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Signal based vetoes for the detection of gravitational waves from inspiralling compact binaries
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The matched filtering technique is used to search for gravitational wave signals of a known form in the
data taken by ground-based detectors. However, the analyzed data contains a number of artifacts arising
from various broad-band transients (glitches) of instrumental or environmental origin which can appear
with high signal-to-noise ratio on the matched filtering output. This paper describes several techniques to
discriminate genuine events from the false ones, based on our knowledge of the signals we look for.
Starting with the �2 discriminator, we show how it may be optimized for free parameters. We then
introduce several alternative vetoing statistics and discuss their performance using data from the GEO 600
detector.
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I. INTRODUCTION

The first generation of gravitational wave detectors is
either already online and gathering scientific data (LIGO
[1], GEO 600 [2], TAMA [3]) or about to start taking data
(VIRGO [4]). LIGO and GEO 600 have successfully com-
pleted several short data taking runs (so called science
runs) in coincidence [5,6]. TAMA has accumulated over
2000 hours of data [7,8] and quite a big portion of this data
was taken in coincidence with LIGO and GEO 600. All
detectors are currently in the commissioning stage and are
steadily approaching their design sensitivities.
Improvements in the performance of the detectors are
carried out in several directions: (i) sensitivity improve-
ments (tracing and reducing noise level from different
subsystems) (ii) increasing duty cycle (time spent in ac-
quiring the data suitable for astrophysical analysis as a
fraction of the total operational time), and (iii) improving
the data quality (stationarity).

However, at the present state the data is neither sta-
tionary nor Gaussian over time scales greater than few
minutes. The detector output contains various spurious
transient events. Unfortunately, the output of an optimal
filter reflects these events, especially various glitches. By
glitch here we mean a short duration spurious transient (of
almost delta-function shape) with a broad band spectrum
that leads to a high signal-to-noise ratio (SNR) at the
output of matched filtering. Distinguishing these events
from the real events of astrophysical origin and dropping
them out of consideration is called vetoing. In addition to
the main gravitational wave channel, interferometers re-
cord a large volume of auxiliary data from environmental
monitors and various signals from the many detector sub-
systems. These monitors help to find correlations between
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abnormalities in environmental or in instrumental behavior
and events in the strain channel with high SNR. The
transients which correlate both in the strain and auxiliary
channels (occure in both within a coincidence window) can
be discarded on the ground of noise coupling between the
strain channel and detector’s subsystems (provided we
understand the physical reasons for such a coupling mecha-
nism). This is what is regarded as instrumental vetoes. The
instrumental vetoes are helpful for removing some fake
events, however, it is not enough. We have other events
which are of artificial nature, but the information which
would help us to remove these events either was not
recorded or is not recognised. So in addition to instrumen-
tal vetoes, we need to apply signal-based vetoes: vetoes
which are based on our knowledge about a signal’s shape in
the frequency- and/or time-domain. For signal-based ve-
toes, we need to construct a statistic which helps us to
discriminate false signals from the true ones. The �2 time-
frequency discriminator suggested in [9] is an example of
such a statistic. This vetoing statistic is used in a search for
gravitational waves from the binary systems consisting of
two compact objects (Neutron Stars (NS), Black Holes
(BH),...) orbiting around each other in an inspiralling
trajectory due to loss of orbital energy and angular mo-
mentum through gravitational radiation. A lot of effort has
been put into modeling the waveform from coalescing
binaries [10–13]. The waveforms (often referred to as
chirps) are modeled with reasonable accuracy, so that
matched filtering can be employed to search the data for
these signals. In the case of the �2 discriminator, we use
the time-frequency properties of the chirp in order to
discard (to veto out) any spurious event which produces
an SNR above a preset threshold on the matched filter
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output. The performance of �2 might depend on the num-
ber of bins used in computing the statistic.

In this paper we suggest a possible way to optimize the
�2 discriminator for the number of bins. We use software
injections (adding simulated signals) into data taken by the
GEO 600 detector during the first science run (S1) in order
to study the distribution of the �2 statistic for simulated
signals and for noise-generated events. The optimal num-
ber of bins is the one which maximizes detection proba-
bility for a given false alarm rate. This method is quite
generic and can be used for tuning any vetoing statistic
which depends on one or several parameters.

Though the �2 discriminator works reasonably well, it is
still desirable to have additional independent signal-based
vetoes, which would either increase our confidence or
improve our ability to separate genuine events from spu-
rious ones. Some investigations have been already made in
this direction [8,14]. In addition to signal-based vetoes, a
heuristic veto method was suggested in [15]. It is based on
counting the number of SNR threshold crossings within a
short time window.

In this paper we suggest several new signal-based sta-
tistics which can compliment �2 or enhance its perform-
ance. We introduce a statistic inspired by the Kolmogorov-
Smirnov ‘‘goodness-of-fit’’ test [16], we call it the
d-statistic. We derive its probability distribution function
in the case of signals buried in Gaussian noise. We have
also suggested a few other �2-like and d-like statistics and
show that their combination could increase vetoing effi-
ciency even further.

Throughout the paper we have used the following as-
sumptions and simplifications. We shall assume that the
waveforms used in our simulations, ‘‘Taylor’’ approxim-
ants (t1) at second Post-Newtonian order in the notations
used in [13], are the exact representation of the astrophys-
ical signal. The study performed in this paper is not re-
stricted by the waveform model and could be repeated for
any other model at the desirable Post-Newtonian order.
The waveforms depend on several parameters, some of
these parameters are intrinsic to the system like the masses
and spins, while others are extrinsic like the time and phase
of arrival of the gravitational wave signal. To search for
such signals we use a bank of templates, which can be seen
as a grid in the parameter space [17]. Separation of tem-
plates in the parameter space is defined by the allowed loss
in the SNR (or equivalently by a loss in the detection
probability). The detector output is usually filtered through
a bank of templates for parameter estimation [18,19]. For
the sake of simplicity we have used a single template with
parameters identical, or very close, to those of the signal
used in the Monte-Carlo simulation described in Sec. III.

This paper is structured as follows. We start in Sec. II by
recalling the widely used [8,20] �2 time-frequency dis-
criminator [9]. In Sec. III, we describe the method to
optimize the �2 veto for the number of bins. Though we
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show its performance for �2 optimization, the method is
applicable to any discriminator which depends on some
free parameters. Section IV is dedicated to alternative
vetoing statistics. There we start with the d-statistic, then
we show few more examples of d- and �2-like statistics (d̂
and r̂2 correspondingly) which can potentially increase the
vetoing efficiency further. For instance we show that the
combination of d̂ and r̂2 statistics (namely their product)
give the best performance for a day’s worth GEO 600 data.
We summarize main results in the concluding Sec. V and
some detailed derivations are given in the Appendix.
II. CONVENTIONS AND �2 DISCRIMINATOR

In this Section we introduce the notation which will be
used throughout the paper and we reformulate the �2

discriminator [9] using new notations. This should be
useful in the following sections where we discuss �2

optimization and alternative signal-based vetoing statistics.
Throughout this paper we assume that the signal is of a

known phase with known time of arrival without loss of
generality. Indeed, we can use phase and time of arrival
taken from the maximization of SNR. Alternatively, one
can extend the derivations below in a manner similar to [9]
to deal with the unknown phase.

The detector output sampled at tj � j�t is denoted by
x�tj� � n�tj� � As�tj�, where n�tj� is noise and s�tj� is a
signal, which corresponds to the gravitational wave of
amplitude A. Since we will be working mainly in the
frequency domain, we use tilde-notation for a Fourier
image of the time series: ~x�fk� � ~n�fk� � A~s�fk�. The
discrete Fourier transform is defined as

~x�fk� �
XM
j�0

x�tj�e�2�itjfk ;

where fk �
k

M�t , and M is a number of points.
In order to introduce the �2 discriminator we need to

define the following quantities

Si � 2
XFi

fk�Fi�1

~s�fk�~s
��fk�

Sn�fk�
�f; i � 1; . . . ; N;

S � 2
XFN
fk�F0

~s�fk�~s��fk�
Sn�fk�

�f;

(1)

Qi �
XFi

fk�Fi�1

�
~x�fk�~s��fk�
Sn�fk�

� c:c:��f; i � 1; . . . ; N;

Q �
XFN
fk�F0

�
~x�fk�~s��fk�
Sn�fk�

� c:c:
�
�f:

(2)

Note that this notation is different from that used in [9].
Here the one-sided noise power spectral density (PSD),
Sn�fk�, defined as
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M
2�t

Sn�jfkj��kk0 � E�~n�fk�~n��fk0 ��;

is assumed to be known, c:c: as well as ‘‘*’’ mean complex
conjugate and �f � 1

M�t . We have chosen to work with
discrete time and frequency series to be close to reality.
Here and after we use E�. . .� for the average over ensemble
and var�. . .� for the second moment of the distribution. The
frequency boundaries F0; FN correspond to the frequency
at which the gravitational wave signal enters the sensitivity
band of the instrument 1 and the frequency at the last stable
orbit, FN � flso

2 (sometimes it is also referred to as the
frequency at the innermost stable circular orbit). In this
notations Q corresponds to the SNR (up to a numerical
factor which does not play any role in the further analysis)
and Qi is a part of the total SNR accumulated in the
frequency band between Fi�1 and Fi. We choose a nor-
malization for the templates so that S � 1. Let us empha-
size again, that we have assumed that we know the phase
and time of arrival, so they are incorporated in the defini-
tion of the waveform s�ti�.

For the �2 discriminator, we choose the frequency bands
(bins) F1; . . . ; FN , so that there is an equal power of signal
in each band: Si � S=N � 1=N. Then the �2 discriminator
can be written in the notations adopted here as follows

�2 � N
XN
k�1

�Qi �Q=N�2: (3)

If the detector noise is Gaussian, then the above statistic
obeys a �2 distribution with N � 1 degrees of freedom.
The main idea behind the �2 discriminator is to split the
template ~s�f� into subtemplates defined in different fre-
quency bands, so that if the data contains the genuine
gravitational wave signal, the contributions (Qi) from
each subtemplate to the total SNR (Q) are equal (E�Qi� �
A=N).

In the presence of a chirp in the data or if the data is pure
Gaussian noise, the value of �2 is low E��2� � N � 1.
However, if the data contains a glitch which is not consis-
tent with the inspiral signal, then the value of �2 is large.
This statistic is very efficient in vetoing all spurious events
that cause large SNR in the matched filter output. It was
used in the search pipeline for setting an upper limit on the
rate of coalescing NS binaries [6].

If we want to apply this vetoing statistic in a binary BH
search we should do some modifications of the �2 discrim-
inator Eq. (3) to increase its efficiency. In practice, it might
be difficult to split S in bands of exactly the same power Si
for signals from high mass systems, in other words it might
be difficult to achieve Si � 1=N exactly. Indeed, the band-
width of the signal from binary BH decreases with increas-
1It is so called frequency of the gravitational wave signal at the
‘‘time of arrival’’.

2If flso is beyond the Nyquist frequency, fNy �
1

2�t , FN should
be taken as fNy.
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ing total mass, flso 	 1=�63=2�m�, where we used
G � c � 1, and m � m1 �m2 is the total mass 3. In
addition we work with a finite frequency resolution, which
we might want to decrease to save computational time.
Finally, the accuracy of splitting the total frequency band
depends on the number of bins.

Based on this we suggest a modification of the �2

discriminator, which does not change it statistical proper-
ties, but enhances its performance [9]. We introduce pi �
Si=S which is close to 1=N, but not exactly equal to it.
Then we should redefine �2 statistic according to

�2 �
XN
i�1

�Qi � piQ�2

pi
(4)

We refer to [9] for more details on this modification and its
properties.
III. OPTIMIZATION OF VETOING STATISTIC

In this section we would like to present a method for
optimizing parameter-based vetoing statistics. This
method also helps to tune the veto threshold for a signal-
based statistic. Though the main focus in this section will
be on the optimization of the �2 statistic with respect to the
number of bins, this method can also be applied to a
general case (see Sec. IV).

First we need to define playground data. Playground
data is a small subset of the available data chosen to
represent the statistical properties of the whole data set
[21]. The main idea is to use software injections of the
chirps (adding simulated signals) into playground data and
compare the distribution of �2 for the injected signals and
spurious events. There is a trade off between the number of
software injections: on the one hand we should not popu-
late the data stream with too many chirps as it will corrupt
the estimation of PSD, on the other hand the number of
injections should not be too small, so that we can accumu-
late sufficiently large number of samples (‘‘sufficiently
large’’ should be quantified, see [22]). Another issue is
the amplitude of injected signals: the amplitude should
be realistic, which means close to the SNR threshold
used for the search. Parameters of the injected chirps
(such as masses, spins, etc.) should be either fixed (opti-
mization with respect to the particular signal) or corre-
spond to the range of parameters used for templates in the
bank. A generalization could be optimization with respect
to several (group of) signals and the use of different
number of bins for different (set of) parameters. That could
happen in reality: the search for binary NS and binary BH
might have different optimal number of bins.

To ease our way through we give an example of the
optimization of �2 for signals from the 5� 5M
 system.
3We do not include merger and quasinormal modes at the end
of inspiralling evolution.
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We injected a waveform with mass parameters 5:0�
5:0M
 and SNR � 13 in each 5th segment of analyzed
data. Each segment was 16 seconds long. Then 2.5 hours of
GEO 600 S1 data was filtered through the template
TaylorT1 (at 2nd Post-Newtonian order) with mass pa-
rameters 5:04� 5:04 M 
 . The template TaylorT1 corre-
sponds to ‘‘t1’’ in [13]. By having a slight mismatch in
masses of the system, we have tried to mimic a possible
mismatch due to the coarseness of the template bank. In the
present case, the mismatch between the signal (5� 5 M
)
and the template 5:04� 5:04 M
 with GEO S1 sensitivity
curve is equal to 2%. We have separated triggers which
correspond to the injected signals from the spurious events
by using a 5 msec window around the time of injection.
SNR threshold was chosen to be 6. Then we have produced
histograms for �2 distribution for injected/detected signals
and for spurious events. This procedure was performed for
different number of bins for �2 statistic. One can see the
results in Fig. 1. The solid line histogram shows the dis-
tribution of �2 for signals and the shaded histogram cor-
responds to the distribution of �2 for spurious events with
SNR � 6.

We want the distribution of �2 for injected signals be
separated as much as possible from the distribution of �2

for the spurious events. The optimal number of bins is the
one which corresponds to the minimum overlap between
those two distributions. One can see that for the case
considered above the optimal number lies somewhere close
to 20. We need a more rigorous way to define the optimal
number of bins, so that we need to quantify the overlap
between the two distributions. Here we will apply the
standard detection technique [22]. First we need to nor-
malize the distributions P1��;N� (corresponds to the dis-
tribution of �2 for the injected signals) and P2��;N�
(corresponds to the distribution of �2 for the spurious
events) so that
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FIG. 1 (color online). Distribution of �2 for simulated signals (th
GEO 600 S1 data (the shaded histogram).
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Z �1

0
P1���d� � 1;

Z �1

0
P2���d� � 1: (5)

P2��� defines the false alarm probability distribution func-
tion, so that we can fix the false alarm probability accord-
ing to Z "�N�

0
P2��;N�d� � #: (6)

By fixing the false alarm probability #, we are essentially
fixing the threshold, "�N;#�, on �2. Note that the thresh-
old is a function of the number of bins and the false alarm
probability. For real data, " cannot be computed analyti-
cally, since P2 depends on spurious events, or, rather on the
similarity of spurious events to the chirp signal. Thus the
purpose of the playground data is to characterize the non-
stationarities in the data.

We will call the number of bins optimal if for a given # it
maximizes the detection probability PdZ "�N;#�

0
P1��;N�d� � Pd: (7)

In other words,

Nopt � maxN

�Z "�N;#�

0
P1��;N�d�

�
: (8)

Note, that we know P1��;N� only for chirps plus Gaussian
noise. The detector’s noise, however, is not Gaussian over a
long time scale, so that P1��� is also, strictly speaking,
unknown to us. This is why we have used software injec-
tions. As a bonus we also derived a threshold on �2,
"�N;#�, which should be used in the analysis of the full
data set.

As one can see, this method can be applied to any signal-
based vetoing statistic. In Sec. IV we will apply this
method to determine the efficiency of other statistics. As
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TABLE I.

N bins 8 16 24 32 40 50 64 86
Pd 58% 81:2% 85:4% 82% 75:8% 68:3% 62:4% 47%

threshold 1.59 8.985 20.8 34.54 47.46 65.97 95.11 143
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an example, we can apply Eq. (8) to the simulation de-
scribed above and quantify the results presented in Fig. 1.

The results given in Table I (especially Pd) should be
taken with caution. We have injected only 214 signals, and
it might not be enough to make a definite statement.
However it is a very good indication on what is the optimal
number of bins. We have quite a large number (2550) of
spurious events with SNR � 6, so that the statement about
the threshold for a given false alarm probability is pretty
solid. It should also be mentioned that we have truncated a
tail of the �2 distribution for spurious events by neglecting
5% of all events with largest �2 (we continue 5% trunca-
tion for false alarm distribution in the Sec. IV as well). We
have also performed a cubic spline interpolation between
these points (see Fig. 2) to show that the optimal number of
bins indeed lies somewhere close to 20.

At the end of this Section we would like to mention that
an optimal parameter might not exist, or it could be not the
obvious one. In addition the use of a template bank makes
the identification of the optimal number of bins more
difficult. It might happen that the optimal number varies
with, say, the total mass of the inspiralling system we
search for.

IV. OTHER SIGNAL-BASED VETO STATISTICS

In this Section we will consider other signal-based veto
statistics. We start with a statistic that was inspired by the
Kolmogorov-Smirnov ‘‘goodness-of-fit’’ test. We will
show its statistical properties in the case of Gaussian noise.
0 20 40 60 80
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70
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90

Pd

FIG. 2 (color online). Graphical representation of first two
lines from the Table I. The solid line is a cubic spline interpo-
lation.
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Then, we will consider some possible modifications of that
statistic and another �2-like statistic, which we will call r̂2.
We show their performance using GEO 600 S1 data.

A. Kolmogorov-Smirnov based statistic

The original Kolmogorov-Smirnov ‘‘goodness-of-fit’’
test [16,23,24] compares two cumulative probability dis-
tributions, S�x�; P�x�, (see Fig. 3), and the test statistic is
the maximum distance D between curves S�x� and P�x�.

Here we suggest a vetoing statistic which is somewhat
similar to the Kolmogorov-Smirnov one, or better to say
that the new statistic was inspired by the Kolmogorov-
Smirnov test. We start by defining a few more quantities:

 i � 2
XFi
fk�F0

~s�fk�~s��fk�
Sn�fk�

�f; i � 1; . . . ;M;

FM � flso;  M � 1:
(9)

qi �
XFi
fk�F0

�
~x�fk�~s

��fk�
Sn�fk�

� c:c:
�
�f;

qM � Q; yk �
~x�fk�~s��fk�
Sn�fk�

�f;

(10)

where M is defined by the frequency resolution.
The main idea is to compare two cumulative functions:

the cumulative signal power within the signal’s frequency
band and the cumulative SNR, which is essentially the
correlation between the detector output and a template
within the same frequency band. Introduce the vetoing
statistic according to

d � maxijqi �  iQj; i � 1; . . . ;M� 1 (11)

and let us call it d-statistic. However, we have found that,
D
P(x)

S(x)

1

0

FIG. 3. Schematic representation of Kolmogorov-Smirnov
test. Comparison between two cumulative distributions, P�x� is
a theoretical distribution and S�x� is an observed one.
Kolmogorov-Smirnov statistic is D.
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in practice, another statistic, d̂:

d̂ � maxi

��������qiQ�  i

��������;
performs better. Nevertheless we start with d-statistic and
postpone consideration of d̂ to the next subsection. The
main question which we want to address is what is the
probability of d >D in the presence of a true chirp in
Gaussian noise. Although we know that the detector’s
noise is not Gaussian, we can treat it as Gaussian noise
plus nonstationarities (spurious transient events), and we
try to discriminate those nonstationarities from the genuine
gravitational wave signals. We refer the reader to the
Appendix for detailed calculations and we quote here
only the final results. If we introduce Yi � qi �  iQ (so
that d � maxijYij), then the probability distribution func-
tion P�Y1; . . . ; YM�1� is the multivariate Gaussian proba-
bility distribution function and

Pr�d > D� � 1�
Z D

�D

dY1 . . . dYM�1

�2���M�1�=2
����������������
det�Cij�

q

 exp

�
�
YC�1YT

2

�
; (12)

where the covariance matrix, C, is defined in Eq. (A9).
To show the performance of the d-test, we have com-

puted d for a glitch that produced SNR � 16 at the output
of the matched filtering and for the simulated chirp added
to the data. The result is presented in the Fig. 4. The upper
two panels show qi: the top graph is plotted for a true chirp,
and the middle graph is for a spurious event. The dashed
line corresponds to the expected cumulative SNR ( iQ)
and the solid line is the actual accumulation (qi). The lower
panel shows the distance (jqi �  iQj) as a function of
frequency. The solid line here corresponds to the injected
signal and the dashed line is for a spurious event.

As one can see, this test works in practice. However we
have found that the d̂-statistic, defined above, performs
better. One reason for this is that for the loud gravitational
wave signals, we might have large d due to slight mismatch
in parameters caused by the coarseness of the template
bank.

B. Other vetoing statistics

We start with another �2-like discriminator. The sug-
gested statistic is

r̂ 2 � N
XN
i�1

�Qi
Q � pi�

2

pi
: (13)

The interesting fact is that the TAMA group [8] is using a
similar (related to the inverse of this quantity) statistic for
the purpose of detection. In the following consideration we
will omit the number of bins N as it is just an overall
scaling factor which does not affect vetoing. One can see
022002
that �2 introduced in Eq. (4) is related to the new statistic
according to �2 � Q2r̂2. It is possible to derive the proba-
bility distribution function for �Q̂i � Qi=Q� pi for
Gaussian noise following the same line as described in
the Appendix. Unfortunately, the expression is quite
messy, especially for the large number of bins N and it is
not very useful in practice. To check the performance of
this statistic we have conducted simulations similar to the
ones described in Sec. III. Namely, we have injected a
chirp signal into a day’s worth of S1 GEO 600 data and
plotted the two r̂2 distributions in the upper half of Fig. 5.
The shaded histogram in the upper plot is a distribution of
r̂2 for spurious events with SNR � 9 and the solid line
curve is a distribution of r̂2 for injected chirp signals. We
have chosen 20 bins to compute r̂2. Applying the scheme
defined in the Sec. III, we find that the detection probability
is 95:9% and threshold is 16.47 for a false alarm probabil-
ity of 1%. Note that we did not use playground data for
these simulations, so that our result might be biased by the
choice of a particular data set.

Next, we will modify d-statistic according to

d̂ � maxij
qi
Q

�  ij: (14)

Define Ŷi � qi=Q�  . We will skip the derivation of the
probability distribution function P�Ŷ1; . . . ; ŶM�1� in
Gaussian noise. As in the case of the r̂2 statistic, the
probability could not be expressed in the nice close form,
and, therefore, is not useful in practical applications. The
performance of d̂ statistic is also shown in the Fig. 5 (lower
graph). To produce this picture we have used the same
simulation as for r̂. The detection probability for the d̂-test
is 94:3% and the threshold is 0.21 for a false alarm proba-
-6
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FIG. 6 (color online). Distribution of product statistic �d̂
 r̂2�
for injected signals (solid line histogram) and for spurious events
(shaded histogram). We have used the same day-long GEO 600
data as for producing results presented in the Fig. 5.
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FIG. 5 (color online). Performance of r̂2 and d̂ vetoing statis-
tics are presented on the upper and lower plot correspondingly.
The shaded histogram corresponds to spurious events, and the
solid line histogram is distribution of vetoing statistic for in-
jected signals. We have used 1 day’s worth of S1 GEO 600 data
to conduct these simulations.
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bility of 1%. It is worth mentioning that the d̂ statistic does
not depend on the SNR of the gravitational wave signal. It
depends, though, on the accuracy in the parameter estima-
tion of the signal. We expect to achieve a good accuracy for
signals with high SNR. We have observed, that the pa-
rameter mismatch due to coarseness of the bank does not
affect the vetoing efficiency significantly for the bank
constructed with minimal match � 97%.

Both r̂2 and d̂ perform slightly worse (usually by few
percents) than the original statistic (4) suggested in [9].
However, the suggested new tests have different statistical
properties and could complement the �2 discriminator.
Another possible modification of the d-statistic is choosing
not the largest distance, but the percentile value, in other
words, the maximum distance after throwing away, say, 3%
of the largest distances. The percentile value could be
considered as a parameter for the d-statistic, and could
be optimized for. To finish with d-like statistic, let us give a
few other possibilities:

d� � maxi

�������� qi=Q�  i����������������������
 i�1�  i�

p ��������; (15)

V � d� � d� � maxi

�
qi
Q

�  i

�
�maxi

�
 i �

qi
Q

�
: (16)

The first one, defined by Eq. (15), is the analogue of
Anderson-Darling [25] statistic and the second one,
Eq. (16), is the analogue of Kuiper statistic [26].

The interesting fact is that the product of statistics d̂

r̂2 works even better than each of them separately and one
can see this in the Fig. 6. The detection probability in this
case is 98:3% and the threshold is 4.7 for a false alarm
probability of 1%.
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The reason that the product of two statistics works even
better than each of them separately could be because r̂2 and
d̂ might be better suited for different types of spurious
events, and equally good for the true signals. The statistics
in the product supplement each other to veto larger number
of spurious events.

We have tried to optimize d̂
 r̂2 with respect to the
number of bins, following the same line and conducting
similar simulations as described in the Sec. III. However,
we have not found the obvious choice for the optimal
number of bins. This is because the detection probability
as a function of the number of bins for d̂
 r̂2 fluctuates
slightly about a constant value for the number of bins
between 18 and 40.

V. CONCLUSION

In this paper we have considered several signal-based
vetoes. Those are various statistics based on our knowledge
of the signal we search for, which help us in discriminating
genuine gravitational wave signal from spurious events of
instrumental or environmental origin.

We have outlined the method to optimize �2-like statis-
tic for the number of bins. This method is based on adding
simulated signals to real data and studying the distribution
of the vetoing statistic for injected signals and spurious
events. The optimal number of bins is the one which max-
imizes the detection probability for a fixed false alarm
probablity. This method also automatically provides us
with the vetoing threshold.

We have considered two other very promising signal-
based vetoes: r̂2—the �2-like discriminator, and d̂—the
statistic which was inspired by the Kolmogorov-Smirnov
‘‘goodness-of-fit’’ test. Using again simulated injections
into GEO 600 S1 data we have shown that both those
-7
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statistics could give a very high detection probability (>
94%) for a given false alarm probability (1%). We have
also pointed out that we can achieve even better perform-
ance if we take the product of the two statistics as a new
veto.

It is worth mentioning that performance of all signal-
based vetoes strongly depends on the accuracy in the
estimation parameters of the gravitational wave signal.
We have observed that the high accuracy is especially
important for the short duration signals (signals from the
binary BHs).

Finally, let us emphasize, that the results of the simula-
tions presented here are data dependent, and the exact
numbers for efficiency may vary for different detectors
and/or for different data sets of the same detector.
However, as it follows from the analytical evaluations
and indicated from the conducted simulations, we should
expect good performance for all signal-based vetoes con-
sidered in this paper.
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APPENDIX: DERIVATION OF STATISTICAL
PROPERTIES OF d-TEST.

This Appendix is dedicated to deriving the probability
that the d-statistic, introduced in (11), is larger than a
chosen value D. The derivations presented here are con-
ducted along the line similar to the one described in
Appendix A of [9].

We assume that the detector’s noise n�ti� is Gaussian.
Introduce Yi � qi �  iQ, then d � maxijYij. The main
question we want to address is what is the probability of
d > D in the presence of a true chirp:

Pr�d >D� � Pr�maxifjYijg>D�

� 1� Pr�maxifjYijg<D�

� 1� Pr�jY1j<D; . . . ; jYM�1j<D�

� 1�
Z D

�D
. . .

Z D

�D
P�Y1; . . . ; YM�1�


 dY1 . . .dYM�1: (A1)

We need to find the probability distribution
P�Y1; . . . ; YM�1� and we start with statistical properties of
yk:
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yk �
�
~x�fk�~s

��fk�
Sn�fk�

� c:c:
�
�f

We know that yk are M independent Gaussian random
variables. We can find their mean and variance,

E�yk� � 2A
~s�fk�~s

��fk�
Sn�fk�

� A� k �  k�1� � A-k; (A2)

var �yk� � -k;where we used notation -k

� 2
~s�fk�~s

��fk�
Sn�fk�

�f: (A3)

Taking into account the fact that yk are independent and
have normal distribution, N �A-k;-k�, we can write

P�y1; . . . ; yM� �
YM
i�1

1������������
2�-i

p exp


�
�yi � A-i�

2

2-i

�
: (A4)

We use the same trick as in [9]:Z
dx1 . . . dxM�1

$P�x1; . . . ; xM�1�F�x1; . . . ; xM�1�

�
Z
dy1:::dyMP�y1; . . . ; yM�


 F

 
y1 �  1

XM
k�1

yk; . . . ;
XM�1

k�1

yk �  M�1

XM
k�1

yk

!
(A5)

and choose F�x1; . . . ; xM�1� � ��x1 � Y1� . . .��xM�1 �
YM�1�. This yields

P�Y1; . . . ; YM�1� �
Z
dy1 . . . dyMP�y1; . . . ; yM�


 �

 
y1 �  1

XM
k�1

yk � Y1

!
. . .


 �

 XM�1

k�1

yk �  M�1

XM
k�1

yk � YM�1

!
:

(A6)

Under the following change of variables of integration
�y1; . . . ; yn� ! �z1; . . . ; zM�1;W�

y1 � z1 �-1W;

W �
XM
k�1

yk; yi � zi � zi�1 �-iW;

i � 2; . . . ;M� 1; yM � �zM�1 �-MW;

J � det
@�y1; . . . ; yM�

@�z1; . . . ; zM�1; W�
�
XM
k�1

-k � 1;

the integral (A6) takes the form
-8



PHYSICAL REVIEW D 72, 022002 (2005)
P�Y1; . . . ; YM�1� �
Z
dz1 . . . dzM�1dW

"YM
i�1

1������������
2�-i

p


 exp


�

�yi � A-i�
2

2-i

�#


 ��z1 � Y1� . . .��zM�1 � YM�1�:

(A7)

The argument of the exponent can be expressed in term of
new variables according to

XM
i�1

�yi � A-i�
2

-i
�
XM
i�1

�zi � zi�1�
2

-i
� �W � A�2

� ZC�1ZT � �W � A�2; (A8)

where in the expression above we used z0 � zM � 0, Z is a
vector column �z1; . . . ; zM�1�, and C�1 is inverse of the
covariance matrix, C,

C�1
ij �

�
1

-i
�

1

-i�1

�
�ij �

1

-j
�i�1j �

1

-i
�ij�1: (A9)

Note that

det�Cij� �
1

det�C�1
ij �

�

QM
i�1-iPM
i�1-i

�
YM
i�1

-i:
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Taking all above into account and performing integration
over W we arrive at the required probability distribution
function

P�Y1; . . . ; YM�1� �
1

�2���M�1�=2
�����������������
det�Cij�

q

 exp

�
�

YC�1YT

2

�
; (A10)

which is the multivariate Gaussian probability distribution
function. The final result can be written as

Pr�d >D� � 1�
Z D

�D

dY1 . . . dYM�1

�2���M�1�=2
����������������
det�Cij�

q

 exp

�
�
YC�1YT

2

�
(A11)

One also can compute mean and variance for each Yi:

E�Yi� � 0; (A12)

c ovi�j�YiYj� �  i�1�  j�: (A13)

We would like to emphasize, that like in the case or �2

discriminator, Yi and, correspondingly d, do not depend on
the signal amplitude A.
[1] D. Sigg, Class.Quant. Grav. 21, S409 (2004).
[2] B. Wilke et al., Class.Quant. Grav. 21, S417 (2004).
[3] R. Takahashi et al., Class.Quant. Grav. 21, S697 (2004).
[4] F. Acernese et al., Class.Quant. Grav. 21, S385 (2004).
[5] Abbott B. et al., (The LIGO Scientific Collaboration),

Nucl. Instrum. Methods A517, 154 (2004).
[6] Abbott B. et al., (The LIGO Scientific Collaboration),

Phys. Rev. D 69, 122001 (2004).
[7] H. Takahashi and H. Tagoshi (The TAMA Collaboration),

Class.Quant. Grav. 20, S741 (2003).
[8] H. Takahashi, H. Tagoshi et al., Phys. Rev. D 70, 042003

(2004)
[9] B. Allen, Phys. Rev. D 71, 062001 (2005).

[10] L. Blanchet, G. Faye, B. Iyer, and B. Joguet, Phys. Rev. D
65, 061501(R) (2002); see also 65, 064005 (2002).

[11] A. Buonanno and T. Damour, Phys. Rev. D 62, 064015
(2000).

[12] T. Damour, Phys. Rev. D 64, 124013 (2001).
[13] T. Damour, B. Iyer, and B. Sathyaprakash, Phys. Rev. D

63, 044023 (2001).
[14] L. Baggio et al., Phys. Rev. D 61, 102001 (2000).
[15] P. Shawhan and E. Ochsner, Class.Quant. Grav. 21, S1757

(2004).
[16] A. Kolmogorov, Giorn. Inst. Ital. Attuari 4, 83 (1933).
[17] B. J. Owen, Phys. Rev. D 53, 6749 (1996).
[18] C. Cutler and E. Flanagan, Phys. Rev. D 49, 2658 (1994).
[19] R. Balasubramanian et al., Phys. Rev. D 53, 3033 (1996).
[20] Allen B. et al., Phys. Rev. Lett. 83, 1498 (1999).
[21] L. S. Finn (LIGO 1 Collaboration), Technical document

T030256-00.
[22] S. M. Kay, Fundamentals of statistical signal processing.

Detection theory, (Prentice Hall, Englewood Cliffs, NJ,
1993).

[23] N. V. Smirnov, Bull. Math. Univ. Moscow 2, 3 (1939).
[24] W. H. Press et al., Numerical recipes in C, (Cambridge

Univ. Press, Cambridge, England, 1992).
[25] T. W. Anderson and D. A. Darling, Ann. of Math. Statistics

23, 193 (1952).
[26] N. H. Kuiper, Proceedings of Koninklijke Nederlandse

Akademic van Wetenschappen, ser A 63, 38 (1962).
-9


