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Effects of gravitational backreaction on cosmological perturbations
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Because of the nonlinearity of the Einstein equations, the cosmological fluctuations which are
generated during inflation on a wide range of wavelengths do not evolve independently. In particular,
to second order in perturbation theory, the first order fluctuations back-react both on the background
geometry and on the perturbations themselves. In this paper, the gravitational backreaction of long-
wavelength (super-Hubble) scalar metric fluctuations on the perturbations themselves is investigated for a
large class of inflationary models. Specifically, the equations describing the evolution of long-wavelength
cosmological metric and matter perturbations in an inflationary universe are solved to second order in both
the amplitude of the perturbations and in the slow-roll expansion parameter. Assuming that the linear
fluctuations have random phases, we show that the fractional correction to the power spectrum due to the
leading infrared backreaction terms does not change the shape of the spectrum. The amplitude of the effect
is suppressed by the product of the inflationary slow-roll parameter and the amplitude of the linear power
spectrum. The nongaussianity of the spectrum induced by backreaction is commented upon.
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I. INTRODUCTION

The study of cosmological fluctuations is one of the
cornerstones of modern cosmology. In order for a cosmo-
logical model to be considered successful, it must be able
to reproduce, among other things, the power spectrum of
the perturbations. These perturbations leave their mark as
anisotropies in the cosmic microwave background (CMB)
and go on to act as seeds for structure formation. The
theory of cosmological perturbations establishes the bridge
between observations (namely observations of fluctuations
in the CMB and in the distribution of structure in the
universe) and the physics of the very early universe which
is responsible for providing the generation mechanism for
the fluctuations.

Arguably, the most successful cosmological paradigm
for the early universe is the inflationary scenario [1].
Inflationary cosmology provides a mechanism for generat-
ing the primordial fluctuations and predicts a nearly scale-
invariant spectrum of Gaussian, adiabatic, scalar fluctua-
tions [2] (see also [3–5]). These predictions have been
verified experimentally to high accuracy in the last decade
(see, e.g., the most recent WMAP CMB anisotropy maps
[6]). Since, in addition, inflationary cosmology solves
numerous problems of Standard Big Bang cosmology [1]
(for a review of these problems along with a discussion of
some conceptual problems inherent to inflation see [7]),
inflation is widely considered as a key ingredient of the
theory of the early universe.

At the present time, however, inflationary cosmology
does not quite have the status of a theory. It is best thought
of as a successful scenario that resolves many of the
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problems that plague Big Bang cosmology. There are a
large number of different models that result in accelerated
(i.e. inflationary) expansion. However, many models share
a common feature in that they involve a scalar field (the
‘‘inflaton’’) which undergoes a period in which it rolls
slowly down its potential - leading to what is known as
‘‘slow-roll inflation’’. Our analysis will be in the context of
a general slow-roll inflation model.

The theory of cosmological perturbations (see e.g. [8]
for a comprehensive review, and [9] for a recent abbrevi-
ated overview), a formalism crucial to the understanding of
CMB anisotropies, is usually studied within the framework
of linearized gravity. One writes down an ansatz for the
form of the perturbed metric about a homogeneous and
isotropic background space-time, linearizes the Einstein
equations in the amplitude of the perturbations, and solves
the resulting equations. In this scheme, all Fourier modes
of the fluctuations evolve independently, as must be the
case in a linear approximation. The Einstein equations
which govern the evolution of space-time and matter are,
however, nonlinear. Thus, retaining terms quadratic and
higher in the perturbation amplitude leads to interactions
between different perturbation modes. These interactions
determine the ‘‘gravitational backreaction’’, the difference
between the full evolution of the space-time and what
would be obtained in linear theory, and can lead to poten-
tially important modifications of the results obtained at
linear order. In particular, they may effect the key qualita-
tive predictions of inflation, namely, the scale invariance of
the spectrum and its Gaussianity.

The period of inflation in most scalar field-driven infla-
tionary models is very long (measured in units of the
Hubble time during inflation). Thus, the red-shifting of
scales leads to the population of a large phase space of
long-wavelength modes (modes with a wavelength larger
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.023507


PATRICK MARTINEAU AND ROBERT H. BRANDENBERGER PHYSICAL REVIEW D 72, 023507 (2005)
than the Hubble radius). The backreaction of such long-
wavelength modes on the background space-time was first
studied in [10,11] (making use of the concept of an effec-
tive energy-momentum tensor of fluctuations first used in
studies of short wavelength gravitational waves [12]). It
was found that this effective energy-momentum tensor acts
like a negative cosmological constant with a magnitude
which increases in time as the phase space of long-
wavelength modes grows. A physical explanation of this
effect in the quasihomogeneous approximation to the evo-
lution equations was recently provided in [13]. The effect
can become nonperturbatively large [11] if the period of
inflation is sufficiently long and leads to a change in the
Hubble expansion rate. This change is physically measur-
able in models with at least two matter fields [14]. In
models with only one matter field, however, the leading
infrared backreaction terms are not physically measurable
by a local observer [15–17] (see also [18], and see [19] for
a review of previous work on gravitational backreaction in
inflationary cosmology1).

Given that the backreaction of first order cosmological
perturbations on the background cosmology can become
large, it is important to determine whether this gravita-
tional backreaction can also lead to large effects on
the fluctuations themselves, potentially also changing
their key characteristics like almost scale-invariance and
Gaussianity.

It is the intent of this article to solve the perturbed
Einstein equations to quadratic order, and determine the
modifications to the results of the linear analysis, focusing
on the effects on long-wavelength fluctuations. There has
been a significant body of previous work devoted to second
order cosmological perturbations, see e.g. [27–32] and
papers quoted therein. The effect of long-wavelength
modes has also been studied in the ‘‘separate universe’’
approach [18,33,34], in which the effect of long-
wavelength perturbations in encoded as a change in the
background geometry. Our approach is similar. In particu-
lar, we will neglect spatial gradients in the equations of
motion, and thus are focusing on the leading infrared
contributions to backreaction. What differentiates our
analysis from previous work is the emphasis on the fact
that, in an inflationary universe, modes continuously move
into the infrared sector (wavelengths greater than the
Hubble radius), and that thus the infrared phase space
grows. This leads to the concern that backreaction effects
grow without limits, a concern which is the main motiva-
tion for our work.

The main result of our study, however, is that the leading
infrared contributions of backreaction to the power spec-
1There has been a lot of recent interest in the possibility that
the leading gradient terms of long-wavelength modes might
back-react on local observables in a way that mimics dark energy
[20] (see also [21]). However, objections to this possibility have
been raised [22–26].
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trum of cosmological fluctuations is very small. Assuming
that the linear fluctuations have random phases, as they do
in the simplest inflationary models, the relative contribu-
tion of our backreaction terms to the power spectrum is
suppressed by the product of a dimensionless inflationary
slow-roll parameter and the amplitude of the linear density
fluctuations.

We free ourselves of constraints imposed by any specific
inflationary model by abstaining from picking a specific
form of the inflaton potential. Rather, we assume that the
inflationary slow-roll conditions are satisfied and we em-
ploy a very general form of the potential, one that allows us
to easily interpret our results within the context of an
explicit slow-roll realization. Thus, with regards to cosmo-
logical models, our approach is extremely general, while
still retaining its ability to be specific.

Section II of this paper is concerned with the general
setup of the calculation. Here, the background equations
are solved to second order in the slow-roll parameter (�),
neglecting spatial gradients, and the corrections to both the
background scalar and the Hubble constant are determined,
again, to second order in �. Section III begins with a brief
review of classical, relativistic, cosmological perturbation
theory. The linear perturbation equations are solved using
the background obtained in the previous section. The non-
linear equations make their appearance in Sec. IV, where
the next-to-leading-order terms (those due to backreaction)
are solved for. Section V interprets these results as mod-
ifications to the linear terms, and their effect on the spec-
trum of perturbations is determined. Finally, the effects of
backreaction on the Gaussianity of the perturbations is
investigated in Sec. VI.

II. BACKGROUND

Before solving for the perturbations, we must determine
the appropriate background for our model. We confine our
attention to a model consisting of pure gravity (with van-
ishing cosmological constant) and a single, homogeneous,
scalar field �, which we presumes satisfies the slow-roll
conditions. We write

��x; t� � �0 � �f1�t� � �2f2�t�; (1)

where �0 is a constant and � is a dimensionless slow-roll
parameter whose value depends on the specific model in
question. In consequence of (1), our background space-
time will be approximately de Sitter space,

a�t� � eH�t�t: (2)

Here, the Hubble rate H�t� is slowly time-dependent and
can be expanded as

H�t� � H0 � �h1�t� � �2h2�t�; (3)

where H0 is a constant.
The dynamics of the scalar field are determined by its

potential V���. In order not to limit our results to any
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specific model, but, rather, to show them to be a generic
feature of slow-roll inflation, we use the following expan-
sion (related to a power series expansion of the potential
about the field value �0):

V��� � ��0 � ����t� � �2��2�t�

� V�0� � V�1� � V�2�; (4)

where superscripts indicate the order in � and

��0 � V��0� ��0V 0��0� �
1

2
�2

0V
00��0�; (5)

�� � V 0��0� ��0V 00��0� (6)

�2� �
1

2
V00��0�; (7)

the primes denoting a derivative with respect to the field.
Thus, we see that �,�, and � are dimensionful parameters
depending entirely on the form of the potential in the
neighborhood of �0. In essence, this represents the series
expansion (in �) of any potential that can be used to
generate slow-roll inflation.

In light of this, we can use the Klein-Gordon

��� 3
_a
a

_��
@V
@�

� 0; (8)

and the Friedmann equations

3 _a2 � 4�a2 _�2 � 8�a2V � 0; (9)

_a2

a2
� 2

�a
a
� 4� _�2 � 8�V � 0 (10)

(solved order by order in �) to solve for the background,
accurate to second order in the slow-roll parameter.

We find that

H2
0 � 8���0; (11)

f1�t� �
�

3H0

�
1

3H0
� t�

e�3H0t

3H0

�
; (12)

f2�t� �
�2

18H2
0�

��2� 3H0t� e�3H0t�3H0t� 2��; (13)

h1�t� � �

�����������
2�0

3��

s
; (14)
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and

h2�t� � �
1

1296��2H4
0t
�288H2

0�
2t2�2�2 � 162H5

0�
2t�

� 243�H7
0t� 16�2�2�2e�6H0t

� 128�2�2�2e�3H0t � 288�2�2�2H0t

� 112�2�2�2�: (15)

Note that the corrections to the scalar field have the
property that they and their first temporal derivatives van-
ish at t � 0, which coincides with the onset of slow-rolling.
Despite the overall factor of t�1 preceding h2�t�, this term
is not singular at the origin, as can be seen by expanding in
a power series about t � 0.
III. LINEARIZED THEORY

The theory of cosmological perturbations is usually
restricted to an analysis of the linearized (in the amplitude
of the perturbations) Einstein equations. In this section, we
review the salient results (see e.g. [8,9] for comprehensive
reviews).

The most general perturbed line element can be written
as

ds2 � a2�����1� 2��d�2 � 2�B;i � Si�dxid�

� ��1� 2���ij � 2E;ij � �Fi;j � Fj;i� � hij	


 dxidxj	 (16)

where �;�; B; E represent scalar, Si; Fi vector, and hij
tensor metric perturbations, respectively. These are distin-
guished by their transformation properties under three
dimensional rotations. For inflationary cosmology and in
linear perturbation theory, we can discard vector modes
since they do not grow, and tensor modes because they
grow at a slower rate than scalar metric fluctuations.
Hence, we focus on the scalars. It is possible to choose a
gauge in which E � B � 0, the so-called ‘‘longitudinal‘‘
or ‘‘conformal Newtonian‘‘ gauge. This gauge is conve-
nient for calculational purposes. For matter without aniso-
tropic stresses to linear order in the matter field
perturbations, it follows from the off-diagonal space-space
Einstein equations that � � �. Hence, for such matter the
metric in longitudinal gauge takes the form

ds2 � �1� 2��� ~x; t��dt2 � a2�t��1� 2��� ~x; t��


 �dx2 � dy2 � dz2�: (17)

In the above, � is a dimensionless parameter which indi-
cates the order of the term in gravitational perturbation
theory.

At second order, the perturbed metric is in general much
more complicated. In particular, there is mixing between
scalar, vector and tensor modes, and an anisotropic stress in
generated, leading to � � �. However, it can be seen
-3
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explicitly that all of the complicating terms contain spatial
gradients and can hence be neglected in our study of the
backreaction effects of long-wavelength modes. Thus, if
we work to leading order in the infrared terms, we can
neglect vector, tensor modes and anisotropic stress. Thus,
we can apply longitudinal gauge also at second order. We
will use this gauge in the following.

To incorporate effects due to slow-rolling, we expand �
in powers of � to obtain

�1� ~x; t� � �1� ~x; t� � � 1� ~x; t� � �2!1� ~x; t�: (18)

The subscript 1 denotes the fact that the effects are linear
in �.

In order to source our first order metric perturbations,
matter perturbations "1� ~x; t� must be present, i.e.

�� ~x; t� ���! ��t� � �"1� ~x; t�; (19)

where ��t� is the background matter solution given by (1)
At the linear level, perturbations decouple in Fourier

space. It is thus convenient to track the evolution of each
Fourier mode individually. At higher orders in perturbation
023507
theory, there will be mixing between the modes. Typically,
cosmological perturbations are classified into two distinct
sectors: sub-Hubble (UV) and super-Hubble (IR) modes.
During inflation, the phase space associated with super-
Hubble modes grows exponentially, while that of the sub-
Hubble modes remains constant. In addition, the modes
which are important from the point of view of structure
formation and CMB anisotropies are super-Hubble during
the last 50 e-foldings of inflation. It is for these reasons that
we focus our attention on these modes and ignore their UV
counterparts. This choice justifies our dropping of spatial
derivatives in the equations of motion.

Using the standard result for the energy-momentum
tensor of a scalar field

T�$ � �;��;$ � g�$

�
�; �; 

2
� V���

�
; (20)

expanding the Einstein equations in a power series in �,
and truncating after first order leads to the equations of
motion for scalar cosmological perturbations, which read
(see e.g. [8])
�ii�: �
_a
a

_�1 � 8� _� _"1 �2 ��1 � 8
�a
a
�1 � 4�1

_a2

a2
� 16��1� _��2 � 8�V�1���� � 16�V�0�����1 � 0; (21)

�00�: 6 _�1
_a
a
� 8� _� _"1 �8�V�1���� � 16�V�0�����1 � 0; (22)
where the overdot denotes a derivative with respect to
cosmic time, and the �ii� and �00� indicate the tensor
indices of the Einstein equations in question.

These equations can be solved to yield

�1� ~x; t� � 0; (23)

 1� ~x; t� �  1

Z
d3 ~kf� ~k�ei ~k� ~xei ~kV1=2 (24)

!1� ~x; t� � � 1
2���0 � �2

��
��1� e�H0t�



Z
d3 ~kf� ~k�ei ~k� ~xei ~kV1=2 (25)

"1� ~x; t� � �2
��0 1

�

Z
d3 ~kf� ~k�ei ~k� ~xei ~kV1=2; (26)

where  1 a constant representing the amplitude of the
spectrum of linear fluctuations, f� ~k� is the function de-
scribing the shape of the spectrum,  ~k are the phases
(assumed later on to be random), and V is the cutoff
volume used in the definition of the Fourier transform.
Note that ~k denotes the comoving momentum. We have
introduced the cutoff volume in the definition of the
Fourier transform in order that the dimension of the
Fourier transform ~�� ~k� of �� ~x� is k3=2, which in turn
ensures that there is no volume arising in the relation
between the power spectrum P��k� and ~�� ~k� (see
Section 5).

Let us comment briefly on the interpretation of this
solution. Note first that the fact that �1 vanishes is a
consistency check on our analysis. In the pure de Sitter
limit (no rolling of the scalar field), there are no scalar
metric fluctuations to first order in perturbation theory (in
�). Since the equation of motion is second order, there are
two fundamental solutions for each mode. In the long
wavelength (super-Hubble) limit, the dominant solution
is constant in time, and the subdominant solution is a
decaying mode. We see that  1 is the constant perturbation
sourced by "1, while !1 is generated by the rolling of the
scalar field and is a combination of the constant and decay-
ing mode.

IV. BACKREACTION

To second order in gravitational perturbation theory
(expansion in �), there are interactions between the
Fourier modes of the fluctuation variables caused by the
nonlinearities of the Einstein equations. In order to deter-
mine the effects of nonlinearities, we make the substitu-
tions for the metric perturbation variable
-4
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�� ~x; t� ���! �1� ~x; t� � ��2� ~x; t�; (27)

where �2 can be in turn expanded in terms of the slow-roll
parameter � as

�2� ~x; t� � �2� ~x; t� � � 2� ~x; t� � �2!2� ~x; t�; (28)

and for the matter field

�� ~x; t� ���! �� ~x; t� � �2"2� ~x; t�: (29)
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Note that �2 and "2 represent the effects of gravitational
backreaction.

In the following we will neglect spatial gradient terms in
the equations of motion, since we are interested in the
infrared modes and in the coupling between different
infrared modes 2. To order �2 in the perturbative expansion,
the Einstein equations then become
�ii�:2 ��2 � 8 _�2
_a
a
� 8�2

�
�a
a
� 2� _�2 �

_a2

2a2
� 2�V�2����

�
� 8� _� _"2

� 4�1

�
��1 � 2�1

_a2

a2
� 6 _�1

_a
a
� 4�1

�a
a

�
� 8��1

_� _"1 �4�V�1�����1; (30)

�00�: 6 _�2
_a
a
� 8� _� _"2 �16�V�0�����2 � 3 _�1

2 � 4� _"1
2 � 12�1

_�1
_a
a
� 16�V�1�����1 � 8�V�2����: (31)
2It is also in this approximation that we can justify writing the
perturbed metric in the form (17)—see e.g. [18] for a discussion
of this point.
These equations can be solved to yield

�2� ~x; t� � 0; (32)

 2� ~x; t� � 0; (33)

!2� ~x; t� �  2
1

����0 � �2�

�2 ��1� e�H0t�g2� ~x�; (34)

"2� ~x; t� � 0; (35)

with

g� ~x� �
Z
d3 ~kf� ~k�ei ~k� ~xei ~kV1=2: (36)

Let us briefly comment on the physical interpretation of
these results. First, the vanishing of �2 is a consistency
check since there are no scalar metric fluctuations in pure
de Sitter space. Since the linear fluctuations are first order
in �, they will only contribute to the second order pertur-
bations to quadratic order, and hence the vanishing of  2 is
another consistency check on the algebra. From the ex-
pression for �2 it is manifest that the second order pertur-
bations are generated by the linear inhomogeneities �1 and
"1 at quadratic order. The vanishing of "2 is an interesting
and unexpected result. It says that, to this order, there are
no backreaction effects on the evolution of the background
scalar field.

V. EFFECTS OF BACKREACTION ON THE POWER
SPECTRUM

Having now determined the form of the backreaction
terms, it is important to estimate their amplitude. From
observations of CMB anisotropies, we know that the linear
perturbations are of order � 1� 10�5. The backreaction
terms should be expected to be of order �� 1��2. However,
the second order correction to a fixed Fourier mode re-
ceives contributions from all linear Fourier modes to this
order. Hence, one could expect the backreaction effect to
be amplified by a phase-space factor which measures the
phase space of Fourier modes which contribute. Since in
inflationary cosmology, the phase space of infrared modes
is growing, and the linear fluctuations do not decrease in
amplitude on scales larger than the Hubble radius, the
effects of backreaction could be expected to grow in time
and become nonperturbatively large. In this section we
show that, provided that the linear fluctuations have ran-
dom phases, the leading infrared quadratic backreaction
effects of linear fluctuations on the power spectrum of �
do not show any large phase-space enhancement.

The total power spectrum P total� ~k� of �, including the
leading infrared terms of second order in �, can be written
as

P total� ~k� � k3j ~�kj2 � P 1� ~k� � P 2� ~k�;

� j ~�1� ~k� � ~�2� ~k�j
2k3; (37)

where ~�i� ~k� are the Fourier transforms (using the defini-
tion of Fourier transform including the cutoff volume as in
Eq. (24)) of �i� ~x�. Making use of the results of Secs. III
and IV we have
~� 1� ~k� � � 1f�k�e

i ~k�1� �E�t�	 ~�2� ~k� � �2 2
1E�t�h�k�;

(38)

where h�k� is the Fourier transform of g2�x� and where we
have introduced the symbol E�t� for the function

E�t� �
2���0 � �2

�2
��1� e�H0t�: (39)
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The leading backreaction correction to the power spec-
trum, denoted by the function P BR� ~k�, comes from the
cross term in (37) and is thus linear in ~�2� ~k�:

P BR� ~k� � 2�j ~�1� ~k� ~�2� ~k�jk
3: (40)

Thus, the fractional correction to the power spectrum due
to the leading backreaction contributions is

P BR�k�
P 1�k�

� 2�
�2 2

1E�t�h�k�

� 1f�k� �O��2�
’ 2�� 1

h�k�
f�k�

; (41)

from which it follows that, modulo the ratio of h�k� over
f�k�, the backreaction terms are suppressed, as expected,
by �� 1. The ratio of h�k� over f�k� is the possible large
phase-space enhancement factor.

Before continuing, we specify the linear power spec-
trum. We choose a normalization wavenumber kn and
choose  2

1 to be the amplitude of the power spectrum at
k � kn. The function f�k� describes the spectral shape. We
choose a power law with a tilt + away from scale-
invariance, i.e. we write

f�k� �
�
k
kn

�
�3=2�+

k�3=2
n : (42)

It can easily be checked that P 1�kn� �  2
1.

We now evaluate the magnitude of h�k�, assuming that
the phases  ~k are random:

h� ~k� �
1

�2��3
V�1=2

Z
d3xg2�x�e�i ~k ~x

�
Z
d3k1f� ~k1�f� ~k� ~k1�e

i� ~k1
� ~k� ~k1

�V1=2: (43)

Given that we are considering the effects of long-
wavelength fluctuations, we must restrict the above inte-
gral over ~k1 to run only over super-Hubble modes, i.e.

j ~k1j � H: (44)

To estimate the magnitude of h� ~k�, we insert the spectrum
(42) into (43). If we consider the effects of backreaction on
modes ~k which are sub-Hubble now, we can apply the
approximation �

k� k1
kn

�
’
k
kn
; (45)

in which case the integral simplifies.
Assuming constant phases for the moment, the integral

(43) can be easily estimated

h�k�  k�3=2�+k2+n H3=2�+V1=2: (46)

Note, in particular, from (46) that the k-dependence of
P BR�k� is the same as that of the linear power spectrum.
The leading effect of backreaction thus does not change the
power index of the spectrum. However, for wavelengths
close to the Hubble radius, the approximation (45) is no
023507
longer good, and the correction terms will yield changes to
the index of the power spectrum. The second fact to notice
about the result (46) is the cutoff volume divergence. This
stems from the fact that as V increases, more and more
infrared modes are contributing to the backreaction. For
constant phases, the effect is additive. The volume diver-
gence thus represents the phase-space enhancement which
is the focus of this investigation.

Let us now consider the more realistic situation - real-
ized in typical inflationary models—in which the phases
are random. A simple way to estimate the effects of the
random phases in (43) is to add up the amplitudes of the
backreaction contributions of all infrared modes ~k1 as a
random walk. This means dividing the amplitude obtained
previously by N�V�1=2, where N�V� is the number of
modes. Since for a finite volume V the wavenumbers are
quantized in units of �k V�1=3, the number N�V� be-
comes

N�V� 
�
H
�k

�
3

(47)

in which case the result (43) becomes

h�k�  k�3=2�+k2+n H�+ : (48)

Inserting this into (41), we obtain our final result

P BR�k�
P 1�k�

 2�� 1

�
kn
H

�
+
: (49)

The main conclusion we draw from (49) is that there is
no phase-space enhancement of the backreaction of long-
wavelength modes on the spectrum of cosmological per-
turbations, in contrast to the positive enhancement found
for the backreaction on the background metric. Given the
absence of such a phase-space enhancement, we find—as
expected—that the backreaction terms in the power spec-
trum are suppressed compared to the terms coming from
the linear perturbations by �� 1. Thus, they are com-
pletely negligible in the case of a COBE-normalized spec-
trum of almost scale-invariant linear fluctuations. In
addition, we find that the leading backreaction terms do
not change the spectral index.
VI. NON-GAUSSIANITY OF THE SPECTRUM DUE
TO BACKREACTION

Having established that the backreaction of infrared
modes cannot substantially modify the amplitude and
spectral tilt of the power spectrum of perturbations, we
make some comments regarding the effects of backreac-
tion on the Gaussianity of the spectrum.

The inclusion of higher-order terms implies correlations
between different modes, thus breaking strict Gaussianity.
However, the question remains: how badly broken is it? To
estimate this, we turn our attention to the bispectrum
(three-point function).
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In the case of a purely Gaussian distribution, all odd
moments are identically zero. Therefore, the nonvanishing
of the bispectrum indicates that the distribution cannot be
Gaussian.

We take it for granted that the bispectrum does not
vanish (for examples of the three-point function see
[32,35]. In the context of higher-order perturbation theory
(see e.g. [28]), however, its amplitude is exceedingly small.
We estimate it to be no larger than of order �4�, thus
making it quite unlikely to be detected experimentally.
Thus, we conclude that, although backreaction modifies
the distribution, Gaussianity remains an excellent
approximation.
3The possibility that local fluctuations can have a measurable
effect on background quantities such as the deceleration parame-

in [38,39].
VII. CONCLUSIONS

In this paper, we have studied the backreaction of long-
wavelength linear fluctuations on the power spectrum,
produced by the mode mixing which occurs as a conse-
quence of the nonlinearity of the Einstein equations. We
find that, assuming that the phases of the linear fluctuations
are random, there is no phase-space enhancement of the
backreaction effect. The leading infrared backreaction
contributions are suppressed by �� 1 compared to the
contribution of the linear fluctuations, where � 1 is a
measure of the amplitude of the linearized metric fluctua-
tions, and � is an inflationary slow-roll parameter. These
leading backreaction terms do not modify the tilt of the
power spectrum on scales substantially smaller than the
Hubble radius. Note that in the case of correlated phases of
the linear fluctuations, a much larger backreaction effect is
possible.
023507
We have also seen that the modifications to the
Gaussianity of the leading-order perturbations are negli-
gible. The small size of these modifications goes a long
way towards justifying the linear approximation to cosmo-
logical perturbation theory. However, our results do not
exclude the possibility that large amplitude local fluctua-
tions can effect the measured fluctuations, as very recently
suggested in [36] (based on the second order formalism
developed in [37])3.

Our work differs from previous work on second order
fluctuations in that it emphasizes the fact that, in an accel-
erating universe, the phase space of super-Hubble modes is
increasing in time. In contrast to what occurs in the case of
the backreaction on the homogeneous mode, the backreac-
tion on the fluctuating modes themselves does not increase
without limits as a function of time. Compared to previous
analyses, our work also gives an easier way to derive the
leading-order effects of long-wavelength cosmological
fluctuations. Our results have been derived in the context
of an arbitrary slow-roll inflationary model and are thus
valid for a wide range of cosmological scenarios.
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