly broken, and the standard calculation of even the
spectral index gives the wrong answer.
IV. ULTRA–SLOW-ROLL INFLATION

In this section we discuss the simple case of a scalar field
evolving on a constant potential, V��� � V0 � const, so-
called ‘‘ultra–slow-roll’’ inflation [21]. For a constant
potential, the equation of motion for the field is indepen-
dent of the potential:

	� � �3H _�: (86)

The equation of motion for a flat Friedmann-Robertson-
Walker (FRW) space dominated by the scalar field is

H2 �
8$

3m2
Pl

�
1

2
_�2 � V0

�
: (87)

This can be written in the equivalent Hamilton-Jacobi
formalism [40–43],

H2��� �
m2

Pl

12$
	H0���
2 �

8$

3m2
Pl

V0 (88)

and

_� � �
m2

Pl

4$
H0���: (89)

We can then solve parametrically for H and _� as functions
of the field value �. The solution is such that the field
comes to a stop at some field value �0, which we can set to
zero without loss of generality. Taking �> 0 and _�< 0,
the solution to the Hamilton-Jacobi equation is

H��� �

������������
8$V0

3m2
Pl

s
cosh

� ���������
12$

m2
Pl

s
�
�
: (90)

We then have

_� �
��������
2V0

p
sinh

� ���������
12$

m2
Pl

s
�
�
; (91)

which is easily seen to be a solution to the original equation
of motion (86). As one would expect, the late-time limit of
the evolution is de Sitter space, H � const and _� � 0. The
slow-roll parameters are given by

(��� � 3tanh2
� ���������

12$

m2
Pl

s
�
�
; ���� � 3 � const;

)2��� � 3(���:

(92)

Then,
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1

z

d2z

d�2
� 2a2H2

�
1�

7

2
(� (2

�
: (93)

In the early-time limit, � ! 1, the parameter ( ! 3 and
the equation of state is that of a stiff fluid, p � �. In the
late-time limit, � ! 0, the parameter ( ! 0, and the equa-
tion of motion for the curvature perturbation approaches

d2uk
d�2

� �k2 � 2a2H2�uk � 0; (94)

which is just the mode equation for a field fluctuation in
de Sitter space. Note, however, that unlike the exactly
de Sitter case, for which H � const and ( � � � )2 �
0, the second slow-roll parameter is always large, � � 3,
even in the limit of nearly exponential expansion, _� ! 0.
The slow-roll approximation (; � � 1 is never valid, no
matter how small _� becomes. Nonetheless the equation of
motion for quantum modes (94) is identical to the equation
of motion for quantum modes in an exact de Sitter space,
due to the fact that the �-dependent terms in Eq. (49)
cancel for � � 3. The equations of motion for free field
modes and for curvature perturbations are identical, and
the solutions are the usual Hankel functions (56), with ( �
1, and

� � ��
3

2
�

3

2
: (95)

The apparent sign inversion in the above expression arises
because of the Bunch-Davies boundary condition. The
general solution to the mode equation is a superposition
of H�3=2 Hankel functions,

uk � AkH3=2�y� � BkH�3=2�y�: (96)

The Bunch-Davies boundary condition is the requirement
that the mode evolve as a quasi-Minkowski wave function
at short distance,

uk / e�ik� / eiy; (97)

so that the Bunch-Davies mode function is

uk � NkH3=2�y�: (98)

Canonical quantization fixes Nk, and the mode function is
of the form (56) with � � 3=2. When � changes sign, it
merely results in an interchange of the positive- and
negative-frequency components of the mode function,
which must be accounted for when assigning the Bunch-
Davies boundary condition.

The solution for free field fluctuations is unremarkable.
In the asymptotic limit,��������uk

a

��������/ Hy3=2�� � H; (99)

and we recover a scale-invariant spectrum of free field
fluctuations very much like the purely de Sitter case.
However, in the late-time limit � ! 0, the expression
023515
(59) for the spectrum of curvature perturbations diverges,

P1=2
R �k� �

���������
k3

2$2

s ��������uk
z

���������
�
H2

2$ _�

�
! 1: (100)

We can, however, see that the divergence in the _� � 0
limit is a gauge artifact. In particular, let us examine how
we define comoving hypersurfaces in the limit _� ! 0. We
can write the fluid four velocity u� (2) as

u� �
�;�

_�
; (101)

which is undefined in the limit of a static field, _� � 0:
comoving gauge is singular, and the curvature perturbation
on comoving hypersurfaces is a meaningless quantity. It is
not possible to define comoving hypersurfaces without
field evolution to provide a timelike direction from which
to define a foliation of the spacetime. This is not, however,
an indication that the spacetime itself is singular, since a
zero-curvature foliation of the spacetime is still well de-
fined. From Eq. (1), we can take the stress energy of a
homogeneous, static scalar field to be

T�� � g��V0; (102)

with a flat FRW metric, g�� � a2������. Since we are
defining the timelike direction to be orthogonal to flat
hypersurfaces, quantum fluctuations in the scalar field by
construction do not couple to metric perturbations at linear
order. This decoupling of the field perturbation from the
curvature in the de Sitter limit can also be seen from the
definition of the gauge-invariant mode function u appear-
ing in Eq. (48):

u � a���
a _�
H

R: (103)

In the de Sitter limit, the mode function uk is independent
of the metric perturbation R,

uk ! a��; _� ! 0; (104)

and the mode Eq. (48) reduces to that for a free field (37).
More general cases involving the _� ! 0 limit were con-
sidered by Seto, Yokoyama, Kodama, and Inoue [18,20].

We can of course introduce a cutoff in the evolution by
forcing an end to inflation at some positive field value �c,
for example, through an instability in an auxiliary field as
in hybrid inflation [44], or simply by a sudden drop off
from the flat potential for �<�c. In this case, comoving
gauge is well defined, since we can define a constant-time
hypersurface at the end of inflation, defined by � � �c. In
this case, the expression (59) for the power spectrum is
finite, and perturbation theory is valid as long as higher-
order corrections remain small, which can always be ar-
ranged if we take H small enough that H=

���
(

p
is small at

� � �c. The power spectrum in the long-wavelength limit
is given by the usual expression (70), which, for � � 3=2
-8
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and � � �c gives

P1=2
R �k� �

�
H2

2$ _�

�
���c

: (105)

We can calculate the power spectrum by differentiating this
expression with respect to k at constant time,

n� 1 �
d ln�PR�

d ln�k�

��������aH�const
� 0: (106)

That is, we have a scale-invariant power spectrum, n � 1.
It is straightforward to show that the standard horizon-
crossing expression for the spectral index gives the wrong
answer:

d ln�PR�

d ln�k�

��������k�aH
� 6; (107)

as does the usual expression in terms of Hubble slow-roll
parameters,

�n� 1�SR � �4(� 2� � 6: (108)

The reason for this discrepancy is a breakdown of the
horizon-crossing formalism. This can be seen by evaluat-
ing Eq. (79) for the case ( ! 0, � � 3,

d ln��N��

d ln�y�
� �3: (109)

This tells us that the H=
���
(

p
, and therefore the comoving

curvature perturbation, instead of being ‘‘frozen,’’ is evolv-
ing rapidly on superhorizon scales and we cannot express
the perturbation in terms of horizon-crossing variables.
The correct prescription is to evaluate the power spectrum
not at horizon crossing, but at the end of inflation,

P1=2
R �

�
H2

2$ _�

�
���c

�

�
H2

2$ _�

�
k�aH

: (110)

The rapid evolution of the curvature perturbation is a
consequence of the rapid divergence of comoving gauge
in the limit _� ! 0. We emphasize that this conclusion is
not in conflict with general theorems demonstrating the
constancy of gauge-invariant potentials on superhorizon
scales. For example, the gauge-invariant variable u is
well behaved on superhorizon scales,

u � a���
_�
H
R / a; (111)

even as the gauge-dependent quantity R becomes large.
This is exactly the ‘‘enhancement’’ effect due to the decay-
ing mode considered by Leach et al. [35], expressed in a
way that emphasizes the dependence of the result on the
late-time behavior of the field. Without an end to inflation,
the spacetime smoothly approaches de Sitter space.
However, the end of inflation � � �c forces the preferred
foliation of the spacetime onto comoving hypersurfaces.
We then see a scale-invariant spectrum of curvature per-
023515
turbations with amplitude strongly enhanced relative to its
value at horizon crossing. In the next section, we general-
ize this discussion to the case of hybrid inflation with large
�, a parameter region of great interest for supersymmetric
and string-inspired model building.
V. HYBRID INFLATION WITH LARGE �

In this section, we generalize the results of Sec. IV to the
case of hybrid inflation [44] with a potential of the form

V��� � M4 �
1

2
�2�2: (112)

This potential was analyzed in the non–slow-roll limit in
Refs. [15,16], which used the horizon-crossing formalism
to calculate the spectral index of curvature perturbations.
We demonstrate that in the limit of large �, the horizon-
crossing formalism fails, and the spectral index of curva-
ture fluctuations approaches scale invariance in the limit of
� ! 3. The equation of motion for the field is

	�� 3H _���2� � 0; (113)

where for _� � V0���

H ’

�������������
8$M4

3m2
Pl

s
’ const: (114)

The equation of motion can be written in terms of dN �
�Hdt (note that N decreases with increasing time, with
N � 0 at the end of inflation),

d2�

dN2
� 3

d�
dN

� 	� � 0; (115)

where

	 �
�2

H2 ’
3

8$

�
�2m2

Pl

M4

�
: (116)

The general solution is [15]

��N� � ��er�N ���er�N; (117)

where the constants r� are given by

r� �
3

2

�
1�

����������������
1�

4

9
	

s �
: (118)

The slow-roll parameters are given by [16]

( � 4$r2�

�
�
mPl

�
2
; � � r� (: (119)

When the r� become imaginary, the field evolution is
oscillatory, and no inflation takes place [15]. We then
have the condition for inflation

	< 9=4; (120)

which also ensures that ( is positive definite. We will be
interested in the limit of small �, so that
-9
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(��� ’ 4$�2

�
�
mPl

�
2
� 1; (121)

and

� ’ r� � const: (122)

The slow-roll limit is 	 � 1, for which

�SR � r� ’
	
3
� 1: (123)

As before, we will take �> 0 and _�< 0. The mode
equation for curvature perturbations is, neglecting terms
of order ( [16],

y2
d2uk
dy2

� 	y2 � �2� �2 � 3��
uk � 0: (124)

The solution is again a Bessel function:

uk / y1=2H��y�; (125)

with index

� �

��������3

2
� �

��������� 3

2

����������������
1�

4

9
	

s
: (126)

The absolute value sign in this expression comes from
imposition of the Bunch-Davies boundary condition on
the mode. The mode equation is identical for �< 3=2
modes and �> 3=2 modes, with � ! 3=2 in the limit � !
3, which we have already seen recovers a scale-invariant
spectrum. A general expression for the curvature power
spectrum is obtained in the usual way by taking the long-
wavelength limit,

P1=2
R �k� /

��������uk
z

��������y!0
/

H���
(

p yr� : (127)

Note, in particular, that the exponent is

3

2
� � �

3

2

�
1�

����������������
1�

4

9
	

s �
� r� (128)

for both the � � r� and � � r� cases. The spectral index
of curvature fluctuations is obtained by taking the constant-
time derivative of the asymptotic power spectrum,

n� 1 �
d ln�PR�

d ln�k�

��������aH�const
� 2r�: (129)

Note that this gives the correct value in the slow-roll limit
(123), but differs substantially for large � from the value
derived from the horizon-crossing formalism which was
used in Refs. [15,16]. Using (79), it is straightforward to
show that the horizon-crossing formalism breaks down for
large �:

d ln��N��

d ln�y�
� 3=2� �� � � r� � �: (130)

For � � r�, we have
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d ln��N��

d ln�y�
’ 0; (131)

so the horizon-crossing formalism is good. For the � � r�
branch, the comoving curvature perturbation evolves rap-
idly on superhorizon scales,

d ln��N��

d ln�y�
� r� � r� � �3

����������������
1�

4

9
	

s
: (132)

We therefore recover the standard result in every respect,
including the validity of the horizon-crossing formalism, in
the slow-roll limit. Far from slow roll, however, the stan-
dard horizon-crossing expressions are invalid. In the next
section, we discuss the details of the dynamics in the
context of string-inspired inflation models.
VI. APPLICATION TO STRING-INSPIRED
INFLATION MODELS

In this section, we comment briefly the results of Sec. V
in the context of model building in string theory and
supergravity. It is well known that in string-inspired infla-
tion models, potentials of the form (112) arise naturally in
many circumstances, most notably in potentials for moduli
fields. However, the slow-roll limit � � M is generically
unstable to radiative corrections, which forces the mass �
to be of order the Hubble parameter,

��H�
M2

mPl
; (133)

thus spoiling slow-roll evolution. This is the famous ‘‘�
problem,’’ so called because radiative corrections force �
to be of order unity [45]. With this in mind, we consider
scalar field evolution in a potential of the form (112).

Let us write the general solution (117) for the field
equation in terms of the parameter � (126):

��N� � ��er�N ���er�N � e3N=2���e��N ���e�N�:

(134)

For arbitrary initial conditions, the field will evolve as a
superposition of the � � r� and � � r� branches. For
example, the case � � 0 is just ultra–slow roll. In this case
r� � 0 and r� � 3, so that

��N� � �� ���e3N: (135)

In this limit, we can identify the constant �� as the
asymptotic field value �0, and the field evolves entirely
on the r� branch. The constant �� can be identified with
the end of inflation (N � 0), �� � �c. The spectral index
is given by Eq. (129),

n� 1 � 2r� � 0; (136)

in agreement with our earlier analysis. For the more gen-
eral case of nonzero �, the r� branch represents a slowly
evolving late-time attractor, and the r� branch is a (rela-
-10
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tively) fast-rolling transient which dominates at early times
(large N). (It is important to note that the solution (134) is
valid only in the limit of small �, an approximation which
breaks down rapidly at early times on the r� branch.) The
cases � � r� are just early- and late-time regions of the
same solution for the field evolution, and the spectral index
of density fluctuations is the same in both limits:

n� 1 � 2r� � 3�
���������������
9� 4	

p
; (137)

where 	 � ��=H�2 (116). This means that transient, non–-
slow-roll behavior can be active during the time when
perturbations relevant to cosmology were generated, mak-
ing available a much richer dynamical phase space for
inflationary model building. This may be useful for con-
structing models on the string ‘‘landscape.’’

However, the existence of these non–slow-roll solutions
does not do much directly to solve the � problem. The
slow-roll limit is obtained for 	 � 1,

�n� 1�SR ’
2

3
	 � 2�SR; (138)

in agreement with the standard slow-roll result. This ex-
pression becomes large for 	 of order unity, hence the �
problem in inflation. We can use the general Eq. (137) to
constrain 	. For the WMAP limit n < 1:32 [46], the limit
on 	 becomes 	< 0:45, so that the observational limit on
� is

�< 0:67H: (139)

The limit from the slow-roll expression (138) is nearly
identical. If we constrain n < 1:1, the corresponding limit
is �< 0:39H. Therefore, the � problem remains un-
changed in the presence of the non–slow-roll solution,
although it is perhaps not as severe as is often supposed.
VII. CONCLUSIONS

We have considered the horizon-crossing formalism for
perturbations in inflation. The validity of the horizon-
crossing formalism depends on the existence of conserved
quantities in the cosmological evolution,

dH�

dy
�

d
dy

�Hy3=2��� � 0 (140)

for free scalar modes, and

d ln��N��

d ln�y�
�

3

2
� ��

2(� �
1� (

� 0 (141)

for curvature perturbations, where

�N� �

�
H2

_�
y3=2��

�
: (142)
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The constant � is the index of Hankel function solution for
the mode function uk. When either of these conditions is
violated, the horizon-crossing formalism is invalid for the
relevant perturbation. For the cases of de Sitter evolution
and power-law inflation, both quantities are exactly con-
served,

dH�

dy
�

d ln��N��

d ln�y�
� 0: (143)

In the case of slow-roll inflation, the conservation law is
approximate for curvature perturbations,

d ln��N��

d ln�y�
� (�2(� �� (144)

so that corrections to the horizon-crossing expressions are
second order in slow roll.

An example of a circumstance for which the horizon-
crossing formalism fails is the simple model of ultra–slow
roll inflation, which is a scalar field evolving on an exactly
flat potential, V��� � const In this case, the conservation
condition for curvature perturbations is strongly violated,

d ln��N��

d ln�y�
� �3; (145)

indicating that the comoving curvature perturbation R is
evolving rapidly on superhorizon scales. Curvature pertur-
bations for this model are shown to be scale-invariant,
despite the fact that the second Hubble slow-roll parameter
is large, � � 3. The usual horizon-crossing expression for
the spectral index gives the wrong answer, n� 1 � 6. This
can be generalized to the case of hybrid inflation in the
limit of large �, and the dynamics leading to the time-
dependence of the curvature perturbation identified as an
early-time transient solution in the field evolution. Such
transient solutions, despite the strong departure from slow
roll, can generate perturbations consistent with observa-
tions. Such solutions may be useful for model building on
the string landscape, although they do not solve the �
problem in string theory/supergravity.

ACKNOWLEDGMENTS

I thank Richard Woodard and Ali Nayeri for many help-
ful discussions on the subject of perturbations in the ultra–-
slow-roll case, and Richard Easther for conversations on
horizon crossing. I thank Andrew Liddle for comments on
a draft version of this paper.
-11



WILLIAM H. KINNEY PHYSICAL REVIEW D 72, 023515 (2005)
[1] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532
(1981) [Pis’ma Zh. Eksp. Teor. Fiz. 33, 549 (1981)].

[2] S. W. Hawking and I. G. Moss, Nucl. Phys. B224, 180
(1983).

[3] A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
[4] A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).
[5] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys.

Rev. D 28, 679 (1983).
[6] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1

(1984).
[7] V. F. Mukhanov, JETP Lett. 41, 493 (1985) [Pis’ma Zh.

Eksp. Teor. Fiz. 41, 402 (1985)].
[8] V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988)

[Zh. Eksp. Teor. Fiz. 94N7, 1 (1988)].
[9] M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).

[10] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Phys. Rep. 215, 203 (1992).

[11] E. D. Stewart and D. H. Lyth, Phys. Lett. B 302, 171
(1993).

[12] M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71
(1996).

[13] A. A. Starobinsky, JETP Lett. 55, 489 (1992) [Pis’ma Zh.
Eksp. Teor. Fiz. 55, 477 (1992)].

[14] R. Easther, Classical Quantum Gravity 13, 1775 (1996).
[15] J. Garcia-Bellido and D. Wands, Phys. Rev. D 54, 7181

(1996).
[16] W. H. Kinney, Phys. Rev. D 56, 2002 (1997).
[17] L. M. Wang, V. F. Mukhanov, and P. J. Steinhardt, Phys.

Lett. B 414, 18 (1997).
[18] O. Seto, J. Yokoyama, and H. Kodama, Phys. Rev. D 61,

103504 (2000).
[19] J. A. Adams, B. Cresswell and R. Easther, Phys. Rev. D

64, 123514 (2001).
[20] S. Inoue and J. Yokoyama, Phys. Lett. B 524, 15 (2002).
[21] N. C. Tsamis and R. P. Woodard, Phys. Rev. D 69, 084005

(2004).
[22] L. P. Grishchuk, Phys. Rev. D 50, 7154 (1994).
[23] J. Martin and D. J. Schwarz, Phys. Rev. D 57, 3302 (1998).
[24] L. P. Grishchuk, gr-qc/9801011.
023515
[25] J. Martin and D. J. Schwarz, gr-qc/9805069.
[26] W. Unruh, astro-ph/9802323.
[27] S. M. Leach, M. Sasaki, D. Wands, and A. R. Liddle, Phys.

Rev. D 64, 023512 (2001).
[28] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
[29] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
[30] D. H. Lyth, C. Ungarelli, and D. Wands, Phys. Rev. D 67,

023503 (2003).
[31] S. W. Hawking, Astrophys. J. 145, 544 (1966).
[32] G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804

(1989).
[33] A. R. Liddle and D. H. Lyth, Phys. Rep. 231, 1 (1993).
[34] A. Challinor and A. Lasenby, astro-ph/9804301

[Astrophys. J. (to be published)].
[35] S. M. Leach and A. R. Liddle, Phys. Rev. D 63, 043508

(2001).
[36] E. J. Copeland, E. W. Kolb, A. R. Liddle, and J. E. Lidsey,

Phys. Rev. D 48, 2529 (1993).
[37] A. R. Liddle, P. Parsons, and J. D. Barrow, Phys. Rev. D

50, 7222 (1994).
[38] W. H. Kinney, Phys. Rev. D 66, 083508 (2002).
[39] N. Deruelle and V. F. Mukhanov, Phys. Rev. D 52, 5549

(1995).
[40] L. P. Grishchuk and Yu. V. Sidorav, in Proceedings of the

Fourth Seminar on Quantum Gravity, edited by M. A.
Markov, V. A. Berezin, and V. P. Frolov (World
Scientific, Singapore, 1988).

[41] A. G. Muslimov, Classical Quantum Gravity 7, 231
(1990).

[42] D. S. Salopek and J. R. Bond, Phys. Rev. D 42, 3936
(1990).

[43] J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T.
Barreiro, and M. Abney, Rev. Mod. Phys. 69, 373 (1997).

[44] A. D. Linde, Phys. Rev. D 49, 748 (1994).
[45] See, for example, S. Kachru, R. Kallosh, A. Linde,

J. Maldacena, L. McAllister, and S. P. Trivedi, J.
Cosmol. Astropart. Phys. 10 (2003) 013.

[46] H. V. Peiris et al., Astrophys. J. Suppl. Ser. 148, 213
(2003).
-12


