
PHYSICAL REVIEW D 72, 023503 (2005)
Rigidity and stability of cold dark solid universe model
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The large scale dynamics of the universe appears to be dominated by a ‘‘dark energy’’ constituent with
negative pressure to density ratio w � P=�, which could be stable if sufficiently rigid, but not if purely
fluid. It was suggested by Bucher and Spergel that such a cosmological solid might be constituted by a
cold (static) distribution of cosmic strings with w � �1=3, or membranes with the observationally more
favored value w � �2=3, but it was not shown that the rigidity actually would be sufficient for stability.
For cases in which the defect lattice is formed from even junctions, it is found that the rigidity to density
ratio will be given by �=� � 4=15 in both the string and membrane cases, and it is confirmed that this is
indeed sufficient for stabilisation with respect to sufficiently small perturbations.
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I. INTRODUCTION

It was pointed out by Bucher and Spergel [1] that an
underlying dark energy component consisting of a frozen
network of topological defects, having an approximately
uniform (unclustered) density distribution � and a strongly
negative value of its pressure P, could account for many of
the observed features of the universe on a large scale. In
particular, the cosmic acceleration suggested by measure-
ments of type Ia supernovae. It was suggested [2] that, due
a symmetry breaking phase transition at a cosmological
temperature of a few hundred KeVor less, such a constitu-
ent might be provided by a suitable distribution of mem-
branes (domain walls), whose averaged tension would be
able to provide a negative pressure, provided the positive
pressure contribution from kinetic effects is not too large,
i.e. provided the distribution is effectively cold enough to
be treated as an approximately static ‘‘frozen’’ state.

For ordinary Nambu-Goto type cosmic strings, Bucher
and Spergel noted [1,2] that in a static isotropic distribution
the pressure to density ratio, w � P=� (in units with unit
light speed) would be given by w � �1=3. Moreover, for
ordinary Dirac type membranes (such as simple domain
walls) in a cellular lattice the value would be w � �2=3,
which is fairly close to what is considered [3,4] to be
observationally favored.

The optimism of earlier [1,2] and some more recent [3–
5] discussions of such a proposal has been challenged from
various points of view. One form of objection concerns
conceivable observable consequences [6] derived from
assumptions that are themselves open to question.
However, it would seem that the most fundamental prob-
lem is the absence, so far, of any convincing suggestion as
to how an effectively ‘‘hot’’, wiggly, disordered struc-
ture—such as would naturally emerge from a Kibble-
type spontaneous symmetry breaking—could be damped
in such a way as to ‘‘freeze’’ as an effectively ‘‘cold’’
lattice of straight string or flat wall segments, as is required
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for the pressure to become effectively negative. The posi-
tive pressure contribution from wiggles and waves will of
course tend to be removed naturally by standard damping
mechanisms, but the problem is that such processes [7,8]
will usually do so by removing the segments involved (so
that the mean pressure to density ratio remains positive),
and will not necessarily tend toward a regular lattice.

The present work does not attempt to address this basic
problem of finding a plausible mechanism for setting up a
cold string or membrane system of the postulated kind in
the first place. Our purpose here is just to provide a better
understanding of the subsequent mechanical behavior of
such a system—assuming it has already been somehow
created—and, in particular, to investigate conditions under
which such a negative pressure system can be stable.

For a purely fluid medium, negative pressure would of
course entail local instability on a short timescale, as
symptomized by an imaginary value for the sound speed
cS given by

c2S �
dP
d�

: (1)

In response to this implied objection, Bucher and Spergel
pointed out that a medium constituted of cosmic strings or
membranes would behave like an elastic solid, rather than
a perfect fluid, which can be stable even when the pressure
is negative, provided the rigidity is sufficient.

The aim of the present work is to justify this claim, at
least for membrane systems which contain only even junc-
tions. However our calculation does not apply to wall
systems with odd junctions, which we expect to be much
less rigid, so that they are likely to be, typically, too
unstable for relevance as a dominant dark energy constitu-
ent. (If the walls were sufficiently massive, due to forma-
tion by symmetry breaking at very high energy, systems
with odd junctions might nevertheless have been relevant
to the primeval structure formation mechanism discussed
in Refs. [9,10]). Our quantitative estimates will be based on
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the supposition that it is a sufficiently good approximation
to treat the system as effectively isotropic on a macro-
scopic scale (meaning large compared with the mesoscopic
lattice separation scale) but this simplifying condition does
not seem essential for our qualitative conclusions, which
we expect to remain valid even after allowance for small
deviations from macroscopic anisotropy.
FIG. 2. Analogue of Fig. 1 with four differently coloured
vacuum states obtained from (2) by setting M � 4. This case
provides a lattice of the even type to which the present analysis
applies.
II. DISTINCTION BETWEEN ‘‘EVEN’’ AND ‘‘ODD’’
TYPE SYSTEMS

The calculation we present here will specifically be
concerned with membrane systems that can be described
as even-type, meaning systems where the number of walls
intersecting at each (stringlike) junction is even.
Alternatively, if the number of walls meeting at each
junction is odd, this will described as of odd-type. Mixed
systems containing both odd- and even-type junctions
might arise in sufficiently complicated field models, but
systems of that kind have not been put forward to date and
will not be considered here

Simple odd- and even-type systems can be obtained in
two dimensions from complex scalar field models with a
potential

Vf�g � 	j�M � �Mj2; (2)

where M, 	 and � are constants. There are m minima of
this potential at � � � exp�im=M� for m � 0; 1; . . . ;M�
1. For M � 3 one can construct a hexagonal lattice as
illustrated in Fig. 1 which is clearly of the odd-type,
whereas for M � 4 an even lattice as illustrated in Fig. 2
is possible. We note that the stability of such systems,
FIG. 1. Illustration of two dimensional lattice of the odd type,
to which the present analysis does not apply. Each of the three
colors corresponds to a different vacuum state. This hexagonal
lattice is provided by a complex scalar field model of the form
(2) with M � 3.

023503
which can be derived from a superpotential [11], has
been investigated in Ref. [12].

Our analysis will be based on the postulate that the affine
displacements completely describe the modification of the
equilibrium distribution at a mesoscopic level (meaning
large compared with the membrane thickness, but small
compared with the lattice separation scale), that is, we will
assume that the local equilibrium of the system will pre-
FIG. 3. The effect of a (vertically propagating) shear wave of
simple mesoscopically affine type on the even-type lattice illus-
trated in Fig. 2. It is clear that the local equilibrium of each of the
junctions is maintained under this locally affine deformation.
This would not be possible for the hexagonal lattice illustrated in
Fig. 1, for which a shear deformation could be affine only at a
macroscopically averaged scale.
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served by arbitrary affine space transformations. We de-
scribe this as the affine equilibrium preservation postulate.

This postulate is applicable to lattices of the even-type,
for which the flat membrane sheets cross straight through
each other (as in an X-form) at an angle that can freely
adjusted without affecting the condition of equilibrium.
However, it can be expected to fail for odd-type systems:
for example, at a (Y-form) junction between 3 equivalent
membranes segments in equilibrium the intersection angle
must always be 2�=3, a condition that will not be pre-
served by a deformation that is affine on a mesoscopic
scale. In such a case, a macroscopically affine deformation
would therefor entail non affine (rigidity lowering) adjust-
ments at the mesoscopic level. The effect of a locally affine
(shear wave) transformation on the two dimensional com-
plex scalar field model with M � 4 is illustrated in Fig. 3

More complicated, and possibly stable, systems of both
odd- and even-type type can be obtained from perturbed
O(N) models with potential energy density given by N real
scalar fields �i; and mass scales �; �; in the form

Vf�g � 	
�X

i

�2
i � �2

�
2
� E

X
i

	�2
i � �2
2; (3)

where 	 and E are dimensionless parameters such that E >
�	;N	 >�E: The exactly O(N) symmetric model is
obtained by taking E � 0; 	 > 0, while the simplest ex-
ample of an even-type system is provided by the decoupled
limit, 	 � 0; E > 0, for which the domain walls simply
pass through each other without interaction.
FIG. 4. Illustration of a 2 dimensional section through a frozen
cubic lattice of even type, having (differently shaded) domains
bounded by flat walls with X-form junctions, obtained for system
with eightfold vacuum provided by broken O(N) model with " >
0 and N � 3. Such a configuration has an averaged stress tensor
that will already be exactly isotropic, but to get a very highly
isotropic elasticity tensor a rather larger value of N would be
needed.
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Less trivial possibilities include the systems with � � 0
considered by Kubotani and collaborators [9,10], who
specifically envisaged odd-type systems—with triply in-
tersecting (Y-form) junctions—obtained for N � 3 by
taking E < 0. In this case there are 6 vacua which can be
thought of as being at the center of the faces of a cube. The
alternative, of relevance for the present work, is the even
case—with quadruple (X-form) junctions [5] between
walls separating vacuum domains where �2

i �
		�2 � E�2
=	N	� E
 for i � 1; ::; N—which can be ob-
tained (for any value of N) by taking the symmetry break-
ing parameter to be positive, E > 0. For N � 3 there are 8
vacua at the vertices of a cube.

Field models like this engender lattices of periodic or
quasiperiodic type, with walls grouped in mutually parallel
families, the prototype example being that of the cubic
lattice for N � 3, in which there are just 3 families ar-
ranged so as to be mutually orthogonal. The question of
whether disordered (glass-type) configurations can be ob-
tained from other plausible models remains unclear.
Although its averaged stress tensor will be isotropic, the
cubic (N � 3) case (see Fig. 4) will be characterized by an
elasticity tensor that distinguishes between directions par-
allel to the planes of the walls and directions that can
deviate from these planes by as much as �=4. For larger
values of N, and correspondingly larger numbers of fam-
ilies of mutually parallel walls, the possible deviations will
get progressively smaller so that, like the stress, the ensu-
ing elasticity properties will become highly isotropic, as
postulated in the analysis below.
III. LOCAL STABILITY CONDITION

For a system of the even-type just described, a lattice of
flat membrane states continuing straight through each
other—as if without interaction—at simple crossover
junctions will evidently provide a local equilibrium con-
figuration in a flat space background. Such an equilibrium
will clearly be stable at the mesoscopic scale characterized
by the lattice cells, because the unbounded—effectively
noninteracting—membrane sheets are each individually
stable with respect to local perturbations, provided their
amplitude is small compared with the lattice spacing, so as
to prevent distinct vacuum domains of the same type from
colliding.

Assuming that—at a macroscopic scale large compared
with the cell spacing—such a lattice interacts with other
(relatively lightweight) constituents of the cosmic back-
ground sufficiently to form an effectively coherent medium
(like a gas of point particles on scales large compared with
the mean free path) one would expect that this medium
would also be stable, which means having enough effective
rigidity to provide real values for the relevant squared
velocities of propagation.

To verify that, for an approximately isotropic unper-
turbed configuration, this will indeed be so, we need the
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formula for the effect of rigidity on the relevant propaga-
tion velocity. This was first studied [13] when relativistic
elasticity theory was originally developed for application
to the solid crust of a neutron star [14], but the same
formalism applies equally well here. As in the terrestrially
familiar nonrelativistic limit, there will be transversely
polarized—shake type—modes with propagation speed
c?, as well as a longitudinally polarized—sound type—
mode with propagation speed ck.

It was shown [13] that the latter would exceed the
ordinary fluid sound speed value (1) by an amount propor-
tional to the rigidity modulus � according to the formula

c2
k
� c2S �

4

3
c2?; (4)

in which the squared shake mode speed is given by

c2? �
�

�� P
: (5)

For stabilization of the medium, that is to ensure that c2
k

will be positive even if c2S is not, the necessary and suffi-
cient condition is therefore

�>�
3

4
�; (6)

where � is the bulk modulus, as defined in the relativistic
case [13,14] by the formula

� � 	�� P

dP
d�

: (7)

This reduces to the familiar form � � �dP=d� in the
nonrelativistic limit jPj 
 �. The requirement (6) simpli-
fies to �>�3�P=4 in the case of a polytropic equation of
state, defined in terms of a conserved number density n and
constants �, �, and m by � � �n� �mn which implies
P � 	�� 1
�n�.

The models considered here correspond to the zero-mass
limit, m � 0, in this polytropic class, and the bulk modulus
will be given by

� � w��; w � �� 1: (8)

Since we have � � 2=3 in the string case, and � � 1=3 in
the membrane case, it follows that the bulk modulus will
have a negative, and thus destabilizing, value that will be
given by the same formula,

� � �
2

9
�; (9)

in both string and membrane cases. It can be seen that this
result will still be valid for a nonpolytropic mixture with
� � �1n1=3 � �2n2=3. Therefore, either separately and
also for a mixed system of strings and membranes, the
stability criterion (6) will reduce to a requirement of the
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same simple form,

�
� >

1

6
: (10)
IV. EVALUATION OF RIGIDITY

The new result provided by the present work for the
even-type lattices described above is the explicit evaluation
of the rigidity �, and the confirmation that the ratio �=�—
which turns out to be the same for strings as for mem-
branes—actually will satisfy the stability condition (10).

The required rigidity, or shear, modulus � can be de-
fined, for an initially isotropic state, by expressing the
static—quadratic order—change in the mass-energy den-
sity � due to an infinitesimal volume conserving space
displacement as [13–15]

�� � �eijeij; (11)

where eij is the infinitesimal strain tensor. For an affine
displacement given in Cartesian coordinates by xi � ~xi �
xi � "ijx

j, it is defined as the symmetric part of the defor-
mation matrix: eij � 	"ij � "ji
=2.

In order to avoid an extra energy variation contribution
due to the pressure, we impose the restriction that the
displacement must conserve volume. This requires that
the Jacobean determinant j@~xi=@xjj should be unity which
implies that the trace eii, like the variation ��, will vanish
to linear—though not higher—order in ". An obvious way
to do this is to take the symmetric (zero curl) pure shear
deformation given in terms of coordinates x1 � x, x2 � y,
x3 � z by ~x � 	1� "
x, ~y � y, ~z � z=	1� "
, which
when substituted in (11) gives

�� � 2�"2; (12)

to second order in ". The value of � can be read out from
this when the variation �� has been worked out.

However, the required value of � can be obtained in a
computationally more convenient way by considering the
effect on � of the asymmetric (nonzero curl) simple shear
deformation given by

~x � x� 2"z; ~y � y; ~z � z; (13)

which is of the kind produced dynamically by a transverse
mode with propagation speed in the z direction, given by
(5). It can be checked that a simple shear deformation such
as this will provide a second order expression of the same
form (12) to the one obtained for the pure shear deforma-
tion considered above.

To evaluate the density variation �� produced—as the
left hand side of (12)—by the action of the simple volume
conserving transformation (13) on a distribution of ran-
domly oriented strings, let us consider the case of a sample
string segment from the origin to a point with coordinates
given by the components, fx; y; 1g say, of a vector ~‘, which
-4
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will be mapped to a vector ~‘�� ~‘ with coordinates fx�
2"; y; 1g. The length ‘ � 	x2 � y2 � 1
1=2 of the segment
will undergo a fractional change given, to quadratic order
in ", by

�‘
‘

�
2x"

‘2
�

2	‘2 � x2
"2

‘4
: (14)

Since the mass-energy of a static Nambu Goto string seg-
ment is obtained simply by multiplying its tension, T say,
the formula (14) immediately provides the fractional
change in the contribution to the mass density � from
strings with the chosen direction, as given in polar coor-
dinates by x � tan" cos#, y � tan" sin#.

Since the model is based on the postulate that the strings
have a random isotropic distribution, their net effect can be
computed by just taking the spherical average of (14) over
the polar coordinate values ", #, which gives a formula in
which the first order part cancels out, leaving just the
quadratic term,

��
�

�

�
�‘
‘

�
�

8

15
"2: (15)

To evaluate the effect of the same simple shear defor-
mation (13) on an isotropic distribution of plane mem-
branes, consider a parallelogram shaped sample segment
spanned by two vectors, ~‘1, with components fx1; 1; 0g,
which will not change, and ~‘2, with components
fx2; 0; 1g, which will be deformed to f	x2 � 2"
; 0; 1g.
The membrane analogue of the string formula (15) for
the effect on the density of an isotropic distribution is

��
�

�

�
�A
A

�
; (16)

where A is the sample area. This is given by the magnitude
of the vector product ~A � ~‘1 � ~‘2, with components
f1; x1;�x2g in the direction normal to the membrane. The
deformation (13) will map this area-calibrated normal
vector to ~A�� ~A, with components f1; x1;�	x2 � 2"
g.
Since this transformation differs from that of the string
segment considered above only by a permutation of the
roles of the x and z axes, the final result, after spherical
averaging, will be the same.

For the macroscopically isotropic and mesoscopically
even-type systems under consideration, this reasoning pro-
vides a theorem to the effect that—like the bulk modulus
� as given by (9)—the rigidity modulus � of the isotropic
cosmic membrane distribution will be identical to that of
an isotropic cosmic string distribution with the same den-
sity �. Thus, by comparing (15) with (12), it can be seen
that the value of the rigidity is

� �
4

15
�; (17)
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not only in the string case, but also in the membrane case
and for a mixed system of strings and membranes.
V. CONCLUSIONS

It is evident that the value given by (17) does indeed
satisfy the stability condition (10). This confirms the in-
trinsic coherence of the solid universe model subject to the
availability of an underlying field theory of a suitable kind,
meaning one providing a membrane system of even-type,
for example, (3) with E > 0. However, it remains unclear
how such a system could have come into existence in the
first place.

In a solid of this kind, as a consequence of (4) and (5),
we obtain real values for the speeds of longitudinal as well
as transverse modes. For the latter, (5) with (17) gives
c2? � 4=15�, so the (transverse) shake wave speed will
be given by

� � 2=3 ) c2? � 2=5; � � 1=3 ) c2? � 4=5;

for the string and membrane cases, respectively. The cor-
responding formula obtained from (4) for the longitudinal
wave speed will take the form

c2
k
� w�

16

45�
; (18)

which will indeed be consistent with the stability criterion
(6), since it clearly provides a real-valued propagation
speed for any positive value of the polytropic index,

� � w� 1:

In particular it can be seen that the longitudinal propaga-
tion speed will be given by

w � �1=3 ) c2
k
� 1=5; w � �2=3 ) c2

k
� 2=5;

in the string and membrane cases, respectively, the latter
being the one of greatest cosmological interest.

The present analysis is based on the cold limit in which
thermal [16] or other kinetic excitations of the world sheets
are neglected. If significant, such effects would tend [17] to
reduce the effective tension, giving slower perturbation
speeds and also making it harder to explain the apparent
[3] cosmic acceleration. Such effects would also tend to
undermine the stability of the system, which is valid (as
shown above) only for perturbation amplitudes that are
small compared with the relevant lattice separation scale.
The fundamental difficulty with this kind of scenario is the
problem of finding a natural mechanism for getting rid of
such excitation effects so as to actually obtain a frozen
lattice of the required kind.

Assuming that the membrane domination scenario can
be achieved, and that it could be obtained by some sponta-
neous symmetry breaking process, a first attempt was made
[2] at evaluating the energy scale, � say, characterizing the
tension, T � �3, of the required membranes and the cos-
mological temperature, � � �, of their presumed forma-
-5
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tion. It relied on the assumption that the relevant correla-
tion lengthscale at the epoch of formation would be the
maximum permitted by causality. In a recent reconsidera-
tion of this issue by one of the present authors [5] it has be
shown that, although it would be more realistic to suppose
the correlation length to be very much smaller than the
causal limit, nevertheless the effect of the appropriate
correction on the estimate for � is relatively moderate:
the likely range is merely reduced from the order of a
hundred KeV to a few KeV. This does not change the
qualitatively important consequence that the transition
should have occurred at a relatively recent cosmological
era, after pair annihilation and Big-Bang Nucleosynthesis,
though before the epoch of recombination when the uni-
verse became transparent. The corollary is that the present
lattice separation scale of the membrane lattice will be
comparable [2,5], at most, with interstellar rather than
intergalactic separation lengthscales. Thus, on the pre-
sumption that the relevant fields interact very weakly
023503
with ordinary particles such as electrons, and particularly
photons, so that the walls will not be directly visible,
Bucher and Spergel’s provisional conclusion that their
scenario poses no hierarchy problem remains valid, in the
sense that the range of conceivable values for � overlaps
with the mass range for already known elementary
particles.

Despite this attractive feature, the plausibility of such a
scenario is undermined by the absence, as remarked above,
of any mechanism for getting from a randomly excited
initial state to a regular frozen membrane lattice of the
required kind, as exemplified by the case depicted in Fig. 1.
In view of the positive results of our study, this issue
warrants further investigation.
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