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We find the constraints from Wilkinson microwave anisotropy probe (WMAP) and Sloan digital sky
survey (SDSS) data on the fraction of cosmological fluctuations sourced by local cosmic strings using a
Markov Chain Monte Carlo (MCMC) analysis. In addition to varying the usual 6 cosmological parameters
and the string tension (�), we also varied the amount of small-scale structure on the strings. Our results
indicate that cosmic strings can account for up to 7 (14)% of the total power of the microwave anisotropy
at 68 (95)% confidence level. The corresponding bound on the string mass per unit length, within our
string model, is G�< 3:4�5� � 10�7 at 68 (95)% C.L. We also calculate the B-type polarization spectra
sourced by cosmic strings and discuss the prospects of their detection.

DOI: 10.1103/PhysRevD.72.023513 PACS numbers: 98.80.Cq
I. INTRODUCTION

Cosmic strings were proposed as potential seeds for
structure formation in the early 1980’s [1,2] and exten-
sively studied in this context until the late 1990’s (see [3]
for a review). The interest was fueled, in part, by the fact
that the cosmic microwave background (CMB) tempera-
ture anisotropy discovered by COBE [4] was of the same
order of magnitude (10�5) as the density fluctuations that
would be produced by cosmic strings formed around grand
unified theory (GUT) epoch. However, by 1997 it was
already apparent that strings could not explain the distri-
bution of large-scale structure [5]. Finally, when
Boomerang [6] and Maxima [7] revealed the existence of
acoustic peaks in the CMB angular spectrum, strings were
excluded as a viable alternative to inflation as a model for
seeding the formation of structure. The shape and location
of the peaks, currently measured to a high precision by
WMAP [8], strongly indicate that structures grew out of
initial fluctuations with adiabatic initial conditions and
with a scale-invariant spectrum, just as prescribed by the
inflationary paradigm [9]. In contrast, strings predict nearly
featureless CMB spectra1 and, when normalized to COBE
or WMAP, do not produce enough clustering on large
scales.

While strings could not have seeded all of the structure
in the Universe, they could have created a subdominant yet
non-negligible fraction of the primordial cosmological
fluctuations [12–18]. This idea has recently received re-
newed attention with the realization that cosmic strings are
produced in a wide class of string theory models of the
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inflationary epoch [19–26]. In these models, inflation can
arise during the collisions of branes that coalesce to form,
ultimately, the brane on which we live [27–30]. Brane
inflation predicts adiabatic temperature and dark matter
fluctuations capable of reproducing all currently available
observations. In addition, the collision at the conclusion of
brane inflation can produce a network of local cosmic
strings [19,20], whose effects on cosmological observables
range from negligible to substantial, depending on the
specific scenario [21,22]. It has also been shown that
strings could form at an observationally acceptable level
at the end of the D-term inflation in supersymmetric GUT
models [18]. As the precision of cosmological observations
increases, one might hope to distinguish among the numer-
ous presently-viable models of inflation by studying and
constraining the properties of the cosmic strings they
predict.

The properties of the strings produced at the end of
brane inflation are similar to those of local strings. They
intercommute and break off loops like networks of usual
strings, implying that they will settle into a scaling solu-
tion. However, because of their higher-dimensional nature,
they are expected to intercommute at a reduced rate and
thus approach a scaling solution at a higher string density.
There are also other, qualitatively new aspects of cosmic
superstrings, the most important of which is that string
theory models generically predict the existence of at least
two fundamentally different kinds of cosmic strings. These
are the so-called fundamental, or F-strings, and another
kind of string formed by wrapping of all but one of the
dimensions of a higher-dimensional D-brane around com-
pact dimensions, or D-strings. The relative tensions of
these string types are determined by the superstring cou-
pling, gs. Because these different string types interact
through binding, rather than intercommutation, they can
form higher-tension �p; q� states composed of p F-strings
and q D-strings [25,31]. A first model of these networks
has been developed recently, and shows that these binding
-1  2005 The American Physical Society
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FIG. 1. The CMB TT, and TE spectra (solid lines) sourced by
cosmic strings with wiggliness parameter �r � 1:9, as well as
the adiabatic spectra for the same cosmological parameters
(dashed lines) and WMAP’s first year data. The string spectra
are normalized so that the total TT power is the same for the two
lines, which corresponds to B � 1.

FIG. 2. The string-generated matter power spectrum (solid
line) for the same parameters as in Fig. 1, i.e., for B � 1. The
dashed line represents the linear spectrum from adiabatic per-
turbations at z � 0.
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reactions allow network scaling [32]. Because of the com-
plexity introduced by this kind of new physics, the amount
of small-scale structure on strings—the string ‘‘wiggli-
ness’’—can vary depending on the particular brane infla-
tion scenario. To make our constraints applicable to a wide
range of models, we have included the string wiggliness as
one of the parameters in the MCMC simulation. The effect
of a higher string density can be roughly modeled by
appropriately adjusting the normalization of the string-
generated spectra. This then translates into a simple adjust-
ment of the bound on G�.

The aim of this paper is to constrain the properties of
cosmic strings by using the power spectrum data from the
WMAP and SDSS experiments. There are other ways to
constrain cosmic strings—some of them promising to
produce much tighter bounds than those that will ever be
possible with power spectrum data. We give a brief review
of other methods in the summary section, Sec. IV.

The rest of this paper is organized as follows. In Sec. II
we give a detailed account of the model and the methods
used. We show the results in Sec. III and conclude with a
discussion in Sec. IV.

II. THE MODEL AND ANALYSIS

The fluctuations resulting from brane inflation are ex-
pected to be an incoherent superposition of contributions
from adiabatic perturbations initiated by curvature fluctua-
tions and active perturbations induced by the decaying
cosmic-string network. The resulting CMB angular spectra
can be written as a sum of the adiabatic and string con-
tributions:

Cl � Cad
l � Ccs

l : (1)

Analogous expressions hold for matter density spectra. We
restrict our study to a flat FRW universe and vary the
following cosmological parameters: the Hubble constant
h, the matter density �Mh2, the baryon density �bh2, and
the reionization optical depth �. In addition, we vary the
galaxy bias factor Fb, the amplitude As and the spectral
index ns of the primordial scalar power spectrum, as well
as the string mass per unit length, G�, and the string
wiggliness parameter �r (to be defined in Sec. II A).

We used a suite of different codes to produce and
analyze the spectra. The model we employed for the
cosmic-string generated perturbations is described in the
subsection below. The string CMB and matter spectra were
calculated using a modification [33,34] of CMBFAST [35]
(see Figs. 1 and 2 for representative string-induced spec-
tra). We first evaluated and stored the string spectra on a
grid of parameters. During our calculations, the spectra
were obtained by interpolation on the grid. The adiabatic
matter spectra were also stored on a grid after having been
evaluated using a publicly-available version of CMBFAST.
For the adiabatic CMB spectra, we used the package
CMBWARP [36].
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To compare the theoretical linear matter power spectrum
PL�k� generated by our code with the SDSS results, we first
applied the halo-fitting procedure of Smith et al. [37] to
obtain the nonlinear spectra, PNL�k�. This procedure is
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only valid for the adiabatic contribution to the P�k� spec-
trum, so using it for the cosmic-string contribution intro-
duces some inaccuracy into our model. However, as we can
see in Fig. 2, the string power spectrum is considerably
weaker than the adiabatic power spectrum on all but the
smallest length scales even in models where strings ac-
count for all the large-scale microwave anisotropy. Thus,
since only a small portion of the relevant values of k are
affected by the halo-fitting procedure, and since the effect
is small on the scales we consider, we expect any inaccur-
acy introduced by our approximate treatment of nonline-
arity to be unimportant. Next, we assumed that the galaxy
bias factor and the correction due to peculiar velocities on
the scales of our interest (k < 0:2 h=Mpc) are approxi-
mately redshift- and scale-independent and can be com-
bined into a single constant factor, Fb, multiplying the
matter spectrum:

P�k� � FbPNL�k�: (2)

We then fit P�k� to the SDSS power spectrum data (for k <
0:2 h=Mpc) with Fb as a free parameter.

The likelihood of the spectra for a given set of parame-
ters was obtained using the publicly-available likelihood
codes produced by the WMAP [38] and SDSS [39] teams.

A. The cosmic-string model

Unlike the adiabatic inflationary perturbations, which
are set as initial conditions in the equations of motion of
linear perturbations, cosmic strings act as a continual
source of fluctuations as the universe evolves. The density
and temperature fluctuations created in the immediate
locality of a cosmic string are highly nonlinear, e.g. the
density contrast ��=� is significantly larger than unity in
the wake formed behind a moving string. However, the
effect of strings on cosmological scales is that of a small
perturbation to the evolution of the average cosmic energy-
momentum tensor. Hence, for the purpose of computing
the CMB and large scale structure (LSS) spectra, the
metric and density perturbations caused by strings are
described by the system of linearized Einstein-Boltzmann
equations with strings acting as active sources.

Evaluation of the CMB and LSS spectra sourced by
strings requires knowing their energy-momentum tensor
(or its unequal time correlation functions [40]) for the
entire dynamical range of the calculation, which is ap-
proximately four orders of magnitude in scale factor.
Realistic simulations of cosmic-string networks have so
far been limited either in their dynamical range [41] or
their resolution [42]. Hence, until full-scale simulations
become available, one is forced to resort to approximate
methods to model the string sources.

Numerical simulations [43–45] show that during the
radiation and matter dominated eras the string network
evolves according to a scaling solution, which on suffi-
ciently large scales can be described by two length scales.
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The first scale, ��t�, is the coherence length of strings, i.e.
the distance beyond which directions along the string are
uncorrelated. The second scale, L�t�, is the average inter-
string separation. Scaling implies that both length scales
grow in proportion to the horizon. Simulations indicate that
��t� � t, while L�t� �  t, with  � 0:8 in the matter era
[43,44]. The one-scale model [46,47], in which the two
length scales are assumed to be equal, has been quite
successful in describing the general properties of cosmic-
string networks inferred from numerical simulations.
These simulations assume that cosmic strings reconnect
on every intersection. It is of interest to us, however, to also
consider the case when the reconnection probability is less
than one. If strings can move and interact in extra dimen-
sions then, while appearing to intersect in our three dimen-
sions, they may actually miss each other. Hence, the
effective intercommutation rate of these strings will gen-
erally be less than unity. As a consequence, one would
expect more strings per horizon in these theories [19,22].
Because of the straightening of wiggles on subhorizon
scales due to the expansion of the universe, one would still
expect ��t� � t. However, the string density would in-
crease, therefore reducing the interstring distance. Hence,
smaller intercommutation probabilities imply smaller  .

In addition, numerical simulations show that long strings
possess a great deal of small-scale structure in the form of
kinks and wiggles on scales much smaller than the horizon.
To an observer who cannot resolve this structure, the string
will appear to be smooth, but with a larger effective mass
per unit length ~� and a smaller effective tension ~T. An
unperturbed string (with � � T) exerts no gravitational
force on nearby particles. In contrast, a wiggly string with
~�> ~T attracts particles like a massive rod. The effective
equation of state of a wiggly strings is ~� ~T � �2 [48,49].
Depending on the brane inflation model, the presence of
extra dimensions could mean that even more small-scale
structure would be present on the strings [22].

To calculate the sources of perturbations we use an
updated version of the cosmic-string model first introduced
by Albrecht et al. [5] and further developed in
Refs. [33,50], where the wiggly nature of strings was taken
into account. In this model, the string network is repre-
sented by a collection of uncorrelated straight string seg-
ments produced at some early epoch, moving with
uncorrelated, random velocities. At every subsequent
epoch, a certain fraction of the number of segments decays
in a way that maintains network scaling. The length of each
segment at any time is taken to be equal to the correlation
length of the network. This length and the root-mean-
square (r.m.s.) velocity of segments are computed from
the velocity-dependent one-scale model of Martins and
Shellard [51]. The positions of segments are drawn from
a uniform distribution in space, and their orientations are
chosen from a uniform distribution on a two-sphere. This
model is a rather crude approximation of a realistic string
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network. However, there are good reasons to believe that
its predictions for the CMB and LSS spectra are close to
what one would obtain by using full-scale simulations. Its
parameters have been calibrated to produce source corre-
lation functions in agreement with those in [52], where
comparison to a full simulation was possible. Also, the
shape of the spectra obtained using this model are in good
agreement with results of other groups [53–55], who used
different methods that are also approximate. Finally, on the
cosmological scales probed by the CMB measurements,
the fine details of the string evolution do not play a major
role. It is the large-scale properties—such as the scaling
distance, the equation of state (wiggliness), the r.m.s.
velocity, and how all these characteristics evolve through
the radiation-matter equality—that determine the shape of
the string-induced spectra. All of these effects are ac-
counted for in our model and can, in principle, be adjusted
to match any specific cosmic-string model. We choose to
work with this model because one can easily calculate the
sources for different cosmological parameters and because
it allows us to include the effect of the wiggliness [33],
which could be one of the distinguishing features of strings
produced in theories with extra dimensions [22]. The other
main effect of the presence of extra dimensions, the in-
creased string density, can be approximately factored in by
multiplying the spectra by Ns �  �2.

For technical details of the model, the reader is referred
to [33] and references therein. The wiggly nature of strings
is accounted for by modifying the string energy-
momentum tensor so that it corresponds to the wiggly
string equation of state:

~� � ��; ~T � ��1�; (3)

where � is a parameter describing the wiggliness, ~� and ~T
are the mass per unit length and the string tension of the
wiggly string, and � is the tension (or, equivalently, the
mass per unit length) of the smooth string. In addition to
modifying the equation of state, the presence of small-scale
structure slows strings down on large scales. We account
for this by dividing the root mean squared string velocity
by the parameter �. The wiggliness of the strings remains
approximately constant during the radiation and matter
eras, but changes its value during the transition between
the two. We take the radiation era value, �r, to be a free
parameter that we vary, and set the matter era value to be
�m � �1� �r�=2, with a smooth interpolation between
the two values (as prescribed in [33]). For conventional
strings, this roughly agrees with results of numerical simu-
lations [43,44] which show a decrease from�r � 1:8� 1:9
in the radiation era to �m � 1:4� 1:6 in the matter era.

The way the wiggliness modifies the shape of the spectra
can be understood qualitatively, once one examines the
main physical processes that contribute to CMB anisotropy
on various scales. The spectrum can be approximately
divided into two main components. One is a roughly flat
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(scale-invariant) component that arises from the combined
Kaiser-Stebbins effect [56] of many strings in a scaling
string network; this component is produced after last scat-
tering. The second component is the bump peaked at ‘�
450, which is primarily determined by the state of density
and velocity perturbations at the time of last scattering.
CMB photons experience Doppler shifts when they (last-)
scatter off the velocity flows created by the string wakes
that exist at this epoch [57]. In addition, all the density
fluctuations that existed at the time of last scattering are
imprinted on the CMB via the Sachs-Wolfe effect [58];
these density fluctuations are caused by the CDM wakes
created by strings during the time between radiation-matter
equality and last scattering. If we change the string sub-
structure by introducing string wiggliness, there is a two-
fold effect on the flat part of the spectrum that arises from
the Kaiser-Stebbins effect. The first effect is simple: by
nature, heavier strings have larger deficit angles, and thus
produce larger CMB discontinuities. However, the size of
the discontinuities is also proportional to string velocity
and, since wiggly strings move more slowly than straight
ones, the net increase in the size of the discontinuities is
mitigated. The wakes behind a wiggly string are, nonethe-
less, always more prominent. This is because of wiggly
strings having a nonzero Newtonian potential that attracts
matter particles in the string’s vicinity. The combined
effect of wiggliness on the flat component of the spectrum
is an overall increase in its amplitude, but a relatively weak
one. The peak, on the other hand, is directly enhanced,
since the wakes at the last scattering are more prominent
for wiggly strings. The net result is an overall increase in
the amplitude of the spectra coupled with an enhancement
of the peak at ‘� 450. The characteristic scale of the
fluctuations at decoupling is set by the size of the typical
wake, or, in turn, by the coherence length ��t� of the string
network at that time. Independent of the string intercom-
mutation probability, the coherence length ��t� is always
expected to be roughly equal to t. This is because of the
straightening of wiggles on subhorizon scales caused by
the expansion of the universe. Therefore, the qualitative
features of the spectrum are quite independent of the de-
tails of the model. Hence, any observational constraint that
we obtain based only on the shape of the spectrum (such as
the constraint on the parameter f defined below) can be
viewed as less model-dependent than our other results.

It is well known that properties and possible observa-
tional signatures of global and local strings can be very
different. Global strings predict almost no power on small
angular scales for CMB temperature anisotropy [40], while
local strings—as we have argued above—produce a quite
significant broad peak at l� 450 in a spatially flat universe
[5,33,53–55,59]; this can be seen in Fig. 1. Global strings
also induce a significantly larger vector component of
metric perturbations [60]. Consequently, their prediction
for the strength of the B-type polarization [61] is generally
-4



TABLE I. Prior constraints on the parameters.

0 
 B
1 
 �r 
 4
0 
 As

0:92 
 ns 
 1:07
0:019 
 �Bh

2 
 0:028
0:1 
 �Mh

2 
 0:2
0:5 
 h 
 0:8
0 
 � 
 0:23
0 
 Fb

TABLE II. The best-fit results

Parameter B � 0 B> 0

f — <0:068�68%�, <0:14�95%�

B — <0:029�68%�, <0:062�95%�

�r — <2:3�68%�, <3:6�95%�

As 0:87�0:08
�0:16 0:85�0:09

�0:13
ns 1:0�0:02

�0:04 1:0� 0:026
�Bh

2 0:024� 0:001 0:025�0:0012
�0:0016

�Mh
2 0:15� 0:01 0:15�0:013

�0:01
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higher than that of local strings. We will only concern
ourselves with local strings. For the most recent constraints
on global strings the reader is referred to [62,63].

Rather than working directly with the string parameter
G�, we introduce a parameter B, defined as

B 	

�
�
�0

�
2
; (4)

where �0 is the tension that one obtains by setting the total
power in string-induced CMB anisotropy to be equal to the
total power observed by WMAP. That is, we set

Ics 	
X
l

�2l� 1�

4)
Ccs
l ��0; �

�0�
r ; ~p0� � IWMAP; (5)

where we take ��0�
r � 1:9 and ~p0 is a fixed set of the

remaining cosmological parameters that have taken to
correspond to the the best-fit �CDM model of Tegmark
et al. [64]. The value of G�0 that we obtain with this
prescription is 2� 10�6. Speaking very loosely, B can be
said to measure the fraction of the anisotropy due to
strings. Note, however, that this meaning is modified if,
for instance, the strings have a different amount of small-
scale structure (�r � 1:9) or if they have reduced inter-
commutation probabilities. B is only really useful as an
intermediate parameter. Our main results are the con-
straints on G� that we obtain from B and the fraction f
of the total CMB anisotropy due to strings [Eq. (6)].

B. Markov chain Monte Carlo

Because of the large size of our parameter space (nine
parameters in total), we have used the Markov Chain
Monte Carlo (MCMC) method for exploring the likelihood
surface and for generating marginalized posterior distribu-
tion functions for the model parameters. We employed the
MCMC algorithm described in the Appendix of [64].

We ran eight separate chains initialized at randomly
generated initial positions within our prior range. The
priors, given in Table I, were chosen with the expectation
of the string contribution being subdominant and the best-
fit parameters being close to their WMAP best-fit values
[65]2. Since we expected values of B near zero to be
preferred, we also allowed B to range slightly below zero
so as not to restrict artificially the ability of the chain’s
random steps to explore near B � 0; values below zero
were discarded when the data were analyzed. One advan-
tage to our use of multiple chains rather than a single, long
chain was that we were able to verify directly that there was
adequate mixing in each chain, since each successfully
forgot its starting location and located the same maximum
likelihood region of the parameter space.
2The restriction on wiggliness, �r < 4, was to save computing
time.
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III. RESULTS

A. The fraction in strings and G�

To test our MCMC code we first ran a chain with the
string contribution set to zero (B � 0). The results are
shown in Table II. Our results are consistent with those
found in a similar analysis of the same data by members of
the SDSS team [64].

Each of our eight chains allowed variation in all nine
parameters. The results are summarized in Fig. 3 and
Table II. In Fig. 3 we plot the marginalized 1-D posterior
distribution functions for the nine parameters we allowed
to vary in our analysis. The solid lines represent the pos-
terior distribution functions (PDFs) for these parameters
with cosmic strings included; the dashed lines show the
results without cosmic strings (B � 0). We have shaded the
regions excluded at 68% (light) and 95 % (dark) confi-
dence. The peaks of each of these PDFs and the one-sigma
error bars are given in Table II; for the parameter �, where
the results lack a clear peak, we have taken the midpoint of
the 68% confidence region as our ‘‘peak’’ value.

The resulting cosmology with cosmic strings included is
very close to the cosmology without cosmic strings. This
verifies our hypothesis: a subdominant admixture of cos-
mic strings into the cosmological perturbation spectra
gives a minor modification to the resulting cosmological
parameters as determined in such a model. This justifies
the approximation made in [66,67], where we fixed all of
h 0:69� 0:03 0:71� 0:034
� 0:155� 0:057 0:143� 0:054
Fb 1:46�0:24

�0:22 1:47�0:2
�0:18
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FIG. 3. The one-dimensional projected PDFs for the 9 parameters varied by our Markov chain Monte Carlo code; note that !B �
�Bh

2, !M � �Mh
2. The solid line represents the PDFs for models where cosmic strings are included; the dashed line represents the

PDFs for models with B � 0, i.e. without cosmic strings. Each curve has been rescaled such that its area is unity. For each PDF the
lightly shaded regions are excluded at the 68% confidence region; the dark regions are excluded at the 95% confidence region.

FIG. 4. The PDF for the cosmic-string weighting parameter,
B 	 �G�=2� 10�6�2.
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the cosmological parameters except for ns to their WMAP
best-fit values. The only noticeable shift caused by includ-
ing cosmic strings comes in the peak likelihood in the PDF
for �Bh2, and even this shift is small. The only potentially
worrisome aspect of these PDFs is the fact that the PDF for
� appears to be running into the upper value of our prior
range.

Let us examine the PDF for the cosmic-string weighting
parameter, B, given in Fig. 4. The light and dark shaded
regions again represent the 68 and 95% confidence inter-
vals. Although the parameter name, B, is retained from our
previous work [67], the fact that we have changed our
string model has changed this parameter’s meaning.
Thus, Fig. 4 should not be directly compared with our
earlier results. Indeed, we have added a new parameter
for describing the strings, �r, the string wiggliness. In our
previous code, we had effectively fixed �r � 1. Since
strings with �r > 1 have a larger effective mass per unit
length than �r � 1 strings, the cosmological perturbations
caused by �r > 1 strings are generally larger. Note that �r
and B were not degenerate parameters—the effect of a
higher �r, for a particular spectrum, was quite independent
of B; see a (rough) contour plot in Fig. 5. This is because
varying the wiggliness modifies the shape of the spectra in
addition to their amplitude, as we described briefly in
Sec. II A [33].
023513-6
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FIG. 6. The PDF for the combination parameter f, which
quantifies the fractional contribution of cosmic strings to the
total CTT

l spectrum. The solid line shows f from our full analysis,
with the 68% (light) and 95% (dark) confidence regions shaded.
The dotted line is the result for f from our previous three
parameter analysis.

1 2 3 4
0

0.02

0.04

0.06

0.08

FIG. 5. A contour plot of a separate set of MCMC results in the
two-dimensional space defined by the parameters B and �. The
contours are somewhat crude, but suggest that � is poorly
constrained. At this level, there is no evidence for degeneracy
between the parameters.
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To quantify the total string contribution to the CMB
anisotropy for a given set of parameters ~s we define the
fraction f as

f� ~s� �
Ics

Ics � Iad
; (6)

where

Ics �
X
l

�2l� 1�

4)
Ccs
l �~s�;

and

Iad �
X
l

�2l� 1�

4)
Cad
l �~s�;

where Cad;cs
l are the temperature (TT) correlation spectra.

We then compute the PDF for this new parameter, which
we show in Fig. 6 along with the 68 and 95% probability
regions. We find that about 7% (14%) of the CMB power
can be sourced by strings at 68% (95%) confidence. Note
that the dashed line, corresponding to the three parameter
analysis of [67], shows a smaller allowed string
contribution.

Figures 4 and 6 are the principal results of this paper.
Limits on B alone give limits on the string tension itself.
Using the results in Fig. 4, we find a cosmic string weight
of B & 0:029�0:06� allowed at the 68 (95)% confidence
level. This corresponds to G� & 3:4�5:0� � 10�7. The
peak of the PDF for B lies at B � 0:01, or G�� 2�
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10�7. These limits are relevant to searches for direct de-
tections of cosmic strings, as the magnitudes of gravity
wave and lensing events caused by cosmic strings depend
directly on their tension.

The above bounds onG� are model-dependent. In order
to match the total observed CMB power, our string model
requires G�0 � 2� 10�6. This value is on the upper end
of other estimates in the literature, which means that our
upper bound on G� can be treated as a conservative upper
bound. Our G�0 is consistent with the COBE normalized
values in [68] (G� � 1:7� 10�6), in [69] (G� � �1:5�
0:5� � 10�6), in [70] (G� � �1:7� 0:7� � 10�6), and in
[71] (G� � 2� 10�6). It also agrees with [5] (for similar
model parameters). Significantly different estimates of
G�0 were found in [54], where the COBE normalized
value of G� was �1:0� 10�6 (for their parameter wX �
1=3), and similarly in [55]. The latest estimates of Landriau
and Shellard [42] using realistic simulations of cosmic
strings [42] (reliable up to ‘� 20) give the COBE normal-
ized value of G� � �0:74� 0:2� � 10�6 for a �CDM
cosmology, which is consistent with results of a similar
study in [72] where the value obtained was G� � �1:05�
0:3� � 10�6. Note that most of the results obtained prior to
1999 assumed a CDM dominated cosmology—switching
to �CDM leads to a �10% increase in COBE normalized
value of G� [42].
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FIG. 7. The B-type polarization spectra for �r � 1:9 (dashed
lined) and �r � 1 (solid line) both corresponding f � 0:1. The
light dotted line is the B-mode expected from gravitational
lensing of adiabatic E-mode polarization; the light dash-dotted
line is the B-mode expected from gravity wave-sourced polar-
ization, for tensor-to-scalar ratio r � 0:1.
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Our bound on G� would also be altered if the strings
intercommute at a rate less than unity, as is expected in
many string theory models of cosmic strings. The effect of
reduced intercommutation would be to lower the upper
limit on G�.

Our bound on the fraction of CMB power in strings, f,
depends only on the shapes of the string-sourced CMB and
LSS spectra. These shapes, as discussed in xII A, are
largely independent of the details of the string model.
The bound on f can be used to derive an approximate
bound on G�, given one’s favorite value of �0. For ex-
ample, if one accepts the values in [42,72], i.e.G�0 � 106,
one obtains G�0 � f1=2G�0 & 2�3� � 10�7 at 68 (95)%
confidence level.

It is also worth recognizing that f can serve as a measure
of the goodness-of-fit of the paradigmatic inflationary sce-
nario in comparison with a physically motivated model;
isocurvature is another example of a model used in such a
manner (e.g. [73]). Our results from cosmic strings, serving
from this viewpoint merely as a self-consistent foil to the
standard model, show that as much as 14% of the CMB TT-
correlation power could be sourced by a radically different
spectrum without destroying the close agreement of the
resulting spectrum with the anisotropy data. Loosely
speaking, we can conclude from this bound that there is a
cumulative ambiguity in the uniqueness of the adiabatic C‘
spectrum shape, as determined from the WMAP data, of
around 10%. As more CMB data become available in the
future, repetition of this analysis might be worthwhile, if
only to discover whether the intrinsic shape of the adiabatic
spectrum is more uniquely picked out by the more-exact
future data sets.

B. The B-polarization spectrum

In Fig. 7 we plot the B-mode polarization spectra in the
case of smooth strings (�r � 1) and wiggly strings �r �
1:9 predicted by our string model for the case when the
total contribution of strings to the CMB anisotropy is 10%.
That is, for each of the curves, the value of G� was
adjusted separately to correspond to f � 0:1. For compari-
son, we also plot the B-mode spectra from a purely adia-
batic cosmology. The light dotted line represents the
B-mode polarization arising from gravitational lensing of
E-mode polarization. The light dash-dotted line represents
the B-mode arising from gravitational waves. Any direct
detection of cosmic-string-generated B-modes will rely
upon accurate predictions of the spectrum of B-mode
polarization arising from lensing of E-mode polarization.
Fortunately, several observational groups believe that it
will be possible to ‘‘clean’’ as much as 90% of the apparent
E to B lensed power through accurate E-mode observa-
tions. With gravity-wave generated B-modes peaking at a
much lower ‘, any excess power in observed B-mode
spectra at ‘� 1000 could be a telling sign of cosmic-string
activity. Two planned experiments, QUIET and QUaD
023513
[74], expect to be able to measure such high-‘ polarization
with great precision. It is also worth noting that the ampli-
tude of gravity-wave generated B-mode polarization is
intimately tied to the as-yet undetermined scalar-to-tensor
ratio, r. We have used r � 0:1 in Fig. 7, which is usually
regarded as an optimistically high value. Inflationary mod-
els frequently produce orders-of-magnitude lower esti-
mates for r (in [24], for instance, investigations predict
10�8 & r & 10�3 for KKLMMT-motivated brane inflation
[75]). For r� 0:1, cosmic strings could be the dominant
source of B-mode polarization for low values of ‘ (10<
‘< 1000), but with a spectrum that is recognizably distinct
from the polarization generated by gravity waves. The
proposed CLOVER experiment [76] and its space-based
successors plan to focus their measurements on this region
of ‘-space.

IV. SUMMARY

We found two types of constraints on cosmic-string
networks through our analysis of the WMAP and SDSS
data. One is on the value of G�, which is sensitive to our
normalization convention and to the string intercommuta-
tion rate, which we take to be unity in setting our bound.
The other is on the fraction of total CMB power due to
cosmic strings, f. The constraint on f depends chiefly on
the general shape of the string-induced spectrum. The
shape of the spectrum is quite generic – a plateau on large
scales due to superposition of the Kaiser-Stebbins effect of
-8
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many strings (from a scaling network), followed by a broad
peak on small scales. The peak is caused by the Doppler
and Sachs-Wolfe effects produced by velocity and density
perturbations caused by strings during the epoch of recom-
bination. The rough position of the peak is set by the size of
a typical wake at last scattering, while the wake size is set
by the coherence (or curvature) length ��t� at that time. We
can call these features generic because they are agreed
upon by all groups that have studied string-induced CMB
spectra. The fine details of the shape, e.g. the sharpness of
the peak, depend on many factors. Among the most im-
portant of those extra factors is the amount of small-scale
structure on strings (the wiggliness), which we included as
a parameter in our calculation.

In addition to quantifying the allowed fraction of the
cosmic-string contribution, our parameter f can also be
interpreted as a measure of the goodness-of-fit of the
fiducial adiabatic CMB spectrum model. The fact that the
data permit approximately 10% of the TT-correlation
power to arise from a very different competitor model
gives a useful measure of how uniquely the data pick out
the shape of the adiabatic spectrum.

Other recent constraints on local strings that also used
WMAP data include Ref. [77], where the narrowness of the
first peak was used to constraint the size of the incoherent
string contribution, and Refs. [78,79], where the constraint
was based on the expected non-Gaussian signatures in-
duced by strings. Ref. [77] suggests an interesting way to
obtain a rough bound the string contribution to the CMB
spectrum at ‘� 220 from constraints on the width of the
main peak. Our method has the advantage of including the
information on all scales (not just the main peak) and the
ability to account for changes in in cosmological parame-
ters and the shape of the string spectra (by varying the
wiggliness).

Our limit on the string tension, G�< 5� 10�7, does
not contradict a variety of recent claims of observational
evidence for the existence of cosmic strings. The most
prominent have been possible examples of cosmic-string
lensing. In the first case [80], a pair of nearly identical
images were found, the best explanation of which appears
to be a direct lensing by a cosmic string with tensionG��
4� 10�7. Another possible cosmic-string lensing obser-
vation [81] is the appearance of short time-scale variations
in the brightness of the well-known gravitational lens
system, Q0957� 561, which could be explained by a
passing cosmic-string loop with a tension in the range
10�8 
 G� 
 6� 10�7. The inferred time scale of these
variations is so short, �100 days, that very small-scale
string structure would be required, making the claim some-
what problematic (for more on these events, see [82]). It is
also possible that strings are responsible for the early
reionization suggested by WMAP [83], since cosmic-
string wakes can bring about star formation much earlier
[84] than the standard Press-Schechter scenario [85]; con-
023513
servative analysis of string-mediated early reionization
suggests a bound of G� & 5� 10�7 [86]. In the arena of
gravitational wave observation, current pulsar timing
bounds are still marginally consistent with G�� 10�7

[87], while analysis of gravitational wave bursts from
string loops suggests that G�� 10�7 cosmic strings will
be readily observable by both LIGO and LISA [88].

It is often thought that a key observational test for
cosmic strings would be whether non-Gaussianity is found
in the primordial perturbations seen by such experiments as
WMAP. This is a natural assumption, since each string
acting alone would perturb the CMB in a highly non-
Gaussian manner. However, the central limit theorem tells
us that the superposition of perturbations produced by
many strings must be Gaussian. Therefore, one expects
to see string-related non-Gaussian features only on scales
that are sufficiently small not to have been crossed by more
than a few strings during the entire period of time during
which strings have produced their effects. It is not difficult
to get a conservative estimate of this scale. The dominant
contribution to the anisotropy on small (subdegree) scales
comes from the Doppler and Sachs-Wolfe effects produced
at the last scattering [89]. A natural length scale to start
with is the angular size of the horizon at recombination,
which corresponds to ‘� 220=

���
3

p
. Numerical simulations

[43,44] show that the typical distance between strings
during matter domination is L� 0:8t. It is somewhat
smaller in the radiation era, and can be much smaller if
the intercommutation probability was less than unity, as
may be the case in string theory models. A conservative
estimate of the number of strings per horizon at any time in
the matter era is ��4)t3=3�=L3 � 10. When projected
onto the last scattering surface, about half of this number
of strings would contribute. Hence, the CMB anisotropy in
a patch corresponding to ‘� 220=

���
3

p
would be a superpo-

sition of the effects of about 5 strings, and to isolate the
effect of one string, one would have to go to scales of order:
‘� 220� 5=

���
3

p
� 600. In doing this rough estimate we

have ignored the density perturbations created by wakes
between the radiation-matter equality and last scattering,
which contribute a non-negligible fraction of the power
near the main peak [89]. This contribution would tend to
make the scale at which non-Gaussianity appears even
smaller, since the wakes started to from from the onset of
matter domination. Thus one will likely need a resolution
of at least ‘� 1000 to have any hope of seeing non-
Gaussianity from strings. Furthermore, in the above argu-
ment we did not account for the fact that strings can
produce only 10% of the total anisotropy. This makes the
detection of their non-Gaussian signatures even more dif-
ficult. The possibility of low string intercommutation rates
(high string density), in addition to making strings more
Gaussian (via the central limit theorem), also strengthens
the bound on their tension, hence further complicating the
detection of their non-Gaussian properties. The analysis in
-9
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Refs. [78,79] assumed ‘� 200 as the scale for the onset of
non-Gaussianity in the CMB caused by strings. A more
realistic scale, as we have argued above, is likely to be an
order of magnitude smaller, so the detection of string-
sourced non-Gaussianity appears to be beyond the reach
of WMAP, and quite possibly even Planck. The existing
constraints on string-sourced CMB non-Gaussianity, such
as those obtained in Refs. [78,79], appear to reflect the
limitation that, given the variance of a CMB map on a
certain scale, /‘, one naturally has difficulty resolving any
detailed features on those scales that have amplitudes
comparable to /‘. In light of this, it is not surprising that
the upper bound on G� obtained in [78,79] (G� & 10�5)
roughly corresponds to the variance of the WMAP CMB
map on subdegree scales.

We find that cosmic strings with tensions of G� � 5�
10�7 are still allowed by the data from the WMAP and
SDSS experiments, and that strings can account for as
much as 14% of the the temperature fluctuations in a
cosmic microwave background radiation dominated by
adiabatic fluctuations without any significant changes in
the underlying cosmology. Indeed, the excess power at
very small angular scales seen in CMB observations may
already suggest the presence of cosmic-string generated
perturbations, which may dominate on such scales [90].
Strings with allowed tensions are produced in brane infla-
023513
tion models, implying that such models are still viable and
that the strings produced by them may be observable,
giving us hope of an observational window on string
theory. One promising signature of cosmic strings with
these tensions in the early universe would be their creation
of observable B-mode polarization in the CMB with spec-
tra distinct both from those created by E-mode lensing and
by gravity waves from primordial tensor modes. If primor-
dial tensor modes are weak, cosmic strings could be the
principal new physics seen by B-mode observations; suc-
cessful observation of such B-modes would in turn be our
first direct observational probe into the physics of string
theory.
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